WO2023100878A1 - 磁気テープ、磁気テープカートリッジおよび磁気テープ装置 - Google Patents

磁気テープ、磁気テープカートリッジおよび磁気テープ装置 Download PDF

Info

Publication number
WO2023100878A1
WO2023100878A1 PCT/JP2022/043992 JP2022043992W WO2023100878A1 WO 2023100878 A1 WO2023100878 A1 WO 2023100878A1 JP 2022043992 W JP2022043992 W JP 2022043992W WO 2023100878 A1 WO2023100878 A1 WO 2023100878A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic tape
magnetic
powder
layer
servo
Prior art date
Application number
PCT/JP2022/043992
Other languages
English (en)
French (fr)
Inventor
成人 笠田
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2023100878A1 publication Critical patent/WO2023100878A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B15/00Driving, starting or stopping record carriers of filamentary or web form; Driving both such record carriers and heads; Guiding such record carriers or containers therefor; Control thereof; Control of operating function
    • G11B15/02Control of operating function, e.g. switching from recording to reproducing
    • G11B15/05Control of operating function, e.g. switching from recording to reproducing by sensing features present on or derived from record carrier or container
    • G11B15/093Control of operating function, e.g. switching from recording to reproducing by sensing features present on or derived from record carrier or container by sensing driving condition of record carrier, e.g. travel, tape tension
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B15/00Driving, starting or stopping record carriers of filamentary or web form; Driving both such record carriers and heads; Guiding such record carriers or containers therefor; Control thereof; Control of operating function
    • G11B15/18Driving; Starting; Stopping; Arrangements for control or regulation thereof
    • G11B15/43Control or regulation of mechanical tension of record carrier, e.g. tape tension
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B21/00Head arrangements not specific to the method of recording or reproducing
    • G11B21/02Driving or moving of heads
    • G11B21/10Track finding or aligning by moving the head ; Provisions for maintaining alignment of the head relative to the track during transducing operation, i.e. track following
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B23/00Record carriers not specific to the method of recording or reproducing; Accessories, e.g. containers, specially adapted for co-operation with the recording or reproducing apparatus ; Intermediate mediums; Apparatus or processes specially adapted for their manufacture
    • G11B23/02Containers; Storing means both adapted to cooperate with the recording or reproducing means
    • G11B23/04Magazines; Cassettes for webs or filaments
    • G11B23/08Magazines; Cassettes for webs or filaments for housing webs or filaments having two distinct ends
    • G11B23/107Magazines; Cassettes for webs or filaments for housing webs or filaments having two distinct ends using one reel or core, one end of the record carrier coming out of the magazine or cassette
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/008Recording on, or reproducing or erasing from, magnetic tapes, sheets, e.g. cards, or wires
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/58Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B5/584Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for track following on tapes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/735Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer characterised by the back layer
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/74Record carriers characterised by the form, e.g. sheet shaped to wrap around a drum
    • G11B5/78Tape carriers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers

