JP7351811B2 - 磁気テープ、磁気テープカートリッジおよび磁気テープ装置 - Google Patents

磁気テープ、磁気テープカートリッジおよび磁気テープ装置 Download PDF

Info

Publication number
JP7351811B2
JP7351811B2 JP2020123167A JP2020123167A JP7351811B2 JP 7351811 B2 JP7351811 B2 JP 7351811B2 JP 2020123167 A JP2020123167 A JP 2020123167A JP 2020123167 A JP2020123167 A JP 2020123167A JP 7351811 B2 JP7351811 B2 JP 7351811B2
Authority
JP
Japan
Prior art keywords
magnetic tape
magnetic
powder
layer
servo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020123167A
Other languages
English (en)
Other versions
JP2022019371A (ja
Inventor
拓都 黒川
想 松山
成人 笠田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2020123167A priority Critical patent/JP7351811B2/ja
Priority to US17/376,175 priority patent/US20220020393A1/en
Publication of JP2022019371A publication Critical patent/JP2022019371A/ja
Application granted granted Critical
Publication of JP7351811B2 publication Critical patent/JP7351811B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/706Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material
    • G11B5/70626Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material containing non-metallic substances
    • G11B5/70642Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material containing non-metallic substances iron oxides
    • G11B5/70678Ferrites
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/58Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B5/584Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for track following on tapes
    • G11B5/588Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for track following on tapes by controlling the position of the rotating heads
    • G11B5/592Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for track following on tapes by controlling the position of the rotating heads using bimorph elements supporting the heads
    • G11B5/5921Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for track following on tapes by controlling the position of the rotating heads using bimorph elements supporting the heads using auxiliary signals, e.g. pilot signals
    • G11B5/5926Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for track following on tapes by controlling the position of the rotating heads using bimorph elements supporting the heads using auxiliary signals, e.g. pilot signals recorded in separate tracks, e.g. servo tracks
    • G11B5/5928Longitudinal tracks
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/714Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the dimension of the magnetic particles
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/735Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer characterised by the back layer
    • G11B5/7356Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer characterised by the back layer comprising non-magnetic particles in the back layer, e.g. particles of TiO2, ZnO or SiO2
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/739Magnetic recording media substrates
    • G11B5/73923Organic polymer substrates
    • G11B5/73927Polyester substrates, e.g. polyethylene terephthalate
    • G11B5/73929Polyester substrates, e.g. polyethylene terephthalate comprising naphthalene ring compounds, e.g. polyethylene naphthalate substrates

Landscapes

  • Magnetic Record Carriers (AREA)
  • Magnetic Heads (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Description

本発明は、磁気テープ、磁気テープカートリッジおよび磁気テープ装置に関する。