Definitions

  • the present invention relates to magnetic tapes, magnetic tape cartridges, and magnetic tape devices.
  • Magnetic recording media include tape-shaped and disk-shaped magnetic recording media.
  • Tape-shaped magnetic recording media that is, magnetic tapes, are mainly used for data storage applications such as data backups and archives (see, for example, Patent Documents 1).
  • Data is recorded on a magnetic tape by running the magnetic tape inside a magnetic tape device (generally called a "drive") and making the magnetic head follow the data band of the magnetic tape to record data on the data band. It is done by A data track is thereby formed in the data band.
  • the magnetic tape is run in the magnetic tape device and the magnetic head follows the data band of the magnetic tape to read the data recorded on the data band.
  • a system that performs head tracking using a servo signal.
  • a servo system that performs head tracking using a servo signal.
  • the above tension adjustment causes the magnetic head for recording or reproducing data to deviate from the intended track position due to the width deformation of the magnetic tape during recording or reproduction, causing phenomena such as overwriting of recorded data and defective reproduction.
  • magnetic tapes are sometimes used in data centers where temperature and humidity are controlled.
  • data centers are required to save power in order to reduce costs.
  • the management conditions for the environment in which magnetic tapes are used in data centers can be relaxed more than at present, or management can be made unnecessary.
  • the management conditions for the usage environment are relaxed or if management is not performed, it is assumed that the magnetic tape will be used in, for example, a high-temperature and high-humidity environment.
  • Patent Literature 1 does not describe anything about use in a high-temperature and high-humidity environment.
  • One aspect of the present invention is to improve running stability during recording and/or reproduction by controlling the widthwise dimension of the magnetic tape by adjusting the tension applied to the magnetic tape in the longitudinal direction in a high-temperature and high-humidity environment.
  • the main purpose is to provide excellent magnetic tapes.
  • a magnetic tape having a non-magnetic support and a magnetic layer containing ferromagnetic powder The non-magnetic support is a polyethylene naphthalate support having a Young's modulus in the width direction of 10000 MPa or more, and the coefficient of friction against LTO (registered trademark: Linear Tape-Open) 8 head measured on the surface of the magnetic layer.
  • LTO Linear Tape-Open
  • the rate of change before and after storage, ⁇ 1/ ⁇ 2 is 0.7 or more
  • the above ⁇ 1 is obtained when the magnetic tape is slid back and forth against the LTO8 head 3000 times with a tension of 2.0 N (Newton) applied in the longitudinal direction of the magnetic tape in an environment with a temperature of 32° C.
  • [4] The magnetic tape of [1] or [2], wherein the magnetic layer further contains carbon black.
  • [5] The magnetic tape according to any one of [1] to [4], further comprising a nonmagnetic layer containing nonmagnetic powder between the nonmagnetic support and the magnetic layer.
  • [6] The magnetic field according to any one of [1] to [5], further comprising a back coat layer containing a non-magnetic powder on the surface side opposite to the surface side having the magnetic layer of the non-magnetic support. tape.
  • [7] The magnetic tape according to any one of [1] to [6], which has a tape thickness of 5.2 ⁇ m or less.
  • the dimension in the width direction of the magnetic tape is controlled to stabilize running during recording and/or reproduction. It is possible to provide a magnetic tape having excellent properties. Further, according to one aspect of the present invention, it is possible to provide a magnetic tape cartridge and a magnetic tape device containing the above magnetic tape.
  • FIG. 1 is a schematic diagram showing an example of a magnetic tape device
  • Magnetic tape One aspect of the present invention relates to a magnetic tape having a non-magnetic support and a magnetic layer containing ferromagnetic powder.
  • the non-magnetic support is a polyethylene naphthalate support having a Young's modulus of 10000 MPa or more in the width direction.
  • the rate of change ( ⁇ 1/ ⁇ 2) before and after storage of the coefficient of friction against LTO8 head measured on the surface of the magnetic layer is 0.7 or more.
  • the term "(the) surface of the magnetic layer” is synonymous with the magnetic layer side surface of the magnetic tape.
  • the above ⁇ 1 is obtained when the magnetic tape is slid back and forth against the LTO8 head 3000 times with a tension of 2.0 N (Newton) applied in the longitudinal direction of the magnetic tape in an environment with a temperature of 32° C. and a relative humidity of 80%. is the coefficient of friction against the LTO8 head in the outward path during the 10th reciprocating sliding of .
  • the above ⁇ 2 is measured by storing the magnetic tape after reciprocating sliding 3000 times in an environment at a temperature of 32° C. and a relative humidity of 80% for 24 hours. This is the coefficient of friction against the LTO8 head in the outward path during the 10th reciprocating sliding when the LTO8 head is slid back and forth 10 times with a tension of 0.0N.
  • the greater the tension applied to the magnetic tape in the longitudinal direction the greater the widthwise dimension of the magnetic tape. It can be shrunk more (i.e. narrower), and the less the tension, the less it shrunk.
  • the tension applied in the longitudinal direction of the magnetic tape By adjusting the tension applied in the longitudinal direction of the magnetic tape in this manner, the dimension of the magnetic tape in the width direction can be controlled.
  • the running stability when recording and/or reproducing by controlling the dimension of the magnetic tape in the width direction by adjusting the tension applied to the magnetic tape in the longitudinal direction is also simply referred to as "running stability". .
  • the high-temperature and high-humidity environment can be, for example, an environment with a temperature of about 30 to 50.degree.
  • the humidity of the environment can be, for example, about 70 to 100% as relative humidity.
  • the temperature and humidity described for an environment are the ambient temperature and relative humidity of that environment.
  • the recording of data on the magnetic tape and the reproduction of the recorded data are usually performed by bringing the surface of the magnetic layer of the magnetic tape and the magnetic head into contact with each other and sliding them.
  • the inventors of the present invention considered that the large tension applied to the magnetic tape in the longitudinal direction when the tension is adjusted as described above could be a factor in lowering the running stability. In detail, the present inventor considered as follows.
  • the inventors of the present invention found that the above-mentioned coefficient of friction against an LTO8 head measured by applying a tension of 2.0 N in the longitudinal direction of the magnetic tape in an environment with a temperature of 32° C. and a relative humidity of 80% before and after storage.
  • a magnetic tape with a rate of change ( ⁇ 1/ ⁇ 2) of 0.7 or more is capable of early recovery of frictional characteristics.
  • the present inventors have newly found that when recording and/or reproducing is performed by controlling the dimension in the width direction of the tape, it is possible to stably run the magnetic tape in a short period of time after repeated running.
  • the temperature and humidity of the measurement environment and the storage environment described above are adopted as exemplary values of the temperature and humidity of the high-temperature and high-humidity environment. Therefore, the environment in which data is recorded on the magnetic tape and the recorded data is reproduced and the environment in which the magnetic tape is stored are not limited to the temperature and humidity environment described above.
  • the tension applied in the longitudinal direction of the magnetic tape when measuring the coefficient of friction is also adopted as an exemplary value of the large tension that can be applied in the longitudinal direction of the magnetic tape when the tension adjustment is performed as described above. . Therefore, the tension applied in the longitudinal direction of the magnetic tape when recording data on the magnetic tape and reproducing the recorded data is not limited to the tension described above.
  • the present inventor believes that the magnetic tape includes a polyethylene naphthalate support having a Young's modulus of 10000 MPa or more in the width direction as a non-magnetic support, by adjusting the tension applied in the longitudinal direction of the magnetic tape. It is believed that this can contribute to enabling good recording and/or reproduction by controlling the dimension in the width direction.
  • the present invention is not limited by the conjectures of the inventors described herein.
  • the coefficient of friction ⁇ 1 is a value measured by the following method in an environment of temperature 32° C. and relative humidity 80%.
  • a magnetic tape to be measured is attached to a reel tester equipped with two reels and two guide rolls.
  • the surface of the magnetic layer of the magnetic tape is brought into contact with the LTO8 head and slid, and the resistance generated during the sliding is detected by the strain gauge.
  • the magnetic tape is reciprocated 3000 times.
  • the wrap angle ⁇ is 4° and the sliding speed is 4.0 m/sec.
  • a tension T 0 (unit: N) applied in the longitudinal direction of the magnetic tape during sliding is 2.0N.
  • Each sliding distance of the outward and return trips shall be 20 m.
  • the coefficient of friction in the outward path during the tenth reciprocating slide is assumed to be the coefficient of friction ⁇ 1 before storage.
  • the coefficient of friction ⁇ 1 before storage is obtained as follows.
  • the LTO8 head is connected to the strain gauge, and the horizontal frictional force F (unit: N) applied to the LTO8 head is obtained.
  • T 0 2.0.
  • the coefficient of friction ⁇ is calculated by Equation A below.
  • the calculated coefficient of friction ⁇ is assumed to be the coefficient of friction ⁇ 1 before storage.
  • the coefficient of friction ⁇ 2 is a value measured by the following method in an environment of temperature 32° C. and relative humidity 80%.
  • the magnetic tape after 3000 times of reciprocating sliding is then stored for 24 hours in the same environment (i.e. temperature of 32°C and relative humidity of 80%) with the entire length of the magnetic tape wound on one of the two reels. .
  • the magnetic tape after storage was attached to the same reel tester as above and measured 10 times under the same measurement conditions as above. slide back and forth.
  • the portion that has been slid back and forth for the measurement of the coefficient of friction ⁇ 1 is slid back and forth.
  • the coefficient of friction ⁇ in the forward path at the tenth reciprocating sliding is calculated by the same formula A as above.
  • the calculated ⁇ is assumed to be the coefficient of friction ⁇ 2 after storage.
  • the rate of change ( ⁇ 1/ ⁇ 2) of the coefficient of friction against LTO8 head measured on the surface of the magnetic layer of the magnetic tape before and after storage is calculated from ⁇ 1 and ⁇ 2 obtained by the above method.
  • the rate of change ( ⁇ 1/ ⁇ 2) is also referred to as "rate of change in coefficient of friction before and after storage ( ⁇ 1/ ⁇ 2)".
  • an "LTO8 head” is a magnetic head conforming to the LTO8 standard.
  • a magnetic head mounted on the LTO8 drive may be taken out and used, or a magnetic head commercially available as a magnetic head for the LTO8 drive may be used.
  • the LTO8 drive is a drive (magnetic tape device) conforming to the LTO8 standard.
  • An LTO9 drive is a drive conforming to the LTO9 standard, and the same applies to drives of other Generations. It is also assumed that a new (that is, unused) LTO8 head is used for the measurement of the coefficient of friction ⁇ 1.
  • the same LTO8 head used for the measurement of the coefficient of friction ⁇ 1 is used.
  • LTO8 was adopted as the magnetic head for measuring the coefficient of friction
  • the magnetic tape is used in the LTO8 drive.
  • the magnetic tape may be used for recording and/or reproducing data in an LTO8 drive, may be used for recording and/or reproducing data in an LTO9 drive or a further next generation drive, or may be used for LTO8 such as LTO7. Data may be recorded and/or played back on earlier generation drives.
  • ⁇ Friction coefficient change rate before and after storage ( ⁇ 1/ ⁇ 2)> Concerning the frictional characteristics of the magnetic tape, the running stability during recording and/or reproduction by controlling the widthwise dimension of the magnetic tape by adjusting the tension applied in the longitudinal direction of the magnetic tape in a high-temperature and high-humidity environment.
  • the coefficient of friction change rate ( ⁇ 1/ ⁇ 2) before and after storage is 0.7 or more, preferably 0.8 or more, and more preferably 0.9 or more.
  • the friction coefficient change rate ( ⁇ 1/ ⁇ 2) before and after storage can be, for example, 1.0 or less, less than 1.0, or 0.9 or less.
  • the friction coefficient change rate ( ⁇ 1/ ⁇ 2) before and after storage is closer to 1.0 because it can mean that the friction coefficient increased by repeated running can be brought closer to the value before the increase in a short period of time.
  • the coefficient of friction ⁇ 1 and the coefficient of friction ⁇ 2 can be, for example, 0.5 or more, 0.7 or more, or 0.9 or more, and can be 0.9 or less, or 0.8 or less, respectively.
  • the frictional properties of the magnetic tape can be adjusted by, for example, the type of components used for forming the magnetic layer, the preparation method of the composition for forming the magnetic layer, and the like. Details of this point will be described later.
  • the vertical squareness ratio of the magnetic tape can be, for example, 0.55 or more, preferably 0.60 or more. It is preferable from the viewpoint of improving the electromagnetic conversion characteristics that the vertical squareness ratio of the magnetic tape is 0.60 or more.
  • the upper limit of the squareness ratio is, in principle, 1.00 or less.
  • the vertical squareness ratio of the magnetic tape may be 1.00 or less, 0.95 or less, 0.90 or less, 0.85 or less, or 0.80 or less.
  • a magnetic tape having a large vertical squareness ratio is preferable from the viewpoint of improving electromagnetic conversion characteristics.
  • the perpendicular squareness ratio of the magnetic tape can be controlled by a known method such as performing a perpendicular orientation treatment.
  • the vertical squareness ratio is the squareness ratio measured in the perpendicular direction of the magnetic tape.
  • the "perpendicular direction” described with respect to the squareness ratio is the direction orthogonal to the surface of the magnetic layer, and can also be called the thickness direction.
  • the vertical squareness ratio is obtained by the following method. A sample piece of a size that can be introduced into the vibrating sample magnetometer is cut out from the magnetic tape to be measured. Using a vibrating sample magnetometer, this sample piece was measured at a maximum applied magnetic field of 3979 kA/m, a measurement temperature of 296 K, and a magnetic field sweep rate of 8.3 kA/m/sec.
  • the measured value of magnetization strength shall be obtained as a value after demagnetization correction and as a value obtained by subtracting the magnetization of the sample probe of the vibrating sample magnetometer as background noise.
  • the measurement temperature refers to the temperature of the sample piece, and by setting the ambient temperature around the sample piece to the measurement temperature, the temperature equilibrium is established, whereby the temperature of the sample piece can be set to the measurement temperature.
  • the magnetic tape will be described in more detail below.
  • ferromagnetic powder As the ferromagnetic powder contained in the magnetic layer, one or a combination of two or more ferromagnetic powders known as ferromagnetic powders used in the magnetic layers of various magnetic recording media can be used. From the viewpoint of improving the recording density, it is preferable to use ferromagnetic powder having a small average particle size. From this point of view, the average particle size of the ferromagnetic powder is preferably 50 nm or less, more preferably 45 nm or less, even more preferably 40 nm or less, even more preferably 35 nm or less, and 30 nm or less. It is even more preferably 25 nm or less, and even more preferably 20 nm or less.
  • the average particle size of the ferromagnetic powder is preferably 5 nm or more, more preferably 8 nm or more, still more preferably 10 nm or more, and 15 nm or more. is more preferable, and 20 nm or more is even more preferable.
  • Hexagonal Ferrite Powder A preferred specific example of the ferromagnetic powder is hexagonal ferrite powder.
  • hexagonal ferrite powder for details of the hexagonal ferrite powder, for example, paragraphs 0012 to 0030 of JP-A-2011-225417, paragraphs 0134-0136 of JP-A-2011-216149, paragraphs 0013-0030 of JP-A-2012-204726 and Paragraphs 0029 to 0084 of JP-A-2015-127985 can be referred to.
  • hexagonal ferrite powder refers to ferromagnetic powder in which the crystal structure of hexagonal ferrite is detected as the main phase by X-ray diffraction analysis.
  • the main phase refers to the structure to which the highest intensity diffraction peak is attributed in the X-ray diffraction spectrum obtained by X-ray diffraction analysis.
  • the highest intensity diffraction peak in an X-ray diffraction spectrum obtained by X-ray diffraction analysis is attributed to the crystal structure of hexagonal ferrite, it is determined that the crystal structure of hexagonal ferrite has been detected as the main phase. do.
  • the crystal structure of hexagonal ferrite contains at least iron atoms, divalent metal atoms and oxygen atoms as constituent atoms.
  • a divalent metal atom is a metal atom that can become a divalent cation as an ion, and examples thereof include alkaline earth metal atoms such as strontium, barium, and calcium atoms, and lead atoms.
  • hexagonal strontium ferrite powder means that the main divalent metal atoms contained in this powder are strontium atoms
  • hexagonal barium ferrite powder means that the main divalent metal atoms contained in this powder are a barium atom as a divalent metal atom.
  • the main divalent metal atom means the divalent metal atom that accounts for the largest amount on an atomic % basis among the divalent metal atoms contained in the powder.
  • the above divalent metal atoms do not include rare earth atoms.
  • "Rare earth atoms" in the present invention and herein are selected from the group consisting of scandium atoms (Sc), yttrium atoms (Y), and lanthanide atoms.
  • Lanthanide atoms include lanthanum atom (La), cerium atom (Ce), praseodymium atom (Pr), neodymium atom (Nd), promethium atom (Pm), samarium atom (Sm), europium atom (Eu), gadolinium atom (Gd ), terbium atom (Tb), dysprosium atom (Dy), holmium atom (Ho), erbium atom (Er), thulium atom (Tm), ytterbium atom (Yb), and lutetium atom (Lu) be.
  • La lanthanum atom
  • Ce cerium atom
  • Pr praseodymium atom
  • Nd neodymium atom
  • Pm promethium atom
  • Sm samarium atom
  • Eu europium atom
  • Gd gadolinium atom
  • Tb terbium atom
  • Dy dys
  • the hexagonal strontium ferrite powder which is one form of the hexagonal ferrite powder, will be described in more detail below.
  • the activated volume of the hexagonal strontium ferrite powder is preferably in the range of 800-1600 nm 3 .
  • a finely divided hexagonal strontium ferrite powder exhibiting an activation volume within the above range is suitable for making a magnetic tape exhibiting excellent electromagnetic conversion characteristics.
  • the activated volume of the hexagonal strontium ferrite powder is preferably greater than or equal to 800 nm 3 , eg it can be greater than or equal to 850 nm 3 .
  • the activated volume of the hexagonal strontium ferrite powder is more preferably 1500 nm 3 or less, further preferably 1400 nm 3 or less, and 1300 nm 3 or less. is more preferable, 1200 nm 3 or less is even more preferable, and 1100 nm 3 or less is even more preferable.
  • the same is true for the activation volume of hexagonal barium ferrite powder.
  • the "activation volume” is a unit of magnetization reversal, and is an index indicating the magnetic size of a particle.
  • the activation volume and the anisotropy constant Ku described in the present invention and this specification were measured using a vibrating sample magnetometer at magnetic field sweep speeds of 3 minutes and 30 minutes at the coercive force Hc measurement unit (measurement Temperature: 23° C. ⁇ 1° C.), which is a value obtained from the following relational expression between Hc and activation volume V.
  • Hc measurement unit measurement Temperature: 23° C. ⁇ 1° C.
  • Hc 2Ku/Ms ⁇ 1 ⁇ [(kT/KuV)ln(At/0.693)] 1/2 ⁇
  • Ku anisotropy constant (unit: J/m 3 )
  • Ms saturation magnetization (unit: kA/m)
  • k Boltzmann constant
  • T absolute temperature (unit: K)
  • V activity volume (unit: cm 3 )
  • A spin precession frequency (unit: s ⁇ 1 )
  • t magnetic field reversal time (unit: s)]
  • An anisotropic constant Ku can be cited as an index for reducing thermal fluctuation, in other words, improving thermal stability.
  • the hexagonal strontium ferrite powder can preferably have a Ku of 1.8 ⁇ 10 5 J/m 3 or more, more preferably 2.0 ⁇ 10 5 J/m 3 or more.
  • Ku of the hexagonal strontium ferrite powder can be, for example, 2.5 ⁇ 10 5 J/m 3 or less.
  • the higher the Ku value the higher the thermal stability, which is preferable.
  • the hexagonal strontium ferrite powder may or may not contain rare earth atoms.
  • the hexagonal strontium ferrite powder contains rare earth atoms, it preferably contains 0.5 to 5.0 atomic % of rare earth atoms (bulk content) with respect to 100 atomic % of iron atoms.
  • the hexagonal strontium ferrite powder containing rare earth atoms can have uneven distribution of rare earth atoms on the surface layer.
  • rare earth atom surface uneven distribution refers to the rare earth atom content ratio (hereinafter referred to as “Rare earth atom surface layer content” or simply “surface layer content” with respect to rare earth atoms.) is obtained by completely dissolving hexagonal strontium ferrite powder with acid. (hereinafter referred to as “rare earth atom bulk content” or simply “bulk content” with respect to rare earth atoms), and Rare earth atom surface layer content/rare earth atom bulk content>1.0 means that the ratio of The rare earth atom content rate of the hexagonal strontium ferrite powder described later is synonymous with the rare earth atom bulk content rate.
  • the content of rare earth atoms in the solution obtained by partial dissolution is It is the rare earth atom content rate in the surface layer of the particles.
  • the rare earth atom surface layer portion content ratio satisfies the ratio of "rare earth atom surface layer portion content/rare earth atom bulk content ratio >1.0" means that the rare earth atoms are present in the surface layer portion of the particles constituting the hexagonal strontium ferrite powder. It means that it is unevenly distributed (that is, it exists more than inside).
  • the term "surface layer portion” means a partial region extending from the surface toward the inside of a particle that constitutes the hexagonal strontium ferrite powder.
  • the rare earth atom content is preferably in the range of 0.5 to 5.0 atomic % with respect to 100 atomic % of iron atoms.
  • the fact that the rare earth atoms are contained in the bulk content in the above range and that the rare earth atoms are unevenly distributed in the surface layer of the particles constituting the hexagonal strontium ferrite powder contributes to suppressing the decrease in reproduction output during repeated reproduction. Conceivable. This is because the hexagonal strontium ferrite powder contains rare earth atoms with a bulk content within the above range, and the rare earth atoms are unevenly distributed in the surface layers of the particles constituting the hexagonal strontium ferrite powder.
  • hexagonal strontium ferrite powder which has rare earth atoms unevenly distributed in the surface layer, as the ferromagnetic powder for the magnetic layer contributes to suppressing abrasion of the magnetic layer surface due to sliding against the magnetic head.
  • hexagonal strontium ferrite powder having rare earth atoms unevenly distributed on the surface layer can contribute to the improvement of the running durability of the magnetic tape. This is because the uneven distribution of rare earth atoms on the surfaces of the particles that make up the hexagonal strontium ferrite powder improves the interaction between the particle surfaces and organic substances (e.g., binders and/or additives) contained in the magnetic layer.
  • the rare earth atom content is in the range of 0.5 to 4.5 atomic %. is more preferably in the range of 1.0 to 4.5 atomic %, and even more preferably in the range of 1.5 to 4.5 atomic %.
  • the above bulk content is the content obtained by completely dissolving the hexagonal strontium ferrite powder.
  • the atomic content refers to the bulk content obtained by completely dissolving the hexagonal strontium ferrite powder.
  • the hexagonal strontium ferrite powder containing rare earth atoms may contain only one kind of rare earth atoms as rare earth atoms, or may contain two or more kinds of rare earth atoms. When two or more rare earth atoms are contained, the bulk content is obtained for the total of two or more rare earth atoms. This point also applies to the present invention and other components in this specification. That is, unless otherwise specified, only one component may be used, or two or more components may be used. When two or more are used, the content or content refers to the total of two or more.
  • the contained rare earth atoms may be any one or more rare earth atoms.
  • Preferred rare earth atoms from the viewpoint of suppressing a decrease in reproduction output in repeated reproduction include neodymium atoms, samarium atoms, yttrium atoms and dysprosium atoms, more preferably neodymium atoms, samarium atoms and yttrium atoms, and neodymium atoms. More preferred.
  • the rare earth atoms need only be unevenly distributed on the surface layer of the particles constituting the hexagonal strontium ferrite powder, and the degree of uneven distribution is not limited.
  • the surface layer content of rare earth atoms obtained by partially dissolving under the dissolving conditions described later and the rare earth elements obtained by completely dissolving under the dissolving conditions described later The ratio of atoms to the bulk content, "surface layer content/bulk content", is greater than 1.0 and can be 1.5 or more.
  • the "surface layer content/bulk content” is greater than 1.0, it means that the rare earth atoms are unevenly distributed in the surface layer (ie, more present than in the interior) in the particles constituting the hexagonal strontium ferrite powder. do.
  • the ratio between the surface layer content of rare earth atoms obtained by partial dissolution under the dissolution conditions described later and the bulk content of rare earth atoms obtained by complete dissolution under the dissolution conditions described later, "surface layer content/ The “bulk content” can be, for example, 10.0 or less, 9.0 or less, 8.0 or less, 7.0 or less, 6.0 or less, 5.0 or less, or 4.0 or less.
  • the rare earth atoms should be unevenly distributed in the surface layer portion of the particles constituting the hexagonal strontium ferrite powder.
  • "Ratio" is not limited to the exemplified upper or lower limits.
  • Partial dissolution and total dissolution of hexagonal strontium ferrite powder are described below.
  • sample powders for partial dissolution and total dissolution are taken from the same lot of powder.
  • part of the hexagonal strontium ferrite powder taken out from the magnetic layer is subjected to partial melting, and the other part is subjected to complete melting.
  • the hexagonal strontium ferrite powder can be extracted from the magnetic layer, for example, by the method described in paragraph 0032 of JP-A-2015-91747.
  • the partial dissolution means dissolution to such an extent that residual hexagonal strontium ferrite powder can be visually confirmed in the liquid at the end of dissolution.
  • a region of 10 to 20% by mass of the particles constituting the hexagonal strontium ferrite powder can be dissolved out of 100% by mass of the entire particles.
  • the above-mentioned complete dissolution means that the hexagonal strontium ferrite powder is dissolved to the point where no residue of the hexagonal strontium ferrite powder remains in the liquid at the end of dissolution.
  • the partial dissolution and the measurement of the surface layer portion content are performed, for example, by the following methods.
  • dissolution conditions such as the amount of sample powder described below are examples, and dissolution conditions that allow partial dissolution and complete dissolution can be arbitrarily adopted.
  • a container for example, a beaker
  • 10 mL of 1 mol/L hydrochloric acid is held on a hot plate with a set temperature of 70° C. for 1 hour.
  • the resulting solution is filtered through a 0.1 ⁇ m membrane filter.
  • Elemental analysis of the filtrate thus obtained is performed by an inductively coupled plasma (ICP) analyzer. In this way, the surface layer portion content of rare earth atoms relative to 100 atomic % of iron atoms can be obtained.
  • ICP inductively coupled plasma
  • the total content of all rare earth atoms is taken as the surface layer portion content.
  • This point also applies to the measurement of the bulk content.
  • the measurement of the total dissolution and bulk content is carried out, for example, by the following method.
  • a container for example, a beaker
  • sample powder containing 12 mg of sample powder and 10 mL of 4 mol/L hydrochloric acid is held on a hot plate with a set temperature of 80° C. for 3 hours. After that, the partial dissolution and the measurement of the surface layer portion content are carried out in the same manner as described above, and the bulk content with respect to 100 atom % of iron atoms can be obtained.
  • the ferromagnetic powder contained in the magnetic tape have a high mass magnetization ⁇ s.
  • hexagonal strontium ferrite powders containing rare earth atoms but not unevenly distributed in the surface layer of rare earth atoms tended to have a significantly lower ⁇ s compared to hexagonal strontium ferrite powders containing no rare earth atoms.
  • hexagonal strontium ferrite powder having rare earth atoms unevenly distributed in the surface layer is considered preferable in terms of suppressing such a large decrease in ⁇ s.
  • the ⁇ s of the hexagonal strontium ferrite powder can be 45 A ⁇ m 2 /kg or greater, and can also be 47 A ⁇ m 2 /kg or greater.
  • ⁇ s is preferably 80 A ⁇ m 2 /kg or less, more preferably 60 A ⁇ m 2 /kg or less.
  • the strontium atom content can be, for example, in the range of 2.0 to 15.0 atomic % with respect to 100 atomic % of iron atoms. .
  • the hexagonal strontium ferrite powder can have strontium atoms as the only divalent metal atoms contained in the powder.
  • the hexagonal strontium ferrite powder can also contain one or more other divalent metal atoms in addition to the strontium atoms. For example, it can contain barium atoms and/or calcium atoms.
  • the barium atom content and calcium atom content in the hexagonal strontium ferrite powder are, for example, 0.05 to 5 atoms per 100 atomic percent of iron atoms. can be in the range of .0 atomic %.
  • the hexagonal strontium ferrite powder may have any crystal structure.
  • the crystal structure can be confirmed by X-ray diffraction analysis.
  • the hexagonal strontium ferrite powder can have a single crystal structure or two or more crystal structures detected by X-ray diffraction analysis.
  • a hexagonal strontium ferrite powder can be one in which only the M-type crystal structure is detected by X-ray diffraction analysis.
  • M-type hexagonal ferrite is represented by a composition formula of AFe 12 O 19 .
  • A represents a divalent metal atom
  • the hexagonal strontium ferrite powder is M-type, A is only a strontium atom (Sr), or if A contains a plurality of divalent metal atoms, , as described above, strontium atoms (Sr) account for the largest amount on an atomic % basis.
  • the divalent metal atom content of the hexagonal strontium ferrite powder is usually determined by the type of crystal structure of the hexagonal ferrite, and is not particularly limited. The same applies to the iron atom content and the oxygen atom content.
  • the hexagonal strontium ferrite powder contains at least iron atoms, strontium atoms and oxygen atoms, and may also contain rare earth atoms.
  • the hexagonal strontium ferrite powder may or may not contain atoms other than these atoms.
  • the hexagonal strontium ferrite powder may contain aluminum atoms (Al).
  • the content of aluminum atoms can be, for example, 0.5 to 10.0 atomic % with respect to 100 atomic % of iron atoms.
  • the hexagonal strontium ferrite powder contains iron atoms, strontium atoms, oxygen atoms and rare earth atoms, and the content of atoms other than these atoms is 100 atomic % iron atoms.
  • the hexagonal strontium ferrite powder may contain no atoms other than iron atoms, strontium atoms, oxygen atoms and rare earth atoms.
  • the content expressed in atomic % above is the content of each atom (unit: mass %) obtained by completely dissolving the hexagonal strontium ferrite powder, and converted to the value expressed in atomic % using the atomic weight of each atom. It is required by conversion.
  • the phrase "not containing" an atom means that the content of the atom is 0% by mass as measured by an ICP analyzer after being completely dissolved.
  • the detection limit of an ICP analyzer is usually 0.01 ppm (parts per million) or less on a mass basis.
  • the above-mentioned "does not contain” shall be used in the sense of containing in an amount below the detection limit of the ICP analyzer.
  • the hexagonal strontium ferrite powder in one form, can be free of bismuth atoms (Bi).
  • Metal powder Ferromagnetic metal powder is also a preferred specific example of the ferromagnetic powder.
  • paragraphs 0137 to 0141 of JP-A-2011-216149 and paragraphs 0009-0023 of JP-A-2005-251351 can be referred to.
  • ⁇ -iron oxide powder A preferred specific example of the ferromagnetic powder is ⁇ -iron oxide powder.
  • ⁇ -iron oxide powder means a ferromagnetic powder in which the crystal structure of ⁇ -iron oxide is detected as the main phase by X-ray diffraction analysis.
  • X-ray diffraction analysis For example, when the highest intensity diffraction peak in the X-ray diffraction spectrum obtained by X-ray diffraction analysis is attributed to the crystal structure of ⁇ -iron oxide, it is determined that the crystal structure of ⁇ -iron oxide has been detected as the main phase.
  • a method for producing ⁇ -iron oxide powder a method of producing from goethite, a reverse micelle method, and the like are known.
  • the activated volume of the ⁇ -iron oxide powder is preferably in the range of 300-1500 nm 3 .
  • a finely divided ⁇ -iron oxide powder exhibiting an activation volume in the above range is suitable for making a magnetic tape exhibiting excellent electromagnetic conversion properties.
  • the activated volume of the ⁇ -iron oxide powder is preferably greater than or equal to 300 nm 3 and may eg be greater than or equal to 500 nm 3 .
  • the activated volume of the ⁇ -iron oxide powder is more preferably 1400 nm 3 or less, further preferably 1300 nm 3 or less, and 1200 nm 3 or less. is more preferable, and 1100 nm 3 or less is even more preferable.
  • An anisotropic constant Ku can be cited as an index for reducing thermal fluctuation, in other words, improving thermal stability.
  • the ⁇ -iron oxide powder can preferably have a Ku of 3.0 ⁇ 10 4 J/m 3 or higher, more preferably 8.0 ⁇ 10 4 J/m 3 or higher.
  • Ku of the ⁇ -iron oxide powder can be, for example, 3.0 ⁇ 10 5 J/m 3 or less.
  • the higher the Ku the higher the thermal stability, which is preferable, and is not limited to the values exemplified above.
  • the ferromagnetic powder contained in the magnetic tape have a high mass magnetization ⁇ s.
  • the ⁇ s of the ⁇ -iron oxide powder can be 8 A ⁇ m 2 /kg or greater, and can also be 12 A ⁇ m 2 /kg or greater.
  • ⁇ s of the ⁇ -iron oxide powder is preferably 40 A ⁇ m 2 /kg or less, more preferably 35 A ⁇ m 2 /kg or less, from the viewpoint of noise reduction.
  • the average particle size of various powders such as ferromagnetic powder is a value measured by the following method using a transmission electron microscope.
  • the powder is photographed using a transmission electron microscope at a magnification of 100,000 times, and printed on photographic paper or displayed on a display so that the total magnification is 500,000 times to obtain a photograph of the particles that make up the powder.
  • the particles of interest are selected from the photograph of the particles obtained, and the contours of the particles are traced with a digitizer to measure the size of the particles (primary particles).
  • Primary particles refer to individual particles without agglomeration. The above measurements are performed on 500 randomly selected particles.
  • the arithmetic mean of the particle sizes of the 500 particles thus obtained is taken as the average particle size of the powder.
  • the transmission electron microscope for example, Hitachi's H-9000 transmission electron microscope can be used.
  • the particle size can be measured using known image analysis software such as Carl Zeiss image analysis software KS-400. Unless otherwise specified, the average particle size shown in the examples below was measured using a transmission electron microscope H-9000 manufactured by Hitachi, and image analysis software KS-400 manufactured by Carl Zeiss as image analysis software. value.
  • powder means a collection of particles.
  • ferromagnetic powder means an aggregate of ferromagnetic particles.
  • the aggregation of a plurality of particles is not limited to the form in which the particles constituting the aggregation are in direct contact, but also includes the form in which a binder, an additive, etc., which will be described later, is interposed between the particles. be.
  • the term particles is sometimes used to describe powders.
  • the size of the particles constituting the powder is the shape of the particles observed in the above particle photographs.
  • particle size is the shape of the particles observed in the above particle photographs.
  • (1) In the case of needle-like, spindle-like, columnar (however, the height is greater than the maximum major diameter of the bottom surface), etc., the length of the major axis constituting the particle, that is, the major axis length,
  • (2) In the case of a plate-like or columnar shape (where the thickness or height is smaller than the maximum major diameter of the plate surface or bottom surface), it is expressed by the maximum major diameter of the plate surface or bottom surface
  • (3) If the particle is spherical, polyhedral, irregular, or the like, and the major axis of the particle cannot be specified from the shape, it is represented by the equivalent circle diameter.
  • the equivalent circle diameter is obtained by the circular projection method.
  • the average acicular ratio of the powder is obtained by measuring the length of the minor axis of the particles in the above measurement, that is, the minor axis length, and obtaining the value of (long axis length / minor axis length) of each particle. It refers to the arithmetic mean of the values obtained for the particles.
  • the minor axis length is the length of the minor axis constituting the particle in the case of (1) in the definition of the particle size, and the thickness or height in the case of (2).
  • (long axis length/short axis length) is regarded as 1 for convenience.
  • the average particle size is the average major axis length
  • the average particle size is Average plate diameter
  • the average particle size is the average diameter (also referred to as average particle size or average particle size).
  • the ferromagnetic powder content (filling rate) in the magnetic layer is preferably in the range of 50 to 90% by mass, more preferably in the range of 60 to 90% by mass, relative to the total mass of the magnetic layer.
  • a high filling rate of the ferromagnetic powder in the magnetic layer is preferable from the viewpoint of improving the recording density.
  • the magnetic tape may be a coated magnetic tape, and the magnetic layer may contain a binder.
  • a binder is one or more resins.
  • various resins commonly used as binders for coating-type magnetic recording media can be used.
  • binders include polyurethane resins, polyester resins, polyamide resins, vinyl chloride resins, acrylic resins obtained by copolymerizing styrene, acrylonitrile, methyl methacrylate, etc., cellulose resins such as nitrocellulose, epoxy resins, phenoxy resins, polyvinyl acetal,
  • a resin selected from polyvinyl alkylal resins such as polyvinyl butyral can be used singly, or a plurality of resins can be mixed and used.
  • polyurethane resins acrylic resins, cellulose resins, and vinyl chloride resins. These resins may be homopolymers or copolymers. These resins can also be used as binders in the non-magnetic layer and/or backcoat layer, which will be described later.
  • Paragraphs 0028 to 0031 of JP-A-2010-24113 can be referred to for the above binders.
  • the binder may also be a radiation-curable resin such as an electron beam-curable resin.
  • paragraphs 0044 to 0045 of JP-A-2011-048878 can be referred to.
  • the weight-average molecular weight of the resin used as the binder can be, for example, 10,000 or more and 200,000 or less.
  • the binder can be used in an amount of, for example, 1.0 to 30.0 parts by mass with respect to 100.0 parts by mass of the ferromagnetic powder.
  • a hardening agent can also be used with the binder.
  • the curing agent can be, in one form, a thermosetting compound which is a compound in which a curing reaction (crosslinking reaction) proceeds by heating, and in another form, a photocuring compound in which a curing reaction (crosslinking reaction) proceeds by light irradiation. can be a chemical compound.
  • the curing agent can be contained in the magnetic layer in a state in which at least a portion thereof has reacted (crosslinked) with other components such as a binder as the curing reaction progresses during the manufacturing process of the magnetic tape.
  • Preferred curing agents are thermosetting compounds, preferably polyisocyanates.
  • the curing agent is contained in the composition for forming the magnetic layer in an amount of, for example, 0 to 80.0 parts by weight per 100.0 parts by weight of the binder. It can be used in an amount of 80.0 parts by weight.
  • the magnetic layer may optionally contain one or more additives.
  • additives Commercially available additives can be appropriately selected and used according to desired properties. Alternatively, a compound synthesized by a known method can be used as an additive. Examples of additives include the curing agents described above.
  • Additives that can be contained in the magnetic layer include nonmagnetic fillers, lubricants, dispersants, dispersing aids, antifungal agents, antistatic agents, antioxidants, and the like.
  • Non-magnetic filler is synonymous with non-magnetic particles or non-magnetic powder.
  • Non-magnetic fillers can include non-magnetic fillers that can function as protrusion-forming agents and non-magnetic fillers that can function as abrasives.
  • known additives such as various polymers described in paragraphs 0030 to 0080 of JP-A-2016-051493 can also be used.
  • the protrusion-forming agent which is one form of the non-magnetic filler
  • particles of inorganic substances can be used, particles of organic substances can be used, and composite particles of inorganic substances and organic substances can also be used. Carbon black can also be used.
  • inorganic substances include inorganic oxides such as metal oxides, metal carbonates, metal sulfates, metal nitrides, metal carbides, and metal sulfides, and inorganic oxides are preferred.
  • the protrusion-forming agent can be an inorganic oxide-based particle.
  • the term "system” is used in the sense of "including”.
  • One form of inorganic oxide particles is particles made of inorganic oxides.
  • inorganic oxide particles is composite particles of an inorganic oxide and an organic substance, and specific examples thereof include composite particles of an inorganic oxide and a polymer. Examples of such particles include particles in which a polymer is bonded to the surface of inorganic oxide particles.
  • the average particle size of the protrusion-forming agent can be, for example, 30-300 nm, preferably 40-200 nm.
  • the shape of the protrusion-forming agent can be any shape.
  • the shape of the particles of the protrusion-forming agent is a shape apart from a true sphere, for example, a so-called irregular shape, a large indentation resistance is likely to act when pressure is applied to the surface of the magnetic layer due to contact with the magnetic head. Therefore, it is presumed that there is a tendency to be less susceptible to changes in pressure.
  • particles with non-uniform particle surfaces and low surface smoothness are also likely to exert a large indentation resistance when pressure is applied, and therefore tend to be less susceptible to changes in pressure.
  • a protrusion-forming agent whose particle shape is away from a true sphere and/or using a protrusion-forming agent whose particle surface is heterogeneous and whose surface smoothness is low preferable.
  • an irregular shape can also be used as a projection forming agent.
  • the abrasive which is another form of the non-magnetic filler, is preferably a non-magnetic powder with a Mohs hardness of more than 8, more preferably a non-magnetic powder with a Mohs hardness of 9 or more.
  • the Mohs hardness of the protrusion-forming agent can be, for example, 8 or less, or 7 or less.
  • the maximum Mohs hardness is 10 for diamond.
  • abrasives include alumina (eg, Al 2 O 3 ), silicon carbide, boron carbide (eg, B 4 C), SiO 2 , TiC, chromium oxide (Cr 2 O 3 ), cerium oxide, and zirconium oxide.
  • the average particle size of the abrasive can be, for example, in the range of 30-300 nm, preferably in the range of 50-200 nm.
  • the content of the protrusion-forming agent in the magnetic layer is 0 per 100.0 parts by mass of the ferromagnetic powder. .1 to 5.0 parts by mass, more preferably 0.3 to 3.5 parts by mass, even more preferably 0.5 to 2.5 parts by mass.
  • the abrasive content in the magnetic layer is preferably 1.0 to 20.0 parts by mass, more preferably 3.0 to 15.0 parts by mass, per 100.0 parts by mass of the ferromagnetic powder. more preferably 4.0 to 10.0 parts by mass.
  • a dispersant may be contained in the non-magnetic layer. For the dispersant that can be contained in the non-magnetic layer, see paragraph 0061 of JP-A-2012-133837.
  • one form of additive that can be contained in the magnetic layer is a compound having an ammonium salt structure of an alkyl ester anion represented by Formula 1 below.
  • R represents an alkyl group having 7 or more carbon atoms or a fluorinated alkyl group having 7 or more carbon atoms
  • Z + represents an ammonium cation.
  • Lubricants can be broadly classified into fluid lubricants and boundary lubricants.
  • the present inventor believes that the compound having the ammonium salt structure of the alkyl ester anion represented by Formula 1 above can function as a fluid lubricant. It is believed that the fluid lubricant itself can play a role in providing lubricity to the magnetic layer by forming a liquid film on the surface of the magnetic layer. In order to control the frictional properties of the magnetic tape, it is presumed that it is desirable for the fluid lubricant to form a liquid film on the surface of the magnetic layer.
  • the liquid film of the fluid lubricant it is considered desirable to use an appropriate amount of the fluid lubricant forming the liquid film on the surface of the magnetic layer from the viewpoint of enabling more stable sliding.
  • the compounds containing the ammonium salt structure of the alkyl ester anion represented by Formula 1 can play an excellent role as fluid lubricants even in relatively small amounts. Therefore, it is considered that the inclusion of the above compound in the magnetic layer leads to improved sliding stability between the surface of the magnetic layer of the magnetic tape and the magnetic head.
  • the groups described may have a substituent or may be unsubstituted.
  • the “carbon number” of a group having a substituent means the number of carbon atoms not including the number of carbon atoms of the substituent unless otherwise specified.
  • substituents include, for example, alkyl groups (eg alkyl groups having 1 to 6 carbon atoms), hydroxy groups, alkoxy groups (eg alkoxy groups having 1 to 6 carbon atoms), halogen atoms (eg fluorine atom, chlorine atom, bromine atom, etc.), a cyano group, an amino group, a nitro group, an acyl group, a carboxy group, a salt of a carboxy group, a sulfonic acid group, a salt of a sulfonic acid group, and the like.
  • alkyl groups eg alkyl groups having 1 to 6 carbon atoms
  • alkoxy groups eg alkoxy groups having 1 to 6 carbon atoms
  • halogen atoms eg fluorine atom, chlorine atom, bromine atom, etc.
  • a cyano group an amino group, a nitro group, an acyl group, a carboxy group, a salt of a carboxy
  • At least part of the compound having an ammonium salt structure of an alkyl ester anion represented by formula 1 is contained in the magnetic layer and is capable of forming a liquid film on the surface of the magnetic layer. It is also possible to form a liquid film by moving to the surface of the magnetic layer during sliding with the head. Also, part of it can be contained in a non-magnetic layer, which will be described later, and can also migrate to the magnetic layer and then to the surface of the magnetic layer to form a liquid film.
  • the "alkylester anion” can also be called an "alkylcarboxylate anion".
  • R represents an alkyl group having 7 or more carbon atoms or a fluorinated alkyl group having 7 or more carbon atoms.
  • a fluorinated alkyl group has a structure in which some or all of the hydrogen atoms constituting the alkyl group are substituted with fluorine atoms.
  • the alkyl group or fluorinated alkyl group represented by R may have a linear structure, may have a branched structure, may be a cyclic alkyl group or fluorinated alkyl group, and has a linear structure. is preferred.
  • the alkyl group or fluorinated alkyl group represented by R may have a substituent or may be unsubstituted, and is preferably unsubstituted.
  • An alkyl group represented by R can be represented by, for example, C n H 2n+1 -.
  • n represents an integer of 7 or more.
  • the fluorinated alkyl group represented by R can have a structure in which, for example, some or all of the hydrogen atoms constituting the alkyl group represented by C n H 2n+1 - are substituted with fluorine atoms.
  • the number of carbon atoms in the alkyl group or fluorinated alkyl group represented by R is 7 or more, preferably 8 or more, more preferably 9 or more, further preferably 10 or more, and 11 or more. more preferably, 12 or more, and even more preferably 13 or more.
  • the number of carbon atoms in the alkyl group or fluorinated alkyl group represented by R is preferably 20 or less, more preferably 19 or less, and even more preferably 18 or less.
  • Z + represents an ammonium cation.
  • the ammonium cation specifically has the following structure.
  • "*" in formulas representing part of a compound represents the bonding position between the structure of that part and an adjacent atom.
  • the nitrogen cation N + of the ammonium cation and the oxygen anion O 2 ⁇ in formula 1 can form a salt bridging group to form the ammonium salt structure of the alkyl ester anion represented by formula 1.
  • the presence of the compound having the ammonium salt structure of the alkyl ester anion represented by Formula 1 in the magnetic layer can be confirmed by X-ray photoelectron spectroscopy (ESCA) and infrared spectroscopy (IR) for the magnetic tape. It can be confirmed by analyzing by infrared spectroscopy) or the like.
  • an ammonium cation represented by Z + can be provided, for example, by a nitrogen atom of a nitrogen-containing polymer becoming a cation.
  • a nitrogen-containing polymer means a polymer containing nitrogen atoms.
  • the terms "polymer” and “polymer” are used in the sense of including homopolymers and copolymers.
  • a nitrogen atom can be contained as an atom constituting a main chain of a polymer in one form, and can be contained as an atom constituting a side chain of a polymer in one form.
  • Polyalkyleneimine is a ring-opening polymer of alkyleneimine, and is a polymer having a plurality of repeating units represented by formula 2 below.
  • the nitrogen atom N constituting the main chain in Formula 2 can become a nitrogen cation N + to provide an ammonium cation represented by Z + in Formula 1. and can form an ammonium salt structure with an alkyl ester anion, for example, as follows.
  • R 1 and R 2 each independently represent a hydrogen atom or an alkyl group, and n1 represents an integer of 2 or more.
  • Examples of the alkyl group represented by R 1 or R 2 include an alkyl group having 1 to 6 carbon atoms, preferably an alkyl group having 1 to 3 carbon atoms, more preferably a methyl group or an ethyl group. group, more preferably a methyl group.
  • the alkyl group represented by R 1 or R 2 is preferably an unsubstituted alkyl group.
  • the combination of R 1 and R 2 in Formula 2 includes a mode in which one is a hydrogen atom and the other is an alkyl group, a mode in which both are hydrogen atoms, and a mode in which both are alkyl groups (same or different alkyl groups). There is a form, preferably a form in which both are hydrogen atoms.
  • n1 in Formula 2 is 2 or more.
  • n1 in Formula 2 can be, for example, 10 or less, 8 or less, 6 or less, or 4 or less.
  • the polyalkyleneimine may be a homopolymer containing only the same structure as the repeating structure represented by Formula 2, or may be a copolymer containing two or more different structures as the repeating structure represented by Formula 2. .
  • the number average molecular weight of the polyalkyleneimine that can be used to form the compound having the ammonium salt structure of the alkyl ester anion represented by Formula 1 can be, for example, 200 or more, preferably 300 or more, It is more preferably 400 or more.
  • the number average molecular weight of the polyalkyleneimine may be, for example, 10,000 or less, preferably 5,000 or less, and more preferably 2,000 or less.
  • the average molecular weight (weight average molecular weight and number average molecular weight) is measured by gel permeation chromatography (GPC: Gel Permeation Chromatography) and refers to a value determined by standard polystyrene conversion. Unless otherwise specified, the average molecular weight shown in the examples below is a value obtained by converting the value measured under the following measurement conditions using GPC into standard polystyrene (polystyrene conversion value).
  • GPC device HLC-8220 (manufactured by Tosoh Corporation) Guard column: TSKguardcolumn Super HZM-H Column: TSKgel Super HZ 2000, TSKgel Super HZ 4000, TSKgel Super HZ-M (manufactured by Tosoh Corporation, 4.6 mm (inner diameter) ⁇ 15.0 cm, three columns connected in series)
  • Eluent Tetrahydrofuran (THF) containing stabilizer (2,6-di-t-butyl-4-methylphenol)
  • Eluent flow rate 0.35 mL/min
  • Polyallylamine is a polymer of allylamine and is a polymer having a plurality of repeating units represented by Formula 3 below.
  • the nitrogen atom N constituting the amino group of the side chain in Formula 3 can become a nitrogen cation N + to provide an ammonium cation represented by Z + in Formula 1. and can form an ammonium salt structure with an alkyl ester anion, for example as follows.
  • the weight-average molecular weight of the polyallylamine that can be used to form the compound having the ammonium salt structure of the alkyl ester anion represented by formula 1 can be, for example, 200 or more, preferably 1,000 or more. , 1,500 or more.
  • the weight average molecular weight of the polyalkyleneimine may be, for example, 15,000 or less, preferably 10,000 or less, and more preferably 8,000 or less.
  • the compound having an ammonium salt structure of an alkyl ester anion represented by Formula 1 is a nitrogen-containing polymer and at least one fatty acid selected from the group consisting of fatty acids having 7 or more carbon atoms and fluorinated fatty acids having 7 or more carbon atoms.
  • the salt-forming nitrogen-containing polymer can be one or more nitrogen-containing polymers, such as nitrogen-containing polymers selected from the group consisting of polyalkyleneimines and polyallylamines.
  • Fatty acids that form salts can be one or more fatty acids selected from the group consisting of fatty acids having 7 or more carbon atoms and fluorinated fatty acids having 7 or more carbon atoms.
  • a fluorinated fatty acid has a structure in which some or all of the hydrogen atoms constituting the alkyl group bonded to the carboxyl group COOH in the fatty acid are substituted with fluorine atoms.
  • Room temperature is, for example, about 20 to 25.degree.
  • one or more nitrogen-containing polymers and one or more fatty acids are used as components of the composition for forming the magnetic layer, and these are mixed in the process of preparing the composition for forming the magnetic layer to form a salt. Allow the reaction to proceed.
  • one or more nitrogen-containing polymers and one or more fatty acids are mixed to form a salt, and then the salt is added to the magnetic layer-forming composition.
  • a composition for forming a magnetic layer can be prepared by using it as a component of a material. This point also applies to the formation of a non-magnetic layer containing a compound having an ammonium salt structure of an alkyl ester anion represented by formula (1).
  • 0.1 to 10.0 parts by mass of nitrogen-containing polymer can be used per 100.0 parts by mass of ferromagnetic powder, and 0.5 to 8.0 parts by mass of nitrogen-containing polymer can be used.
  • the protrusion-forming agent can be dispersed separately from the ferromagnetic powder, and can also be dispersed separately from the abrasive.
  • a compound having an ammonium salt structure of an alkyl ester anion represented by Formula 1 is formed as protrusions by mixing a protrusion-forming agent with one or more nitrogen-containing polymers and one or more fatty acids. It can also be efficiently adsorbed onto the forming agent.
  • 0.01 to 1.0 parts by mass of a nitrogen-containing polymer and 0.01 to 1.0 parts by mass of fatty acids can be mixed with 1.0 parts by mass of the protrusion-forming agent.
  • one or more nitrogen-containing polymers and one or more fatty acids are mixed to form a salt, and then the salt can be mixed with the protrusion-forming agent in the separate dispersion.
  • 0.03 to 3.0 parts by mass of such a salt can be mixed with 1.0 parts by mass of the projection-forming agent.
  • the present inventor believes that separately dispersing the protrusion-forming agent together with the above components is preferable for controlling the rate of change in coefficient of friction ( ⁇ 1/ ⁇ 2) before and after storage to 0.7 or more.
  • the projection-forming agent can be coated with the above-mentioned salt.
  • the present inventor believes that it is easier to supply from the surface to the surface at an early stage. The inventor presumes that this contributes to making it possible to bring the coefficient of friction, which has increased due to repeated running, closer to the value before the increase in a short period of time.
  • the non-magnetic layer for example, 0.1 to 10.0 parts by mass of nitrogen-containing polymer can be used per 100.0 parts by mass of non-magnetic powder, and 0.5 to 8.0 parts by mass of nitrogen-containing polymer can be used. It is preferred to use nitrogen polymers.
  • the fatty acid can be used, for example, in an amount of 0.05 to 10.0 parts by mass, preferably 0.1 to 5.0 parts by mass, per 100.0 parts by mass of the non-magnetic powder.
  • the nitrogen-containing polymer and the fatty acid are mixed to form the ammonium salt of the alkyl ester anion represented by the formula 1, the nitrogen atom constituting the nitrogen-containing polymer and the carboxy group of the fatty acid are also The following structures may be formed upon reaction, and forms containing such structures are also included in the above compounds.
  • fatty acids examples include fatty acids having an alkyl group described above as R in Formula 1 and fluorinated fatty acids having a fluorinated alkyl group described as R in Formula 1 above.
  • the mixing ratio of the nitrogen-containing polymer and the fatty acid used to form the compound having the ammonium salt structure of the alkyl ester anion represented by Formula 1 is 10:10 as a mass ratio of the nitrogen-containing polymer:the fatty acid. It is preferably from 90 to 90:10, more preferably from 20:80 to 85:15, even more preferably from 30:70 to 80:20.
  • the compound having an ammonium salt structure of an alkyl ester anion represented by Formula 1 is preferably contained in the magnetic layer in an amount of 0.01 parts by weight or more, preferably 0.1 parts by weight, per 100.0 parts by weight of the ferromagnetic powder. It is more preferable to contain 1 part or more, and it is still more preferable to contain 0.5 parts by mass or more.
  • the content of the compound in the magnetic layer means the sum of the amount forming the liquid film on the surface of the magnetic layer and the amount contained inside the magnetic layer.
  • a high content of ferromagnetic powder in the magnetic layer is preferable from the viewpoint of high-density recording. Therefore, from the viewpoint of high-density recording, it is preferable that the content of components other than the ferromagnetic powder is small.
  • the content of the compound in the magnetic layer is preferably 15.0 parts by mass or less, more preferably 10.0 parts by mass or less, relative to 100.0 parts by mass of the ferromagnetic powder. It is more preferably 8.0 parts by mass or less. The same applies to the preferred range of the content of the above compounds in the composition for forming the magnetic layer used to form the magnetic layer.
  • the magnetic layer may contain one or more additional components that can function as lubricants.
  • components that can function as lubricants include fatty acid esters and fatty acid amides.
  • fatty acid esters include esters of lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, linolenic acid, behenic acid, erucic acid and elaidic acid.
  • Examples include butyl myristate, butyl palmitate, butyl stearate, neopentyl glycol dioleate, sorbitan monostearate, sorbitan distearate, sorbitan tristearate, oleyl oleate, isocetyl stearate, and stearin.
  • Examples include isotridecyl stearate, octyl stearate, isooctyl stearate, amyl stearate, butoxyethyl stearate and the like.
  • the fatty acid ester content in the composition for forming the magnetic layer or in the magnetic layer is, for example, 0.1 to 10.0 parts by weight, preferably 1.0 to 7.0 parts by weight, per 100.0 parts by weight of the ferromagnetic powder.
  • fatty acid amides include amides of various fatty acids such as lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, linolenic acid, behenic acid, erucic acid, and elaidic acid, specifically lauric acid amide. , myristic acid amide, palmitic acid amide, stearic acid amide, and the like.
  • the fatty acid amide content of the magnetic layer is, for example, 0 to 3.0 parts by weight, preferably 0 to 2.0 parts by weight, more preferably 0 to 1.0 parts by weight, per 100.0 parts by weight of the ferromagnetic powder. part by mass.
  • the non-magnetic layer may also contain one or more components capable of functioning as a lubricant.
  • the non-magnetic layer may contain one or more components selected from the group consisting of fatty acids, fatty acid esters and fatty acid amides.
  • the fatty acid content in the composition for forming the nonmagnetic layer or in the nonmagnetic layer is, for example, 0 to 10.0 parts by mass, preferably 1.0 to 10.0 parts by mass, per 100.0 parts by mass of the nonmagnetic powder. Yes, more preferably 1.0 to 7.0 parts by mass.
  • the fatty acid ester content in the composition for forming the non-magnetic layer or the non-magnetic layer is, for example, 0 to 10.0 parts by weight, preferably 0.1 to 8.0 parts by weight, per 100.0 parts by weight of the non-magnetic powder. is.
  • the fatty acid amide content of the composition for forming the nonmagnetic layer or the nonmagnetic layer is, for example, 0 to 3.0 parts by weight, preferably 0 to 1.0 parts by weight, per 100.0 parts by weight of the nonmagnetic powder.
  • paragraphs 0061 and 0071 of JP-A-2012-133837 can be referred to.
  • a dispersant may be added to the non-magnetic layer forming composition.
  • the dispersant that can be added to the composition for forming the non-magnetic layer see paragraph 0061 of JP-A-2012-133837.
  • the magnetic tape may have a magnetic layer directly on a non-magnetic support, or may have a non-magnetic layer containing non-magnetic powder between the non-magnetic support and the magnetic layer.
  • the non-magnetic powder used in the non-magnetic layer may be inorganic powder (inorganic powder) or organic powder (organic powder). Carbon black or the like can also be used. Examples of inorganic substances include metals, metal oxides, metal carbonates, metal sulfates, metal nitrides, metal carbides, and metal sulfides. These non-magnetic powders are commercially available and can be produced by known methods.
  • paragraphs 0146 to 0150 of Japanese Patent Application Laid-Open No. 2011-216149 can be referred to.
  • carbon black that can be used in the non-magnetic layer see paragraphs 0040 to 0041 of JP-A-2010-24113.
  • the nonmagnetic powder content (filling rate) in the nonmagnetic layer is preferably in the range of 50 to 90% by mass, more preferably in the range of 60 to 90% by mass, relative to the total mass of the nonmagnetic layer. .
  • the non-magnetic layer can contain a binder and can also contain additives.
  • Known techniques for nonmagnetic layers can be applied to other details such as binders and additives for the nonmagnetic layer.
  • the type and content of the binder, the type and content of the additive, etc. can be applied to known techniques relating to the magnetic layer.
  • the non-magnetic layer of the magnetic tape includes, in addition to non-magnetic powder, a substantially non-magnetic layer containing a small amount of ferromagnetic powder, for example, as an impurity or intentionally.
  • the substantially non-magnetic layer means that the residual magnetic flux density of this layer is 10 mT or less, the coercive force is 7.96 kA/m (100 Oe) or less, or the residual magnetic flux density is 10 mT or less. and a coercive force of 7.96 kA/m (100 Oe) or less.
  • the non-magnetic layer preferably has no residual magnetic flux density and no coercive force.
  • the magnetic tape includes a polyethylene naphthalate support having a Young's modulus in the width direction of 10000 MPa (megapascal) or more as a non-magnetic support (hereinafter also simply referred to as "support").
  • Polyethylene naphthalate is a resin containing a naphthalene ring and a plurality of ester bonds (that is, a polyester containing a naphthalene ring). It is a resin that can be obtained by subjecting a transesterification reaction and a polycondensation reaction to
  • polyethylene naphthalate has a structure having one or more other components (e.g., copolymer components, components introduced into terminals or side chains, etc.) in addition to the above components. is also included.
  • polyethylene naphthalate support means a support comprising at least one layer of polyethylene naphthalate film.
  • polyethylene naphthalate film refers to a film in which polyethylene naphthalate is the most abundant component on a mass basis among the components constituting this film.
  • the "polyethylene naphthalate support” in the present invention and the specification includes those in which all the resin films contained in this support are polyethylene naphthalate films, and those in which polyethylene naphthalate films and other resin films are included. is included.
  • Specific forms of the polyethylene naphthalate support include a single-layer polyethylene naphthalate film, a laminated film of two or more layers of polyethylene naphthalate films having the same constituents, and a laminate of two or more layers of polyethylene naphthalate films having different constituents.
  • Films laminated films containing one or more layers of polyethylene naphthalate films and one or more layers of resin films other than polyethylene naphthalate films, and the like can be mentioned.
  • An adhesive layer or the like may optionally be included between two adjacent layers in the laminated film.
  • the polyethylene naphthalate support may also optionally include a metal film and/or a metal oxide film formed by vapor deposition or the like on one or both surfaces.
  • the non-magnetic support can be a biaxially stretched film, and may be a film subjected to corona discharge, plasma treatment, easy adhesion treatment, heat treatment, or the like.
  • the Young's modulus of a non-magnetic support is a value measured by the following method in a measurement environment of 23° C. and 50% relative humidity.
  • the Young's modulus shown in the table below is a value determined by the following method using Tensilon manufactured by Toyo Baldwin Co., Ltd. as a universal tensile tester. A sample piece cut out from a non-magnetic support to be measured is pulled by a universal tensile tester under the conditions of a distance between chucks of 100 mm, a tensile speed of 10 mm/min and a chart speed of 500 mm/min.
  • the universal tensile tester for example, a commercially available universal tensile tester such as Tensilon manufactured by Toyo Baldwin Co., Ltd. or a universal tensile tester with a known configuration can be used.
  • the Young's modulus in the longitudinal direction and width direction of the sample piece is calculated from the tangent to the rising portion of the load-elongation curve thus obtained.
  • the longitudinal direction and width direction of the sample piece mean the longitudinal direction and width direction when this sample piece is included in the magnetic tape.
  • the longitudinal direction and width direction of the non-magnetic support are removed by the above method. Young's modulus can also be obtained.
  • the Young's modulus of the polyethylene naphthalate support in the width direction is 10000 MPa or more. This is the reason why the above-mentioned magnetic tape makes it possible to control the dimension of the magnetic tape in the width direction by adjusting the tension applied to the magnetic tape in the longitudinal direction and to perform good recording and/or reproduction.
  • the widthwise Young's modulus of the polyethylene naphthalate support may be, for example, 11000 MPa or more.
  • the widthwise Young's modulus of the polyethylene naphthalate support may be, for example, 20,000 MPa or less, 18,000 MPa or less, 16,000 MPa or less, or 14,000 MPa or less, or may exceed the values exemplified here.
  • the polyethylene naphthalate support may have a Young's modulus of 10000 MPa or more in the width direction, and the Young's modulus in the longitudinal direction is not particularly limited.
  • the longitudinal Young's modulus of the polyethylene naphthalate support is preferably 2500 MPa or more, more preferably 3000 MPa or more.
  • the longitudinal Young's modulus of the polyethylene naphthalate support may be, for example, 10000 MPa or less, 9000 MPa or less, 8000 MPa or less, 7000 MPa or less, or 6000 MPa or less.
  • a non-magnetic support is generally used with the MD (machine direction) of the film as the longitudinal direction and the TD (transverse direction) as the width direction.
  • the Young's modulus in the longitudinal direction and the Young's modulus in the width direction of the non-magnetic support can be the same value in one form, and can be different values in another form. In one form, the Young's modulus in the width direction of the polyethylene naphthalate support may be larger than the Young's modulus in the longitudinal direction.
  • the Young's modulus of the non-magnetic support can be controlled by the types and mixing ratios of the components constituting the support, manufacturing conditions of the support, and the like. For example, the Young's modulus in the longitudinal direction and the Young's modulus in the width direction can be controlled by adjusting the draw ratio in each direction in the biaxial stretching process.
  • the tape may or may not have a backcoat layer containing nonmagnetic powder on the surface of the nonmagnetic support opposite to the surface having the magnetic layer.
  • the backcoat layer preferably contains one or both of carbon black and inorganic powder.
  • the backcoat layer may contain a binder and may also contain additives.
  • known techniques for the back coat layer can be applied, and known techniques for the magnetic layer and/or the non-magnetic layer can also be applied. For example, paragraphs 0018 to 0020 of JP-A-2006-331625 and US Pat. .
  • the thickness (total thickness) of magnetic tapes As for the thickness (total thickness) of magnetic tapes, with the enormous increase in the amount of information in recent years, magnetic tapes are required to have a higher recording capacity (higher capacity). Means for increasing the capacity include reducing the thickness of the magnetic tape and increasing the length of the magnetic tape that can be accommodated in one roll of the magnetic tape cartridge. From this point, the thickness (total thickness) of the magnetic tape is preferably 5.6 ⁇ m or less, more preferably 5.5 ⁇ m or less, more preferably 5.4 ⁇ m or less, and more preferably 5.3 ⁇ m. It is more preferably 5.2 ⁇ m or less, and even more preferably 5.2 ⁇ m or less. From the viewpoint of ease of handling, the thickness of the magnetic tape is preferably 3.0 ⁇ m or more, more preferably 3.5 ⁇ m or more.
  • the thickness (total thickness) of the magnetic tape can be measured by the following method. Ten tape samples (for example, 5 to 10 cm in length) are cut out from an arbitrary portion of the magnetic tape, these tape samples are overlapped, and the thickness is measured. The value (thickness per tape sample) obtained by dividing the measured thickness by 1/10 is taken as the tape thickness. The thickness measurement can be performed using a known measuring instrument capable of measuring thickness on the order of 0.1 ⁇ m.
  • the thickness of the nonmagnetic support can be, for example, 3.0 ⁇ m or more, and can be, for example, 5.0 ⁇ m or less, 4.8 ⁇ m or less, 4.6 ⁇ m or less, 4.4 ⁇ m or less, or 4.2 ⁇ m or less. can.
  • the thickness of the magnetic layer can be optimized according to the saturation magnetization amount of the magnetic head to be used, the head gap length, the recording signal band, etc., and is generally 0.01 ⁇ m to 0.15 ⁇ m. From the point of view, it is preferably 0.02 ⁇ m to 0.12 ⁇ m, more preferably 0.03 ⁇ m to 0.1 ⁇ m.
  • At least one magnetic layer is sufficient, and the magnetic layer may be separated into two or more layers having different magnetic properties, and a known multilayer magnetic layer structure can be applied.
  • the thickness of the magnetic layer when separated into two or more layers is the total thickness of these layers.
  • the thickness of the nonmagnetic layer is, for example, 0.1 to 1.5 ⁇ m, preferably 0.1 to 1.0 ⁇ m.
  • the thickness of the backcoat layer is preferably 0.9 ⁇ m or less, more preferably 0.1 to 0.7 ⁇ m.
  • Various thicknesses such as the thickness of the magnetic layer can be obtained, for example, by the following methods. After exposing a section of the magnetic tape in the thickness direction with an ion beam, the exposed section is observed with a scanning electron microscope or a transmission electron microscope. Various thicknesses can be determined as the arithmetic mean of the thicknesses determined at two arbitrary locations in cross-sectional observation. Alternatively, various thicknesses can be obtained as design thicknesses calculated from manufacturing conditions and the like.
  • a composition for forming a magnetic layer, a non-magnetic layer, or a backcoat layer usually contains a solvent along with the various components described above.
  • the solvent various organic solvents generally used for producing coating type magnetic recording media can be used.
  • each layer-forming composition contains ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone, cyclohexanone, isophorone, and tetrahydrofuran.
  • each layer-forming composition is not particularly limited, and can be the same as in each layer-forming composition for a conventional coating type magnetic recording medium.
  • the step of preparing each layer-forming composition can usually include at least a kneading step, a dispersing step, and a mixing step provided before or after these steps as required. Each step may be divided into two or more stages. The components used for preparing each layer-forming composition may be added at the beginning or in the middle of any step. Individual ingredients may be added in portions in two or more steps. For example, the binder may be added separately in the kneading process, the dispersing process, and the mixing process for adjusting the viscosity after dispersion.
  • one or more nitrogen-containing polymers and one or more of the above fatty acids are used as components of the composition for forming the magnetic layer, and these are used in the preparation process of the composition for forming the magnetic layer.
  • the salt-forming reaction can proceed.
  • one or more nitrogen-containing polymers and one or more fatty acids are mixed to form a salt, and then the salt is added to the magnetic layer-forming composition.
  • a composition for forming a magnetic layer can be prepared by using it as a component of a material. This point also applies to the process of preparing the composition for forming the non-magnetic layer.
  • this protrusion-forming agent liquid is added to a magnetic It can be mixed with one or more other components of the layer-forming composition.
  • the protrusion-forming agent liquid can be prepared by a known dispersion treatment such as ultrasonic treatment.
  • the previously described components can also be mixed. Moreover, you may filter after a dispersion
  • a kneader having a strong kneading force such as an open kneader, continuous kneader, pressure kneader, extruder or the like. Details of these kneading treatments are described in Japanese Patent Application Laid-Open Nos. 1-106338 and 1-79274. Also, glass beads and/or other beads can be used to disperse each layer forming composition. As such dispersing beads, zirconia beads, titania beads, and steel beads, which are high specific gravity dispersing beads, are suitable.
  • each layer-forming composition may be filtered by a known method before being applied to the coating step. Filtration can be performed, for example, by filter filtration.
  • a filter used for filtration for example, a filter having a pore size of 0.01 to 3 ⁇ m (eg, glass fiber filter, polypropylene filter, etc.) can be used.
  • the magnetic layer can be formed, for example, by directly coating the magnetic layer-forming composition on the non-magnetic support, or by sequentially or simultaneously coating the magnetic layer-forming composition with the non-magnetic layer-forming composition.
  • the orientation treatment is applied to the coating layer of the composition for forming the magnetic layer in the orientation zone while the coating layer is in a wet state.
  • Various known techniques including those described in paragraph 0052 of JP-A-2010-24113 can be applied to the alignment treatment.
  • the vertical alignment treatment can be performed by a known method such as a method using opposed magnets with different polarities.
  • the drying speed of the coating layer can be controlled by the temperature and air volume of the drying air and/or the conveying speed in the orientation zone. Also, the coated layer may be pre-dried before being conveyed to the orientation zone.
  • the backcoat layer can be formed by coating a composition for forming a backcoat layer on the opposite side of the non-magnetic support from the side having the magnetic layer (or the side on which the magnetic layer is to be provided later). For details of coating for forming each layer, paragraph 0066 of JP-A-2010-231843 can be referred to.
  • the magnetic tape may be subjected to calendering treatment to increase the surface smoothness.
  • the calender pressure is for example 200-500 kN/m, preferably 250-350 kN/m
  • the calender temperature is for example 70-120° C., preferably 80-100° C.
  • the calender speed is for example 50 ⁇ 300 m/min, preferably 80-200 m/min.
  • the surface of the magnetic layer tends to become smoother as a roll with a harder surface is used as the calender roll and as the number of stages is increased.
  • paragraphs 0067 to 0070 of JP-A-2010-231843 can be referred to.
  • a long magnetic tape raw material can be obtained.
  • the obtained magnetic tape material is cut (slit) to the width of the magnetic tape to be accommodated in the magnetic tape cartridge by a known cutting machine.
  • Servo patterns are usually formed on the magnetic tape obtained by slitting.
  • Formation of servo pattern can also be called “recording of servo signals.” Formation of the servo pattern will be described below.
  • a servo pattern is usually formed along the longitudinal direction of the magnetic tape.
  • Methods of control using servo signals include timing-based servo (TBS), amplitude servo, frequency servo, and the like.
  • a magnetic tape conforming to the LTO (Linear Tape-Open) standard (generally called "LTO tape”) adopts a timing-based servo system. ing.
  • LTO tape Linear Tape-Open
  • a servo pattern is composed of a plurality of non-parallel pairs of magnetic stripes (also called “servo stripes”) arranged continuously in the longitudinal direction of the magnetic tape.
  • servo stripes also called “servo stripes”
  • the term "timing-based servo pattern” refers to a servo pattern that enables head tracking in a timing-based servo system servo system.
  • the reason why the servo pattern is composed of a pair of non-parallel magnetic stripes is to inform the servo signal reading element passing over the servo pattern of its passing position.
  • the pair of magnetic stripes are formed so that the interval between them changes continuously along the width direction of the magnetic tape. and the relative position of the servo signal reading element. This relative position information enables tracking of the data tracks. For this reason, a plurality of servo tracks are usually set on the servo pattern along the width direction of the magnetic tape.
  • a servo band is composed of servo patterns that are continuous in the longitudinal direction of the magnetic tape.
  • a plurality of servo bands are usually provided on the magnetic tape. For example, in LTO tape, the number is five.
  • a data band is an area sandwiched between two adjacent servo bands. The data band is composed of a plurality of data tracks, each data track corresponding to each servo track.
  • each servo band includes information indicating the number of the servo band ("servo band ID (identification)” or "UDIM (Unique Data Band Identification)”).
  • Method also called information
  • This servo band ID is recorded by shifting a specific one of a plurality of pairs of servo stripes in the servo band so that the position thereof is relatively displaced in the longitudinal direction of the magnetic tape. Specifically, the method of shifting a specific one of a plurality of pairs of servo stripes is changed for each servo band.
  • the recorded servo band ID is unique for each servo band, so that one servo band can be uniquely specified only by reading one servo band with a servo signal reading element.