磁気記録媒体にはテープ状のものとディスク状のものがあり、データバックアップ、アーカイブ等のデータストレージ用途には、テープ状の磁気記録媒体、即ち磁気テープが主に用いられている(例えば特許文献1、2参照)。
特許第6590104号明細書 特許第6635216号明細書
磁気テープへのデータの記録は、通常、磁気テープ装置(一般に「ドライブ」と呼ばれる。)内で磁気テープを走行させ、磁気ヘッドを磁気テープのデータバンドに追従させてデータバンド上にデータを記録することにより行われる。これにより、データバンドにデータトラックが形成される。また、記録されたデータの再生時には、磁気テープ装置内で磁気テープを走行させ、磁気ヘッドを磁気テープのデータバンドに追従させてデータバンド上に記録されたデータの読み取りを行う。
以上のような記録および/または再生において磁気ヘッドが磁気テープのデータバンドに追従する精度を高めるために、サーボ信号を利用してヘッドトラッキングを行うシステム(以下、「サーボシステム」と記載する。)が実用化されている。
更に、サーボ信号を利用して走行中の磁気テープの幅方向の寸法情報を取得し、取得された寸法情報に応じて磁気テープの長手方向にかかるテンションを調整することによって、磁気テープの幅方向の寸法を制御することも行われている(一例として、特許文献1の段落0170、特許文献2の段落0117等参照)。上記のテンション調整は、記録または再生時、磁気テープの幅変形によってデータを記録または再生するための磁気ヘッドが狙いのトラック位置からずれてしまい、記録済データの上書き、再生不良等の現象が発生してしまうことを抑制することに寄与し得ると考えられる。磁気記録については、優れた電磁変換特性が得られることが求められるため、上記のようなテンション調整を行いながら磁気テープを磁気テープ装置内で走行させてデータの記録および/または再生を行う際、電磁変換特性の低下が少ないことは望ましい。
本発明の一態様は、磁気テープの長手方向にかかるテンションを調整することによって磁気テープの幅方向の寸法を制御して記録および/または再生を行う際に電磁変換特性の低下が少ない磁気テープを提供することを目的とする。
本発明の一態様は、
非磁性支持体と、強磁性粉末を含む磁性層と、を有する磁気テープであって、
温度23℃相対湿度50%の環境において、
磁気テープの長手方向に0.2Nのテンションをかけて測定される磁性層表面のAlFeSil摩耗値0.2Nが20~50μmの範囲であり、かつ
磁気テープの長手方向に1.5Nのテンションをかけて測定される磁性層表面のAlFeSil摩耗値1.5Nが20~50μmの範囲である、磁気テープ、
に関する。
一形態では、上記AlFeSil摩耗値0.2Nは、20~45μmの範囲であることができる。
一形態では、上記AlFeSil摩耗値1.5Nは、30~50μmの範囲であることができる。
一形態では、上記磁性層は、1種以上の非磁性粉末を含むことができる。
一形態では、非磁性粉末は、アルミナ粉末を含むことができる。
一形態では、上記磁気テープは、上記非磁性支持体と上記磁性層との間に、非磁性粉末を含む非磁性層を有することができる。
一形態では、上記磁気テープは、上記非磁性支持体の上記磁性層を有する表面側とは反対の表面側に、非磁性粉末を含むバックコート層を有することができる。
一形態では、上記磁気テープのテープ厚みは、5.2μm以下であることができる。
本発明の一態様は、上記磁気テープを含む磁気テープカートリッジに関する。
本発明の一態様は、上記磁気テープを含む磁気テープ装置に関する。
一形態では、上記磁気テープ装置は、磁気テープ装置内を走行する磁気テープの長手方向にかかるテンションを調整可能なテンション調整機構を有することができる。
一形態では、上記磁気テープ装置は、再生素子幅が0.8μm以下の磁気ヘッドを有することができる。
一形態では、上記磁気テープは、磁気テープ装置内を走行する磁気テープの長手方向にかかるテンションを調整可能なテンション調整機構と、再生素子幅が0.8μm以下の磁気ヘッドと、を有することができる。
本発明の一態様によれば、磁気テープの長手方向にかかるテンションを調整することによって磁気テープの幅方向の寸法を制御して記録および/または再生を行う際、電磁変換特性の低下が少ない磁気テープを提供することができる。また、本発明の一態様によれば、上記磁気テープを含む磁気テープカートリッジおよび磁気テープ装置を提供することができる。
データバンドおよびサーボバンドの配置例を示す。 LTO(Linear Tape-Open) Ultriumフォーマットテープのサーボパターン配置例を示す。 磁気テープ装置の一例を示す概略図である。
[磁気テープ]
本発明の一態様は、非磁性支持体と強磁性粉末を含む磁性層とを有する磁気テープに関する。温度23℃相対湿度50%の環境において、上記磁気テープの長手方向に0.2Nのテンションをかけて測定される磁性層表面のAlFeSil摩耗値0.2Nは20~50μmの範囲であり、かつ上記磁気テープの長手方向に1.5Nのテンションをかけて測定される磁性層表面のAlFeSil摩耗値1.5Nは20~50μmの範囲である。本発明および本明細書において、「磁性層(の)表面」とは、磁気テープの磁性層側表面と同義である。
磁気テープの長手方向にかかるテンションを調整することによって磁気テープの幅方向の寸法を制御する磁気テープ装置では、より大きなテンションを磁気テープの長手方向にかけるほど、磁気テープの幅方向の寸法をより大きく収縮させることができ(即ち、より幅狭にすることができ)、そのテンションを小さくするほど、その収縮の程度を小さくすることができる。こうして磁気テープの長手方向にかけるテンションを調整することによって、磁気テープの幅方向の寸法を制御することができる。
一方、磁気テープへのデータの記録および記録されたデータの再生は、通常、磁気テープの磁性層表面と磁気ヘッドとを接触させて摺動させることによって行われる。上記のようなテンション調整が行われる場合、磁気テープの長手方向に加わるテンションが変化し得ることが、電磁変換特性低下の要因になり得ると本発明者は考えた。詳しくは、磁気テープの長手方向に加わるテンションの変化によって磁気テープの磁性層表面と磁気ヘッドとの接触状態が大きく変化してしまうと、磁性層表面との接触に起因する磁気ヘッドの摩耗の程度が記録および/または再生中に大きく異なってしまい、これによって電磁変換特性が低下してしまうと、本発明者は推察した。
上記推察に基づき本発明者は鋭意検討を重ねた。その結果、磁気テープの摩耗特性に関して、温度23℃相対湿度50%の環境において長手方向に異なるテンションをかけて測定されるAlFeSil摩耗値(AlFeSil摩耗値0.2NおよびAlFeSil摩耗値1.5N)を、いずれも20~50μmの範囲とすることにより、磁気テープの長手方向にかかるテンションを調整することによって磁気テープの幅方向の寸法を制御して記録および/または再生を行う際、電磁変換特性の低下を抑制することが可能になることを新たに見出すに至った。尚、測定環境の温度および湿度は、磁気テープの使用環境の温度および湿度の例示的な値として採用したものである。したがって、上記磁気テープへのデータの記録および記録されたデータの再生が行われる環境は、上記温度および湿度の環境に限定されるものではない。AlFeSil摩耗値を測定する際に磁気テープの長手方向にかけるテンションについても、上記のようなテンション調整が行われる場合に磁気テープの長手方向に加わり得るテンションの例示的な値として採用したものである。したがって、上記磁気テープへのデータの記録および記録されたデータの再生が行われる際に磁気テープの長手方向にかかるテンションも、上記テンションに限定されるものではない。また、本明細書に記載されている本発明者の推察によって、本発明は限定されるものではない。