  • a method for uniquely specifying a servo band there is also a method using a staggered method as shown in ECMA-319 (June 2001).
  • this staggered method groups of non-parallel pairs of magnetic stripes (servo stripes) arranged continuously in the longitudinal direction of the magnetic tape are recorded so as to be shifted in the longitudinal direction of the magnetic tape for each servo band. do. Since this combination of shifts between adjacent servo bands is unique for the entire magnetic tape, the servo band can be uniquely identified when reading the servo pattern with two servo signal reading elements. It is possible.
  • each servo band information indicating the position in the longitudinal direction of the magnetic tape (also called “LPOS (Longitudinal Position) information”) is also usually embedded as indicated in ECMA-319 (June 2001). ing. Like the UDIM information, this LPOS information is also recorded by shifting the positions of a pair of servo stripes in the longitudinal direction of the magnetic tape. However, unlike the UDIM information, the same signal is recorded in each servo band in this LPOS information.
  • LPOS Longitudinal Position
  • UDIM and LPOS information can also be embedded in the servo band.
  • the embedded information may be different for each servo band, such as UDIM information, or common to all servo bands, such as LPOS information.
  • a method of embedding information in the servo band it is possible to adopt a method other than the above.
  • a predetermined code may be recorded by thinning out a predetermined pair from a group of paired servo stripes.
  • the servo pattern forming head is called a servo write head.
  • a servo write head normally has a pair of gaps corresponding to the pair of magnetic stripes as many as the number of servo bands.
  • a core and a coil are connected to each pair of gaps, and by supplying current pulses to the coils, a magnetic field generated in the core can generate a leakage magnetic field in the pair of gaps.
  • the magnetic pattern corresponding to the pair of gaps is transferred onto the magnetic tape by inputting a current pulse while the magnetic tape is running over the servo write head, thereby forming the servo pattern. can be done.
  • the width of each gap can be appropriately set according to the density of the servo pattern to be formed.
  • the width of each gap can be set to, for example, 1 ⁇ m or less, 1 to 10 ⁇ m, or 10 ⁇ m or more.
  • the magnetic tape is usually demagnetized (erase).
  • This erasing process can be performed by applying a uniform magnetic field to the magnetic tape using a DC magnet or an AC magnet.
  • the erase process includes DC (Direct Current) erase and AC (Alternating Current) erase.
  • AC erase is performed by gradually decreasing the strength of the magnetic field while reversing the direction of the magnetic field applied to the magnetic tape.
  • DC erase is performed by applying a unidirectional magnetic field to the magnetic tape.
  • the first method is a horizontal DC erase that applies a unidirectional magnetic field along the length of the magnetic tape.
  • the second method is perpendicular DC erase, in which a unidirectional magnetic field is applied along the thickness of the magnetic tape.
  • the erase process may be performed on the entire magnetic tape, or may be performed on each servo band of the magnetic tape.
  • the direction of the magnetic field of the formed servo pattern is determined according to the erase direction. For example, when horizontal DC erasing is performed on a magnetic tape, the servo pattern is formed so that the direction of the magnetic field is opposite to the direction of erasing. As a result, the output of the servo signal obtained by reading the servo pattern can be increased.
  • the formed servo pattern is read and obtained.
  • the servo signal has a unipolar pulse shape.
  • a servo signal obtained by reading the formed servo pattern has a bipolar pulse shape.
  • Magnetic tape cartridge One aspect of the present invention relates to a magnetic tape cartridge including the above magnetic tape.
  • the details of the magnetic tape included in the magnetic tape cartridge are as described above.
  • a magnetic tape cartridge generally contains a magnetic tape wound on a reel inside the cartridge body.
  • the reel is rotatably provided inside the cartridge body.
  • a single reel type magnetic tape cartridge having one reel inside the cartridge body and a dual reel type magnetic tape cartridge having two reels inside the cartridge body are widely used.
  • the magnetic tape is pulled out from the magnetic tape cartridge and wound on the reel of the magnetic tape device. be taken.
  • a magnetic head is arranged in the magnetic tape transport path from the magnetic tape cartridge to the take-up reel.
  • the magnetic tape is fed out and taken up between the reel (supply reel) of the magnetic tape cartridge and the reel (take-up reel) of the magnetic tape device. During this time, data is recorded and/or reproduced by contact and sliding between the magnetic head and the surface of the magnetic layer of the magnetic tape.
  • a twin-reel type magnetic tape cartridge has both a supply reel and a take-up reel inside the magnetic tape cartridge.
  • the magnetic tape cartridge can include a cartridge memory.
  • the cartridge memory can be, for example, a non-volatile memory, and can be a memory in which tension adjustment information is already recorded, or a memory in which tension adjustment information is recorded.
  • the tension adjustment information is information for adjusting the tension applied to the magnetic tape in the longitudinal direction.
  • the above magnetic tape and magnetic tape cartridge are preferably used in a magnetic tape device (in other words, a magnetic recording/reproducing system) that controls the widthwise dimension of the magnetic tape by adjusting the tension applied to the magnetic tape in the longitudinal direction. obtain.
  • Magnetic tape device One aspect of the present invention relates to a magnetic tape device including the above magnetic tape.
  • data recording on the magnetic tape and/or reproduction of data recorded on the magnetic tape can be performed by bringing the surface of the magnetic layer of the magnetic tape and the magnetic head into contact with each other and sliding the magnetic head.
  • the magnetic tape device can detachably include a magnetic tape cartridge according to an aspect of the present invention.
  • the magnetic tape cartridge can be mounted on a magnetic tape device having a magnetic head and used to record and/or reproduce data.
  • the term "magnetic tape device” means a device capable of at least one of recording data on a magnetic tape and reproducing data recorded on the magnetic tape. Such devices are commonly called drives.
  • the magnetic head included in the magnetic tape device can be a recording head capable of recording data on the magnetic tape, and a reproducing head capable of reproducing data recorded on the magnetic tape.
  • the magnetic tape device can include both a recording head and a reproducing head as separate magnetic heads.
  • the magnetic head included in the magnetic tape device may have a configuration in which both the recording element and the reproducing element are provided in one magnetic head.
  • a magnetic head including a magnetoresistive (MR) element capable of reading information recorded on a magnetic tape with high sensitivity as a reproducing element is preferable.
  • MR head various known MR heads (for example, GMR (Giant Magnetoresistive) head, TMR (Tunnel Magnetoresistive) head, etc.) can be used.
  • a magnetic head for recording and/or reproducing data may also include a servo signal reading element.
  • the magnetic tape device may include a magnetic head (servo head) having a servo signal reading element as a separate head from the magnetic head for recording and/or reproducing data.
  • a magnetic head for recording data and/or reproducing recorded data may include two servo signal reading elements. can simultaneously read two adjacent servo bands across the data band. One or more data elements can be positioned between the two servo signal read elements.
  • An element for recording data (recording element) and an element for reproducing data (reading element) are collectively referred to as a "data element”.
  • the read element width of the read element is preferably 0.8 ⁇ m or less.
  • the read element width of the read element can be, for example, 0.3 ⁇ m or more. However, falling below this value is also preferable from the above viewpoint.
  • the narrower the width of the reproducing element the more likely it is that phenomena such as poor reproduction due to off-track will occur.
  • a magnetic tape device that controls the widthwise dimension of the magnetic tape by adjusting the tension applied to the magnetic tape in the longitudinal direction is preferable.
  • the "reproducing element width” means the physical dimension of the reproducing element width. Such physical dimensions can be measured with an optical microscope, scanning electron microscope, or the like.
  • tracking using a servo signal can be performed. That is, by causing the servo signal reading element to follow a predetermined servo track, the data element can be controlled to pass over the target data track.
  • the data track is moved by changing the servo track read by the servo signal reading element in the width direction of the tape.
  • the record/playback head can also record and/or play back other data bands.
  • the above-mentioned UDIM information is used to move the servo signal reading element to a predetermined servo band, and tracking for that servo band is started.
  • Fig. 1 shows an example of the arrangement of data bands and servo bands.
  • a plurality of servo bands 1 are sandwiched between guide bands 3 on the magnetic layer of the magnetic tape MT.
  • a plurality of areas 2 sandwiched between two servo bands are data bands.
  • a servo pattern is a magnetized region formed by magnetizing a specific region of a magnetic layer with a servo write head.
  • the area magnetized by the servo write head (the position where the servo pattern is formed) is defined by standards.
  • a plurality of servo patterns inclined with respect to the tape width direction as shown in FIG. 2 are formed on the servo band when the magnetic tape is manufactured. Specifically, in FIG.
  • the servo frame SF on servo band 1 is composed of servo subframe 1 (SSF1) and servo subframe 2 (SSF2).
  • a servo subframe 1 is composed of an A burst (symbol A in FIG. 2) and a B burst (symbol B in FIG. 2).
  • the A burst is composed of servo patterns A1 to A5, and the B burst is composed of servo patterns B1 to B5.
  • servo subframe 2 is composed of a C burst (symbol C in FIG. 2) and a D burst (symbol D in FIG. 2).
  • the C burst is composed of servo patterns C1 to C4, and the D burst is composed of servo patterns D1 to D4.
  • Such 18 servo patterns are arranged in sets of 5 and 4 in subframes arranged in an array of 5, 5, 4, 4, and are used to identify servo frames.
  • FIG. 2 shows one servo frame for explanation. In practice, however, a plurality of servo frames are arranged in the running direction in each servo band on the magnetic layer of the magnetic tape on which the head tracking of the timing-based servo system is performed. In FIG. 2, arrows indicate the direction of travel.
  • an LTO Ultrium format tape typically has 5000 or more servo frames per meter of tape length in each servo band of the magnetic layer.
  • the magnetic tape device can have a tension adjustment mechanism that can adjust the tension applied to the magnetic tape running in the magnetic tape device in the longitudinal direction.
  • a tension adjusting mechanism can variably control the tension applied to the magnetic tape in the longitudinal direction, and preferably controls the widthwise dimension of the magnetic tape by adjusting the tension applied in the longitudinal direction of the magnetic tape. be able to.
  • the tension applied to the magnetic tape in the longitudinal direction can be changed.
  • the magnetic tape device 10 shown in FIG. 3 controls the recording/reproducing head unit 12 according to commands from the control device 11 to record and reproduce data on the magnetic tape MT.
  • the magnetic tape device 10 has a structure capable of detecting and adjusting the tension applied in the longitudinal direction of the magnetic tape from spindle motors 17A and 17B that control the rotation of the magnetic tape cartridge reel and take-up reel, and their drive devices 18A and 18B. are doing.
  • the magnetic tape device 10 has a configuration in which a magnetic tape cartridge 13 can be loaded.
  • the magnetic tape device 10 has a cartridge memory read/write device 14 capable of reading from and writing to the cartridge memory 131 in the magnetic tape cartridge 13 .
  • the end of the magnetic tape MT or the leader pin is pulled out by an automatic loading mechanism or manually, and the magnetic layer surface of the magnetic tape MT is recorded by the recording/reproducing head unit 12 .
  • the magnetic tape MT is wound onto the take-up reel 16 by passing over the recording/reproducing head through the guide rollers 15A and 15B so as to contact the surface of the reproducing head.
  • a signal from the controller 11 controls the rotation and torque of the spindle motors 17A and 17B to run the magnetic tape MT at an arbitrary speed and tension.
  • a servo pattern preformed on the magnetic tape can be used to control the tape speed.
  • a tension detection mechanism may be provided between the magnetic tape cartridge 13 and the take-up reel 16 to detect tension.
  • Tension control may be performed using guide rollers 15A and 15B in addition to control by spindle motors 17A and 17B.
  • the cartridge memory read/write device 14 is configured to be able to read and write information from the cartridge memory 131 according to commands from the control device 11 .
  • As a communication method between the cartridge memory read/write device 14 and the cartridge memory 131 for example, the ISO (International Organization for Standardization) 14443 method can be adopted.
  • the control device 11 includes, for example, a control section, a storage section, a communication section, and the like.
  • the recording/reproducing head unit 12 is composed of, for example, a recording/reproducing head, a servo tracking actuator for adjusting the position of the recording/reproducing head in the track width direction, a recording/reproducing amplifier 19, a connector cable for connecting to the control device 11, and the like.
  • a recording/reproducing head is composed of, for example, a recording element for recording data on a magnetic tape, a reproducing element for reproducing data from the magnetic tape, and a servo signal reading element for reading a servo signal recorded on the magnetic tape.
  • one or more recording elements, one or more reproducing elements, and one or more servo signal reading elements are mounted in one magnetic head.
  • each element may be separately provided in a plurality of magnetic heads corresponding to the traveling direction of the magnetic tape.
  • the recording/reproducing head unit 12 is configured to be able to record data on the magnetic tape MT according to commands from the control device 11 . Further, according to a command from the control device 11, the data recorded on the magnetic tape MT can be reproduced.
  • the controller 11 determines the running position of the magnetic tape from the servo signal read from the servo band while the magnetic tape MT is running, and controls the servo so that the recording element and/or the reproducing element are positioned at the target running position (track position). It has a mechanism for controlling the tracking actuator. This track position control is performed, for example, by feedback control.
  • the control device 11 has a mechanism for obtaining a servo band interval from servo signals read from two adjacent servo bands while the magnetic tape MT is running.
  • control device 11 can store the obtained servo band interval information in a storage unit inside the control device 11, the cartridge memory 131, an external connected device, or the like.
  • Nonmagnetic support In Table 1, "PEN” indicates polyethylene naphthalate support. Young's modulus in Table 1 is a value measured by the method described above.
  • the protrusion-forming agents used in the preparation of the magnetic layer-forming composition for the production of the magnetic tapes of Examples and Comparative Examples are as follows.
  • the protrusion-forming agent A and the protrusion-forming agent C are particles having low surface smoothness.
  • the particle shape of the protrusion-forming agent B is cocoon-like.
  • the particle shape of the projection forming agent D is so-called amorphous.
  • the particle shape of the protrusion forming agent E is a shape close to a true sphere.
  • Projection forming agent A Cabot ATLAS (composite particles of silica and polymer), average particle size 100 nm
  • Projection forming agent B TGC6020N (silica particles) manufactured by Cabot Corporation, average particle size 140 nm
  • Projection-forming agent C Cataloid manufactured by Nikki Shokubai Kasei Co., Ltd.
  • SrFe1 is hexagonal strontium ferrite powder produced by the following method. 1707 g of SrCO3, 687 g of H3BO3 , 1120 g of Fe2O3 , 45 g of Al(OH) 3 , 24 g of BaCO3 , 13 g of CaCO3 , and 235 g of Nd2O3 were weighed and mixed in a mixer. A raw material mixture was obtained by mixing. The obtained raw material mixture was melted in a platinum crucible at a melting temperature of 1390° C., and while the melt was being stirred, a tap hole provided at the bottom of the platinum crucible was heated, and the melt was tapped in a rod shape at a rate of about 6 g/sec.
  • the tapped liquid was rolled and quenched with a water-cooled twin roller to prepare an amorphous body.
  • 280 g of the produced amorphous material was placed in an electric furnace, heated to 635° C. (crystallization temperature) at a heating rate of 3.5° C./min, and held at the same temperature for 5 hours to produce hexagonal strontium ferrite particles. Precipitated (crystallized).
  • the crystallized product obtained above containing hexagonal strontium ferrite particles was coarsely pulverized in a mortar, and 1000 g of zirconia beads having a particle size of 1 mm and 800 ml of a 1% concentration aqueous solution of acetic acid were added to a glass bottle and dispersed for 3 hours using a paint shaker. did After that, the resulting dispersion was separated from the beads and placed in a stainless steel beaker. After the dispersion liquid was allowed to stand at a liquid temperature of 100°C for 3 hours to dissolve the glass component, it was precipitated in a centrifuge and washed by repeating decantation. After drying for a few hours, hexagonal strontium ferrite powder was obtained.
  • the average particle size of the hexagonal strontium ferrite powder obtained above is 18 nm, the activation volume is 902 nm 3 , the anisotropy constant Ku is 2.2 ⁇ 10 5 J/m 3 , and the mass magnetization ⁇ s is 49 A ⁇ m 2 /. kg.
  • 12 mg of sample powder was taken from the hexagonal strontium ferrite powder obtained above, and the sample powder was partially dissolved under the dissolution conditions exemplified above. The surface layer content was determined. Separately, 12 mg of sample powder was taken from the hexagonal strontium ferrite powder obtained above, and the sample powder was completely dissolved under the dissolution conditions exemplified above. Atomic bulk content was determined.
  • the content of neodymium atoms (bulk content) with respect to 100 atomic % of iron atoms in the hexagonal strontium ferrite powder obtained above was 2.9 atomic %.
  • the content of neodymium atoms in the surface layer was 8.0 atomic %.
  • the ratio of the surface layer portion content rate to the bulk content rate, "surface layer portion content rate/bulk content rate”, was 2.8, confirming that neodymium atoms were unevenly distributed in the surface layer of the particles.
  • the fact that the powder obtained above exhibits the crystal structure of hexagonal ferrite is confirmed by scanning CuK ⁇ rays under the conditions of a voltage of 45 kV and an intensity of 40 mA and measuring the X-ray diffraction pattern under the following conditions (X-ray diffraction analysis). confirmed.
  • the powder obtained above exhibited a crystal structure of magnetoplumbite-type (M-type) hexagonal ferrite.
  • the crystal phase detected by X-ray diffraction analysis was a magnetoplumbite single phase.
  • SrFe2 is hexagonal strontium ferrite powder produced by the following method. 1725 g of SrCO3, 666 g of H3BO3 , 1332 g of Fe2O3 , 52 g of Al(OH) 3 , 34 g of CaCO3 and 141 g of BaCO3 were weighed and mixed in a mixer to obtain a raw material mixture. The raw material mixture thus obtained was melted in a platinum crucible at a melting temperature of 1380° C., and the melt was stirred while heating the outlet provided at the bottom of the platinum crucible to dispense the melt in a rod shape at a rate of about 6 g/sec. .
  • the tapped liquid was rolled and quenched with water-cooled twin rolls to prepare an amorphous body.
  • 280 g of the obtained amorphous material was placed in an electric furnace, heated to 645° C. (crystallization temperature), and held at the same temperature for 5 hours to precipitate (crystallize) hexagonal strontium ferrite particles.
  • the crystallized product obtained above containing hexagonal strontium ferrite particles was coarsely pulverized in a mortar, and 1000 g of zirconia beads having a particle size of 1 mm and 800 ml of a 1% concentration aqueous solution of acetic acid were added to a glass bottle and dispersed for 3 hours using a paint shaker.
  • the resulting dispersion was separated from the beads and placed in a stainless steel beaker. After the dispersion liquid was allowed to stand at a liquid temperature of 100°C for 3 hours to dissolve the glass component, it was precipitated in a centrifuge and washed by repeating decantation. After drying for a few hours, hexagonal strontium ferrite powder was obtained.
  • the obtained hexagonal strontium ferrite powder had an average particle size of 19 nm, an activated volume of 1102 nm 3 , an anisotropy constant Ku of 2.0 ⁇ 10 5 J/m 3 , and a mass magnetization ⁇ s of 50 A ⁇ m 2 /kg. there were.
  • ⁇ -iron oxide is ⁇ -iron oxide powder prepared by the following method. 8.3 g of iron (III) nitrate nonahydrate, 1.3 g of gallium (III) nitrate octahydrate, 190 mg of cobalt (II) nitrate hexahydrate, 150 mg of titanium (IV) sulfate, and 4.0 g of an aqueous ammonia solution having a concentration of 25% was added to a solution of 1.5 g of polyvinylpyrrolidone (PVP) in an air atmosphere at an ambient temperature of 25° C. while stirring using a magnetic stirrer. , and the mixture was stirred for 2 hours while maintaining the ambient temperature of 25°C.
  • PVP polyvinylpyrrolidone
  • a citric acid solution obtained by dissolving 1 g of citric acid in 9 g of pure water was added to the obtained solution, and the mixture was stirred for 1 hour.
  • the powder precipitated after stirring was collected by centrifugation, washed with pure water, and dried in a heating furnace with an internal furnace temperature of 80°C. 800 g of pure water was added to the dried powder, and the powder was dispersed again in water to obtain a dispersion liquid.
  • the obtained dispersion was heated to a liquid temperature of 50° C., and 40 g of an ammonia aqueous solution having a concentration of 25% was added dropwise while stirring.
  • TEOS tetraethoxysilane
  • the heat-treated ferromagnetic powder precursor was put into a 4 mol/L sodium hydroxide (NaOH) aqueous solution, and the liquid temperature was maintained at 70° C. and stirred for 24 hours to obtain the heat-treated ferromagnetic powder.
  • a silicic acid compound as an impurity was removed from the precursor. After that, the ferromagnetic powder from which the silicic acid compound was removed was collected by centrifugal separation and washed with pure water to obtain the ferromagnetic powder.
  • the resulting ⁇ -iron oxide powder had an average particle size of 12 nm, an activated volume of 746 nm 3 , an anisotropy constant Ku of 1.2 ⁇ 10 5 J/m 3 and a mass magnetization ⁇ s of 16 A ⁇ m 2 /kg. there were.
  • the activation volume and anisotropy constant Ku of the above hexagonal strontium ferrite powder and ⁇ -iron oxide powder were obtained using a vibrating sample magnetometer (manufactured by Toei Kogyo Co., Ltd.) for each ferromagnetic powder, as previously described. It is a value obtained by the method of Also, the mass magnetization ⁇ s is a value measured at a magnetic field strength of 15 kOe using a vibrating sample magnetometer (manufactured by Toei Industry Co., Ltd.).
  • the above additive A is a polymer synthesized by the method described in paragraphs 0115 to 0123 of JP-A-2016-051493.
  • Non-magnetic inorganic powder ⁇ -iron oxide: 80.0 parts (average particle size: 0.15 ⁇ m, average acicular ratio: 7, BET (Brunauer-Emmett-Teller) specific surface area: 52 m/g) Carbon black (average particle size: 20 nm): 20.0 parts
  • Electron beam-curable vinyl chloride copolymer 13.0 parts
  • Electron beam-curable polyurethane resin 6.0 parts
  • Phenylphosphonic acid 3.0 parts
  • Cyclohexanone 140 parts .0 parts Methyl ethyl ketone: 170.0 parts
  • Butyl stearate 2.0 parts Stearic acid: 1.0 parts
  • Non-magnetic inorganic powder ( ⁇ -iron oxide): 80.0 parts (average particle size: 0.15 ⁇ m, average acicular ratio: 7, BET specific surface area: 52 m/g) Carbon black (average particle size: 20 nm): 20.0 parts Carbon black (average particle size: 100 nm): 3.0 parts Vinyl chloride copolymer: 13.0 parts Sulfonic acid group-containing polyurethane resin: 6.0 parts Phenyl Phosphonic acid: 3.0 parts Cyclohexanone: 140.0 parts Methyl ethyl ketone: 170.0 parts Stearic acid: 3.0 parts Polyisocyanate (Coronate (registered trademark) L manufactured by Tosoh Corporation): 5.0 parts Methyl ethyl ketone: 400.0 parts
  • a composition for forming a magnetic layer was prepared by the following method. After kneading and diluting the components of the magnetic liquid with an open kneader, zirconia (ZrO 2 ) beads with a particle size of 0.5 mm (hereinafter referred to as “Zr beads”) were filled with a horizontal bead mill disperser. Dispersion treatment was carried out in 12 passes at a rate of 80% by volume and a rotor tip peripheral speed of 10 m/sec with a residence time of 2 minutes per pass.
  • ZrO 2 zirconia
  • the abrasive liquid After mixing the above components of the abrasive liquid, the abrasive liquid is placed in a vertical sand mill disperser together with Zr beads having a particle size of 1 mm so that the bead volume/(abrasive liquid volume + bead volume) becomes 60%. After adjustment, sand mill dispersion treatment was performed for 180 minutes, the treated liquid was taken out, and ultrasonic dispersion filtration treatment was performed using a flow-type ultrasonic dispersion filtration device.
  • the projection-forming agent liquid is a dispersion obtained by mixing the components of the projection-forming agent liquid and then performing ultrasonic treatment (dispersion treatment) for 60 minutes at an ultrasonic output of 500 watts per 200 cc using a horn-type ultrasonic disperser. was filtered through a filter with a pore size of 0.5 ⁇ m.
  • the magnetic liquid, the abrasive liquid, the protrusion-forming agent liquid, and the above other components were introduced into a dissolver stirrer, stirred at a peripheral speed of 10 m/sec for 30 minutes, and then subjected to a flow rate of 7.5 kg/with a flow-type ultrasonic disperser. After 3 passes at 10 minutes, it was filtered through a filter with a pore size of 1 ⁇ m to prepare a composition for forming a magnetic layer.
  • a composition for forming a non-magnetic layer was prepared by the following method.
  • the above ingredients except the lubricants (butyl stearate and stearic acid) were kneaded and diluted by an open kneader, and then dispersed by a horizontal bead mill disperser. After that, lubricants (butyl stearate and stearic acid) were added and mixed by stirring with a dissolver stirrer to prepare a composition for forming a non-magnetic layer.
  • a composition for forming a backcoat layer was prepared by the following method.
  • the above ingredients except the lubricant (stearic acid), polyisocyanate and methyl ethyl ketone (400.0 parts) were kneaded and diluted by an open kneader, and then dispersed by a horizontal bead mill disperser. Then, a lubricant (stearic acid), polyisocyanate and methyl ethyl ketone (400.0 parts) were added and mixed by stirring with a dissolver stirrer to prepare a composition for forming a backcoat layer.
  • a magnetic field with a magnetic field strength of 0.3 T was applied in a direction perpendicular to the surface of the coating layer to perform a vertical alignment treatment, and then dried to form a magnetic layer.
  • the forming composition was coated on the surface of the support opposite to the surface on which the nonmagnetic layer and the magnetic layer were formed so that the thickness after drying was 0.3 ⁇ m, and dried to form a backcoat layer.
  • calendering was performed at a calendering speed of 80 m/min, a linear pressure of 294 kN/m, and a calendering temperature (surface temperature of the calendering rolls) of 80° C. using a seven-stage calendering roll composed only of metal rolls.
  • heat treatment was performed for 36 hours in an environment with an ambient temperature of 70°C. After the heat treatment, slit the product to a width of 1/2 inch, feed the slit product, and clean the surface of the magnetic layer with a tape cleaning device equipped with a take-up device so that the nonwoven fabric and razor blade are pressed against the surface of the magnetic layer. After cleaning, a magnetic tape was obtained.
  • a data band, a servo band, and a guide band are arranged in accordance with the LTO (Linear Tape-Open) Ultrium format, and the servo A magnetic tape was obtained having servo patterns (timing-based servo patterns) arranged and shaped according to the LTOUltrium format on the band.
  • the servo pattern thus formed is a servo pattern according to the descriptions of JIS (Japanese Industrial Standards) X6175:2006 and Standard ECMA-319 (June 2001).
  • the total number of servo bands is five, and the total number of data bands is four.
  • the magnetic tape (length 960 m) on which the servo signals were thus recorded was wound around the reel of a magnetic tape cartridge (LTO Ultrium 8 data cartridge). In this way, a magnetic tape cartridge of Example A1 in which the magnetic tape was wound around the reel was produced.
  • the magnetic layer of the magnetic tape contains the compound containing the ammonium salt structure of the alkyl ester anion represented by the formula 1 formed by polyethyleneimine and stearic acid.
  • a sample is cut out from the magnetic tape, and X-ray photoelectron spectroscopic analysis is performed on the surface of the magnetic layer (measurement area: 300 ⁇ m ⁇ 700 ⁇ m) using an ESCA device.
  • X-ray photoelectron spectroscopic analysis is performed on the surface of the magnetic layer (measurement area: 300 ⁇ m ⁇ 700 ⁇ m) using an ESCA device.
  • wide scan measurement is performed with an ESCA device under the following measurement conditions. In the measurement results, peaks are confirmed at the positions of the binding energy of the ester anion and the binding energy of the ammonium cation.
  • Apparatus AXIS-ULTRA manufactured by Shimadzu Corporation
  • Excitation X-ray source Monochromatic Al-K ⁇ ray Scan range: 0 to 1200 eV Pass energy: 160 eV Energy resolution: 1 eV/step Acquisition time: 100ms/step Cumulative count: 5
  • a sample piece of 3 cm in length was cut from the magnetic tape, and the surface of the magnetic layer was subjected to ATR-FT-IR (attenuated total reflection-fourier transform-infrared spectrometer) measurement ( reflection method). (1540 cm ⁇ 1 or 1430 cm ⁇ 1 ) and a wave number (2400 cm ⁇ 1 ) corresponding to the absorption of ammonium cations.
  • ATR-FT-IR attenuated total reflection-fourier transform-infrared spectrometer
  • Examples A2 to A24, Examples B1 to B13 A magnetic tape and a magnetic tape cartridge were obtained by the method described for Example A1, except that the items shown in Table 1 were changed as shown in Table 1.
  • Three magnetic tape cartridges were produced for each of the above examples, one was used for the following evaluation of running stability, one was used for the following recording and reproduction performance evaluation, and the other was used for the following evaluation. Used for evaluation of magnetic tape.
  • Running stability was evaluated by the following method in an environment with a temperature of 32° C. and a relative humidity of 80%. Using each magnetic tape cartridge, data was recorded and reproduced using a magnetic tape device having the configuration shown in FIG.
  • the recording/reproducing head mounted on the recording/reproducing head unit has 32 or more channels of reproducing elements (reproducing element width: 0.8 ⁇ m) and recording elements, and has servo signal reading elements on both sides thereof. Data was recorded and reproduced by the following method, and running stability during reproduction was evaluated. Set the magnetic tape cartridge in the magnetic tape device and load the magnetic tape. Next, pseudo-random data having a specific data pattern is recorded on the magnetic tape by the recording/reproducing head unit while performing servo tracking.
  • the tension applied in the longitudinal direction of the tape at that time is assumed to be a constant value.
  • the value of the servo band interval over the entire length of the tape is measured every 1 m of the longitudinal position and recorded in the cartridge memory.
  • the data recorded on the magnetic tape is reproduced by the recording/reproducing head unit.
  • the value of the servo band interval is measured at the same time as the reproduction. Controls the tension in the direction.
  • measurement of the servo band interval and tension control based thereon are continuously performed in real time.
  • the tension applied to the magnetic tape in the longitudinal direction is changed by the controller of the magnetic tape device.
  • the data recording area of the magnetic tape was slid back and forth against the recording/reproducing head 3000 times.
  • the data recorded on the magnetic tape is reproduced in an environment with a temperature of 32° C. and a relative humidity of 80% on the magnetic tape device that has performed the reproduction before the storage.
  • ⁇ PES standard deviation
  • the running stability was measured. Evaluate. PES is determined by the following method.
  • the dimension of the servo pattern is required.
  • Servo pattern dimension standards differ depending on the LTO generation. Therefore, first, using a magnetic force microscope or the like, the average distance AC between the corresponding four stripes of the A burst and the C burst and the azimuth angle ⁇ of the servo pattern are measured. Define a as the average time between 5 stripes corresponding to A and B bursts over the length of 1 LPOS word. Define b as the average time of the corresponding 4 stripes of the A and C bursts over the length of 1 LPOS word.
  • the value defined by AC ⁇ (1/2 ⁇ a/b)/(2 ⁇ tan( ⁇ )) is the width direction based on the servo signal obtained by the servo signal reading element over the length of 1 LPOS word. is the reading position PES of .
  • the end on the side wound on the reel of the magnetic tape cartridge is called the inner end, and the end on the opposite side is called the outer end.
  • the standard deviation ( ⁇ PES) of the PES obtained by the above method is calculated for the region. If ⁇ PES is less than 70 nm, it can be judged that the running stability is excellent.
  • Evaluation of recording/reproducing performance was performed using a magnetic tape device having the configuration shown in FIG.
  • the recording/reproducing head mounted on the recording/reproducing head unit 12 has 32 or more channels of reproducing elements (reproducing element width: 0.8 ⁇ m) and recording elements, and has servo signal reading elements on both sides thereof.
  • Each magnetic tape cartridge was placed in an environment with an ambient temperature of 23° C. and a relative humidity of 50% for 5 days or longer. After acclimatizing to the environment in this way, data was recorded as follows in the same environment. Set the magnetic tape cartridge in the magnetic tape device and load the magnetic tape. Next, pseudo-random data having a specific data pattern is recorded on the magnetic tape by the recording/reproducing head unit while performing servo tracking.
  • the tension applied in the longitudinal direction of the tape is 0.7N.
  • three or more reciprocations are performed so that the difference in the value of (PES1+PES2)/2 between adjacent tracks is 1.16 ⁇ m.
  • the value of the servo band interval over the entire length of the tape is measured every 1 m of the longitudinal position and recorded in the cartridge memory.
  • the magnetic tape cartridge on which data was recorded as described above was placed in a storage environment with an ambient temperature of 60° C. and a relative humidity of 20% for 72 hours. After that, the magnetic tape cartridge was placed in an environment with an ambient temperature of 23° C. and a relative humidity of 50% for 5 days or longer.
  • the data was reproduced in the same environment as follows. Set the magnetic tape cartridge in the magnetic tape device and load the magnetic tape. Next, while performing servo tracking, the data recorded on the magnetic tape is reproduced by the recording/reproducing head unit. At that time, the value of the servo band interval is measured at the same time as the reproduction. Adjust the tension in the direction. During playback, measurement of the servo band interval and adjustment of tension based thereon are continuously performed in real time. In each example, the tension values used by the controller 11 for the above tension adjustments ranged from 0.2 to 1.2N.
  • the number of channels in the above playback is 32 channels, and the recording/playback performance is evaluated as "3" when the data of all 32 channels are correctly read during playback, and the recording is performed when the data of the 31st to 28th channels are correctly read.
  • the reproduction performance was evaluated as "2", and the other cases were evaluated as the recording and reproduction performance as "1".
  • Friction coefficient ⁇ 1, ⁇ 2, friction coefficient change rate before and after storage ( ⁇ 1/ ⁇ 2)
  • the magnetic tape was taken out from each magnetic tape cartridge, and the coefficient of friction ⁇ 1 before storage and the coefficient of friction ⁇ 2 after storage were obtained in an environment of temperature 32° C. and relative humidity 80% by the method described above.
  • As the LTO8 head a commercially available LTO8 head (manufactured by IBM) was used. From the obtained ⁇ 1 and ⁇ 2, the coefficient of friction change rate ( ⁇ 1/ ⁇ 2) before and after storage was calculated.
  • Examples A1 to A24 and Examples B11 to B13 which are the above, in a magnetic tape device in which the widthwise dimension of the magnetic tape is controlled by adjusting the tension applied to the magnetic tape in the longitudinal direction, after repeated running, a short period of time It can be confirmed that the magnetic tape can exhibit excellent running stability at The present inventor believes that the magnetic tapes of Examples A1 to A24 and Examples B11 to B13 were able to bring the coefficient of friction, which increased due to repeated running, close to the value before the increase in a short period of time, contributing to this result. speculates.
  • the magnetic tape including a polyethylene naphthalate support having a Young's modulus in the width direction of 10000 MPa or more as a non-magnetic support adjusts the tension applied to the magnetic tape in the longitudinal direction. Therefore, it can be confirmed that the magnetic tape can be suitably used in a magnetic tape device for controlling the dimension in the width direction of the magnetic tape.
  • a magnetic tape cartridge was made in the manner described for Example A1, except that no vertical orientation treatment was performed during the magnetic tape making.
  • a sample piece was cut out from the magnetic tape taken out from the magnetic tape cartridge.
  • the squareness ratio in the vertical direction of this sample piece was found to be 0.55 by using the TM-TRVSM5050-SMSL model manufactured by Tamagawa Seisakusho as a vibrating sample magnetometer by the method described above.
  • a magnetic tape was taken out from the magnetic tape cartridge of Example A1, and the vertical squareness ratio of a sample piece cut out from this magnetic tape was similarly determined to be 0.60.
  • the magnetic tapes taken out from the above two magnetic tape cartridges were each attached to a 1/2 inch reel tester, and the electromagnetic conversion characteristics (SNR: Signal-to-Noise Ratio) were evaluated by the following method.
  • SNR Signal-to-Noise Ratio
  • the magnetic tape of Example A1 produced with the perpendicular orientation treatment exhibited an SNR value 2 dB higher than the magnetic tape produced without the perpendicular orientation treatment.
  • 10 passes of recording and reproduction were performed by applying a tension of 0.7 N in the longitudinal direction of the magnetic tape.
  • the relative speed between the magnetic tape and the magnetic head was 6 m/sec, and recording was performed using a MIG (Metal-in-gap) head (gap length 0.15 ⁇ m, track width 1.0 ⁇ m) as a recording head, and recording current.
  • the optimum recording current for each magnetic tape was set.
  • Reproduction was performed using a GMR (Giant-Magnetoresistive) head (element thickness: 15 nm, shield interval: 0.1 ⁇ m, reproduction element width: 0.8 ⁇ m).
  • a signal with a linear recording density of 300 kfci was recorded, and the reproduced signal was measured with a spectrum analyzer manufactured by Shibasoku.
  • the unit kfci is the unit of linear recording density (cannot be converted to the SI unit system). As the signal, a portion where the signal was sufficiently stabilized after the magnetic tape started running was used.
  • One aspect of the present invention is useful in various data storage technical fields.