本発明および本明細書において、上記AlFeSil摩耗値0.2Nおよび上記AlFeSil摩耗値は、温度23℃相対湿度50%の環境において、以下の方法によって測定される値である。
測定対象の磁気テープを、リールテスターを用い、下記走行条件で走行させたときのAlFeSil角柱の摩耗幅を測定する。AlFeSil角柱とは、センダスト系の合金であるAlFeSil製の角柱である。評価には、ECMA(European Computer Manufacturers Association)-288/AnnexH/H2に規定されているAlFeSil角柱を用いる。AlFeSil角柱の摩耗幅は、AlFeSil角柱のエッジを光学顕微鏡を用いて上方から観察し、特開2007-026564号公報の段落0015に同公報の図1に基づき説明されている摩耗幅として求める。
(走行条件)
磁気テープの磁性層表面を、AlFeSil角柱の長手方向と直交するように、AlFeSil角柱の一稜辺にラップ角12°で接触させる。この状態で、測定対象の磁気テープの長手方向の長さ580mにわたる部分を3m/秒の速さで走行させて1往復させる。
AlFeSil摩耗値0.2Nの測定では、上記走行時、磁気テープの長手方向にかけるテンションを0.2Nとする。ここで走行時に磁気テープの長手方向にかけるテンションの値は、リールテスターの設定値である。こうして1往復後に測定されるAlFeSil摩耗幅を、AlFeSil摩耗値0.2Nとする。AlFeSil摩耗値1.5Nは、上記走行時に磁気テープの長手方向にかけるテンションを1.5Nとする点以外は上記と同様にして求められる。上記AlFeSil摩耗値0.2Nの測定と上記AlFeSil摩耗値1.5Nの測定は、測定対象の磁気テープの異なる部分において実施する。また、各測定前には、測定環境に馴染ませるために、測定対象の磁気テープを、測定環境において24時間以上放置する。
<AlFeSil摩耗値0.2N、AlFeSil摩耗値1.5N
上記磁気テープの摩耗特性に関して、磁気テープの長手方向にかかるテンションを調整することによって磁気テープの幅方向の寸法を制御して記録および/または再生を行う際の電磁変換特性の低下を抑制する観点から、AlFeSil摩耗値0.2NおよびAlFeSil摩耗値1.5Nは、いずれも20~50μmの範囲である。電磁変換特性の低下をより一層抑制する観点から、AlFeSil摩耗値0.2Nは、45μm以下であることが好ましく、40μm以下であることがより好ましく、35μm以下であることが更に好ましい。同様の観点から、AlFeSil摩耗値0.2Nは、23μm以上であることが好ましく、25μm以上であることがより好ましい。また、電磁変換特性の低下をより一層抑制する観点から、AlFeSil摩耗値1.5Nは、25μm以上であることが好ましく、30μm以上であることがより好ましい。同様の観点から、AlFeSil摩耗値1.5Nは、48μm以下であることが好ましく、45μm以下であることがより好ましく、40μm以下であることが更に好ましい。AlFeSil摩耗値0.2NとAlFeSil摩耗値1.5Nとは、一形態では同じ値であることができ、他の一形態では異なる値であることができる。AlFeSil摩耗値0.2NとAlFeSil摩耗値1.5Nとが異なる値である場合、一形態では、AlFeSil摩耗値0.2N<AlFeSil摩耗値1.5Nであることができ、他の一形態では、AlFeSil摩耗値0.2N>AlFeSil摩耗値1.5Nであることができる。
上記磁気テープの摩耗特性は、例えば、磁性層を作製するために使用する成分の種類等によって調整することができる。この点の詳細については、後述する。
以下、上記磁気テープについて、更に詳細に説明する。
<磁性層>
(強磁性粉末)
磁性層に含まれる強磁性粉末としては、各種磁気記録媒体の磁性層において用いられる強磁性粉末として公知の強磁性粉末を1種または2種以上組み合わせて使用することができる。強磁性粉末として平均粒子サイズの小さいものを使用することは記録密度向上の観点から好ましい。この点から、強磁性粉末の平均粒子サイズは50nm以下であることが好ましく、45nm以下であることがより好ましく、40nm以下であることが更に好ましく、35nm以下であることが一層好ましく、30nm以下であることがより一層好ましく、25nm以下であることが更に一層好ましく、20nm以下であることがなお一層好ましい。一方、磁化の安定性の観点からは、強磁性粉末の平均粒子サイズは5nm以上であることが好ましく、8nm以上であることがより好ましく、10nm以上であることが更に好ましく、15nm以上であることが一層好ましく、20nm以上であることがより一層好ましい。
六方晶フェライト粉末
強磁性粉末の好ましい具体例としては、六方晶フェライト粉末を挙げることができる。六方晶フェライト粉末の詳細については、例えば、特開2011-225417号公報の段落0012~0030、特開2011-216149号公報の段落0134~0136、特開2012-204726号公報の段落0013~0030および特開2015-127985号公報の段落0029~0084を参照できる。
本発明および本明細書において、「六方晶フェライト粉末」とは、X線回折分析によって、主相として六方晶フェライト型の結晶構造が検出される強磁性粉末をいうものとする。主相とは、X線回折分析によって得られるX線回折スペクトルにおいて最も高強度の回折ピークが帰属する構造をいう。例えば、X線回折分析によって得られるX線回折スペクトルにおいて最も高強度の回折ピークが六方晶フェライト型の結晶構造に帰属される場合、六方晶フェライト型の結晶構造が主相として検出されたと判断するものとする。X線回折分析によって単一の構造のみが検出された場合には、この検出された構造を主相とする。六方晶フェライト型の結晶構造は、構成原子として、少なくとも鉄原子、二価金属原子および酸素原子を含む。二価金属原子とは、イオンとして二価のカチオンになり得る金属原子であり、ストロンチウム原子、バリウム原子、カルシウム原子等のアルカリ土類金属原子、鉛原子等を挙げることができる。本発明および本明細書において、六方晶ストロンチウムフェライト粉末とは、この粉末に含まれる主な二価金属原子がストロンチウム原子であるものをいい、六方晶バリウムフェライト粉末とは、この粉末に含まれる主な二価金属原子がバリウム原子であるものをいう。主な二価金属原子とは、この粉末に含まれる二価金属原子の中で、原子%基準で最も多くを占める二価金属原子をいうものとする。ただし、上記の二価金属原子には、希土類原子は包含されないものとする。本発明および本明細書における「希土類原子」は、スカンジウム原子(Sc)、イットリウム原子(Y)、およびランタノイド原子からなる群から選択される。ランタノイド原子は、ランタン原子(La)、セリウム原子(Ce)、プラセオジム原子(Pr)、ネオジム原子(Nd)、プロメチウム原子(Pm)、サマリウム原子(Sm)、ユウロピウム原子(Eu)、ガドリニウム原子(Gd)、テルビウム原子(Tb)、ジスプロシウム原子(Dy)、ホルミウム原子(Ho)、エルビウム原子(Er)、ツリウム原子(Tm)、イッテルビウム原子(Yb)、およびルテチウム原子(Lu)からなる群から選択される。
以下に、六方晶フェライト粉末の一形態である六方晶ストロンチウムフェライト粉末について、更に詳細に説明する。
六方晶ストロンチウムフェライト粉末の活性化体積は、好ましくは800~1600nmの範囲である。上記範囲の活性化体積を示す微粒子化された六方晶ストロンチウムフェライト粉末は、優れた電磁変換特性を発揮する磁気テープの作製のために好適である。六方晶ストロンチウムフェライト粉末の活性化体積は、好ましくは800nm以上であり、例えば850nm以上であることもできる。また、電磁変換特性の更なる向上の観点から、六方晶ストロンチウムフェライト粉末の活性化体積は、1500nm以下であることがより好ましく、1400nm以下であることが更に好ましく、1300nm以下であることが一層好ましく、1200nm以下であることがより一層好ましく、1100nm以下であることが更により一層好ましい。六方晶バリウムフェライト粉末の活性化体積についても、同様である。