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

非磁性支持体と強磁性粉末を含む磁性層とを有する磁気テープが提供される。上記非磁性支持体は幅方向のヤング率が10000MPa以上のポリエチレンナフタレート支持体である。上記磁性層の表面について測定される対LTO8ヘッド摩擦係数の保存前後の変化率は0.7以上である。

Description

磁気テープ、磁気テープカートリッジおよび磁気テープ装置
 本発明は、磁気テープ、磁気テープカートリッジおよび磁気テープ装置に関する。
 磁気記録媒体にはテープ状のものとディスク状のものがあり、データバックアップ、アーカイブ等のデータストレージ用途には、テープ状の磁気記録媒体、即ち磁気テープが主に用いられている(例えば特許文献1参照)。
特許第6590104号明細書
 磁気テープへのデータの記録は、通常、磁気テープ装置(一般に「ドライブ」と呼ばれる。)内で磁気テープを走行させ、磁気ヘッドを磁気テープのデータバンドに追従させてデータバンド上にデータを記録することにより行われる。これにより、データバンドにデータトラックが形成される。また、記録されたデータの再生時には、磁気テープ装置内で磁気テープを走行させ、磁気ヘッドを磁気テープのデータバンドに追従させてデータバンド上に記録されたデータの読み取りを行う。
 以上のような記録および/または再生において磁気ヘッドが磁気テープのデータバンドに追従する精度を高めるために、サーボ信号を利用してヘッドトラッキングを行うシステム(以下、「サーボシステム」と記載する。)が実用化されている。
 更に、サーボ信号を利用して走行中の磁気テープの幅方向の寸法情報を取得し、取得された寸法情報に応じて磁気テープの長手方向にかかるテンションを調整することによって、磁気テープの幅方向の寸法を制御することも行われている(一例として、特許文献1の段落0170等参照)。上記のテンション調整は、記録または再生時、磁気テープの幅変形によってデータを記録または再生するための磁気ヘッドが狙いのトラック位置からずれてしまい、記録済データの上書き、再生不良等の現象が発生してしまうことを抑制することに寄与し得ると考えられる。更に、そのようなテンション調整を行いながら磁気テープを磁気テープ装置内で走行させてデータの記録および/または再生を行う際、磁気テープの走行安定性が高いことは、上記現象の発生をより一層抑制することにつながると期待される。
 ところで、近年、磁気テープは、温度および湿度が管理されたデータセンターにおいて使用されることがある。
 一方、データセンターでは、コスト低減のために省電力化が求められている。省電力化のためには、データセンターにおける磁気テープの使用環境の管理条件を、現在より緩和できるか、または管理を不要にできることが望ましい。
 しかし、使用環境の管理条件を緩和し、または管理を行わないと、磁気テープが、例えば高温高湿環境において使用されることも想定される。そのため、高温高湿環境下において、磁気テープの長手方向にかかるテンションを調整することによって磁気テープの幅方向の寸法を制御して記録および/または再生を行う際の走行安定性に優れる磁気テープは望ましい。なお、上記の特許文献1には、高温高湿環境での使用については何ら記載されていない。
 本発明の一態様は、高温高湿環境において、磁気テープの長手方向にかかるテンションを調整することによって磁気テープの幅方向の寸法を制御して記録および/または再生を行う際の走行安定性に優れる磁気テープを提供することを主な目的とする。
 本発明の一態様は、以下の通りである。
[1]非磁性支持体と、強磁性粉末を含む磁性層と、を有する磁気テープであって、
上記非磁性支持体は、幅方向のヤング率が10000MPa以上のポリエチレンナフタレート支持体であり、かつ
上記磁性層の表面について測定される対LTO(登録商標:Linear Tape-Open)8ヘッド摩擦係数の保存前後の変化率、μ1/μ2、は0.7以上であり、
上記μ1は、上記磁気テープを、温度32℃相対湿度80%の環境において、磁気テープの長手方向に2.0N(ニュートン)のテンションをかけてLTO8ヘッドに対して3000回往復摺動させた際の10回目の往復摺動時の往路における対LTO8ヘッド摩擦係数であり、
上記μ2は、上記3000回往復摺動後の磁気テープを、温度32℃相対湿度80%の環境に24時間保存した後、温度32℃相対湿度80%の環境において、磁気テープの長手方向に2.0NのテンションをかけてLTO8ヘッドに対して10回往復摺動させた際の10回目の往復摺動時の往路における対LTO8ヘッド摩擦係数である、磁気テープ。
[2]上記μ1/μ2は、0.7以上1.0以下である、[1]に記載の磁気テープ。
[3]上記磁性層は、無機酸化物系粒子を更に含む、[1]または[2]に記載の磁気テープ。
[4]上記磁性層は、カーボンブラックを更に含む、[1]または[2]に記載の磁気テープ。
[5]上記非磁性支持体と上記磁性層との間に、非磁性粉末を含む非磁性層を更に有する、[1]~[4]のいずれかに記載の磁気テープ。
[6]上記非磁性支持体の上記磁性層を有する表面側とは反対の表面側に、非磁性粉末を含むバックコート層を更に有する、[1]~[5]のいずれかに記載の磁気テープ。
[7]テープ厚みが5.2μm以下である、[1]~[6]のいずれかに記載の磁気テープ。
[8]上記ポリエチレンナフタレート支持体の幅方向のヤング率は、10000MPa以上20000MPa以下である、[1]~[7]のいずれかに記載の磁気テープ。
[9]垂直方向角型比が0.60以上である、[1]~[8]のいずれかに記載の磁気テープ。
[10][1]~[9]のいずれかに記載の磁気テープを含む磁気テープカートリッジ。
[11][1]~[9]のいずれかに記載の磁気テープを含む磁気テープ装置。
[12]磁気テープ装置内を走行する磁気テープの長手方向にかかるテンションを調整可能なテンション調整機構を有する、[11]に記載の磁気テープ装置。
 本発明の一態様によれば、高温高湿環境において、磁気テープの長手方向にかかるテンションを調整することによって磁気テープの幅方向の寸法を制御して記録および/または再生を行う際の走行安定性に優れる磁気テープを提供することができる。また、本発明の一態様によれば、上記磁気テープを含む磁気テープカートリッジおよび磁気テープ装置を提供することができる。
データバンドおよびサーボバンドの配置例を示す。 LTO Ultriumフォーマットテープのサーボパターン配置例を示す。 磁気テープ装置の一例を示す概略図である。
[磁気テープ]
 本発明の一態様は、非磁性支持体と強磁性粉末を含む磁性層とを有する磁気テープに関する。上記非磁性支持体は、幅方向のヤング率が10000MPa以上のポリエチレンナフタレート支持体である。上記磁性層の表面について測定される対LTO8ヘッド摩擦係数の保存前後の変化率(μ1/μ2)は、0.7以上である。本発明および本明細書において、「磁性層(の)表面」とは、磁気テープの磁性層側表面と同義である。上記μ1は、上記磁気テープを、温度32℃相対湿度80%の環境において、磁気テープの長手方向に2.0N(ニュートン)のテンションをかけてLTO8ヘッドに対して3000回往復摺動させた際の10回目の往復摺動時の往路における対LTO8ヘッド摩擦係数である。上記μ2は、上記3000回往復摺動後の磁気テープを、温度32℃相対湿度80%の環境に24時間保存した後、温度32℃相対湿度80%の環境において、磁気テープの長手方向に2.0NのテンションをかけてLTO8ヘッドに対して10回往復摺動させた際の10回目の往復摺動時の往路における対LTO8ヘッド摩擦係数である。
 磁気テープの長手方向にかかるテンションを調整することによって磁気テープの幅方向の寸法を制御する磁気テープ装置では、より大きなテンションを磁気テープの長手方向にかけるほど、磁気テープの幅方向の寸法をより大きく収縮させることができ(即ち、より幅狭にすることができ)、そのテンションを小さくするほど、その収縮の程度を小さくすることができる。こうして磁気テープの長手方向にかけるテンションを調整することによって、磁気テープの幅方向の寸法を制御することができる。以下において、磁気テープの長手方向にかかるテンションを調整することによって磁気テープの幅方向の寸法を制御して記録および/または再生を行う際の走行安定性を、単に「走行安定性」とも記載する。また、高温高湿の環境とは、例えば、温度30~50℃程度の環境であることができる。その環境の湿度は、相対湿度として、例えば70~100%程度であることができる。本発明および本明細書において、環境について記載する温度および湿度は、その環境の雰囲気温度および相対湿度である。
 一方、磁気テープへのデータの記録および記録されたデータの再生は、通常、磁気テープの磁性層表面と磁気ヘッドとを接触させて摺動させることによって行われる。上記のようなテンション調整が行われると、磁気テープの長手方向に大きなテンションが加わり得ることが、走行安定性低下の要因になり得ると本発明者は考えた。詳しくは、以下のように本発明者は考えた。磁気テープの走行を繰り返すと、磁気テープと磁気ヘッドとの接触時の摩擦係数は上昇する傾向がある。かかる傾向は、磁気テープの走行中に磁気テープの長手方向に大きなテンションが加わると顕著になり得る。このことが走行安定性を低下させる要因になり得ると考えられ、かかる走行安定性の低下は、高温高湿環境においてより顕著になり得ると考えられる。
 本発明者は検討を重ねる中で、上記の繰り返し走行により上昇した摩擦係数を短期間で上昇前の値に近づけること(以下、「摩擦特性の早期回復」ともいう。)ができれば、繰り返し走行により低下した走行安定性を早期に改善させることが可能になると考え、更に鋭意検討を重ねた。摩擦特性の早期回復が可能になれば、例えば、記録終了から次の記録までの間隔または記録終了から再生までの間隔を短くしても、磁気テープを安定走行させて記録または再生を行うことができる。
 かかる鋭意検討の結果、本発明者は、温度32℃相対湿度80%の環境において磁気テープの長手方向に2.0Nのテンションをかけて測定される先に記載した対LTO8ヘッド摩擦係数の保存前後の変化率(μ1/μ2)が0.7以上の磁気テープは、摩擦特性の早期回復が可能であり、これにより、高温高湿環境において磁気テープの長手方向にかかるテンションを調整することによって磁気テープの幅方向の寸法を制御して記録および/または再生を行う際、繰り返し走行後、短期間で磁気テープを安定走行させることが可能になることを新たに見出すに至った。なお、上記の測定環境および保存環境の温度および湿度は、高温高湿環境の温度および湿度の例示的な値として採用したものである。したがって、上記磁気テープへのデータの記録および記録されたデータの再生が行われる環境ならびに上記磁気テープが保存される環境は、上記温度および湿度の環境に限定されるものではない。摩擦係数を測定する際に磁気テープの長手方向にかけるテンションについても、上記のようなテンション調整が行われる場合に磁気テープの長手方向に加わり得る大きなテンションの例示的な値として採用したものである。したがって、上記磁気テープへのデータの記録および記録されたデータの再生が行われる際に磁気テープの長手方向にかかるテンションも、上記テンションに限定されるものではない。
 更に本発明者は、上記磁気テープが、非磁性支持体として幅方向のヤング率が10000MPa以上のポリエチレンナフタレート支持体を含むことは、磁気テープの長手方向にかかるテンションを調整することによって磁気テープの幅方向の寸法を制御して良好に記録および/または再生を行うことを可能にすることに寄与し得ると考えている。
 ただし、本明細書に記載されている本発明者の推察によって、本発明は限定されるものではない。
 本発明および本明細書において、摩擦係数μ1は、温度32℃相対湿度80%の環境において、以下の方法によって測定される値である。
 測定対象の磁気テープを、2つのリールと2つのガイドロールとを備えたリールテスターに取り付ける。リールテスターにおいて、測定対象の磁気テープを、互いに離間して平行に配置された直径1インチ(1インチ=2.54cm)の円柱状の2本のガイドロールに、磁性層表面が接触するように載せる。摩擦係数μ1の測定前には、測定環境に馴染ませるために、測定対象の磁気テープを上記のようにガイドロールに載せた状態で、24時間放置する。測定対象の磁気テープの無作為に抽出した部分において、磁気テープの磁性層表面をLTO8ヘッドに接触させて摺動させ、摺動中に生じる抵抗力をストレインゲージにて検出する。2つのリールの間で一方のリールからの送り出しと他方のリールへの巻取りを繰り返すことによって、磁気テープの往復摺動を3000回実施する。測定条件について、ラップ角θは4°とし、摺動速度は4.0m/秒とする。摺動時に磁気テープの長手方向にかけるテンションT(単位:N)は2.0Nとする。往路および復路の各摺動距離は20mとする。10回目の往復摺動時の往路における摩擦係数を、保存前の摩擦係数μ1とする。詳しくは、以下のように保存前の摩擦係数μ1を求める。測定時、LTO8ヘッドをストレインゲージにつなぎ、LTO8ヘッドに対して水平方向にかかる摩擦力F(単位:N)を取得する。T=2.0である。摩擦係数μを以下の式Aによって算出する。算出された摩擦係数μを、保存前の摩擦係数μ1とする。
Figure JPOXMLDOC01-appb-M000001
 本発明および本明細書において、摩擦係数μ2は、温度32℃相対湿度80%の環境において、以下の方法によって測定される値である。
 上記の3000回往復摺動後の磁気テープを、引き続き同環境(即ち温度32℃相対湿度80%の環境)において、上記2つのリールの一方に磁気テープ全長を巻き取った状態で24時間保存する。この24時間保存後、1時間以内に、同環境(即ち温度32℃相対湿度80%の環境)において、上記保存後の磁気テープを、上記と同じくリールテスターに取り付けて上記と同じ測定条件で10回往復摺動させる。ここでは、摩擦係数μ1の測定のために往復摺動させた部分を往復摺動させる。10回目の往復摺動時の往路における摩擦係数μを、上記と同じく式Aによって算出する。算出されたμを、保存後の摩擦係数μ2とする。
 本発明および本明細書において、磁気テープの磁性層の表面について測定される対LTO8ヘッド摩擦係数の保存前後の変化率(μ1/μ2)は、上記方法によって求められたμ1およびμ2から算出される。以下において、上記変化率(μ1/μ2)を、「保存前後の摩擦係数変化率(μ1/μ2)」とも記載する。
 本発明および本明細書において、「LTO8ヘッド」とは、LTO8規格にしたがう磁気ヘッドである。上記摩擦係数の測定のためには、LTO8ドライブに搭載されている磁気ヘッドを取り出して使用してもよく、LTO8ドライブ用の磁気ヘッドとして市販されている磁気ヘッドを使用してもよい。ここでLTO8ドライブとは、LTO8規格にしたがうドライブ(磁気テープ装置)である。LTO9ドライブとは、LTO9規格にしたがうドライブであり、他の世代(Generation)のドライブについても同様である。また、上記摩擦係数μ1の測定には、新品の(即ち未使用の)LTO8ヘッドを使用するものとする。上記摩擦係数μ2の測定には、上記摩擦係数μ1の測定に使用したLTO8ヘッドを引き続き使用するものとする。なお、LTO8規格が近年の高密度記録化に対応し得る規格であることを考慮し、摩擦係数測定のための磁気ヘッドとしてLTO8を採用したものであって、上記磁気テープはLTO8ドライブにおいて使用されるものに限定されない。上記磁気テープには、LTO8ドライブにおいてデータの記録および/再生が行われてもよく、LTO9ドライブまたは更に次世代のドライブにおいてデータの記録および/再生が行われてもよく、または、LTO7等のLTO8より前の世代のドライブにおいてデータの記録および/再生が行われてもよい。
<保存前後の摩擦係数変化率(μ1/μ2)>
 上記磁気テープの摩擦特性に関して、高温高湿環境において、磁気テープの長手方向にかかるテンションを調整することによって磁気テープの幅方向の寸法を制御して記録および/または再生を行う際の走行安定性の向上の観点から、保存前後の摩擦係数変化率(μ1/μ2)は、0.7以上であり、0.8以上であることが好ましく、0.9以上であることが更に好ましい。保存前後の摩擦係数変化率(μ1/μ2)は、例えば1.0以下、1.0未満または0.9以下であることができる。保存前後の摩擦係数変化率(μ1/μ2)の値が1.0により近いことは、繰り返し走行により上昇した摩擦係数を短期間で上昇前の値により近づけることができることを意味し得るため、好ましい。摩擦係数μ1および摩擦係数μ2は、それぞれ、例えば、0.5以上、0.7以上もしくは0.9以上であることができ、また、0.9以下もしくは0.8以下であることができる。上記磁気テープの摩擦特性は、例えば、磁性層を作製するために使用する成分の種類、磁性層形成用組成物の調製方法等によって調整することができる。この点の詳細については、後述する。
<垂直方向角型比>
 一形態では、上記磁気テープの垂直方向角型比は、例えば0.55以上であることができ、0.60以上であることが好ましい。上記磁気テープの垂直方向角型比が0.60以上であることは、電磁変換特性向上の観点から好ましい。角型比の上限は、原理上、1.00以下である。上記磁気テープの垂直方向角型比は、1.00以下であることができ、0.95以下、0.90以下、0.85以下または0.80以下であることができる。磁気テープの垂直方向角型比の値が大きいことは、電磁変換特性向上の観点から好ましい。磁気テープの垂直方向角型比は、垂直配向処理の実施等の公知の方法によって制御することができる。
 本発明および本明細書において、「垂直方向角型比」とは、磁気テープの垂直方向において測定される角型比である。角型比に関して記載する「垂直方向」とは、磁性層表面と直交する方向であり、厚み方向ということもできる。本発明および本明細書において、垂直方向角型比は、以下の方法によって求められる。
 測定対象の磁気テープから振動試料型磁力計に導入可能なサイズのサンプル片を切り出す。このサンプル片について、振動試料型磁力計を用いて、最大印加磁界3979kA/m、測定温度296K、磁界掃引速度8.3kA/m/秒にて、サンプル片の垂直方向(磁性層表面と直交する方向)に磁界を印加し、印加した磁界に対するサンプル片の磁化強度を測定する。磁化強度の測定値は、反磁界補正後の値として、かつ振動試料型磁力計のサンプルプローブの磁化をバックグラウンドノイズとして差し引いた値として得るものとする。最大印加磁界における磁化強度をMs、印加磁界ゼロにおける磁化強度をMrとしたとき、角型比SQは、SQ=Mr/Msとして算出される値である。測定温度はサンプル片の温度をいい、サンプル片の周囲の雰囲気温度を測定温度にすることにより、温度平衡が成り立つことによってサンプル片の温度を測定温度にすることができる。
 以下、上記磁気テープについて、更に詳細に説明する。
<磁性層>
(強磁性粉末)
 磁性層に含まれる強磁性粉末としては、各種磁気記録媒体の磁性層において用いられる強磁性粉末として公知の強磁性粉末を1種または2種以上組み合わせて使用することができる。強磁性粉末として平均粒子サイズの小さいものを使用することは記録密度向上の観点から好ましい。この点から、強磁性粉末の平均粒子サイズは50nm以下であることが好ましく、45nm以下であることがより好ましく、40nm以下であることが更に好ましく、35nm以下であることが一層好ましく、30nm以下であることがより一層好ましく、25nm以下であることが更に一層好ましく、20nm以下であることがなお一層好ましい。一方、磁化の安定性の観点からは、強磁性粉末の平均粒子サイズは5nm以上であることが好ましく、8nm以上であることがより好ましく、10nm以上であることが更に好ましく、15nm以上であることが一層好ましく、20nm以上であることがより一層好ましい。
六方晶フェライト粉末
 強磁性粉末の好ましい具体例としては、六方晶フェライト粉末を挙げることができる。六方晶フェライト粉末の詳細については、例えば、特開2011-225417号公報の段落0012~0030、特開2011-216149号公報の段落0134~0136、特開2012-204726号公報の段落0013~0030および特開2015-127985号公報の段落0029~0084を参照できる。
 本発明および本明細書において、「六方晶フェライト粉末」とは、X線回折分析によって、主相として六方晶フェライトの結晶構造が検出される強磁性粉末をいうものとする。主相とは、X線回折分析によって得られるX線回折スペクトルにおいて最も高強度の回折ピークが帰属する構造をいう。例えば、X線回折分析によって得られるX線回折スペクトルにおいて最も高強度の回折ピークが六方晶フェライトの結晶構造に帰属される場合、六方晶フェライトの結晶構造が主相として検出されたと判断するものとする。X線回折分析によって単一の構造のみが検出された場合には、この検出された構造を主相とする。六方晶フェライトの結晶構造は、構成原子として、少なくとも鉄原子、二価金属原子および酸素原子を含む。二価金属原子とは、イオンとして二価のカチオンになり得る金属原子であり、ストロンチウム原子、バリウム原子、カルシウム原子等のアルカリ土類金属原子、鉛原子等を挙げることができる。本発明および本明細書において、六方晶ストロンチウムフェライト粉末とは、この粉末に含まれる主な二価金属原子がストロンチウム原子であるものをいい、六方晶バリウムフェライト粉末とは、この粉末に含まれる主な二価金属原子がバリウム原子であるものをいう。主な二価金属原子とは、この粉末に含まれる二価金属原子の中で、原子%基準で最も多くを占める二価金属原子をいうものとする。ただし、上記の二価金属原子には、希土類原子は包含されないものとする。本発明および本明細書における「希土類原子」は、スカンジウム原子(Sc)、イットリウム原子(Y)、およびランタノイド原子からなる群から選択される。ランタノイド原子は、ランタン原子(La)、セリウム原子(Ce)、プラセオジム原子(Pr)、ネオジム原子(Nd)、プロメチウム原子(Pm)、サマリウム原子(Sm)、ユウロピウム原子(Eu)、ガドリニウム原子(Gd)、テルビウム原子(Tb)、ジスプロシウム原子(Dy)、ホルミウム原子(Ho)、エルビウム原子(Er)、ツリウム原子(Tm)、イッテルビウム原子(Yb)、およびルテチウム原子(Lu)からなる群から選択される。
 以下に、六方晶フェライト粉末の一形態である六方晶ストロンチウムフェライト粉末について、更に詳細に説明する。
 六方晶ストロンチウムフェライト粉末の活性化体積は、好ましくは800~1600nmの範囲である。上記範囲の活性化体積を示す微粒子化された六方晶ストロンチウムフェライト粉末は、優れた電磁変換特性を発揮する磁気テープの作製のために好適である。六方晶ストロンチウムフェライト粉末の活性化体積は、好ましくは800nm以上であり、例えば850nm以上であることもできる。また、電磁変換特性の更なる向上の観点から、六方晶ストロンチウムフェライト粉末の活性化体積は、1500nm以下であることがより好ましく、1400nm以下であることが更に好ましく、1300nm以下であることが一層好ましく、1200nm以下であることがより一層好ましく、1100nm以下であることが更により一層好ましい。六方晶バリウムフェライト粉末の活性化体積についても、同様である。
 「活性化体積」とは、磁化反転の単位であって、粒子の磁気的な大きさを示す指標である。本発明および本明細書に記載の活性化体積および後述の異方性定数Kuは、振動試料型磁力計を用いて保磁力Hc測定部の磁場スイープ速度3分と30分とで測定し(測定温度:23℃±1℃)、以下のHcと活性化体積Vとの関係式から求められる値である。異方性定数Kuの単位に関して、1erg/cc=1.0×10-1J/mである。
 Hc=2Ku/Ms{1-[(kT/KuV)ln(At/0.693)]1/2
[上記式中、Ku:異方性定数(単位:J/m)、Ms:飽和磁化(単位:kA/m)、k:ボルツマン定数、T:絶対温度(単位:K)、V:活性化体積(単位:cm)、A:スピン歳差周波数(単位:s-1)、t:磁界反転時間(単位:s)]
 熱揺らぎの低減、換言すれば熱的安定性の向上の指標としては、異方性定数Kuを挙げることができる。六方晶ストロンチウムフェライト粉末は、好ましくは1.8×10J/m以上のKuを有することができ、より好ましくは2.0×10J/m以上のKuを有することができる。また、六方晶ストロンチウムフェライト粉末のKuは、例えば2.5×10J/m以下であることができる。ただしKuが高いほど熱的安定性が高いことを意味し好ましいため、上記例示した値に限定されるものではない。
 六方晶ストロンチウムフェライト粉末は、希土類原子を含んでいてもよく、含まなくてもよい。六方晶ストロンチウムフェライト粉末が希土類原子を含む場合、鉄原子100原子%に対して、0.5~5.0原子%の含有率(バルク含有率)で希土類原子を含むことが好ましい。希土類原子を含む六方晶ストロンチウムフェライト粉末は、一形態では、希土類原子表層部偏在性を有することができる。本発明および本明細書における「希土類原子表層部偏在性」とは、六方晶ストロンチウムフェライト粉末を酸により部分溶解して得られた溶解液中の鉄原子100原子%に対する希土類原子含有率(以下、「希土類原子表層部含有率」または希土類原子に関して単に「表層部含有率」と記載する。)が、六方晶ストロンチウムフェライト粉末を酸により全溶解して得られた溶解液中の鉄原子100原子%に対する希土類原子含有率(以下、「希土類原子バルク含有率」または希土類原子に関して単に「バルク含有率」と記載する。)と、
 希土類原子表層部含有率/希土類原子バルク含有率>1.0
の比率を満たすことを意味する。後述の六方晶ストロンチウムフェライト粉末の希土類原子含有率とは、希土類原子バルク含有率と同義である。これに対し、酸を用いる部分溶解は六方晶ストロンチウムフェライト粉末を構成する粒子の表層部を溶解するため、部分溶解により得られる溶解液中の希土類原子含有率とは、六方晶ストロンチウムフェライト粉末を構成する粒子の表層部における希土類原子含有率である。希土類原子表層部含有率が、「希土類原子表層部含有率/希土類原子バルク含有率>1.0」の比率を満たすことは、六方晶ストロンチウムフェライト粉末を構成する粒子において、希土類原子が表層部に偏在(即ち内部より多く存在)していることを意味する。本発明および本明細書における表層部とは、六方晶ストロンチウムフェライト粉末を構成する粒子の表面から内部に向かう一部領域を意味する。
 六方晶ストロンチウムフェライト粉末が希土類原子を含む場合、希土類原子含有率(バルク含有率)は、鉄原子100原子%に対して0.5~5.0原子%の範囲であることが好ましい。上記範囲のバルク含有率で希土類原子を含み、かつ六方晶ストロンチウムフェライト粉末を構成する粒子の表層部に希土類原子が偏在していることは、繰り返し再生における再生出力の低下を抑制することに寄与すると考えられる。これは、六方晶ストロンチウムフェライト粉末が上記範囲のバルク含有率で希土類原子を含み、かつ六方晶ストロンチウムフェライト粉末を構成する粒子の表層部に希土類原子が偏在していることにより、異方性定数Kuを高めることができるためと推察される。異方性定数Kuは、この値が高いほど、いわゆる熱揺らぎと呼ばれる現象の発生を抑制すること(換言すれば熱的安定性を向上させること)ができる。熱揺らぎの発生が抑制されることにより、繰り返し再生における再生出力の低下を抑制することができる。六方晶ストロンチウムフェライト粉末の粒子表層部に希土類原子が偏在することが、表層部の結晶格子内の鉄(Fe)のサイトのスピンを安定化することに寄与し、これにより異方性定数Kuが高まるのではないかと推察される。
 また、希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末を磁性層の強磁性粉末として用いることは、磁気ヘッドとの摺動によって磁性層表面が削れることを抑制することにも寄与すると推察される。即ち、磁気テープの走行耐久性の向上にも、希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末が寄与し得ると推察される。これは、六方晶ストロンチウムフェライト粉末を構成する粒子の表面に希土類原子が偏在することが、粒子表面と磁性層に含まれる有機物質(例えば、結合剤および/または添加剤)との相互作用の向上に寄与し、その結果、磁性層の強度が向上するためではないかと推察される。
 繰り返し再生における再生出力の低下を抑制する観点および/または走行耐久性の更なる向上の観点からは、希土類原子含有率(バルク含有率)は、0.5~4.5原子%の範囲であることがより好ましく、1.0~4.5原子%の範囲であることが更に好ましく、1.5~4.5原子%の範囲であることが一層好ましい。
 上記バルク含有率は、六方晶ストロンチウムフェライト粉末を全溶解して求められる含有率である。本発明および本明細書において、特記しない限り、原子について含有率とは、六方晶ストロンチウムフェライト粉末を全溶解して求められるバルク含有率をいうものとする。希土類原子を含む六方晶ストロンチウムフェライト粉末は、希土類原子として1種の希土類原子のみ含んでもよく、2種以上の希土類原子を含んでもよい。2種以上の希土類原子を含む場合の上記バルク含有率とは、2種以上の希土類原子の合計について求められる。この点は、本発明および本明細書における他の成分についても同様である。即ち、特記しない限り、ある成分は、1種のみ用いてもよく、2種以上用いてもよい。2種以上用いられる場合の含有量または含有率とは、2種以上の合計についていうものとする。
 六方晶ストロンチウムフェライト粉末が希土類原子を含む場合、含まれる希土類原子は、希土類原子のいずれか1種以上であればよい。繰り返し再生における再生出力の低下を抑制する観点から好ましい希土類原子としては、ネオジム原子、サマリウム原子、イットリウム原子およびジスプロシウム原子を挙げることができ、ネオジム原子、サマリウム原子およびイットリウム原子がより好ましく、ネオジム原子が更に好ましい。
 希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末において、希土類原子は六方晶ストロンチウムフェライト粉末を構成する粒子の表層部に偏在していればよく、偏在の程度は限定されるものではない。例えば、希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末について、後述する溶解条件で部分溶解して求められた希土類原子の表層部含有率と後述する溶解条件で全溶解して求められた希土類原子のバルク含有率との比率、「表層部含有率/バルク含有率」は1.0超であり、1.5以上であることができる。「表層部含有率/バルク含有率」が1.0より大きいことは、六方晶ストロンチウムフェライト粉末を構成する粒子において、希土類原子が表層部に偏在(即ち内部より多く存在)していることを意味する。また、後述する溶解条件で部分溶解して求められた希土類原子の表層部含有率と後述する溶解条件で全溶解して求められた希土類原子のバルク含有率との比率、「表層部含有率/バルク含有率」は、例えば、10.0以下、9.0以下、8.0以下、7.0以下、6.0以下、5.0以下、または4.0以下であることができる。ただし、希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末において、希土類原子は六方晶ストロンチウムフェライト粉末を構成する粒子の表層部に偏在していればよく、上記の「表層部含有率/バルク含有率」は、例示した上限または下限に限定されるものではない。
 六方晶ストロンチウムフェライト粉末の部分溶解および全溶解について、以下に説明する。粉末として存在している六方晶ストロンチウムフェライト粉末については、部分溶解および全溶解する試料粉末は、同一ロットの粉末から採取する。一方、磁気テープの磁性層に含まれている六方晶ストロンチウムフェライト粉末については、磁性層から取り出した六方晶ストロンチウムフェライト粉末の一部を部分溶解に付し、他の一部を全溶解に付す。磁性層からの六方晶ストロンチウムフェライト粉末の取り出しは、例えば、特開2015-91747号公報の段落0032に記載の方法によって行うことができる。
 上記部分溶解とは、溶解終了時に液中に六方晶ストロンチウムフェライト粉末の残留が目視で確認できる程度に溶解することをいう。例えば、部分溶解により、六方晶ストロンチウムフェライト粉末を構成する粒子について、粒子全体を100質量%として10~20質量%の領域を溶解することができる。一方、上記全溶解とは、溶解終了時に液中に六方晶ストロンチウムフェライト粉末の残留が目視で確認されない状態まで溶解することをいう。
 上記部分溶解および表層部含有率の測定は、例えば、以下の方法により行われる。ただし、下記の試料粉末量等の溶解条件は例示であって、部分溶解および全溶解が可能な溶解条件を任意に採用できる。
 試料粉末12mgおよび1mol/L塩酸10mLを入れた容器(例えばビーカー)を、設定温度70℃のホットプレート上で1時間保持する。得られた溶解液を0.1μmのメンブレンフィルタでろ過する。こうして得られたろ液の元素分析を誘導結合プラズマ(ICP:Inductively Coupled Plasma)分析装置によって行う。こうして、鉄原子100原子%に対する希土類原子の表層部含有率を求めることができる。元素分析により複数種の希土類原子が検出された場合には、全希土類原子の合計含有率を、表層部含有率とする。この点は、バルク含有率の測定においても、同様である。
 一方、上記全溶解およびバルク含有率の測定は、例えば、以下の方法により行われる。
 試料粉末12mgおよび4mol/L塩酸10mLを入れた容器(例えばビーカー)を、設定温度80℃のホットプレート上で3時間保持する。その後は上記の部分溶解および表層部含有率の測定と同様に行い、鉄原子100原子%に対するバルク含有率を求めることができる。
 磁気テープに記録されたデータを再生する際の再生出力を高める観点から、磁気テープに含まれる強磁性粉末の質量磁化σsが高いことは望ましい。この点に関して、希土類原子を含むものの希土類原子表層部偏在性を持たない六方晶ストロンチウムフェライト粉末は、希土類原子を含まない六方晶ストロンチウムフェライト粉末と比べてσsが大きく低下する傾向が見られた。これに対し、そのようなσsの大きな低下を抑制するうえでも、希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末は好ましいと考えられる。一形態では、六方晶ストロンチウムフェライト粉末のσsは、45A・m/kg以上であることができ、47A・m/kg以上であることもできる。一方、σsは、ノイズ低減の観点からは、80A・m/kg以下であることが好ましく、60A・m/kg以下であることがより好ましい。σsは、振動試料型磁力計等の磁気特性を測定可能な公知の測定装置を用いて測定することができる。本発明および本明細書において、特記しない限り、質量磁化σsは、磁場強度15kOeで測定される値とする。1[kOe]=10/4π[A/m]である。
 六方晶ストロンチウムフェライト粉末の構成原子の含有率(バルク含有率)に関して、ストロンチウム原子含有率は、鉄原子100原子%に対して、例えば2.0~15.0原子%の範囲であることができる。一形態では、六方晶ストロンチウムフェライト粉末は、この粉末に含まれる二価金属原子がストロンチウム原子のみであることができる。また他の一形態では、六方晶ストロンチウムフェライト粉末は、ストロンチウム原子に加えて1種以上の他の二価金属原子を含むこともできる。例えば、バリウム原子および/またはカルシウム原子を含むことができる。ストロンチウム原子以外の他の二価金属原子が含まれる場合、六方晶ストロンチウムフェライト粉末におけるバリウム原子含有率およびカルシウム原子含有率は、それぞれ、例えば、鉄原子100原子%に対して、0.05~5.0原子%の範囲であることができる。
 六方晶フェライトの結晶構造としては、マグネトプランバイト型(「M型」とも呼ばれる。)、W型、Y型およびZ型が知られている。六方晶ストロンチウムフェライト粉末は、いずれの結晶構造を取るものであってもよい。結晶構造は、X線回折分析によって確認することができる。六方晶ストロンチウムフェライト粉末は、X線回折分析によって、単一の結晶構造または2種以上の結晶構造が検出されるものであることができる。例えば一形態では、六方晶ストロンチウムフェライト粉末は、X線回折分析によってM型の結晶構造のみが検出されるものであることができる。例えば、M型の六方晶フェライトは、AFe1219の組成式で表される。ここでAは二価金属原子を表し、六方晶ストロンチウムフェライト粉末がM型である場合、Aはストロンチウム原子(Sr)のみであるか、またはAとして複数の二価金属原子が含まれる場合には、上記の通り原子%基準で最も多くをストロンチウム原子(Sr)が占める。六方晶ストロンチウムフェライト粉末の二価金属原子含有率は、通常、六方晶フェライトの結晶構造の種類により定まるものであり、特に限定されるものではない。鉄原子含有率および酸素原子含有率についても、同様である。六方晶ストロンチウムフェライト粉末は、少なくとも、鉄原子、ストロンチウム原子および酸素原子を含み、更に希土類原子を含むこともできる。更に、六方晶ストロンチウムフェライト粉末は、これら原子以外の原子を含んでもよく、含まなくてもよい。一例として、六方晶ストロンチウムフェライト粉末は、アルミニウム原子(Al)を含むものであってもよい。アルミニウム原子の含有率は、鉄原子100原子%に対して、例えば0.5~10.0原子%であることができる。繰り返し再生における再生出力低下を抑制する観点からは、六方晶ストロンチウムフェライト粉末は、鉄原子、ストロンチウム原子、酸素原子および希土類原子を含み、これら原子以外の原子の含有率が、鉄原子100原子%に対して、10.0原子%以下であることが好ましく、0~5.0原子%の範囲であることがより好ましく、0原子%であってもよい。即ち、一形態では、六方晶ストロンチウムフェライト粉末は、鉄原子、ストロンチウム原子、酸素原子および希土類原子以外の原子を含まなくてもよい。上記の原子%で表示される含有率は、六方晶ストロンチウムフェライト粉末を全溶解して求められる各原子の含有率(単位:質量%)を、各原子の原子量を用いて原子%表示の値に換算して求められる。また、本発明および本明細書において、ある原子について「含まない」とは、全溶解してICP分析装置により測定される含有率が0質量%であることをいう。ICP分析装置の検出限界は、通常、質量基準で0.01ppm(parts per million)以下である。上記の「含まない」とは、ICP分析装置の検出限界未満の量で含まれることを包含する意味で用いるものとする。六方晶ストロンチウムフェライト粉末は、一形態では、ビスマス原子(Bi)を含まないものであることができる。
金属粉末
 強磁性粉末の好ましい具体例としては、強磁性金属粉末を挙げることもできる。強磁性金属粉末の詳細については、例えば特開2011-216149号公報の段落0137~0141および特開2005-251351号公報の段落0009~0023を参照できる。
ε-酸化鉄粉末
 強磁性粉末の好ましい具体例としては、ε-酸化鉄粉末を挙げることもできる。本発明および本明細書において、「ε-酸化鉄粉末」とは、X線回折分析によって、主相としてε-酸化鉄の結晶構造が検出される強磁性粉末をいうものとする。例えば、X線回折分析によって得られるX線回折スペクトルにおいて最も高強度の回折ピークがε-酸化鉄の結晶構造に帰属される場合、ε-酸化鉄の結晶構造が主相として検出されたと判断するものとする。ε-酸化鉄粉末の製造方法としては、ゲーサイトから作製する方法、逆ミセル法等が知られている。上記製造方法は、いずれも公知である。また、Feの一部がGa、Co、Ti、Al、Rh等の置換原子によって置換されたε-酸化鉄粉末を製造する方法については、例えば、J. Jpn. Soc. Powder Metallurgy Vol. 61 Supplement, No. S1, pp. S280-S284、J. Mater. Chem. C, 2013, 1, pp.5200-5206等を参照できる。ただし、上記磁気テープの磁性層において強磁性粉末として使用可能なε-酸化鉄粉末の製造方法は、ここで挙げた方法に限定されない。
 ε-酸化鉄粉末の活性化体積は、好ましくは300~1500nmの範囲である。上記範囲の活性化体積を示す微粒子化されたε-酸化鉄粉末は、優れた電磁変換特性を発揮する磁気テープの作製のために好適である。ε-酸化鉄粉末の活性化体積は、好ましくは300nm以上であり、例えば500nm以上であることもできる。また、電磁変換特性の更なる向上の観点から、ε-酸化鉄粉末の活性化体積は、1400nm以下であることがより好ましく、1300nm以下であることが更に好ましく、1200nm以下であることが一層好ましく、1100nm以下であることがより一層好ましい。
 熱揺らぎの低減、換言すれば熱的安定性の向上の指標としては、異方性定数Kuを挙げることができる。ε-酸化鉄粉末は、好ましくは3.0×10J/m以上のKuを有することができ、より好ましくは8.0×10J/m以上のKuを有することができる。また、ε-酸化鉄粉末のKuは、例えば3.0×10J/m以下であることができる。ただしKuが高いほど熱的安定性が高いことを意味し、好ましいため、上記例示した値に限定されるものではない。
 磁気テープに記録されたデータを再生する際の再生出力を高める観点から、磁気テープに含まれる強磁性粉末の質量磁化σsが高いことは望ましい。この点に関して、一形態では、ε-酸化鉄粉末のσsは、8A・m/kg以上であることができ、12A・m/kg以上であることもできる。一方、ε-酸化鉄粉末のσsは、ノイズ低減の観点からは、40A・m/kg以下であることが好ましく、35A・m/kg以下であることがより好ましい。
 本発明および本明細書において、特記しない限り、強磁性粉末等の各種粉末の平均粒子サイズは、透過型電子顕微鏡を用いて、以下の方法により測定される値とする。
 粉末を、透過型電子顕微鏡を用いて撮影倍率100000倍で撮影し、総倍率500000倍になるように印画紙にプリントするか、ディスプレイに表示する等して、粉末を構成する粒子の写真を得る。得られた粒子の写真から目的の粒子を選びデジタイザーで粒子の輪郭をトレースし粒子(一次粒子)のサイズを測定する。一次粒子とは、凝集のない独立した粒子をいう。
 以上の測定を、無作為に抽出した500個の粒子について行う。こうして得られた500個の粒子の粒子サイズの算術平均を、粉末の平均粒子サイズとする。上記透過型電子顕微鏡としては、例えば日立製透過型電子顕微鏡H-9000型を用いることができる。また、粒子サイズの測定は、公知の画像解析ソフト、例えばカールツァイス製画像解析ソフトKS-400を用いて行うことができる。後述の実施例に示す平均粒子サイズは、特記しない限り、透過型電子顕微鏡として日立製透過型電子顕微鏡H-9000型、画像解析ソフトとしてカールツァイス製画像解析ソフトKS-400を用いて測定された値である。本発明および本明細書において、粉末とは、複数の粒子の集合を意味する。例えば、強磁性粉末とは、複数の強磁性粒子の集合を意味する。また、複数の粒子の集合とは、集合を構成する粒子が直接接触している形態に限定されず、後述する結合剤、添加剤等が、粒子同士の間に介在している形態も包含される。粒子との語が、粉末を表すために用いられることもある。
 粒子サイズ測定のために磁気テープから試料粉末を採取する方法としては、例えば特開2011-048878号公報の段落0015に記載の方法を採用することができる。
 本発明および本明細書において、特記しない限り、粉末を構成する粒子のサイズ(粒子サイズ)は、上記の粒子写真において観察される粒子の形状が、
(1)針状、紡錘状、柱状(ただし、高さが底面の最大長径より大きい)等の場合は、粒子を構成する長軸の長さ、即ち長軸長で表され、
(2)板状または柱状(ただし、厚みまたは高さが板面または底面の最大長径より小さい)の場合は、その板面または底面の最大長径で表され、
(3)球形、多面体状、不定形等であって、かつ形状から粒子を構成する長軸を特定できない場合は、円相当径で表される。円相当径とは、円投影法で求められるものを言う。
 また、粉末の平均針状比は、上記測定において粒子の短軸の長さ、即ち短軸長を測定し、各粒子の(長軸長/短軸長)の値を求め、上記500個の粒子について得た値の算術平均を指す。ここで、特記しない限り、短軸長とは、上記粒子サイズの定義で(1)の場合は、粒子を構成する短軸の長さを、同じく(2)の場合は、厚みまたは高さを各々指し、(3)の場合は、長軸と短軸の区別がないから、(長軸長/短軸長)は、便宜上1とみなす。
 そして、特記しない限り、粒子の形状が特定の場合、例えば、上記粒子サイズの定義(1)の場合、平均粒子サイズは平均長軸長であり、同定義(2)の場合、平均粒子サイズは平均板径である。同定義(3)の場合、平均粒子サイズは、平均直径(平均粒径、平均粒子径ともいう)である。
 磁性層における強磁性粉末の含有率(充填率)は、磁性層の総質量に対して、好ましくは50~90質量%の範囲であり、より好ましくは60~90質量%の範囲である。磁性層において強磁性粉末の充填率が高いことは、記録密度向上の観点から好ましい。
(結合剤)