「活性化体積」とは、磁化反転の単位であって、粒子の磁気的な大きさを示す指標である。本発明および本明細書に記載の活性化体積および後述の異方性定数Kuは、振動試料型磁力計を用いて保磁力Hc測定部の磁場スイープ速度3分と30分とで測定し(測定温度:23℃±1℃)、以下のHcと活性化体積Vとの関係式から求められる値である。異方性定数Kuの単位に関して、1erg/cc=1.0×10-1J/mである。
Hc=2Ku/Ms{1-[(kT/KuV)ln(At/0.693)]1/2
[上記式中、Ku:異方性定数(単位:J/m)、Ms:飽和磁化(単位:kA/m)、k:ボルツマン定数、T:絶対温度(単位:K)、V:活性化体積(単位:cm)、A:スピン歳差周波数(単位:s-1)、t:磁界反転時間(単位:s)]
熱揺らぎの低減、換言すれば熱的安定性の向上の指標としては、異方性定数Kuを挙げることができる。六方晶ストロンチウムフェライト粉末は、好ましくは1.8×10J/m以上のKuを有することができ、より好ましくは2.0×10J/m以上のKuを有することができる。また、六方晶ストロンチウムフェライト粉末のKuは、例えば2.5×10J/m以下であることができる。ただしKuが高いほど熱的安定性が高いことを意味し好ましいため、上記例示した値に限定されるものではない。
六方晶ストロンチウムフェライト粉末は、希土類原子を含んでいてもよく、含まなくてもよい。六方晶ストロンチウムフェライト粉末が希土類原子を含む場合、鉄原子100原子%に対して、0.5~5.0原子%の含有率(バルク含有率)で希土類原子を含むことが好ましい。希土類原子を含む六方晶ストロンチウムフェライト粉末は、一形態では、希土類原子表層部偏在性を有することができる。本発明および本明細書における「希土類原子表層部偏在性」とは、六方晶ストロンチウムフェライト粉末を酸により部分溶解して得られた溶解液中の鉄原子100原子%に対する希土類原子含有率(以下、「希土類原子表層部含有率」または希土類原子に関して単に「表層部含有率」と記載する。)が、六方晶ストロンチウムフェライト粉末を酸により全溶解して得られた溶解液中の鉄原子100原子%に対する希土類原子含有率(以下、「希土類原子バルク含有率」または希土類原子に関して単に「バルク含有率」と記載する。)と、
希土類原子表層部含有率/希土類原子バルク含有率>1.0
の比率を満たすことを意味する。後述の六方晶ストロンチウムフェライト粉末の希土類原子含有率とは、希土類原子バルク含有率と同義である。これに対し、酸を用いる部分溶解は六方晶ストロンチウムフェライト粉末を構成する粒子の表層部を溶解するため、部分溶解により得られる溶解液中の希土類原子含有率とは、六方晶ストロンチウムフェライト粉末を構成する粒子の表層部における希土類原子含有率である。希土類原子表層部含有率が、「希土類原子表層部含有率/希土類原子バルク含有率>1.0」の比率を満たすことは、六方晶ストロンチウムフェライト粉末を構成する粒子において、希土類原子が表層部に偏在(即ち内部より多く存在)していることを意味する。本発明および本明細書における表層部とは、六方晶ストロンチウムフェライト粉末を構成する粒子の表面から内部に向かう一部領域を意味する。
六方晶ストロンチウムフェライト粉末が希土類原子を含む場合、希土類原子含有率(バルク含有率)は、鉄原子100原子%に対して0.5~5.0原子%の範囲であることが好ましい。上記範囲のバルク含有率で希土類原子を含み、かつ六方晶ストロンチウムフェライト粉末を構成する粒子の表層部に希土類原子が偏在していることは、繰り返し再生における再生出力の低下を抑制することに寄与すると考えられる。これは、六方晶ストロンチウムフェライト粉末が上記範囲のバルク含有率で希土類原子を含み、かつ六方晶ストロンチウムフェライト粉末を構成する粒子の表層部に希土類原子が偏在していることにより、異方性定数Kuを高めることができるためと推察される。異方性定数Kuは、この値が高いほど、いわゆる熱揺らぎと呼ばれる現象の発生を抑制すること(換言すれば熱的安定性を向上させること)ができる。熱揺らぎの発生が抑制されることにより、繰り返し再生における再生出力の低下を抑制することができる。六方晶ストロンチウムフェライト粉末の粒子表層部に希土類原子が偏在することが、表層部の結晶格子内の鉄(Fe)のサイトのスピンを安定化することに寄与し、これにより異方性定数Kuが高まるのではないかと推察される。
また、希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末を磁性層の強磁性粉末として用いることは、磁気ヘッドとの摺動によって磁性層表面が削れることを抑制することにも寄与すると推察される。即ち、磁気テープの走行耐久性の向上にも、希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末が寄与し得ると推察される。これは、六方晶ストロンチウムフェライト粉末を構成する粒子の表面に希土類原子が偏在することが、粒子表面と磁性層に含まれる有機物質(例えば、結合剤および/または添加剤)との相互作用の向上に寄与し、その結果、磁性層の強度が向上するためではないかと推察される。
繰り返し再生における再生出力の低下を抑制する観点および/または走行耐久性の更なる向上の観点からは、希土類原子含有率(バルク含有率)は、0.5~4.5原子%の範囲であることがより好ましく、1.0~4.5原子%の範囲であることが更に好ましく、1.5~4.5原子%の範囲であることが一層好ましい。
上記バルク含有率は、六方晶ストロンチウムフェライト粉末を全溶解して求められる含有率である。本発明および本明細書において、特記しない限り、原子について含有率とは、六方晶ストロンチウムフェライト粉末を全溶解して求められるバルク含有率をいうものとする。希土類原子を含む六方晶ストロンチウムフェライト粉末は、希土類原子として1種の希土類原子のみ含んでもよく、2種以上の希土類原子を含んでもよい。2種以上の希土類原子を含む場合の上記バルク含有率とは、2種以上の希土類原子の合計について求められる。この点は、本発明および本明細書における他の成分についても同様である。即ち、特記しない限り、ある成分は、1種のみ用いてもよく、2種以上用いてもよい。2種以上用いられる場合の含有量または含有率とは、2種以上の合計についていうものとする。
六方晶ストロンチウムフェライト粉末が希土類原子を含む場合、含まれる希土類原子は、希土類原子のいずれか1種以上であればよい。繰り返し再生における再生出力の低下を抑制する観点から好ましい希土類原子としては、ネオジム原子、サマリウム原子、イットリウム原子およびジスプロシウム原子を挙げることができ、ネオジム原子、サマリウム原子およびイットリウム原子がより好ましく、ネオジム原子が更に好ましい。
希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末において、希土類原子は六方晶ストロンチウムフェライト粉末を構成する粒子の表層部に偏在していればよく、偏在の程度は限定されるものではない。例えば、希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末について、後述する溶解条件で部分溶解して求められた希土類原子の表層部含有率と後述する溶解条件で全溶解して求められた希土類原子のバルク含有率との比率、「表層部含有率/バルク含有率」は1.0超であり、1.5以上であることができる。「表層部含有率/バルク含有率」が1.0より大きいことは、六方晶ストロンチウムフェライト粉末を構成する粒子において、希土類原子が表層部に偏在(即ち内部より多く存在)していることを意味する。また、後述する溶解条件で部分溶解して求められた希土類原子の表層部含有率と後述する溶解条件で全溶解して求められた希土類原子のバルク含有率との比率、「表層部含有率/バルク含有率」は、例えば、10.0以下、9.0以下、8.0以下、7.0以下、6.0以下、5.0以下、または4.0以下であることができる。ただし、希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末において、希土類原子は六方晶ストロンチウムフェライト粉末を構成する粒子の表層部に偏在していればよく、上記の「表層部含有率/バルク含有率」は、例示した上限または下限に限定されるものではない。