 上記磁気テープは塗布型の磁気テープであることができ、磁性層に結合剤を含むことができる。結合剤とは、1種以上の樹脂である。結合剤としては、塗布型磁気記録媒体の結合剤として通常使用される各種樹脂を用いることができる。例えば、結合剤としては、ポリウレタン樹脂、ポリエステル樹脂、ポリアミド樹脂、塩化ビニル樹脂、スチレン、アクリロニトリル、メチルメタクリレート等を共重合したアクリル樹脂、ニトロセルロース等のセルロース樹脂、エポキシ樹脂、フェノキシ樹脂、ポリビニルアセタール、ポリビニルブチラール等のポリビニルアルキラール樹脂等から選ばれる樹脂を単独で用いるか、または複数の樹脂を混合して用いることができる。これらの中で好ましいものはポリウレタン樹脂、アクリル樹脂、セルロース樹脂、および塩化ビニル樹脂である。これらの樹脂は、ホモポリマーでもよく、コポリマー(共重合体)でもよい。これらの樹脂は、後述する非磁性層および/またはバックコート層においても結合剤として使用することができる。以上の結合剤については、特開2010-24113号公報の段落0028~0031を参照できる。また、結合剤は、電子線硬化型樹脂等の放射線硬化型樹脂であってもよい。放射線硬化型樹脂については、特開2011-048878号公報の段落0044~0045を参照できる。
 結合剤として使用される樹脂の平均分子量は、重量平均分子量として、例えば10,000以上200,000以下であることができる。結合剤は、強磁性粉末100.0質量部に対して、例えば1.0~30.0質量部の量で使用することができる。
(硬化剤)
 結合剤とともに硬化剤を使用することもできる。硬化剤は、一形態では加熱により硬化反応(架橋反応)が進行する化合物である熱硬化性化合物であることができ、他の一形態では光照射により硬化反応(架橋反応)が進行する光硬化性化合物であることができる。硬化剤は、磁気テープの製造工程の中で硬化反応が進行することにより、少なくとも一部は、結合剤等の他の成分と反応(架橋)した状態で磁性層に含まれ得る。好ましい硬化剤は、熱硬化性化合物であり、ポリイソシアネートが好適である。ポリイソシアネートの詳細については、特開2011-216149号公報の段落0124~0125を参照できる。硬化剤は、磁性層形成用組成物中に、結合剤100.0質量部に対して例えば0~80.0質量部、磁性層等の各層の強度向上の観点からは好ましくは50.0~80.0質量部の量で使用することができる。
(その他の成分)
 磁性層には、必要に応じて1種以上の添加剤が含まれていてもよい。添加剤は、所望の性質に応じて市販品を適宜選択して使用することができる。または、公知の方法で合成された化合物を添加剤として使用することもできる。添加剤の一例としては、上記の硬化剤が挙げられる。また、磁性層に含まれ得る添加剤としては、非磁性フィラー、潤滑剤、分散剤、分散助剤、防黴剤、帯電防止剤、酸化防止剤等を挙げることができる。非磁性フィラーとは、非磁性粒子または非磁性粉末と同義である。非磁性フィラーとしては、突起形成剤として機能することができる非磁性フィラーおよび研磨剤として機能することができる非磁性フィラーを挙げることができる。また、添加剤としては、特開2016-051493号公報の段落0030~0080に記載されている各種ポリマー等の公知の添加剤を用いることもできる。
 非磁性フィラーの一形態である突起形成剤としては、無機物質の粒子を用いることができ、有機物質の粒子を用いることもでき、無機物質と有機物質との複合粒子を用いることもできる。また、カーボンブラックも使用可能である。無機物質としては、金属酸化物等の無機酸化物、金属炭酸塩、金属硫酸塩、金属窒化物、金属炭化物、金属硫化物等を挙げることができ、無機酸化物が好ましい。一形態では、突起形成剤は、無機酸化物系粒子であることができる。ここで「系」とは、「含む」との意味で用いられる。無機酸化物系粒子の一形態は、無機酸化物からなる粒子である。また、無機酸化物系粒子の他の一形態は、無機酸化物と有機物質との複合粒子であり、具体例としては、無機酸化物とポリマーとの複合粒子を挙げることができる。そのような粒子としては、例えば、無機酸化物粒子の表面にポリマーが結合した粒子を挙げることができる。
 突起形成剤の平均粒子サイズは、例えば30~300nmであることができ、40~200nmであることが好ましい。また、突起形成剤の形状は、任意の形状であることができる。例えば、突起形成剤の粒子の形状が真球から離れた形状、例えばいわゆる異形と呼ばれる形状であると、磁気ヘッドとの接触によって磁性層表面に圧力が加えられた際に大きな押し込み抵抗が働き易いため、圧力の変化の影響を受け難い傾向があると推察される。また、粒子表面が不均質であり表面平滑性が低い粒子も、圧力が加えられた際に大きな押し込み抵抗が働きやすいため、圧力の変化の影響を受け難い傾向があると考えられる。したがって、一形態では、粒子の形状が真球から離れた形状である突起形成剤を使用すること、および/または、粒子表面が不均質であり表面平滑性が低い突起形成剤を使用することは好ましい。また、一形態では、突起形成剤として、いわゆる不定形の形状のものを使用することもできる。
 非磁性フィラーの他の一形態である研磨剤は、好ましくはモース硬度8超の非磁性粉末であり、モース硬度9以上の非磁性粉末であることがより好ましい。これに対し、突起形成剤のモース硬度は、例えば8以下または7以下であることができる。モース硬度の最大値は、ダイヤモンドの10である。具体的には、研磨剤としては、アルミナ(例えばAl)、炭化ケイ素、ボロンカーバイド(例えばBC)、SiO、TiC、酸化クロム(Cr)、酸化セリウム、酸化ジルコニウム(例えばZrO)、酸化鉄、ダイヤモンド等の粉末を挙げることができ、中でもα-アルミナ等のアルミナ粉末および炭化ケイ素粉末が好ましい。また、研磨剤の平均粒子サイズは、例えば30~300nmの範囲であることができ、50~200nmの範囲であることが好ましい。
 また、突起形成剤および研磨剤が、それらの機能をより良好に発揮することができるという観点から、磁性層における突起形成剤の含有量は、強磁性粉末100.0質量部に対して、0.1~5.0質量部であることが好ましく、0.3~3.5質量部であることがより好ましく、0.5~2.5質量部であることが更に好ましい。一方、研磨剤については、磁性層における含有量は、強磁性粉末100.0質量部に対して1.0~20.0質量部であることが好ましく、3.0~15.0質量部であることがより好ましく、4.0~10.0質量部であることが更に好ましい。
 研磨剤を含む磁性層に使用され得る添加剤の一例としては、特開2013-131285号公報の段落0012~0022に記載の分散剤を、磁性層形成用組成物における研磨剤の分散性を向上させるための分散剤として挙げることができる。また、分散剤については、特開2012-133837号公報の段落0061および0071を参照できる。分散剤は、非磁性層に含まれていてもよい。非磁性層に含まれ得る分散剤については、特開2012-133837号公報の段落0061を参照できる。
 また、磁性層に含まれ得る添加剤の一形態としては、下記式1で表されるアルキルエステルアニオンのアンモニウム塩構造を有する化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000002
(式1中、Rは炭素数7以上のアルキル基または炭素数7以上のフッ化アルキル基を表し、Zはアンモニウムカチオンを表す。)
 本発明者は、上記化合物は、潤滑剤として機能し得ると考えている。この点について、以下に更に説明する。
 潤滑剤は、流体潤滑剤と境界潤滑剤とに大別できる。本発明者は、上記式1で表されるアルキルエステルアニオンのアンモニウム塩構造を有する化合物は、流体潤滑剤として機能し得ると考えている。流体潤滑剤は、それ自身が磁性層表面に液膜を形成することにより、磁性層へ潤滑性を付与する役割を果たすことができると考えられる。磁気テープの摩擦特性を制御するためには、磁性層表面において流体潤滑剤が液膜を形成していることは望ましいと推察される。また、流体潤滑剤の液膜に関しては、より安定な摺動を可能にする観点からは、磁性層表面で液膜を形成している流体潤滑剤は適量にすることが望ましいと考えられる。この点に関して、式1で表されるアルキルエステルアニオンのアンモニウム塩構造を含む上記化合物は、比較的少量でも流体潤滑剤として優れた役割を果たすことができると考えられる。そのため、上記化合物を磁性層に含有させることは、磁気テープの磁性層表面と磁気ヘッドとの摺動安定性を向上させることにつながると考えられる。
 以下、上記化合物について、更に詳細に説明する。
 本発明および本明細書において、特記しない限り、記載されている基は置換基を有してもよく無置換であってもよい。また、置換基を有する基について「炭素数」とは、特記しない限り、置換基の炭素数を含まない炭素数を意味するものとする。本発明および本明細書において、置換基としては、例えば、アルキル基(例えば炭素数1~6のアルキル基)、ヒドロキシ基、アルコキシ基(例えば炭素数1~6のアルコキシ基)、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子等)、シアノ基、アミノ基、ニトロ基、アシル基、カルボキシ基、カルボキシ基の塩、スルホン酸基、スルホン酸基の塩等を挙げることができる。
 式1で表されるアルキルエステルアニオンのアンモニウム塩構造を有する化合物は、磁性層に含まれる少なくとも一部が磁性層表面で液膜を形成することができ、一部が磁性層内部に含まれ磁気ヘッドとの摺動時等に磁性層表面に移動して液膜を形成することもできる。また、一部は後述する非磁性層に含まれることができ、磁性層に移動し更に磁性層表面に移動して液膜を形成することもできる。なお、「アルキルエステルアニオン」は、「アルキルカルボキシラートアニオン」と呼ぶこともできる。
 式1中、Rは、炭素数7以上のアルキル基または炭素数7以上のフッ化アルキル基を表す。フッ化アルキル基は、アルキル基を構成する水素原子の一部または全部がフッ素原子により置換された構造を有する。Rで表されるアルキル基またはフッ化アルキル基は、直鎖構造であってもよく、分岐を有する構造であってもよく、環状のアルキル基またはフッ化アルキル基でもよく、直鎖構造であることが好ましい。Rで表されるアルキル基またはフッ化アルキル基は、置換基を有していてもよく、無置換であってもよく、無置換であることが好ましい。Rで表されるアルキル基は、例えばC2n+1-で表すことができる。ここでnは7以上の整数を表す。また、Rで表されるフッ化アルキル基は、例えばC2n+1-で表されるアルキル基を構成する水素原子の一部または全部がフッ素原子により置換された構造を有することができる。Rで表されるアルキル基またはフッ化アルキル基の炭素数は、7以上であり、8以上であることが好ましく、9以上であることがより好ましく、10以上であることが更に好ましく、11以上であることが一層好ましく、12以上であることがより一層好ましく、13以上であることが更に一層好ましい。また、Rで表されるアルキル基またはフッ化アルキル基の炭素数は、20以下であることが好ましく、19以下であることがより好ましく、18以下であることが更に好ましい。
 式1中、Zはアンモニウムカチオンを表す。アンモニウムカチオンは、詳しくは、以下の構造を有する。本発明および本明細書において、化合物の一部を表す式中の「*」は、その一部の構造と隣接する原子との結合位置を表す。
Figure JPOXMLDOC01-appb-C000003
 アンモニウムカチオンの窒素カチオンNと式1中の酸素アニオンOとが塩架橋基を形成して式1で表されるアルキルエステルアニオンのアンモニウム塩構造が形成され得る。式1で表されるアルキルエステルアニオンのアンモニウム塩構造を有する化合物が磁性層に含まれることは、磁気テープについてX線光電子分光法(ESCA:Electron Spectroscopy for Chemical Analysis)、赤外分光法(IR:infrared spectroscopy)等により分析を行うことによって確認できる。
 一形態では、Zで表されるアンモニウムカチオンは、例えば、含窒素ポリマーの窒素原子がカチオンとなることによってもたらされ得る。含窒素ポリマーとは、窒素原子を含むポリマーを意味する。本発明および本明細書において、「ポリマー」および「重合体」との語は、ホモポリマーとコポリマーとを包含する意味で用いられる。窒素原子は、一形態ではポリマーの主鎖を構成する原子として含まれることができ、また一形態ではポリマーの側鎖を構成する原子として含まれることができる。
 含窒素ポリマーの一形態としては、ポリアルキレンイミンを挙げることができる。ポリアルキレンイミンは、アルキレンイミンの開環重合体であって、下記式2で表される繰り返し単位を複数有するポリマーである。
Figure JPOXMLDOC01-appb-C000004
 式2中の主鎖を構成する窒素原子Nが窒素カチオンNとなって式1中のZで表されるアンモニウムカチオンがもたらされ得る。そしてアルキルエステルアニオンと、例えば以下のようにアンモニウム塩構造を形成し得る。
Figure JPOXMLDOC01-appb-C000005
 以下、式2について更に詳細に説明する。
 式2中、RおよびRは、それぞれ独立に水素原子またはアルキル基を表し、n1は2以上の整数を表す。
 RまたはRで表されるアルキル基としては、例えば、炭素数1~6のアルキル基を挙げることができ、好ましくは炭素数1~3のアルキル基であり、より好ましくはメチル基またはエチル基であり、更に好ましくはメチル基である。RまたはRで表されるアルキル基は、好ましくは無置換アルキル基である。式2中のRおよびRの組み合わせとしては、一方が水素原子であって他方がアルキル基である形態、両方が水素原子である形態および両方がアルキル基(同一または異なるアルキル基)である形態があり、好ましくは両方が水素原子である形態である。ポリアルキレンイミンをもたらすアルキレンイミンとして、環を構成する炭素数が最少の構造はエチレンイミンであり、エチレンイミンの開環により得られたアルキレンイミン(エチレンイミン)の主鎖の炭素数は2である。したがって、式2中のn1は2以上である。式2中のn1は、例えば10以下、8以下、6以下または4以下であることができる。ポリアルキレンイミンは、式2で表される繰り返し構造として同一構造のみを含むホモポリマーであってもよく、式2で表される繰り返し構造として2種以上の異なる構造を含むコポリマーであってもよい。式1で表されるアルキルエステルアニオンのアンモニウム塩構造を有する化合物を形成するために使用可能なポリアルキレンイミンの数平均分子量は、例えば200以上であることができ、300以上であることが好ましく、400以上であることがより好ましい。また、上記ポリアルキレンイミンの数平均分子量は、例えば10,000以下であることができ、5,000以下であることが好ましく、2,000以下であることがより好ましい。
 本発明および本明細書において、平均分子量(重量平均分子量および数平均分子量)とは、ゲル浸透クロマトグラフィー(GPC:Gel Permeation Chromatography)により測定され、標準ポリスチレン換算により求められる値をいうものとする。後述の実施例に示す平均分子量は、特記しない限り、GPCを用いて下記測定条件により測定された値を標準ポリスチレン換算して求めた値(ポリスチレン換算値)である。
 GPC装置:HLC-8220(東ソー社製)
 ガードカラム:TSKguardcolumn Super HZM-H
 カラム:TSKgel Super HZ 2000、TSKgel Super HZ 4000、TSKgel Super HZ-M(東ソー社製、4.6mm(内径)×15.0cm、3種カラムを直列連結)
 溶離液:テトラヒドロフラン(THF)、安定剤(2,6-ジ-t-ブチル-4-メチルフェノール)含有
 溶離液流速:0.35mL/分
 カラム温度:40℃
 インレット温度:40℃
 屈折率(RI:Refractive Index)測定温度:40℃
 サンプル濃度:0.3質量%
 サンプル注入量:10μL
 また、含窒素ポリマーの他の一形態としては、ポリアリルアミンを挙げることができる。ポリアリルアミンは、アリルアミンの重合体であって、下記式3で表される繰り返し単位を複数有するポリマーである。
Figure JPOXMLDOC01-appb-C000006
 式3中の側鎖のアミノ基を構成する窒素原子Nが窒素カチオンNとなって式1中のZで表されるアンモニウムカチオンがもたらされ得る。そしてアルキルエステルアニオンと、例えば以下のようにアンモニウム塩構造を形成し得る。
Figure JPOXMLDOC01-appb-C000007
 式1で表されるアルキルエステルアニオンのアンモニウム塩構造を有する化合物を形成するために使用可能なポリアリルアミンの重量平均分子量は、例えば 200以上であることができ、1,000以上であることが好ましく、1,500以上であることがより好ましい。また、上記ポリアルキレンイミンの重量平均分子量は、例えば15,000以下であることができ、10,000以下であることが好ましく、8,000以下であることがより好ましい。
 式1で表されるアルキルエステルアニオンのアンモニウム塩構造を有する化合物として、ポリアルキレンイミンまたはポリアリルイミン由来の構造を有する化合物が含まれることは、磁性層表面を飛行時間型二次イオン質量分析法(TOF-SIMS:Time-of-Flight Secondary Ion Mass Spectrometry)等により分析することによって確認できる。
 式1で表されるアルキルエステルアニオンのアンモニウム塩構造を有する化合物は、含窒素ポリマーと炭素数7以上の脂肪酸および炭素数7以上のフッ化脂肪酸からなる群から選ばれる脂肪酸類の1種以上との塩であることができる。塩を形成する含窒素ポリマーは、1種または2種以上の含窒素ポリマーであることができ、例えばポリアルキレンイミンおよびポリアリルアミンからなる群から選択される含窒素ポリマーであることができる。塩を形成する脂肪酸類は、炭素数7以上の脂肪酸および炭素数7以上のフッ化脂肪酸からなる群から選ばれる脂肪酸類の1種または2種以上であることができる。フッ化脂肪酸は、脂肪酸においてカルボキシ基COOHと結合しているアルキル基を構成する水素原子の一部または全部がフッ素原子に置換された構造を有する。例えば、含窒素ポリマーと上記脂肪酸類とを室温で混合することによって、塩形成反応は容易に進行し得る。室温とは、例えば20~25℃程度である。一形態では、磁性層形成用組成物の成分として含窒素ポリマーの1種以上と脂肪酸類の1種以上を使用し、磁性層形成用組成物の調製工程においてこれらを混合することによって、塩形成反応を進行させることができる。また、一形態では、磁性層形成用組成物の調製前に、含窒素ポリマーの1種以上と脂肪酸類の1種以上とを混合して塩を形成した後に、この塩を磁性層形成用組成物の成分として使用して磁性層形成用組成物を調製することができる。この点は、式1で表されるアルキルエステルアニオンのアンモニウム塩構造を有する化合物を含む非磁性層を形成する場合にも当てはまる。例えば、磁性層に関しては、強磁性粉末100.0質量部あたり 0.1~10.0質量部の含窒素ポリマーを使用することができ、0.5~8.0質量部の含窒素ポリマーを使用することが好ましい。上記脂肪酸類は、強磁性粉末100.0質量部あたり、例えば0.05~10.0質量部使用することができ、0.1~5.0質量部使用することが好ましい。また、磁性層形成用組成物の調製時、突起形成剤を、強磁性粉末と別分散することができ、研磨剤とも別分散することもできる。そのような別分散において、突起形成剤を、含窒素ポリマーの1種以上と脂肪酸類の1種以上と混合することによって、式1で表されるアルキルエステルアニオンのアンモニウム塩構造を有する化合物を突起形成剤へ効率的に吸着させることもできる。例えば、突起形成剤1.0質量部あたり、0.01~1.0質量部の含窒素ポリマーを混合することができ、0.01~1.0質量部の脂肪酸類を混合することができる。また、一形態では、含窒素ポリマーの1種以上と脂肪酸類の1種以上とを混合して塩を形成した後に、上記別分散において、この塩を突起形成剤と混合することもできる。例えば、かかる塩を、突起形成剤1.0質量部あたり、0.03~3.0質量部混合することができる。本発明者は、上記成分とともに突起形成剤を別分散することは、保存前後の摩擦係数変化率(μ1/μ2)を0.7以上に制御するうえで好ましいと考えている。詳しくは、上記成分とともに突起形成剤を別分散することにより、上記の塩によって突起形成剤を被覆することができ、これにより、上記の塩等の潤滑剤として機能し得る成分が磁性層の内部から表面に早期に供給され易くなると本発明者は考えている。このことが、繰り返し走行によって上昇した摩擦係数を短期間で上昇前の値に近づけることを可能にすることに寄与すると、本発明者は推察している。また、非磁性層に関しては、例えば、非磁性粉末100.0質量部あたり0.1~10.0質量部の含窒素ポリマーを使用することができ、0.5~8.0質量部の含窒素ポリマーを使用することが好ましい。上記脂肪酸類は、例えば、非磁性粉末100.0質量部あたり、例えば0.05~10.0質量部使用することができ、0.1~5.0質量部使用することが好ましい。なお、含窒素ポリマーと上記脂肪酸類とを混合して式1で表されるアルキルエステルアニオンのアンモニウム塩を形成する際、併せて含窒素ポリマーを構成する窒素原子と上記脂肪酸類のカルボキシ基とが反応して下記構造が形成される場合もあり、そのような構造を含む形態も上記化合物に包含される。
Figure JPOXMLDOC01-appb-C000008
 上記脂肪酸類としては、先に式1中のRとして記載したアルキル基を有する脂肪酸および先に式1中のRとして記載したフッ化アルキル基を有するフッ化脂肪酸を挙げることができる。
 式1で表されるアルキルエステルアニオンのアンモニウム塩構造を有する化合物を形成するために使用する含窒素ポリマーと上記脂肪酸類との混合比は、含窒素ポリマー:上記脂肪酸類の質量比として、10:90~90:10であることが好ましく、20:80~85:15であることがより好ましく、30:70~80:20であることが更に好ましい。また、式1で表されるアルキルエステルアニオンのアンモニウム塩構造を有する化合物は、磁性層に強磁性粉末100.0質量部に対して0.01質量部以上含まれることが好ましく、0.1質量部以上含まれることがより好ましく、0.5質量部以上含まれることが更に好ましい。ここで磁性層における上記化合物の含有量とは、磁性層表面に液膜を形成している量と磁性層内部に含まれる量との合計量をいうものとする。一方、磁性層の強磁性粉末の含有量が多いことは高密度記録化の観点から好ましい。したがって、高密度記録化の観点からは強磁性粉末以外の成分の含有量が少ないことは好ましい。この観点から、磁性層の上記化合物の含有量は、強磁性粉末100.0質量部に対して15.0質量部以下であることが好ましく、10.0質量部以下であることがより好ましく、8.0質量部以下であることが更に好ましい。また、磁性層を形成するために使用される磁性層形成用組成物の上記化合物の含有量の好ましい範囲も同様である。
 磁性層には、潤滑剤として機能し得る更なる成分の1種以上が含まれていてもよい。潤滑剤として機能し得る成分としては、例えば、脂肪酸エステル、脂肪酸アミド等を挙げることができる。脂肪酸エステルとしては、例えば、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸、リノール酸、リノレン酸、ベヘン酸、エルカ酸、エライジン酸等のエステルを挙げることができる。具体例としては、例えば、ミリスチン酸ブチル、パルミチン酸ブチル、ステアリン酸ブチル、ネオペンチルグリコールジオレエート、ソルビタンモノステアレート、ソルビタンジステアレート、ソルビタントリステアレート、オレイン酸オレイル、ステアリン酸イソセチル、ステアリン酸イソトリデシル、ステアリン酸オクチル、ステアリン酸イソオクチル、ステアリン酸アミル、ステアリン酸ブトキシエチル等を挙げることができる。磁性層形成用組成物または磁性層における脂肪酸エステル含有量は、強磁性粉末100.0質量部あたり、例えば0.1~10.0質量部であり、好ましくは1.0~7.0質量部である。脂肪酸アミドとしては、例えば、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸、リノール酸、リノレン酸、ベヘン酸、エルカ酸、エライジン酸等の各種脂肪酸のアミド、具体的にはラウリン酸アミド、ミリスチン酸アミド、パルミチン酸アミド、ステアリン酸アミド等を挙げることができる。磁性層の脂肪酸アミド含有量は、強磁性粉末100.0質量部あたり、例えば0~3.0質量部であり、好ましくは0~2.0質量部であり、より好ましくは0~1.0質量部である。また、非磁性層にも潤滑剤として機能し得る成分の1種以上が含まれていてもよい。例えば、非磁性層に、脂肪酸、脂肪酸エステルおよび脂肪酸アミドからなる群から選ばれる成分の1種以上が含まれていてもよい。非磁性層形成用組成物または非磁性層における脂肪酸含有量は、非磁性粉末100.0質量部あたり、例えば0~10.0質量部であり、好ましくは1.0~10.0質量部であり、より好ましくは1.0~7.0質量部である。非磁性層形成用組成物または非磁性層における脂肪酸エステル含有量は、非磁性粉末100.0質量部あたり、例えば0~10.0質量部であり、好ましくは0.1~8.0質量部である。非磁性層形成用組成物または非磁性層の脂肪酸アミド含有量は、非磁性粉末100.0質量部あたり、例えば0~3.0質量部であり、好ましくは0~1.0質量部である。分散剤については、特開2012-133837号公報の段落0061および0071を参照できる。分散剤を非磁性層形成用組成物に添加してもよい。非磁性層形成用組成物に添加し得る分散剤については、特開2012-133837号公報の段落0061を参照できる。
<非磁性層>
 次に非磁性層について説明する。上記磁気テープは、非磁性支持体上に直接磁性層を有していてもよく、非磁性支持体と磁性層との間に非磁性粉末を含む非磁性層を有していてもよい。非磁性層に使用される非磁性粉末は、無機物質の粉末(無機粉末)でも有機物質の粉末(有機粉末)でもよい。また、カーボンブラック等も使用できる。無機物質としては、例えば金属、金属酸化物、金属炭酸塩、金属硫酸塩、金属窒化物、金属炭化物、金属硫化物等が挙げられる。これらの非磁性粉末は、市販品として入手可能であり、公知の方法で製造することもできる。その詳細については、特開2011-216149号公報の段落0146~0150を参照できる。非磁性層に使用可能なカーボンブラックについては、特開2010-24113号公報の段落0040~0041も参照できる。非磁性層における非磁性粉末の含有率(充填率)は、非磁性層の総質量に対して、好ましくは50~90質量%の範囲であり、より好ましくは60~90質量%の範囲である。
 非磁性層は、結合剤を含むことができ、添加剤を含むこともできる。非磁性層の結合剤、添加剤等のその他詳細については、非磁性層に関する公知技術を適用できる。また、例えば、結合剤の種類および含有量、添加剤の種類および含有量等に関しては、磁性層に関する公知技術も適用できる。
 上記磁気テープの非磁性層には、非磁性粉末とともに、例えば不純物として、または意図的に、少量の強磁性粉末を含む実質的に非磁性な層も包含されるものとする。ここで実質的に非磁性な層とは、この層の残留磁束密度が10mT以下であるか、保磁力が7.96kA/m(100Oe)以下であるか、または、残留磁束密度が10mT以下であり、かつ保磁力が7.96kA/m(100Oe)以下である層をいうものとする。非磁性層は、残留磁束密度および保磁力を持たないことが好ましい。
<非磁性支持体>
 次に、非磁性支持体について説明する。上記磁気テープは、非磁性支持体(以下、単に「支持体」とも記載する。)として、幅方向のヤング率が10000MPa(メガパスカル)以上のポリエチレンナフタレート支持体を含む。
 ポリエチレンナフタレート(PEN)は、ナフタレン環および複数のエステル結合を含む樹脂(即ちナフタレン環を含むポリエステル)であって、2,6-ナフタレンジカルボン酸ジメチルとエチレングリコールとのエステル化反応を行い、その後にエステル交換反応および重縮合反応を行って得ることができる樹脂である。本発明および本明細書における「ポリエチレンナフタレート」には、上記成分に加えて1種以上の他の成分(例えば、共重合成分、末端または側鎖に導入される成分等)を有する構造のものも包含される。本発明および本明細書において、「ポリエチレンナフタレート支持体」とは、少なくとも1層のポリエチレンナフタレートフィルムを含む支持体を意味する。「ポリエチレンナフタレートフィルム」とは、このフィルムを構成する成分の中で質量基準で最も多くを占める成分がポリエチレンナフタレートであるフィルムをいうものとする。本発明および本明細書における「ポリエチレンナフタレート支持体」には、この支持体に含まれる樹脂フィルムがすべてポリエチレンナフタレートフィルムであるものと、ポリエチレンナフタレートフィルムと他の樹脂フィルムとを含むものとが包含される。ポリエチレンナフタレート支持体の具体的形態としては、単層のポリエチレンナフタレートフィルム、構成成分が同じ2層以上のポリエチレンナフタレートフィルムの積層フィルム、構成成分が異なる2層以上のポリエチレンナフタレートフィルムの積層フィルム、1層以上のポリエチレンナフタレートフィルムおよび1層以上のポリエチレンナフタレートフィルム以外の樹脂フィルムを含む積層フィルム等を挙げることができる。積層フィルムにおいて隣り合う2層の間に接着層等が任意に含まれていてもよい。また、ポリエチレンナフタレート支持体には、一方または両方の表面に蒸着等によって形成された金属膜および/または金属酸化物膜が任意に含まれていてもよい。
 また、非磁性支持体は、二軸延伸フィルムであることができ、コロナ放電、プラズマ処理、易接着処理、熱処理等が施されたフィルムであってもよい。
 本発明および本明細書において、非磁性支持体のヤング率は、温度23℃相対湿度50%の測定環境において、以下の方法によって測定される値である。後掲の表に示されているヤング率は、万能引張試験装置として東洋ボールドウィン社製テンシロンを使用して以下の方法によって求めた値である。
 測定対象の非磁性支持体から切り出した試料片を、チャック間距離100mm、引張速度10mm/分およびチャート速度500mm/分の条件で、万能引張試験装置にて引っ張る。万能引張試験装置としては、例えば、東洋ボールドウィン社製テンシロン等の市販の万能引張試験装置または公知の構成の万能引張試験装置を使用することができる。こうして得られた荷重-伸び曲線の立ち上がり部の接線より、上記試料片の長手方向および幅方向のヤング率をそれぞれ算出する。ここで試料片の長手方向および幅方向とは、この試料片が磁気テープに含まれていたときの長手方向および幅方向を意味する。
 例えば、磁気テープから磁性層等の非磁性支持体以外の部分を公知の方法(例えば有機溶媒を使用した脱膜等)によって除去した後、上記方法によって非磁性支持体の長手方向および幅方向のヤング率を求めることもできる。
 上記ポリエチレンナフタレート支持体の幅方向のヤング率は、10000MPa以上である。このことが、磁気テープの長手方向にかかるテンションを調整することによって磁気テープの幅方向の寸法を制御して良好に記録および/または再生を行うことが、上記磁気テープによって可能になる理由と本発明者は考えている。上記ポリエチレンナフタレート支持体の幅方向のヤング率は、例えば11000MPa以上であることもできる。また上記ポリエチレンナフタレート支持体の幅方向のヤング率は、例えば、20000MPa以下、18000MPa以下、16000MPa以下もしくは14000MPa以下であってもよく、ここに例示した値を上回ってもよい。
 上記ポリエチレンナフタレート支持体は、幅方向のヤング率が10000MPa以上であればよく、長手方向のヤング率は特に限定されるものではない。一形態では、上記ポリエチレンナフタレート支持体の長手方向のヤング率は、2500MPa以上であることが好ましく、3000MPa以上であることがより好ましい。また、上記ポリエチレンナフタレート支持体の長手方向のヤング率は、例えば、10000MPa以下、9000MPa以下、8000MPa以下、7000MPa以下または6000MPa以下であることができる。磁気テープの製造時、非磁性支持体は、通常、フィルムのMD方向(Machine direction)を長手方向、TD方向(Transverse diretion)を幅方向として使用される。非磁性支持体の長手方向のヤング率と幅方向のヤング率は、一形態では同じ値であることができ、他の一形態では異なる値であることができる。一形態では、上記ポリエチレンナフタレート支持体の幅方向のヤング率は、長手方向のヤング率より大きな値であることができる。非磁性支持体のヤング率は、支持体を構成する成分の種類および混合比、支持体の製造条件等によって制御することができる。例えば、二軸延伸処理において各方向での延伸倍率を調整することによって、長手方向におけるヤング率と幅方向におけるヤング率をそれぞれ制御することができる。
<バックコート層>
 上記テープは、非磁性支持体の磁性層を有する表面側とは反対の表面側に、非磁性粉末を含むバックコート層を有することもでき、有さないこともできる。バックコート層には、カーボンブラックおよび無機粉末の一方または両方が含有されていることが好ましい。バックコート層は、結合剤を含むことができ、添加剤を含むこともできる。バックコート層の非磁性粉末、結合剤、添加剤等の詳細については、バックコート層に関する公知技術を適用することができ、磁性層および/または非磁性層に関する公知技術を適用することもできる。例えば、特開2006-331625号公報の段落0018~0020および米国特許第7,029,774号明細書の第4欄65行目~第5欄38行目の記載を、バックコート層について参照できる。
<各種厚み>
 磁気テープの厚み(総厚)に関して、近年の情報量の莫大な増大に伴い、磁気テープには記録容量を高めること(高容量化)が求められている。高容量化のための手段としては、磁気テープの厚みを薄くし、磁気テープカートリッジ1巻あたりに収容される磁気テープ長を増すことが挙げられる。この点から、上記磁気テープの厚み(総厚)は、5.6μm以下であることが好ましく、5.5μm以下であることがより好ましく、5.4μm以下であることがより好ましく、5.3μm以下であることが更に好ましく、5.2μm以下であることが一層好ましい。また、ハンドリングの容易性の観点からは、磁気テープの厚みは3.0μm以上であることが好ましく、3.5μm以上であることがより好ましい。
 磁気テープの厚み(総厚)は、以下の方法によって測定することができる。
 磁気テープの任意の部分からテープサンプル(例えば長さ5~10cm)を10枚切り出し、これらテープサンプルを重ねて厚みを測定する。測定された厚みを10分の1して得られた値(テープサンプル1枚当たりの厚み)を、テープ厚みとする。上記厚み測定は、0.1μmオーダーでの厚み測定が可能な公知の測定器を用いて行うことができる。
 非磁性支持体の厚みは、例えば3.0μm以上であることができ、また、例えば5.0μm以下、4.8μm以下、4.6μm以下、4.4μm以下もしくは4.2μm以下であることができる。
 磁性層の厚みは、用いる磁気ヘッドの飽和磁化量、ヘッドギャップ長、記録信号の帯域等に応じて最適化することができ、一般には0.01μm~0.15μmであり、高密度記録化の観点から、好ましくは0.02μm~0.12μmであり、更に好ましくは0.03μm~0.1μmである。磁性層は少なくとも一層あればよく、磁性層を異なる磁気特性を有する二層以上に分離してもかまわず、公知の重層磁性層に関する構成が適用できる。二層以上に分離する場合の磁性層の厚みとは、これらの層の合計厚みとする。
 非磁性層の厚みは、例えば0.1~1.5μmであり、0.1~1.0μmであることが好ましい。
 バックコート層の厚みは、0.9μm以下であることが好ましく、0.1~0.7μmであることが更に好ましい。
 磁性層の厚み等の各種厚みは、例えば、以下の方法により求めることができる。
 磁気テープの厚み方向の断面を、イオンビームにより露出させた後、露出した断面において走査型電子顕微鏡または透過型電子顕微鏡によって断面観察を行う。断面観察において任意の2箇所において求められた厚みの算術平均として、各種厚みを求めることができる。または、各種厚みは、製造条件等から算出される設計厚みとして求めることもできる。
<製造方法>
(各層形成用組成物の調製)
 磁性層、非磁性層またはバックコート層を形成するための組成物は、先に説明した各種成分とともに、通常、溶媒を含む。溶媒としては、塗布型磁気記録媒体を製造するために一般に使用される各種有機溶媒を用いることができる。中でも、塗布型磁気記録媒体に通常使用される結合剤の溶解性の観点からは、各層形成用組成物には、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン、シクロヘキサノン、イソホロン、テトラヒドロフラン等のケトン溶媒の1種以上が含まれることが好ましい。各層形成用組成物における溶媒量は特に限定されるものではなく、通常の塗布型磁気記録媒体の各層形成用組成物と同様にすることができる。また、各層形成用組成物を調製する工程は、通常、少なくとも混練工程、分散工程、およびこれらの工程の前後に必要に応じて設けた混合工程を含むことができる。個々の工程はそれぞれ2段階以上に分かれていてもかまわない。各層形成用組成物の調製に用いられる成分は、どの工程の最初または途中で添加してもかまわない。個々の成分を2つ以上の工程で分割して添加してもかまわない。例えば、結合剤を混練工程、分散工程、および分散後の粘度調整のための混合工程で分割して投入してもよい。また、先に記載したように、磁性層形成用組成物の成分として、含窒素ポリマーの1種以上と上記脂肪酸類の1種以上とを使用し、磁性層形成用組成物の調製工程においてこれらを混合することによって、塩形成反応を進行させることができる。また、一形態では、磁性層形成用組成物の調製前に、含窒素ポリマーの1種以上と脂肪酸類の1種以上とを混合して塩を形成した後に、この塩を磁性層形成用組成物の成分として使用して磁性層形成用組成物を調製することができる。この点は、非磁性層形成用組成物の調製工程についても当てはまる。一形態では、磁性層形成用組成物を調製する工程において、突起形成剤を含む分散液(以下、「突起形成剤液」と記載する。)を調製した後、この突起形成剤液を、磁性層形成用組成物のその他の成分の1種以上と混合することができる。例えば、突起形成剤液の調製は、超音波処理等の公知の分散処理によって行うことができる。超音波処理は、例えば200cc(1cc=1cm)あたり10~2000ワット程度の超音波出力で1~300分間程度行うことができる。突起形成剤の別分散時(即ち突起形成剤液の調製時)、先に記載した成分を混合することもできる。また、分散処理後にろ過を行ってもよい。ろ過に用いるフィルタについては以下の記載を参照できる。
 上記磁気テープの製造工程では、従来の公知の製造技術を一部または全部の工程において用いることができる。混練工程では、オープンニーダ、連続ニーダ、加圧ニーダ、エクストルーダ等の強い混練力をもつニーダを使用することが好ましい。これらの混練処理の詳細については特開平1-106338号公報および特開平1-79274号公報に記載されている。また、各層形成用組成物を分散させるために、ガラスビーズおよび/またはその他のビーズを用いることができる。このような分散ビーズとしては、高比重の分散ビーズであるジルコニアビーズ、チタニアビーズ、およびスチールビーズが好適である。これら分散ビーズは、粒径(ビーズ径)と充填率を最適化して用いることが好ましい。分散機は公知のものを使用することができる。各層形成用組成物を、塗布工程に付す前に公知の方法によってろ過してもよい。ろ過は、例えばフィルタろ過によって行うことができる。ろ過に用いるフィルタとしては、例えば孔径0.01~3μmのフィルタ(例えばガラス繊維製フィルタ、ポリプロピレン製フィルタ等)を用いることができる。
(塗布工程)
 磁性層は、磁性層形成用組成物を、例えば、非磁性支持体上に直接塗布するか、または非磁性層形成用組成物と逐次もしくは同時に重層塗布することにより形成することができる。配向処理を行う場合、磁性層形成用組成物の塗布層が湿潤状態にあるうちに、配向ゾーンにおいて塗布層に対して配向処理が行われる。配向処理については、特開2010-24113号公報の段落0052の記載をはじめとする各種公知技術を適用することができる。例えば、垂直配向処理は、異極対向磁石を用いる方法等の公知の方法によって行うことができる。配向ゾーンでは、乾燥風の温度、風量および/または配向ゾーンにおける搬送速度によって塗布層の乾燥速度を制御することができる。また、配向ゾーンに搬送する前に塗布層を予備乾燥させてもよい。
 バックコート層は、バックコート層形成用組成物を、非磁性支持体の磁性層を有する(または磁性層が追って設けられる)側とは反対側に塗布することにより形成することができる。各層形成のための塗布の詳細については、特開2010-231843号公報の段落0066を参照できる。
(その他の工程)
 上記塗布工程を行った後、磁気テープの表面平滑性を高めるためにカレンダ処理を施すことができる。カレンダ条件について、カレンダ圧力は、例えば200~500kN/m、好ましくは250~350kN/mであり、カレンダ温度は、例えば70~120℃、好ましくは80~100℃であり、カレンダ速度は、例えば50~300m/分、好ましくは80~200m/分である。また、カレンダロールとして表面が硬いロールを使用するほど、また段数を増やすほど、磁性層表面は平滑化する傾向がある。
 磁気テープ製造のためのその他の各種工程については、特開2010-231843号公報の段落0067~0070を参照できる。
 各種工程を経ることによって、長尺状の磁気テープ原反を得ることができる。得られた磁気テープ原反は、公知の裁断機によって、磁気テープカートリッジに収容すべき磁気テープの幅に裁断(スリット)される。上記の幅は規格にしたがい決定でき、通常、1/2インチである。1/2インチ=12.65mmである。
 スリットして得られた磁気テープには、通常、サーボパターンが形成される。
(サーボパターンの形成)
 「サーボパターンの形成」は、「サーボ信号の記録」ということもできる。以下に、サーボパターンの形成について説明する。
 サーボパターンは、通常、磁気テープの長手方向に沿って形成される。サーボ信号を利用する制御(サーボ制御)の方式としては、タイミングベースサーボ(TBS)、アンプリチュードサーボ、周波数サーボ等が挙げられる。
 ECMA(European Computer Manufacturers Association)―319(June 2001)に示される通り、LTO(Linear Tape-Open)規格に準拠した磁気テープ(一般に「LTOテープ」と呼ばれる。)では、タイミングベースサーボ方式が採用されている。このタイミングベースサーボ方式において、サーボパターンは、互いに非平行な一対の磁気ストライプ(「サーボストライプ」とも呼ばれる。)が、磁気テープの長手方向に連続的に複数配置されることによって構成されている。本発明および本明細書において、「タイミングベースサーボパターン」とは、タイミングベースサーボ方式のサーボシステムにおけるヘッドトラッキングを可能とするサーボパターンをいう。上記のように、サーボパターンが互いに非平行な一対の磁気ストライプにより構成される理由は、サーボパターン上を通過するサーボ信号読み取り素子に、その通過位置を教えるためである。具体的には、上記の一対の磁気ストライプは、その間隔が磁気テープの幅方向に沿って連続的に変化するように形成されており、サーボ信号読み取り素子がその間隔を読み取ることによって、サーボパターンとサーボ信号読み取り素子との相対位置を知ることができる。この相対位置の情報が、データトラックのトラッキングを可能にする。そのために、サーボパターン上には、通常、磁気テープの幅方向に沿って、複数のサーボトラックが設定されている。
 サーボバンドは、磁気テープの長手方向に連続するサーボパターンにより構成される。このサーボバンドは、通常、磁気テープに複数本設けられる。例えば、LTOテープにおいて、その数は5本である。隣接する2本のサーボバンドに挟まれた領域が、データバンドである。データバンドは、複数のデータトラックで構成されており、各データトラックは、各サーボトラックに対応している。
 また、一形態では、特開2004-318983号公報に示されているように、各サーボバンドには、サーボバンドの番号を示す情報(「サーボバンドID(identification)」または「UDIM(Unique DataBand Identification Method)情報」とも呼ばれる。)が埋め込まれている。このサーボバンドIDは、サーボバンド中に複数ある一対のサーボストライプのうちの特定のものを、その位置が磁気テープの長手方向に相対的に変位するように、ずらすことによって記録されている。具体的には、複数ある一対のサーボストライプのうちの特定のもののずらし方を、サーボバンド毎に変えている。これにより、記録されたサーボバンドIDはサーボバンド毎にユニークなものとなるため、一つのサーボバンドをサーボ信号読み取り素子で読み取るだけで、そのサーボバンドを一意に(uniquely)特定することができる。
 なお、サーボバンドを一意に特定する方法には、ECMA―319(June 2001)に示されているようなスタッガード方式を用いたものもある。このスタッガード方式では、磁気テープの長手方向に連続的に複数配置された、互いに非平行な一対の磁気ストライプ(サーボストライプ)の群を、サーボバンド毎に磁気テープの長手方向にずらすように記録する。隣接するサーボバンド間における、このずらし方の組み合わせは、磁気テープ全体においてユニークなものとされているため、2つのサーボ信号読み取り素子によりサーボパターンを読み取る際に、サーボバンドを一意に特定することも可能となっている。