六方晶ストロンチウムフェライト粉末の部分溶解および全溶解について、以下に説明する。粉末として存在している六方晶ストロンチウムフェライト粉末については、部分溶解および全溶解する試料粉末は、同一ロットの粉末から採取する。一方、磁気テープの磁性層に含まれている六方晶ストロンチウムフェライト粉末については、磁性層から取り出した六方晶ストロンチウムフェライト粉末の一部を部分溶解に付し、他の一部を全溶解に付す。磁性層からの六方晶ストロンチウムフェライト粉末の取り出しは、例えば、特開2015-91747号公報の段落0032に記載の方法によって行うことができる。
上記部分溶解とは、溶解終了時に液中に六方晶ストロンチウムフェライト粉末の残留が目視で確認できる程度に溶解することをいう。例えば、部分溶解により、六方晶ストロンチウムフェライト粉末を構成する粒子について、粒子全体を100質量%として10~20質量%の領域を溶解することができる。一方、上記全溶解とは、溶解終了時に液中に六方晶ストロンチウムフェライト粉末の残留が目視で確認されない状態まで溶解することをいう。
上記部分溶解および表層部含有率の測定は、例えば、以下の方法により行われる。ただし、下記の試料粉末量等の溶解条件は例示であって、部分溶解および全溶解が可能な溶解条件を任意に採用できる。
試料粉末12mgおよび1mol/L塩酸10mLを入れた容器(例えばビーカー)を、設定温度70℃のホットプレート上で1時間保持する。得られた溶解液を0.1μmのメンブレンフィルタでろ過する。こうして得られたろ液の元素分析を誘導結合プラズマ(ICP;Inductively Coupled Plasma)分析装置によって行う。こうして、鉄原子100原子%に対する希土類原子の表層部含有率を求めることができる。元素分析により複数種の希土類原子が検出された場合には、全希土類原子の合計含有率を、表層部含有率とする。この点は、バルク含有率の測定においても、同様である。
一方、上記全溶解およびバルク含有率の測定は、例えば、以下の方法により行われる。
試料粉末12mgおよび4mol/L塩酸10mLを入れた容器(例えばビーカー)を、設定温度80℃のホットプレート上で3時間保持する。その後は上記の部分溶解および表層部含有率の測定と同様に行い、鉄原子100原子%に対するバルク含有率を求めることができる。
磁気テープに記録されたデータを再生する際の再生出力を高める観点から、磁気テープに含まれる強磁性粉末の質量磁化σsが高いことは望ましい。この点に関して、希土類原子を含むものの希土類原子表層部偏在性を持たない六方晶ストロンチウムフェライト粉末は、希土類原子を含まない六方晶ストロンチウムフェライト粉末と比べてσsが大きく低下する傾向が見られた。これに対し、そのようなσsの大きな低下を抑制するうえでも、希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末は好ましいと考えられる。一形態では、六方晶ストロンチウムフェライト粉末のσsは、45A・m/kg以上であることができ、47A・m/kg以上であることもできる。一方、σsは、ノイズ低減の観点からは、80A・m/kg以下であることが好ましく、60A・m/kg以下であることがより好ましい。σsは、振動試料型磁力計等の磁気特性を測定可能な公知の測定装置を用いて測定することができる。本発明および本明細書において、特記しない限り、質量磁化σsは、磁場強度15kOeで測定される値とする。1[kOe]=10/4π[A/m]である。
六方晶ストロンチウムフェライト粉末の構成原子の含有率(バルク含有率)に関して、ストロンチウム原子含有率は、鉄原子100原子%に対して、例えば2.0~15.0原子%の範囲であることができる。一形態では、六方晶ストロンチウムフェライト粉末は、この粉末に含まれる二価金属原子がストロンチウム原子のみであることができる。また他の一形態では、六方晶ストロンチウムフェライト粉末は、ストロンチウム原子に加えて1種以上の他の二価金属原子を含むこともできる。例えば、バリウム原子および/またはカルシウム原子を含むことができる。ストロンチウム原子以外の他の二価金属原子が含まれる場合、六方晶ストロンチウムフェライト粉末におけるバリウム原子含有率およびカルシウム原子含有率は、それぞれ、例えば、鉄原子100原子%に対して、0.05~5.0原子%の範囲であることができる。
六方晶フェライトの結晶構造としては、マグネトプランバイト型(「M型」とも呼ばれる。)、W型、Y型およびZ型が知られている。六方晶ストロンチウムフェライト粉末は、いずれの結晶構造を取るものであってもよい。結晶構造は、X線回折分析によって確認することができる。六方晶ストロンチウムフェライト粉末は、X線回折分析によって、単一の結晶構造または2種以上の結晶構造が検出されるものであることができる。例えば一形態では、六方晶ストロンチウムフェライト粉末は、X線回折分析によってM型の結晶構造のみが検出されるものであることができる。例えば、M型の六方晶フェライトは、AFe1219の組成式で表される。ここでAは二価金属原子を表し、六方晶ストロンチウムフェライト粉末がM型である場合、Aはストロンチウム原子(Sr)のみであるか、またはAとして複数の二価金属原子が含まれる場合には、上記の通り原子%基準で最も多くをストロンチウム原子(Sr)が占める。六方晶ストロンチウムフェライト粉末の二価金属原子含有率は、通常、六方晶フェライトの結晶構造の種類により定まるものであり、特に限定されるものではない。鉄原子含有率および酸素原子含有率についても、同様である。六方晶ストロンチウムフェライト粉末は、少なくとも、鉄原子、ストロンチウム原子および酸素原子を含み、更に希土類原子を含むこともできる。更に、六方晶ストロンチウムフェライト粉末は、これら原子以外の原子を含んでもよく、含まなくてもよい。一例として、六方晶ストロンチウムフェライト粉末は、アルミニウム原子(Al)を含むものであってもよい。アルミニウム原子の含有率は、鉄原子100原子%に対して、例えば0.5~10.0原子%であることができる。繰り返し再生における再生出力低下を抑制する観点からは、六方晶ストロンチウムフェライト粉末は、鉄原子、ストロンチウム原子、酸素原子および希土類原子を含み、これら原子以外の原子の含有率が、鉄原子100原子%に対して、10.0原子%以下であることが好ましく、0~5.0原子%の範囲であることがより好ましく、0原子%であってもよい。即ち、一形態では、六方晶ストロンチウムフェライト粉末は、鉄原子、ストロンチウム原子、酸素原子および希土類原子以外の原子を含まなくてもよい。上記の原子%で表示される含有率は、六方晶ストロンチウムフェライト粉末を全溶解して求められる各原子の含有率(単位:質量%)を、各原子の原子量を用いて原子%表示の値に換算して求められる。また、本発明および本明細書において、ある原子について「含まない」とは、全溶解してICP分析装置により測定される含有率が0質量%であることをいう。ICP分析装置の検出限界は、通常、質量基準で0.01ppm(parts per million)以下である。上記の「含まない」とは、ICP分析装置の検出限界未満の量で含まれることを包含する意味で用いるものとする。六方晶ストロンチウムフェライト粉末は、一形態では、ビスマス原子(Bi)を含まないものであることができる。
金属粉末
強磁性粉末の好ましい具体例としては、強磁性金属粉末を挙げることもできる。強磁性金属粉末の詳細については、例えば特開2011-216149号公報の段落0137~0141および特開2005-251351号公報の段落0009~0023を参照できる。
ε-酸化鉄粉末
強磁性粉末の好ましい具体例としては、ε-酸化鉄粉末を挙げることもできる。本発明および本明細書において、「ε-酸化鉄粉末」とは、X線回折分析によって、主相としてε-酸化鉄型の結晶構造が検出される強磁性粉末をいうものとする。例えば、X線回折分析によって得られるX線回折スペクトルにおいて最も高強度の回折ピークがε-酸化鉄型の結晶構造に帰属される場合、ε-酸化鉄型の結晶構造が主相として検出されたと判断するものとする。ε-酸化鉄粉末の製造方法としては、ゲーサイトから作製する方法、逆ミセル法等が知られている。上記製造方法は、いずれも公知である。また、Feの一部がGa、Co、Ti、Al、Rh等の置換原子によって置換されたε-酸化鉄粉末を製造する方法については、例えば、J. Jpn. Soc. Powder Metallurgy Vol. 61 Supplement, No. S1, pp. S280-S284、J. Mater. Chem. C, 2013, 1, pp.5200-5206等を参照できる。ただし、上記磁気テープの磁性層において強磁性粉末として使用可能なε-酸化鉄粉末の製造方法は、ここで挙げた方法に限定されない。
ε-酸化鉄粉末の活性化体積は、好ましくは300~1500nmの範囲である。上記範囲の活性化体積を示す微粒子化されたε-酸化鉄粉末は、優れた電磁変換特性を発揮する磁気テープの作製のために好適である。ε-酸化鉄粉末の活性化体積は、好ましくは300nm以上であり、例えば500nm以上であることもできる。また、電磁変換特性の更なる向上の観点から、ε-酸化鉄粉末の活性化体積は、1400nm以下であることがより好ましく、1300nm以下であることが更に好ましく、1200nm以下であることが一層好ましく、1100nm以下であることがより一層好ましい。
熱揺らぎの低減、換言すれば熱的安定性の向上の指標としては、異方性定数Kuを挙げることができる。ε-酸化鉄粉末は、好ましくは3.0×10J/m以上のKuを有することができ、より好ましくは8.0×10J/m以上のKuを有することができる。また、ε-酸化鉄粉末のKuは、例えば3.0×10J/m以下であることができる。ただしKuが高いほど熱的安定性が高いことを意味し、好ましいため、上記例示した値に限定されるものではない。
磁気テープに記録されたデータを再生する際の再生出力を高める観点から、磁気テープに含まれる強磁性粉末の質量磁化σsが高いことは望ましい。この点に関して、一形態では、ε-酸化鉄粉末のσsは、8A・m/kg以上であることができ、12A・m/kg以上であることもできる。一方、ε-酸化鉄粉末のσsは、ノイズ低減の観点からは、40A・m/kg以下であることが好ましく、35A・m/kg以下であることがより好ましい。
本発明および本明細書において、特記しない限り、強磁性粉末等の各種粉末の平均粒子サイズは、透過型電子顕微鏡を用いて、以下の方法により測定される値とする。
粉末を、透過型電子顕微鏡を用いて撮影倍率100000倍で撮影し、総倍率500000倍になるように印画紙にプリントして粉末を構成する粒子の写真を得る。得られた粒子の写真から目的の粒子を選びデジタイザーで粒子の輪郭をトレースし粒子(一次粒子)のサイズを測定する。一次粒子とは、凝集のない独立した粒子をいう。
以上の測定を、無作為に抽出した500個の粒子について行う。こうして得られた500個の粒子の粒子サイズの算術平均を、粉末の平均粒子サイズとする。上記透過型電子顕微鏡としては、例えば日立製透過型電子顕微鏡H-9000型を用いることができる。また、粒子サイズの測定は、公知の画像解析ソフト、例えばカールツァイス製画像解析ソフトKS-400を用いて行うことができる。後述の実施例に示す平均粒子サイズは、特記しない限り、透過型電子顕微鏡として日立製透過型電子顕微鏡H-9000型、画像解析ソフトとしてカールツァイス製画像解析ソフトKS-400を用いて測定された値である。本発明および本明細書において、粉末とは、複数の粒子の集合を意味する。例えば、強磁性粉末とは、複数の強磁性粒子の集合を意味する。また、複数の粒子の集合とは、集合を構成する粒子が直接接触している形態に限定されず、後述する結合剤、添加剤等が、粒子同士の間に介在している形態も包含される。粒子との語が、粉末を表すために用いられることもある。
粒子サイズ測定のために磁気テープから試料粉末を採取する方法としては、例えば特開2011-048878号公報の段落0015に記載の方法を採用することができる。
本発明および本明細書において、特記しない限り、粉末を構成する粒子のサイズ(粒子サイズ)は、上記の粒子写真において観察される粒子の形状が、
(1)針状、紡錘状、柱状(ただし、高さが底面の最大長径より大きい)等の場合は、粒子を構成する長軸の長さ、即ち長軸長で表され、
(2)板状または柱状(ただし、厚みまたは高さが板面または底面の最大長径より小さい)の場合は、その板面または底面の最大長径で表され、
(3)球形、多面体状、不定形等であって、かつ形状から粒子を構成する長軸を特定できない場合は、円相当径で表される。円相当径とは、円投影法で求められるものを言う。
また、粉末の平均針状比は、上記測定において粒子の短軸の長さ、即ち短軸長を測定し、各粒子の(長軸長/短軸長)の値を求め、上記500個の粒子について得た値の算術平均を指す。ここで、特記しない限り、短軸長とは、上記粒子サイズの定義で(1)の場合は、粒子を構成する短軸の長さを、同じく(2)の場合は、厚みまたは高さを各々指し、(3)の場合は、長軸と短軸の区別がないから、(長軸長/短軸長)は、便宜上1とみなす。
そして、特記しない限り、粒子の形状が特定の場合、例えば、上記粒子サイズの定義(1)の場合、平均粒子サイズは平均長軸長であり、同定義(2)の場合、平均粒子サイズは平均板径である。同定義(3)の場合、平均粒子サイズは、平均直径(平均粒径、平均粒子径ともいう)である。
磁性層における強磁性粉末の含有量(充填率)は、好ましくは50~90質量%の範囲であり、より好ましくは60~90質量%の範囲である。磁性層において強磁性粉末の充填率が高いことは、記録密度向上の観点から好ましい。
(結合剤)
上記磁気テープは塗布型の磁気テープであることができ、磁性層に結合剤を含むことができる。結合剤とは、1種以上の樹脂である。結合剤としては、塗布型磁気記録媒体の結合剤として通常使用される各種樹脂を用いることができる。例えば、結合剤としては、ポリウレタン樹脂、ポリエステル樹脂、ポリアミド樹脂、塩化ビニル樹脂、スチレン、アクリロニトリル、メチルメタクリレート等を共重合したアクリル樹脂、ニトロセルロース等のセルロース樹脂、エポキシ樹脂、フェノキシ樹脂、ポリビニルアセタール、ポリビニルブチラール等のポリビニルアルキラール樹脂等から選ばれる樹脂を単独で用いるか、または複数の樹脂を混合して用いることができる。これらの中で好ましいものはポリウレタン樹脂、アクリル樹脂、セルロース樹脂、および塩化ビニル樹脂である。これらの樹脂は、ホモポリマーでもよく、コポリマー(共重合体)でもよい。これらの樹脂は、後述する非磁性層および/またはバックコート層においても結合剤として使用することができる。以上の結合剤については、特開2010-24113号公報の段落0028~0031を参照できる。また、結合剤は、電子線硬化型樹脂等の放射線硬化型樹脂であってもよい。放射線硬化型樹脂については、特開2011-048878号公報の段落0044~0045を参照できる。