 また、各サーボバンドには、ECMA―319(June 2001)に示されている通り、通常、磁気テープの長手方向の位置を示す情報(「LPOS(Longitudinal Position)情報」とも呼ばれる。)も埋め込まれている。このLPOS情報も、UDIM情報と同様に、一対のサーボストライプの位置を、磁気テープの長手方向にずらすことによって記録されている。ただし、UDIM情報とは異なり、このLPOS情報では、各サーボバンドに同じ信号が記録されている。
 上記のUDIM情報およびLPOS情報とは異なる他の情報を、サーボバンドに埋め込むことも可能である。この場合、埋め込まれる情報は、UDIM情報のようにサーボバンド毎に異なるものであってもよいし、LPOS情報のようにすべてのサーボバンドに共通のものであってもよい。
 また、サーボバンドに情報を埋め込む方法としては、上記以外の方法を採用することも可能である。例えば、一対のサーボストライプの群の中から、所定の対を間引くことによって、所定のコードを記録するようにしてもよい。
 サーボパターン形成用ヘッドは、サーボライトヘッドと呼ばれる。サーボライトヘッドは、通常、上記一対の磁気ストライプに対応した一対のギャップを、サーボバンドの数だけ有する。通常、各一対のギャップには、それぞれコアとコイルが接続されており、コイルに電流パルスを供給することによって、コアに発生した磁界が、一対のギャップに漏れ磁界を生じさせることができる。サーボパターンの形成の際には、サーボライトヘッド上に磁気テープを走行させながら電流パルスを入力することによって、一対のギャップに対応した磁気パターンを磁気テープに転写させて、サーボパターンを形成することができる。各ギャップの幅は、形成されるサーボパターンの密度に応じて適宜設定することができる。各ギャップの幅は、例えば、1μm以下、1~10μm、10μm以上等に設定可能である。
 磁気テープにサーボパターンを形成する前には、磁気テープに対して、通常、消磁(イレース)処理が施される。このイレース処理は、直流磁石または交流磁石を用いて、磁気テープに一様な磁界を加えることによって行うことができる。イレース処理には、DC(Direct Current)イレースとAC(Alternating Current)イレースとがある。ACイレースは、磁気テープに印加する磁界の方向を反転させながら、その磁界の強度を徐々に下げることによって行われる。一方、DCイレースは、磁気テープに一方向の磁界を加えることによって行われる。DCイレースには、更に2つの方法がある。第一の方法は、磁気テープの長手方向に沿って一方向の磁界を加える、水平DCイレースである。第二の方法は、磁気テープの厚み方向に沿って一方向の磁界を加える、垂直DCイレースである。イレース処理は、磁気テープ全体に対して行ってもよいし、磁気テープのサーボバンド毎に行ってもよい。
 形成されるサーボパターンの磁界の向きは、イレースの向きに応じて決まる。例えば、磁気テープに水平DCイレースが施されている場合、サーボパターンの形成は、磁界の向きがイレースの向きと反対になるように行われる。これにより、サーボパターンが読み取られて得られるサーボ信号の出力を、大きくすることができる。なお、特開2012-53940号公報に示されている通り、垂直DCイレースされた磁気テープに、上記ギャップを用いた磁気パターンの転写を行った場合、形成されたサーボパターンが読み取られて得られるサーボ信号は、単極パルス形状となる。一方、水平DCイレースされた磁気テープに、上記ギャップを用いた磁気パターンの転写を行った場合、形成されたサーボパターンが読み取られて得られるサーボ信号は、双極パルス形状となる。
[磁気テープカートリッジ]
 本発明の一態様は、上記磁気テープを含む磁気テープカートリッジに関する。 
 上記磁気テープカートリッジに含まれる磁気テープの詳細は、先に記載した通りである。
 磁気テープカートリッジでは、一般に、カートリッジ本体内部に磁気テープがリールに巻取られた状態で収容されている。リールは、カートリッジ本体内部に回転可能に備えられている。磁気テープカートリッジとしては、カートリッジ本体内部にリールを1つ具備する単リール型の磁気テープカートリッジおよびカートリッジ本体内部にリールを2つ具備する双リール型の磁気テープカートリッジが広く用いられている。単リール型の磁気テープカートリッジは、磁気テープへのデータの記録および/または再生のために磁気テープ装置に装着されると、磁気テープカートリッジから磁気テープが引き出されて磁気テープ装置側のリールに巻取られる。磁気テープカートリッジから巻取りリールまでの磁気テープ搬送経路には、磁気ヘッドが配置されている。磁気テープカートリッジ側のリール(供給リール)と磁気テープ装置側のリール(巻取りリール)との間で、磁気テープの送り出しと巻取りが行われる。この間、磁気ヘッドと磁気テープの磁性層表面とが接触し摺動することにより、データの記録および/または再生が行われる。これに対し、双リール型の磁気テープカートリッジは、供給リールと巻取りリールの両リールが、磁気テープカートリッジ内部に具備されている。
 上記磁気テープカートリッジは、一形態では、カートリッジメモリを含むことができる。カートリッジメモリは、例えば不揮発メモリであることができ、テンション調整情報が既に記録されているメモリであるか、またはテンション調整情報が記録されるメモリであることができる。テンション調整情報は、磁気テープの長手方向にかかるテンションを調整するための情報である。カートリッジメモリについては、後述の記載も参照できる。
 上記磁気テープおよび磁気テープカートリッジは、磁気テープの長手方向にかかるテンションを調整することによって磁気テープの幅方向の寸法を制御する磁気テープ装置(換言すれば磁気記録再生システム)において、好適に使用され得る。
[磁気テープ装置]
 本発明の一態様は、上記磁気テープを含む磁気テープ装置に関する。上記磁気テープ装置において、磁気テープへのデータの記録および/または磁気テープに記録されたデータの再生は、磁気テープの磁性層表面と磁気ヘッドとを接触させて摺動させることにより行うことができる。上記磁気テープ装置は、本発明の一態様にかかる磁気テープカートリッジを着脱可能に含むことができる。
 上記磁気テープカートリッジは、磁気ヘッドを備えた磁気テープ装置に装着させ、データの記録および/または再生を行うために用いることができる。本発明および本明細書において、「磁気テープ装置」とは、磁気テープへのデータの記録および磁気テープに記録されたデータの再生の少なくとも一方を行うことができる装置を意味するものとする。かかる装置は、一般にドライブと呼ばれる。上記磁気テープ装置に含まれる磁気ヘッドは、磁気テープへのデータの記録を行うことができる記録ヘッドであることができ、磁気テープに記録されたデータの再生を行うことができる再生ヘッドであることもできる。また、上記磁気テープ装置は、一形態では、別々の磁気ヘッドとして、記録ヘッドと再生ヘッドの両方を含むことができる。他の一形態では、上記磁気テープ装置に含まれる磁気ヘッドは、記録素子と再生素子の両方を1つの磁気ヘッドに備えた構成を有することもできる。再生ヘッドとしては、磁気テープに記録された情報を感度よく読み取ることができる磁気抵抗効果型(MR:Magnetoresistive)素子を再生素子として含む磁気ヘッド(MRヘッド)が好ましい。MRヘッドとしては、公知の各種MRヘッド(例えば、GMR(Giant Magnetoresistive)ヘッド、TMR(Tunnel Magnetoresistive)ヘッド等)を用いることができる。また、データの記録および/またはデータの再生を行う磁気ヘッドには、サーボ信号読み取り素子が含まれていてもよい。または、データの記録および/またはデータの再生を行う磁気ヘッドとは別のヘッドとして、サーボ信号読み取り素子を備えた磁気ヘッド(サーボヘッド)が上記磁気テープ装置に含まれていてもよい。例えば、データの記録および/または記録されたデータの再生を行う磁気ヘッド(以下、「記録再生ヘッド」とも呼ぶ。)は、サーボ信号読み取り素子を2つ含むことができ、2つのサーボ信号読み取り素子のそれぞれが、データバンドを挟んで隣り合う2本のサーボバンドを同時に読み取ることができる。2つのサーボ信号読み取り素子の間に、1つまたは複数のデータ用素子を配置することができる。データの記録のための素子(記録素子)とデータの再生のための素子(再生素子)を、「データ用素子」と総称する。
 再生素子として再生素子幅が狭い再生素子を使用してデータの再生を行うことにより、高密度記録されたデータを高感度に再生することができる。この観点から、再生素子の再生素子幅は、0.8μm以下であることが好ましい。再生素子の再生素子幅は、例えば0.3μm以上であることができる。ただし、この値を下回ることも上記観点からは好ましい。
 他方、再生素子幅が狭くなるほど、オフトラックに起因する再生不良等の現象が発生し易くなる。このような現象の発生を抑制するために、磁気テープの長手方向にかかるテンションを調整することによって、磁気テープの幅方向の寸法を制御する磁気テープ装置は好ましい。
 ここで「再生素子幅」とは、再生素子幅の物理的な寸法をいうものとする。かかる物理的な寸法は、光学顕微鏡、走査型電子顕微鏡等により測定が可能である。
 データの記録および/または記録されたデータの再生の際には、まず、サーボ信号を用いたトラッキングを行うことができる。即ち、サーボ信号読み取り素子を所定のサーボトラックに追従させることによって、データ用素子が、目的とするデータトラック上を通過するように制御することができる。データトラックの移動は、サーボ信号読み取り素子が読み取るサーボトラックを、テープ幅方向に変更することにより行われる。
 また、記録再生ヘッドは、他のデータバンドに対する記録および/または再生を行うことも可能である。その際には、先に記載したUDIM情報を利用してサーボ信号読み取り素子を所定のサーボバンドに移動させ、そのサーボバンドに対するトラッキングを開始すればよい。
 図1に、データバンドおよびサーボバンドの配置例を示す。図1中、磁気テープMTの磁性層には、複数のサーボバンド1が、ガイドバンド3に挟まれて配置されている。2本のサーボバンドに挟まれた複数の領域2が、データバンドである。サーボパターンは、磁化領域であって、サーボライトヘッドにより磁性層の特定の領域を磁化することによって形成される。サーボライトヘッドにより磁化する領域(サーボパターンを形成する位置)は規格により定められている。例えば業界標準規格であるLTO Ultriumフォーマットテープには、磁気テープ製造時に、図2に示すようにテープ幅方向に対して傾斜した複数のサーボパターンが、サーボバンド上に形成される。詳しくは、図2中、サーボバンド1上のサーボフレームSFは、サーボサブフレーム1(SSF1)およびサーボサブフレーム2(SSF2)から構成される。サーボサブフレーム1は、Aバースト(図2中、符号A)およびBバースト(図2中、符号B)から構成される。AバーストはサーボパターンA1~A5から構成され、BバーストはサーボパターンB1~B5から構成される。一方、サーボサブフレーム2は、Cバースト(図2中、符号C)およびDバースト(図2中、符号D)から構成される。CバーストはサーボパターンC1~C4から構成され、DバーストはサーボパターンD1~D4から構成される。このような18本のサーボパターンが5本と4本のセットで、5、5、4、4、の配列で並べられたサブフレームに配置され、サーボフレームを識別するために用いられる。図2には、説明のために1つのサーボフレームを示した。ただし、実際には、タイミングベースサーボ方式のヘッドトラッキングが行われる磁気テープの磁性層には、各サーボバンドに、複数のサーボフレームが走行方向に配置されている。図2中、矢印は走行方向を示している。例えば、LTO Ultriumフォーマットテープは、通常、磁性層の各サーボバンドに、テープ長1mあたり5000以上のサーボフレームを有する。
 磁気テープ装置は、磁気テープ装置内を走行する磁気テープの長手方向にかかるテンションを調整可能なテンション調整機構を有することができる。かかるテンション調整機構は、磁気テープの長手方向にかかるテンションを可変に制御することができ、好ましくは、磁気テープの長手方向にかかるテンションを調整することによって、磁気テープの幅方向の寸法を制御することができる。上記テンション調整において、磁気テープの長手方向にかかるテンションは変化し得る。以下に、図3を参照して、かかる磁気テープ装置の一例について説明する。ただし本発明は、図3に示す例に限定されるものではない。
<磁気テープ装置の構成>
 図3に示す磁気テープ装置10は、制御装置11からの命令により記録再生ヘッドユニット12を制御し、磁気テープMTへのデータの記録および再生を行う。
 磁気テープ装置10は、磁気テープカートリッジリールと巻取りリールを回転制御するスピンドルモーター17A、17Bおよびそれらの駆動装置18A、18Bから磁気テープの長手方向に加わるテンションの検出および調整が可能な構成を有している。
 磁気テープ装置10は、磁気テープカートリッジ13を装填可能な構成を有している。
 磁気テープ装置10は、磁気テープカートリッジ13内のカートリッジメモリ131について読み取りおよび書き込みが可能なカートリッジメモリリードライト装置14を有している。
 磁気テープ装置10に装着された磁気テープカートリッジ13からは、磁気テープMTの端部またはリーダーピンが自動のローディング機構または手動により引き出され、磁気テープMTの磁性層表面が記録再生ヘッドユニット12の記録再生ヘッド表面に接する向きでガイドローラー15A、15Bを通して記録再生ヘッド上をパスし、磁気テープMTが巻取りリール16に巻取られる。
 制御装置11からの信号によりスピンドルモーター17Aとスピンドルモーター17Bの回転およびトルクが制御され、磁気テープMTが任意の速度とテンションで走行される。テープ速度の制御には、磁気テープ上に予め形成されたサーボパターンを利用することができる。テンションの検出のために、磁気テープカートリッジ13と巻取りリール16との間にテンション検出機構を設けてもよい。テンションの制御は、スピンドルモーター17Aおよび17Bによる制御の他に、ガイドローラー15Aおよび15Bを用いて行ってもよい。
 カートリッジメモリリードライト装置14は、制御装置11からの命令により、カートリッジメモリ131の情報の読み出しと書き込みが可能に構成されている。カートリッジメモリリードライト装置14とカートリッジメモリ131との間の通信方式としては、例えば、ISO(International Organization for Standardization)14443方式を採用できる。
 制御装置11は、例えば、制御部、記憶部、通信部等を含む。
 記録再生ヘッドユニット12は、例えば、記録再生ヘッド、記録再生ヘッドのトラック幅方向の位置を調整するサーボトラッキングアクチュエータ、記録再生アンプ19、制御装置11と接続するためのコネクタケーブル等から構成される。記録再生ヘッドは、例えば、磁気テープにデータを記録する記録素子、磁気テープのデータを再生する再生素子および磁気テープ上に記録されたサーボ信号を読み取るサーボ信号読み取り素子から構成される。1つの磁気ヘッド内に、記録素子、再生素子、サーボ信号読み取り素子は、例えば、それぞれ1個以上搭載されている。または、磁気テープの走行方向に応じた複数の磁気ヘッド内に別々にそれぞれの素子を有していてもよい。
 記録再生ヘッドユニット12は、制御装置11からの命令に応じて、磁気テープMTに対してデータを記録することが可能に構成されている。また、制御装置11からの命令に応じて、磁気テープMTに記録されたデータを再生することが可能に構成されている。
 制御装置11は、磁気テープMTの走行時にサーボバンドから読み取られるサーボ信号から磁気テープの走行位置を求め、狙いの走行位置(トラック位置)に記録素子および/または再生素子が位置するように、サーボトラッキングアクチュエータを制御する機構を有している。このトラック位置の制御は、例えば、フィードバック制御により行われる。制御装置11は、磁気テープMTの走行時に隣り合う2本のサーボバンドから読み取られるサーボ信号から、サーボバンド間隔を求める機構を有している。またサーボバンド間隔が狙いの値になるように、スピンドルモーター17Aおよびスピンドルモーター17Bのトルクおよび/またはガイドローラー15Aおよび15Bを制御して磁気テープの長手方向のテンションを制御する機構を有している。このテンションの制御は、例えば、フィードバック制御により行われる。また、制御装置11は、求めたサーボバンド間隔の情報を、制御装置11の内部の記憶部、カートリッジメモリ131、外部の接続機器等に保存することができる。
 以下に、本発明を実施例に基づき説明する。ただし、本発明は実施例に示す実施形態に限定されるものではない。以下に記載の「部」は、「質量部」を示す。また、以下に記載の工程および評価は、特記しない限り、温度23℃±1℃の環境において行った。以下に記載の「eq」は、当量( equivalent)であり、SI単位に換算不可の単位である。
[非磁性支持体]
 表1中、「PEN」はポリエチレンナフタレート支持体を示す。表1中のヤング率は、先に記載の方法によって測定された値である。
[突起形成剤]
 実施例または比較例の磁気テープの作製のために磁性層形成用組成物の調製に使用した突起形成剤は、以下の通りである。突起形成剤Aおよび突起形成剤Cは、粒子表面の表面平滑性が低い粒子である。突起形成剤Bの粒子形状は繭状の形状である。突起形成剤Dの粒子形状はいわゆる不定形である。突起形成剤Eの粒子形状は真球に近い形状である。
 突起形成剤A:キャボット社製ATLAS(シリカとポリマーとの複合粒子)、平均粒子サイズ100nm
 突起形成剤B:キャボット社製TGC6020N(シリカ粒子)、平均粒子サイズ140nm
 突起形成剤C:日揮触媒化成社製Cataloid(シリカ粒子の水分散ゾル、バックコート層形成用組成物調製のための突起形成剤として上記水分散ゾルを加熱して溶媒を除去して得られた乾固物を使用)、平均粒子サイズ120nm
 突起形成剤D:旭カーボン社製旭#52(カーボンブラック)、平均粒子サイズ60nm
 突起形成剤E:扶桑化学工業社製クォートロンPL-10L(シリカ粒子の水分散ゾル、バックコート層形成用組成物調製のための突起形成剤として上記水分散ゾルを加熱して溶媒を除去して得られた乾固物を使用)、平均粒子サイズ130nm
[強磁性粉末]
 表1中、「BaFe」は、六方晶バリウムフェライト粉末(保磁力Hc:196kA/m、平均粒子サイズ(平均板径)24nm)である。
 表1中、「SrFe1」は、以下の方法により作製された六方晶ストロンチウムフェライト粉末である。
 SrCOを1707g、HBOを687g、Feを1120g、Al(OH)を45g、BaCOを24g、CaCOを13g、およびNdを235g秤量し、ミキサーにて混合し原料混合物を得た。
 得られた原料混合物を、白金ルツボで溶融温度1390℃で溶融し、融液を撹拌しつつ白金ルツボの底に設けた出湯口を加熱し、融液を約6g/秒で棒状に出湯させた。出湯液を水冷双ローラーで圧延急冷して非晶質体を作製した。
 作製した非晶質体280gを電気炉に仕込み、昇温速度3.5℃/分にて635℃(結晶化温度)まで昇温し、同温度で5時間保持して六方晶ストロンチウムフェライト粒子を析出(結晶化)させた。
 次いで六方晶ストロンチウムフェライト粒子を含む上記で得られた結晶化物を乳鉢で粗粉砕し、ガラス瓶に粒径1mmのジルコニアビーズ1000gおよび濃度1%の酢酸水溶液800mlを加えてペイントシェーカーにて3時間分散処理を行った。その後、得られた分散液をビーズと分離させステンレスビーカーに入れた。分散液を液温100℃で3時間静置させてガラス成分の溶解処理を行った後、遠心分離器で沈殿させてデカンテーションを繰り返して洗浄し、炉内温度110℃の加熱炉内で6時間乾燥させて六方晶ストロンチウムフェライト粉末を得た。
 上記で得られた六方晶ストロンチウムフェライト粉末の平均粒子サイズは18nm、活性化体積は902nm、異方性定数Kuは2.2×10J/m、質量磁化σsは49A・m/kgであった。
 上記で得られた六方晶ストロンチウムフェライト粉末から試料粉末を12mg採取し、この試料粉末を先に例示した溶解条件によって部分溶解して得られたろ液の元素分析をICP分析装置によって行い、ネオジム原子の表層部含有率を求めた。
 別途、上記で得られた六方晶ストロンチウムフェライト粉末から試料粉末を12mg採取し、この試料粉末を先に例示した溶解条件によって全溶解して得られたろ液の元素分析をICP分析装置によって行い、ネオジム原子のバルク含有率を求めた。
 上記で得られた六方晶ストロンチウムフェライト粉末の鉄原子100原子%に対するネオジム原子の含有率(バルク含有率)は、2.9原子%であった。また、ネオジム原子の表層部含有率は8.0原子%であった。表層部含有率とバルク含有率との比率、「表層部含有率/バルク含有率」は2.8であり、ネオジム原子が粒子の表層に偏在していることが確認された。
 上記で得られた粉末が六方晶フェライトの結晶構造を示すことは、CuKα線を電圧45kVかつ強度40mAの条件で走査し、下記条件でX線回折パターンを測定すること(X線回折分析)により確認した。上記で得られた粉末は、マグネトプランバイト型(M型)の六方晶フェライトの結晶構造を示した。また、X線回折分析により検出された結晶相は、マグネトプランバイト型の単一相であった。
 PANalytical X’Pert Pro回折計、PIXcel検出器
 入射ビームおよび回折ビームのSollerスリット:0.017ラジアン
 分散スリットの固定角:1/4度
 マスク:10mm
 散乱防止スリット:1/4度
 測定モード:連続
 1段階あたりの測定時間:3秒
 測定速度:毎秒0.017度
 測定ステップ:0.05度
 表1中、「SrFe2」は、以下の方法により作製された六方晶ストロンチウムフェライト粉末である。
 SrCOを1725g、HBOを666g、Feを1332g、Al(OH)を52g、CaCOを34g、BaCOを141g秤量し、ミキサーにて混合し原料混合物を得た。
 得られた原料混合物を、白金ルツボで溶融温度1380℃で溶融し、融液を撹拌しつつ白金ルツボの底に設けた出湯口を加熱し、融液を約6g/秒で棒状に出湯させた。出湯液を水冷双ロールで圧延急冷して非晶質体を作製した。
 得られた非晶質体280gを電気炉に仕込み、645℃(結晶化温度)まで昇温し、同温度で5時間保持し六方晶ストロンチウムフェライト粒子を析出(結晶化)させた。
 次いで六方晶ストロンチウムフェライト粒子を含む上記で得られた結晶化物を乳鉢で粗粉砕し、ガラス瓶に粒径1mmのジルコニアビーズ1000gおよび濃度1%の酢酸水溶液800mlを加えてペイントシェーカーにて3時間分散処理を行った。その後、得られた分散液をビーズと分離させステンレスビーカーに入れた。分散液を液温100℃で3時間静置させてガラス成分の溶解処理を行った後、遠心分離器で沈殿させてデカンテーションを繰り返して洗浄し、炉内温度110℃の加熱炉内で6時間乾燥させて六方晶ストロンチウムフェライト粉末を得た。
 得られた六方晶ストロンチウムフェライト粉末の平均粒子サイズは19nm、活性化体積は1102nm、異方性定数Kuは2.0×10J/m、質量磁化σsは50A・m/kgであった。
 表1中、「ε-酸化鉄」は、以下の方法により作製されたε-酸化鉄粉末である。
 純水90gに、硝酸鉄(III)9水和物8.3g、硝酸ガリウム(III)8水和物1.3g、硝酸コバルト(II)6水和物190mg、硫酸チタン(IV)150mg、およびポリビニルピロリドン(PVP)1.5gを溶解させたものを、マグネチックスターラーを用いて撹拌しながら、大気雰囲気中、雰囲気温度25℃の条件下で、濃度25%のアンモニア水溶液4.0gを添加し、雰囲気温度25℃の温度条件のまま2時間撹拌した。得られた溶液に、クエン酸1gを純水9gに溶解させて得たクエン酸溶液を加え、1時間撹拌した。撹拌後に沈殿した粉末を遠心分離によって採集し、純水で洗浄し、炉内温度80℃の加熱炉内で乾燥させた。
 乾燥させた粉末に純水800gを加えて再度粉末を水に分散させて分散液を得た。得られた分散液を液温50℃に昇温し、撹拌しながら濃度25%アンモニア水溶液を40g滴下した。50℃の温度を保ったまま1時間撹拌した後、テトラエトキシシラン(TEOS)14mLを滴下し、24時間撹拌した。得られた反応溶液に、硫酸アンモニウム50gを加え、沈殿した粉末を遠心分離によって採集し、純水で洗浄し、炉内温度80℃の加熱炉内で24時間乾燥させ、強磁性粉末の前駆体を得た。   
 得られた強磁性粉末の前駆体を、大気雰囲気下、炉内温度1000℃の加熱炉内に装填し、4時間の加熱処理を施した。
 加熱処理した強磁性粉末の前駆体を、4mol/Lの水酸化ナトリウム(NaOH)水溶液中に投入し、液温を70℃に維持して24時間撹拌することにより、加熱処理した強磁性粉末の前駆体から不純物であるケイ酸化合物を除去した。
 その後、遠心分離処理により、ケイ酸化合物を除去した強磁性粉末を採集し、純水で洗浄を行い、強磁性粉末を得た。
 得られた強磁性粉末の組成を高周波誘導結合プラズマ発光分光分析(ICP-OES:Inductively Coupled Plasma-Optical Emission Spectrometry)により確認したところ、Ga、CoおよびTi置換型ε-酸化鉄(ε-Ga0.28Co0.05Ti0.05Fe1.62)であった。また、先にSrFe1について記載した条件と同様の条件でX線回折分析を行い、X線回折パターンのピークから、得られた強磁性粉末が、α相およびγ相の結晶構造を含まない、ε相の単相の結晶構造(ε-酸化鉄の結晶構造)を有することを確認した。
 得られたε-酸化鉄粉末の平均粒子サイズは12nm、活性化体積は746nm、異方性定数Kuは1.2×10J/m、質量磁化σsは16A・m/kgであった。
 上記の六方晶ストロンチウムフェライト粉末およびε-酸化鉄粉末の活性化体積および異方性定数Kuは、各強磁性粉末について、振動試料型磁力計(東英工業社製)を用いて、先に記載の方法により求められた値である。
 また、質量磁化σsは、振動試料型磁力計(東英工業社製)を用いて磁場強度15kOeで測定された値である。
[例A1]
<磁性層形成用組成物>
(磁性液)
 強磁性粉末(表1参照):100.0部
 オレイン酸:2.0部
 塩化ビニル共重合体(カネカ社製MR-104):10.0部
 SO3Na基含有ポリウレタン樹脂:4.0部
 (重量平均分子量70000、SO3Na基:0.07meq/g)
 添加剤A:10.0部
 メチルエチルケトン:150.0部
 シクロヘキサノン:150.0部
(研磨剤液)
 α-アルミナ(平均粒子サイズ:110nm):6.0部
 塩化ビニル共重合体(カネカ社製MR110):0.7部
 シクロヘキサノン:20.0部
(突起形成剤液)
 突起形成剤(表1参照):表1参照
 ポリエチレンイミン(日本触媒社製、数平均分子量300):表1参照
 ステアリン酸:表1参照
 メチルエチルケトン:9.0部
 シクロヘキサノン:6.0部
(その他の成分)
 ポリエチレンイミン(日本触媒社製、数平均分子量300):表1参照
 ステアリン酸:表1参照
 ステアリン酸アミド:0.3部
 ステアリン酸ブチル:6.0部
 メチルエチルケトン:110.0部
 シクロヘキサノン:110.0部
 ポリイソシアネート(東ソー社製コロネート(登録商標)L):3.0部
 上記の添加剤Aは、特開2016-051493号公報の段落0115~0123に記載の方法により合成されたポリマーである。
<非磁性層形成用組成物>
 非磁性無機粉末(α-酸化鉄):80.0部
 (平均粒子サイズ:0.15μm、平均針状比:7、BET(Brunauer-Emmett-Teller)比表面積:52m2/g)
 カーボンブラック(平均粒子サイズ:20nm):20.0部
 電子線硬化型塩化ビニル共重合体:13.0部
 電子線硬化型ポリウレタン樹脂:6.0部
 フェニルホスホン酸:3.0部
 シクロヘキサノン:140.0部
 メチルエチルケトン:170.0部
 ステアリン酸ブチル:2.0部
 ステアリン酸:1.0部
<バックコート層形成用組成物>
 非磁性無機粉末(α-酸化鉄):80.0部
   (平均粒子サイズ:0.15μm、平均針状比:7、BET比表面積:52m2/g)
 カーボンブラック(平均粒子サイズ:20nm):20.0部
 カーボンブラック(平均粒子サイズ:100nm):3.0部
 塩化ビニル共重合体:13.0部
 スルホン酸基含有ポリウレタン樹脂:6.0部
 フェニルホスホン酸:3.0部
 シクロヘキサノン:140.0部
 メチルエチルケトン:170.0部
 ステアリン酸:3.0部
 ポリイソシアネート(東ソー社製コロネート(登録商標)L):5.0部
 メチルエチルケトン:400.0部
<各層形成用組成物の調製>
 磁性層形成用組成物は、以下の方法によって調製した。
 上記磁性液の成分をオープンニーダにより混練および希釈処理した後、横型ビーズミル分散機により、粒径0.5mmのジルコニア(ZrO2)ビーズ(以下、「Zrビーズ」と記載する)を用い、ビーズ充填率80体積%およびローター先端周速10m/秒で、1パスあたりの滞留時間を2分間とし、12パスの分散処理を行った。
 研磨剤液は、上記研磨剤液の成分を混合した後、粒径1mmのZrビーズとともに縦型サンドミル分散機に入れ、ビーズ体積/(研磨剤液体積+ビーズ体積)が60%になるように調整し、180分間サンドミル分散処理を行い、処理後の液を取り出し、フロー式の超音波分散ろ過装置を用いて、超音波分散ろ過処理を施した。
 突起形成剤液は、上記突起形成剤液の成分を混合した後に、ホーン式超音波分散機により200ccあたり500ワットの超音波出力で60分間超音波処理(分散処理)して得られた分散液を孔径0.5μmのフィルタでろ過して調製した。
 磁性液、研磨剤液、突起形成剤液および上記のその他の成分を、ディゾルバー撹拌機に導入し、周速10m/秒で30分間撹拌した後、フロー式超音波分散機により流量7.5kg/分で3パス処理した後に、孔径1μmのフィルタでろ過して磁性層形成用組成物を調製した。
 非磁性層形成用組成物は以下の方法によって調製した。
 潤滑剤(ステアリン酸ブチルおよびステアリン酸)を除く上記成分をオープンニーダにより混練および希釈処理して、その後、横型ビーズミル分散機により分散処理を実施した。その後、潤滑剤(ステアリン酸ブチルおよびステアリン酸)を添加して、ディゾルバー撹拌機にて撹拌して混合処理を施して非磁性層形成用組成物を調製した。
 バックコート層形成用組成物は以下の方法によって調製した。
 潤滑剤(ステアリン酸)、ポリイソシアネートおよびメチルエチルケトン(400.0部)を除く上記成分をオープンニーダにより混練および希釈処理して、その後、横型ビーズミル分散機により分散処理を実施した。その後、潤滑剤(ステアリン酸)、ポリイソシアネートおよびメチルエチルケトン(400.0部)を添加して、ディゾルバー撹拌機にて撹拌して混合処理を施し、バックコート層形成用組成物を調製した。
<磁気テープおよび磁気テープカートリッジの作製>
 表1に記載の厚み4.2μmの二軸延伸された支持体上に、乾燥後の厚みが0.6μmになるように非磁性層形成用組成物を塗布し乾燥させた後、125kVの加速電圧で40kGyのエネルギーとなるように電子線を照射して非磁性層を形成した。
 非磁性層上に、乾燥後の厚みが0.1μmになるように磁性層形成用組成物を塗布して塗布層を形成した。塗布層が湿潤状態にあるうちに磁場強度0.3Tの磁場を塗布層の表面に対し垂直方向に印加して垂直配向処理を行った後、乾燥させて磁性層を形成した
 その後、バックコート層形成用組成物を支持体の非磁性層と磁性層を形成した表面とは反対側の表面に乾燥後の厚みが0.3μmになるように塗布し乾燥させてバックコート層を形成した。
 その後、金属ロールのみから構成される7段のカレンダロールを用いて、カレンダ速度80m/分、線圧294kN/m、およびカレンダ温度(カレンダロールの表面温度)80℃でカレンダ処理を行った。その後、雰囲気温度70℃の環境で36時間加熱処理を行った。加熱処理後、1/2インチ幅にスリットし、スリット品の送り出し、巻取り装置を持った装置に不織布とカミソリブレードが磁性層表面に押し当たるように取り付けたテープクリーニング装置で磁性層の表面のクリーニングを行い、磁気テープを得た。
 得られた磁気テープの磁性層に市販のサーボライターによってサーボ信号を記録することにより、LTO(Linear Tape-Open)Ultriumフォーマットにしたがう配置でデータバンド、サーボバンド、およびガイドバンドを有し、かつサーボバンド上にLTOUltriumフォーマットにしたがう配置および形状のサーボパターン(タイミングベースサーボパターン)を有する磁気テープを得た。こうして形成されたサーボパターンは、JIS(Japanese Industrial Standards) X6175:2006およびStandard ECMA-319(June 2001)の記載にしたがうサーボパターンである。サーボバンドの合計本数は5、データバンドの合計本数は4である。
 こうしてサーボ信号が記録された磁気テープ(長さ960m)を、磁気テープカートリッジ(LTO Ultrium8データカートリッジ)のリールに巻取った。
 こうして、磁気テープがリールに巻装された例A1の磁気テープカートリッジを作製した。
 磁気テープの磁性層にポリエチレンイミンとステアリン酸により形成された、式1で表されるアルキルエステルアニオンのアンモニウム塩構造を含む化合物が含まれることは、以下の方法により確認できる。
 磁気テープからサンプルを切り出し、磁性層表面(測定領域:300μm×700μm)においてESCA装置を用いてX線光電子分光分析を行う。詳しくは、下記測定条件でESCA装置によりワイドスキャン測定を行う。測定結果では、エステルアニオンの結合エネルギーの位置およびアンモニウムカチオンの結合エネルギーの位置にピークが確認される。
   装置:島津製作所製AXIS-ULTRA
   励起X線源:単色化Al-Kα線
   スキャン範囲:0~1200eV
   パスエネルギー:160eV
   エネルギー分解能:1eV/step
   取り込み時間:100ms/step
   積算回数:5
 また、磁気テープから長さ3cmのサンプル片を切り出し、磁性層表面のATR-FT-IR(Attenuated total reflection-fourier transform-infrared spectrometer)測定(反射法)を行い、測定結果において、COOの吸収に対応する波数(1540cm-1または1430cm-1)、およびアンモニウムカチオンの吸収に対応する波数(2400cm-1)に吸収が確認される。
[例A2~A24、例B1~B13]
 表1に示す項目を表1に示すように変更した点以外、例A1について記載した方法により磁気テープおよび磁気テープカートリッジを得た。
 上記の例について、それぞれ磁気テープカートリッジを3つ作製し、1つは下記の走行安定性の評価に使用し、1つは下記の記録再生性能の評価に使用し、他の1つは下記の磁気テープの評価に使用した。
[走行安定性の評価]
 温度32℃相対湿度80%の環境において、以下の方法によって走行安定性の評価を行った。
 各磁気テープカートリッジを用いて、データの記録および再生を、図3に示した構成の磁気テープ装置を用いて行った。記録再生ヘッドユニットに搭載された記録再生ヘッドは、再生素子(再生素子幅:0.8μm)および記録素子を32チャンネル以上有し、その両側にサーボ信号読み取り素子を有する。
 以下の方法により、データの記録および再生を行い、再生中の走行安定性を評価した。
 磁気テープ装置に磁気テープカートリッジをセットし、磁気テープをローディングする。次にサーボトラッキングを行いながら記録再生ヘッドユニットにより磁気テープに特定のデータパターンを有する疑似ランダムデータの記録を行う。その際のテープ長手方向にかけるテンションは一定値とする。データの記録と同時に、テープ全長のサーボバンド間隔の値を長手位置の1m毎に測定し、カートリッジメモリに記録する。
 次に、サーボトラッキングを行いながら記録再生ヘッドユニットにより磁気テープに記録されたデータの再生を行う。その際、再生と同時にサーボバンド間隔の値を測定し、カートリッジメモリに記録された情報に基づき、同じ長手位置における記録時のサーボバンド間隔との差分の絶対値が0に近づくように、テープ長手方向にかけるテンションを制御する。再生時は、サーボバンド間隔の測定とそれに基づいたテンション制御がリアルタイムに連続して行われる。かかる再生時、磁気テープ装置の制御装置によって、磁気テープの長手方向にかかるテンションは変化する。
 その後、上記磁気テープ装置において、磁気テープのデータ記録領域を記録再生ヘッドに対して3000回往復摺動させた後、上記往復摺動後の磁気テープを収容した磁気テープカートリッジを、温度32℃相対湿度80%の環境に24時間保存する。
 上記保存後、1時間以内に、温度32℃相対湿度80%の環境において、磁気テープに記録されたデータの再生を、上記の保存前の再生を行った磁気テープ装置において、上記の保存前の再生と同様に行う。この保存後の再生中にサーボ信号読み取り素子により得られたサーボ信号に基づく幅方向の読み取り位置PES(Position Error Signal)の標準偏差(以下、「σPES」と呼ぶ。)を指標として、走行安定性を評価する。
 PESは、以下の方法によって求められる。
 PESを求めるためには、サーボパターンの寸法が必要である。サーボパターンの寸法の規格は、LTOの世代によって異なる。そこでまず、磁気力顕微鏡等を用いて、AバーストとCバーストの対応する4ストライプ間の平均距離AC、およびサーボパターンのアジマス角αを計測する。
 1 LPOSワードの長さにわたるAバーストとBバーストに対応する5ストライプ間の平均時間をaと定義する。1 LPOSワードの長さにわたるAバーストとCバーストの対応する4ストライプの平均時間をbと定義する。このとき、AC×(1/2-a/b)/(2×tan(α))で定義される値が、1LPOSワードの長さにわたってサーボ信号読み取り素子により得られたサーボ信号に基づく幅方向の読み取り位置PESである。磁気テープについて、磁気テープカートリッジのリールに巻取られた側の末端を内側末端、その反対側の末端を外側末端と呼び、外側末端を0mとして、30m~200mの長さに亘るテープ長手方向の領域について、上記方法で求めたPESの標準偏差(σPES)を算出する。σPESが70nm未満であれば、走行安定性に優れると判断できる。
[記録再生性能の評価]
 記録再生性能の評価を、図3に示した構成の磁気テープ装置を用いて行った。記録再生ヘッドユニット12に搭載された記録再生ヘッドは、再生素子(再生素子幅:0.8μm)および記録素子を32チャンネル以上有し、その両側にサーボ信号読み取り素子を有する。
 各磁気テープカートリッジを、雰囲気温度23℃相対湿度50%の環境に5日間以上置いた。こうして環境に馴染ませた後、引き続き同環境において、以下のようにデータの記録を行った。
 磁気テープ装置に磁気テープカートリッジをセットし、磁気テープをローディングする。次にサーボトラッキングを行いながら記録再生ヘッドユニットにより磁気テープに特定のデータパターンを有する疑似ランダムデータの記録を行う。その際にテープ長手方向にかけるテンションは0.7Nとする。データの記録では、隣接トラック間の(PES1+PES2)/2の値の差が1.16μmとなるように3往復以上の記録を行う。データの記録と同時に、テープ全長のサーボバンド間隔の値を長手位置の1m毎に測定し、カートリッジメモリに記録する。
 上記のようにデータの記録を行った磁気テープカートリッジを、雰囲気温度60℃相対湿度20%の保存環境に72時間置いた。
 その後、磁気テープカートリッジを、雰囲気温度23℃相対湿度50%の環境に5日間以上置いた。こうして環境に馴染ませた後、引き続き同環境において、以下のようにデータの再生を行った。
 磁気テープ装置に磁気テープカートリッジをセットし、磁気テープをローディングする。次にサーボトラッキングを行いながら記録再生ヘッドユニットにより磁気テープに記録されたデータの再生を行う。その際、再生と同時にサーボバンド間隔の値を測定し、カートリッジメモリに記録された情報に基づき、同じ長手位置における記録時のサーボバンド間隔との差分の絶対値が0に近づくように、テープ長手方向にかけるテンションを調整する。再生時は、サーボバンド間隔の測定とそれに基づいたテンション調整がリアルタイムに連続して行われる。各例において、上記テンション調整のために制御装置11が使用したテンションの値は0.2~1.2Nの範囲であった。
 上記再生におけるチャンネル数は32チャンネルであり、再生時、32チャンネルすべてのデータが正しく読み取られた場合に記録再生性能「3」と評価し、31~28チャンネルのデータが正しく読み取られた場合に記録再生性能「2」と評価し、それ以外の場合を記録再生性能「1」と評価した。
[磁気テープの評価]
(1)摩擦係数μ1、μ2、保存前後の摩擦係数変化率(μ1/μ2)
 各磁気テープカートリッジから磁気テープを取り出し、温度32℃相対湿度80%の環境において、先に記載した方法によって、保存前の摩擦係数μ1および保存後の摩擦係数μ2を求めた。LTO8ヘッドとしては、市販のLTO8ヘッド(IBM社製)を使用した。求められたμ1およびμ2から、保存前後の摩擦係数変化率(μ1/μ2)を算出した。
(2)テープ厚み
 各磁気テープカートリッジから取りだした磁気テープの任意の部分からテープサンプル(長さ5cm)を10枚切り出し、これらテープサンプルを重ねて厚みを測定した。厚みの測定は、MARH社製Millimar 1240コンパクトアンプとMillimar 1301誘導プローブのデジタル厚み計を用いて行った。測定された厚みを10分の1して得られた値(テープサンプル1枚当たりの厚み)を、テープ厚みとした。各磁気テープについて、テープ厚みは、いずれも5.2μmであった。
 以上の結果を、表1(表1-1~表1-2)に示す。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 表1に示す結果から、以下の点を確認することができる。
 例A1~A24および例B11~B13と、例B1~B10と、の対比から、温度32℃相対湿度80%の環境において測定される保存前後の摩擦係数変化率(μ1/μ2)が0.7以上である例A1~A24および例B11~B13磁気テープが、磁気テープの長手方向にかかるテンションを調整することによって磁気テープの幅方向の寸法を制御する磁気テープ装置において、繰り返し走行後、短期間で優れた走行安定性を示すことができる磁気テープであることが確認できる。この結果には、例A1~A24および例B11~B13の磁気テープでは、繰り返し走行によって上昇した摩擦係数を短期間で上昇前の値に近づけることができたことが寄与していると本発明者は推察している。
 例A1~A24と例B1~B13との対比から、非磁性支持体として幅方向のヤング率が10000MPa以上のポリエチレンナフタレート支持体を含む磁気テープが、磁気テープの長手方向にかかるテンションを調整することによって磁気テープの幅方向の寸法を制御する磁気テープ装置において好適に使用できる磁気テープであることが確認できる。
 磁気テープ作製時に垂直配向処理を行わなかった点以外、例A1について記載した方法で磁気テープカートリッジを作製した。
 上記磁気テープカートリッジから取り出した磁気テープからサンプル片を切り出した。このサンプル片について、振動試料型磁力計として玉川製作所製TM-TRVSM5050-SMSL型を用いて、先に記載した方法によって垂直方向角型比を求めたところ、0.55であった。
 例A1の磁気テープカートリッジからも磁気テープを取り出し、この磁気テープから切り出したサンプル片について同様に垂直方向角型比を求めたところ、0.60であった。
 上記2つの磁気テープカートリッジから取り出した磁気テープを、それぞれ1/2インチリールテスターに取り付け、以下の方法によって電磁変換特性(SNR:Signal-to-Noise Ratio)を評価した。その結果、垂直配向処理が施されて作製された例A1の磁気テープは、垂直配向処理なしで作製された上記磁気テープと比べて、2dB高いSNRの値が得られた。
 温度23℃相対湿度50%の環境において、磁気テープの長手方向に0.7Nのテンションをかけて記録および再生を10パス行った。磁気テープと磁気ヘッドとの相対速度は6m/秒とし、記録は、記録ヘッドとしてMIG(Metal-in-gap)ヘッド(ギャップ長0.15μm、トラック幅1.0μm)を使用し、記録電流を各磁気テープの最適記録電流に設定して行った。再生は、再生ヘッドとしてGMR(Giant-magnetoresistive)ヘッド(素子厚み15nm、シールド間隔0.1μm、再生素子幅0.8μm)を使用して行った。線記録密度300kfciの信号を記録し、再生信号をシバソク社製のスペクトラムアナライザーで測定した。単位kfciとは、線記録密度の単位(SI単位系に換算不可)である。信号としては、磁気テープ走行開始後に信号が十分に安定した部分を使用した。
 本発明の一態様は、各種データストレージの技術分野において有用である。