結合剤として使用される樹脂の平均分子量は、重量平均分子量として、例えば10,000以上200,000以下であることができる。結合剤は、強磁性粉末100.0質量部に対して、例えば1.0~30.0質量部の量で使用することができる。
(硬化剤)
また、結合剤とともに硬化剤を使用することもできる。硬化剤は、一形態では加熱により硬化反応(架橋反応)が進行する化合物である熱硬化性化合物であることができ、他の一形態では光照射により硬化反応(架橋反応)が進行する光硬化性化合物であることができる。硬化剤は、磁気テープの製造工程の中で硬化反応が進行することにより、少なくとも一部は、結合剤等の他の成分と反応(架橋)した状態で磁性層に含まれ得る。好ましい硬化剤は、熱硬化性化合物であり、ポリイソシアネートが好適である。ポリイソシアネートの詳細については、特開2011-216149号公報の段落0124~0125を参照できる。硬化剤は、磁性層形成用組成物中に、結合剤100.0質量部に対して例えば0~80.0質量部、磁性層等の各層の強度向上の観点からは好ましくは50.0~80.0質量部の量で使用することができる。
(添加剤)
磁性層には、必要に応じて1種以上の添加剤が含まれていてもよい。添加剤としては、一例として、上記の硬化剤が挙げられる。また、磁性層に含まれる添加剤としては、非磁性粉末、潤滑剤、分散剤、分散助剤、防黴剤、帯電防止剤、酸化防止剤等を挙げることができる。
磁性層形成用組成物に添加し得る分散剤としては、カルボキシ基含有化合物、含窒素化合物等の強磁性粉末の分散性を高めるための公知の分散剤を挙げることもできる。例えば、含窒素化合物は、NHRで表される一級アミン、NHRで表される二級アミン、NRで表される三級アミンのいずれであってもよい。上記において、Rは含窒素化合物を構成する任意の構造を示し、複数存在するRは同一であっても異なっていてもよい。含窒素化合物は、分子中に複数の繰り返し構造を有する化合物(ポリマー)であってもよい。含窒素化合物の含窒素部が強磁性粉末の粒子表面への吸着部として機能することが、含窒素化合物が分散剤として働くことができる理由と考えられる。カルボキシ基含有化合物は、例えばオレイン酸等の脂肪酸を挙げることができる。カルボキシ基含有化合物については、カルボキシ基が強磁性粉末の粒子表面への吸着部として機能することが、カルボキシ基含有化合物が分散剤として働くことができる理由と考えられる。カルボキシ基含有化合物と含窒素化合物を併用することも、好ましい。これらの分散剤の使用量は適宜設定することができる。
分散剤を非磁性層形成用組成物に添加してもよい。非磁性層形成用組成物に添加し得る分散剤については、特開2012-133837号公報の段落0061を参照できる。
磁性層に添加し得る添加剤としては、例えば、特開2016-51493号公報に記載されているポリアルキレンイミン系ポリマーを挙げることもできる。かかるポリアルキレンイミン系ポリマーについては、特開2016-51493号公報の段落0035~0077および同公報の実施例の記載を参照できる。
磁性層に含まれ得る非磁性粉末としては、研磨剤として機能することができる非磁性粉末、磁性層表面に適度に突出する突起を形成する突起形成剤として機能することができる非磁性粉末等が挙げられる。
研磨剤としては、モース硬度8超の非磁性粉末が好ましく、モース硬度9以上の非磁性粉末がより好ましい。モース硬度の最大値は10である。研磨剤は、無機物質の粉末であることができ、有機物質の粉末であることもできる。研磨剤は、無機または有機の酸化物の粉末または炭化物(カーバイド)の粉末であることができる。カーバイドとしては、ボロンカーバイド(例えばBC)、チタンカーバイド(例えばTiC)等を挙げることができる。また、研磨剤としては、ダイヤモンドも使用可能である。研磨剤は、一形態では、無機酸化物の粉末であることが好ましい。具体的には、無機酸化物としては、アルミナ(例えばAl)、酸化チタン(例えばTiO)、酸化セリウム(例えばCeO)、酸化ジルコニウム(例えばZrO)等を挙げることができ、中でもアルミナが好ましい。アルミナのモース硬度は約9である。アルミナ粉末については、特開2013-229090号公報の段落0021も参照できる。また、研磨剤の粒子サイズの指標としては、比表面積を用いることができる。比表面積が大きいほど研磨剤を構成する粒子の一次粒子の粒子サイズが小さいと考えることができる。研磨剤としては、BET(Brunauer-Emmett-Teller)法によって測定された比表面積(以下、「BET比表面積」と記載する。)が14m/g以上の研磨剤を使用することが好ましい。また、分散性の観点からは、BET比表面積が40m/g以下の研磨剤を使用することが好ましい。磁性層における研磨剤の含有量は、強磁性粉末100.0質量部に対して1.0~20.0質量部であることが好ましく、1.0~15.0質量部であることがより好ましい。研磨剤としては、1種の非磁性粉末のみ使用することもでき、組成および/または物性(例えばサイズ)の異なる2種以上の非磁性粉末を使用することもできる。研磨剤として2種以上の非磁性粉末を使用する場合、研磨剤の含有量とは、それら2種以上の非磁性粉末の合計含有量をいうものとする。以上の点は、本発明および本明細書における各種成分の含有量についても同様である。研磨剤は、強磁性粉末と別に分散処理に付すこと(別分散)が好ましく、後述の突起形成剤とも別に分散処理に付すこと(別分散)がより好ましい。磁性層形成用組成物の調製時、研磨剤の分散液(以下、「研磨剤液」とも記載する。)として、成分および/または分散条件が異なる2種以上の分散液を調製することは、磁気テープの摩耗特性を制御するうえで好ましい。
研磨剤の分散液の分散状態の調整のために、分散剤を使用することもできる。研磨剤の分散性を高めるための分散剤として機能し得る化合物としては、フェノール性ヒドロキシ基を有する芳香族炭化水素化合物を挙げることができる。「フェノール性ヒドロキシ基」とは、芳香環に直接結合したヒドロキシ基をいう。上記芳香族炭化水素化合物に含まれる芳香環は、単環であってもよく、多環構造であってもよく、縮合環であってもよい。研磨剤の分散性向上の観点からは、ベンゼン環またはナフタレン環を含む芳香族炭化水素化合物が好ましい。また、上記芳香族炭化水素化合物は、フェノール性ヒドロキシ基以外の置換基を有していてもよい。フェノール性ヒドロキシ基以外の置換基としては、例えば、ハロゲン原子、アルキル基、アルコキシ基、アミノ基、アシル基、ニトロ基、ニトロソ基、ヒドロキシアルキル基等を挙げることができ、ハロゲン原子、アルキル基、アルコキシ基、アミノ基、ヒドロキシアルキル基が好ましい。上記芳香族炭化水素化合物1分子中に含まれるフェノール性ヒドロキシ基は、1つであってもよく、2つ、3つ、またはそれ以上であってもよい。
フェノール性ヒドロキシ基を有する芳香族炭化水素化合物の好ましい一形態としては、下記式100で表される化合物を挙げることができる。
[式100中、X101~X108のうちの2つはヒドロキシ基であり、他の6つはそれぞれ独立に水素原子または置換基を表す。]
式100で表される化合物において、2つのヒドロキシ基(フェノール性ヒドロキシ基)の置換位置は特に限定されるものではない。
式100中、X101~X108のうちの2つがヒドロキシ基(フェノール性ヒドロキシ基)であり、他の6つはそれぞれ独立に水素原子または置換基を表す。また、X101~X108のうち、2つのヒドロキシ基以外の部分がすべて水素原子であってもよく、一部またはすべてが置換基であってもよい。置換基としては、先に記載した置換基を例示することができる。2つのヒドロキシ基以外の置換基として、1つ以上のフェノール性ヒドロキシ基が含まれていてもよい。研磨剤の分散性向上の観点からは、X101~X108のうちの2つのヒドロキシ基以外はフェノール性ヒドロキシ基ではないことが好ましい。即ち、式100で表される化合物は、ジヒドロキシナフタレンまたはその誘導体であることが好ましく、2,3-ジヒドロキシナフタレンまたはその誘導体であることがより好ましい。X101~X108で表される置換基として好ましい置換基としては、ハロゲン原子(例えば塩素原子、臭素原子)、アミノ基、炭素数1~6(好ましくは1~4)のアルキル基、メトキシ基およびエトキシ基、アシル基、ニトロ基およびニトロソ基、ならびに-CHOH基を挙げることができる。