Claims (12)

  1. 非磁性支持体と、強磁性粉末を含む磁性層と、を有する磁気テープであって、
    前記非磁性支持体は、幅方向のヤング率が10000MPa以上のポリエチレンナフタレート支持体であり、かつ
    前記磁性層の表面について測定される対LTO8ヘッド摩擦係数の保存前後の変化率、μ1/μ2、は0.7以上であり、
    前記μ1は、前記磁気テープを、温度32℃相対湿度80%の環境において、磁気テープの長手方向に2.0NのテンションをかけてLTO8ヘッドに対して3000回往復摺動させた際の10回目の往復摺動時の往路における対LTO8ヘッド摩擦係数であり、
    前記μ2は、前記3000回往復摺動後の磁気テープを、温度32℃相対湿度80%の環境に24時間保存した後、温度32℃相対湿度80%の環境において、磁気テープの長手方向に2.0NのテンションをかけてLTO8ヘッドに対して10回往復摺動させた際の10回目の往復摺動時の往路における対LTO8ヘッド摩擦係数である、磁気テープ。
  2. 前記μ1/μ2は、0.7以上1.0以下である、請求項1に記載の磁気テープ。
  3. 前記磁性層は、無機酸化物系粒子を更に含む、請求項1に記載の磁気テープ。
  4. 前記磁性層は、カーボンブラックを更に含む、請求項1に記載の磁気テープ。
  5. 前記非磁性支持体と前記磁性層との間に、非磁性粉末を含む非磁性層を更に有する、請求項1に記載の磁気テープ。
  6. 前記非磁性支持体の前記磁性層を有する表面側とは反対の表面側に、非磁性粉末を含むバックコート層を更に有する、請求項1に記載の磁気テープ。
  7. テープ厚みが5.2μm以下である、請求項1に記載の磁気テープ。
  8. 前記ポリエチレンナフタレート支持体の幅方向のヤング率は、10000MPa以上20000MPa以下である、請求項1に記載の磁気テープ。
  9. 垂直方向角型比が0.60以上である、請求項1に記載の磁気テープ。
  10. 請求項1~9のいずれか1項に記載の磁気テープを含む磁気テープカートリッジ。
  11. 請求項1~9のいずれか1項に記載の磁気テープを含む磁気テープ装置。
  12. 磁気テープ装置内を走行する磁気テープの長手方向にかかるテンションを調整可能なテンション調整機構を有する、請求項11に記載の磁気テープ装置。
     
PCT/JP2022/043992 2021-12-02 2022-11-29 磁気テープ、磁気テープカートリッジおよび磁気テープ装置 WO2023100878A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021195831 2021-12-02
JP2021-195831 2021-12-02

Publications (1)

Publication Number Publication Date
WO2023100878A1 true WO2023100878A1 (ja) 2023-06-08

Family

ID=86612388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/043992 WO2023100878A1 (ja) 2021-12-02 2022-11-29 磁気テープ、磁気テープカートリッジおよび磁気テープ装置

Country Status (1)

Country Link
WO (1) WO2023100878A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001093138A (ja) * 1999-09-21 2001-04-06 Sony Corp 磁気記録媒体
JP2002367151A (ja) * 2001-06-08 2002-12-20 Sony Corp 磁気記録媒体
JP2004288332A (ja) * 2003-03-24 2004-10-14 Hitachi Maxell Ltd 磁気記録媒体
JP2022121901A (ja) * 2021-02-09 2022-08-22 富士フイルム株式会社 磁気テープ、磁気テープカートリッジおよび磁気テープ装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001093138A (ja) * 1999-09-21 2001-04-06 Sony Corp 磁気記録媒体
JP2002367151A (ja) * 2001-06-08 2002-12-20 Sony Corp 磁気記録媒体
JP2004288332A (ja) * 2003-03-24 2004-10-14 Hitachi Maxell Ltd 磁気記録媒体
JP2022121901A (ja) * 2021-02-09 2022-08-22 富士フイルム株式会社 磁気テープ、磁気テープカートリッジおよび磁気テープ装置

Similar Documents

Publication Publication Date Title
US11869555B2 (en) Magnetic tape having characterized magnetic layer surface, magnetic tape cartridge, and magnetic tape device
US20240177734A1 (en) Magnetic tape having characterized magnetic layer surface, magnetic tape cartridge, and magnetic tape device
US11887637B2 (en) Magnetic tape having characterized magnetic layer surface, magnetic tape cartridge, and magnetic tape device
US20240105229A1 (en) Magnetic tape, magnetic tape cartridge, and magnetic tape device
JP7425909B2 (ja) 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
JP2023050108A (ja) 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
US20220270644A1 (en) Magnetic tape, magnetic tape cartridge, and magnetic tape apparatus
US20220254373A1 (en) Magnetic tape, magnetic tape cartridge, and magnetic tape apparatus
JP2023050114A (ja) 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
US20220020392A1 (en) Magnetic tape, magnetic tape cartridge, and magnetic tape apparatus
JP7266012B2 (ja) 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
JP7321124B2 (ja) 磁気テープ装置、磁気テープおよび磁気テープカートリッジ
JP2022100077A (ja) 磁気テープ装置、磁気テープおよび磁気テープカートリッジ
WO2023100878A1 (ja) 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
WO2023100879A1 (ja) 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
WO2023008292A1 (ja) 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
WO2023100883A1 (ja) 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
JP7351811B2 (ja) 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
WO2023100884A1 (ja) 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
WO2023008293A1 (ja) 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
JP7299205B2 (ja) 磁気記録媒体および磁気記録再生装置
WO2023100871A1 (ja) 磁気テープ収容体
WO2023100870A1 (ja) 磁気テープ収容体
WO2022138310A1 (ja) 磁気テープ装置、磁気テープおよび磁気テープカートリッジ
WO2023100877A1 (ja) 磁気テープカートリッジおよび磁気記録再生装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22901310

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023565010

Country of ref document: JP

Kind code of ref document: A