また、研磨剤の分散性を高めるための分散剤については、特開2014-179149号公報の段落0024~0028も参照できる。
研磨剤の分散性を高めるための分散剤は、例えば研磨剤液の調製時(複数の研磨剤液を調製する場合には各研磨剤液について)、研磨剤100.0質量部に対して、例えば0.5~20.0質量部の割合で使用することができ、1.0~10.0質量部の割合で使用することが好ましい。
突起形成剤の一形態としては、カーボンブラックを挙げることができる。カーボンブラックのBET比表面積は、10m/g以上であることが好ましく、15m/g以上であることがより好ましい。カーボンブラックのBET比表面積は、分散性向上の容易性の観点からは、50m/g以下であることが好ましく、40m/g以下であることがより好ましい。また、突起形成剤の他の一形態としては、コロイド粒子を挙げることができる。コロイド粒子としては、入手容易性の点から無機コロイド粒子が好ましく、無機酸化物コロイド粒子がより好ましく、シリカコロイド粒子(コロイダルシリカ)がより一層好ましい。本発明および本明細書において、「コロイド粒子」とは、メチルエチルケトン、シクロヘキサノン、トルエンもしくは酢酸エチル、または上記溶媒の2種以上を任意の混合比で含む混合溶媒の少なくとも1つの有機溶媒100mLあたり1g添加した際に、沈降せず分散しコロイド分散体をもたらすことのできる粒子をいうものとする。コロイド粒子の平均粒子サイズは、例えば30~300nmであることができ、40~200nmであることが好ましい。磁性層における突起形成剤の含有量は、強磁性粉末100.0質量部に対して、0.5~4.0質量部であることが好ましく、0.5~3.5質量部であることがより好ましい。突起形成剤は、強磁性粉末と別に分散処理に付すことが好ましく、研磨剤とも別に分散処理に付すことがより好ましい。磁性層形成用組成物の調製時、突起形成剤の分散液(以下、「突起形成剤液」とも記載する。)として、成分および/または分散条件が異なる2種以上の分散液を調製することもできる。
また、磁性層に含まれ得る添加剤の一形態としては、下記式1で表されるアルキルエステルアニオンのアンモニウム塩構造を有する化合物を挙げることができる。
(式1中、Rは炭素数7以上のアルキル基または炭素数7以上のフッ化アルキル基を表し、Zはアンモニウムカチオンを表す。)
本発明者は、上記化合物は、潤滑剤として機能し得ると考えている。この点について、以下に更に説明する。
潤滑剤は、流体潤滑剤と境界潤滑剤とに大別できる。本発明者は、上記式1で表されるアルキルエステルアニオンのアンモニウム塩構造を有する化合物は、流体潤滑剤として機能し得ると考えている。流体潤滑剤は、それ自身が磁性層表面に液膜を形成することにより、磁性層へ潤滑性を付与する役割を果たすことができると考えられる。AlFeSil摩耗値0.2NおよびAlFeSil摩耗値1.5Nを制御するためには、磁性層表面において流体潤滑剤が液膜を形成していることは望ましいと推察される。また、AlFeSil摩耗値0.2NおよびAlFeSil摩耗値1.5Nの測定時に磁性層表面とAlFeSil角柱とがより安定に摺動できるほど、測定される値はより小さくなり得る。流体潤滑剤の液膜に関しては、より安定な摺動を可能にする観点からは、磁性層表面で液膜を形成している流体潤滑剤は適量にすることが望ましいと考えられる。磁性層表面で液膜を形成している液体潤滑剤量が過剰であると、磁性層表面とAlFeSil角柱とが貼り付き、摺動安定性が低下し易くなると推察されるためである。また、磁性層表面で液膜を形成している液体潤滑剤量が過剰であると、例えば突起形成剤によって磁性層表面に形成された突起が液膜に覆われてしまうと推察される。このことも摺動安定性が低下し易くなる要因になり得ると考えられる。
以上の点に関して、上記化合物は、式1で表されるアルキルエステルアニオンのアンモニウム塩構造を含む。かかる構造を含む化合物は、比較的少量でも流体潤滑剤として優れた役割を果たすことができると考えられる。そのため、上記化合物を磁性層に含有させることは、磁気テープの磁性層表面とAlFeSil角柱との摺動安定性を向上させることにつながり、AlFeSil摩耗値0.2NおよびAlFeSil摩耗値1.5Nを制御することに寄与し得ると考えられる。
以下、上記化合物について、更に詳細に説明する。
本発明および本明細書において、特記しない限り、記載されている基は置換基を有してもよく無置換であってもよい。また、置換基を有する基について「炭素数」とは、特記しない限り、置換基の炭素数を含まない炭素数を意味するものとする。本発明および本明細書において、置換基としては、例えば、アルキル基(例えば炭素数1~6のアルキル基)、ヒドロキシ基、アルコキシ基(例えば炭素数1~6のアルコキシ基)、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子等)、シアノ基、アミノ基、ニトロ基、アシル基、カルボキシ基、カルボキシ基の塩、スルホン酸基、スルホン酸基の塩等を挙げることができる。
式1で表されるアルキルエステルアニオンのアンモニウム塩構造を有する化合物は、磁性層に含まれる少なくとも一部が磁性層表面で液膜を形成することができ、一部が磁性層内部に含まれ磁気ヘッドとの摺動時等に磁性層表面に移動して液膜を形成することもできる。また、一部は後述する非磁性層に含まれることができ、磁性層に移動し更に磁性層表面に移動して液膜を形成することもできる。尚、「アルキルエステルアニオン」は、「アルキルカルボキシラートアニオン」と呼ぶこともできる。
式1中、Rは、炭素数7以上のアルキル基または炭素数7以上のフッ化アルキル基を表す。フッ化アルキル基は、アルキル基を構成する水素原子の一部または全部がフッ素原子により置換された構造を有する。Rで表されるアルキル基またはフッ化アルキル基は、直鎖構造であってもよく、分岐を有する構造であってもよく、環状のアルキル基またはフッ化アルキル基でもよく、直鎖構造であることが好ましい。Rで表されるアルキル基またはフッ化アルキル基は、置換基を有していてもよく、無置換であってもよく、無置換であることが好ましい。Rで表されるアルキル基は、例えばC2n+1-で表すことができる。ここでnは7以上の整数を表す。また、Rで表されるフッ化アルキル基は、例えばC2n+1-で表されるアルキル基を構成する水素原子の一部または全部がフッ素原子により置換された構造を有することができる。Rで表されるアルキル基またはフッ化アルキル基の炭素数は、7以上であり、8以上であることが好ましく、9以上であることがより好ましく、10以上であることが更に好ましく、11以上であることが一層好ましく、12以上であることがより一層好ましく、13以上であることが更に一層好ましい。また、Rで表されるアルキル基またはフッ化アルキル基の炭素数は、20以下であることが好ましく、19以下であることがより好ましく、18以下であることが更に好ましい。
式1中、Zはアンモニウムカチオンを表す。アンモニウムカチオンは、詳しくは、以下の構造を有する。本発明および本明細書において、化合物の一部を表す式中の「*」は、その一部の構造と隣接する原子との結合位置を表す。
アンモニウムカチオンの窒素カチオンNと式1中の酸素アニオンOとが塩架橋基を形成して式1で表されるアルキルエステルアニオンのアンモニウム塩構造が形成され得る。式1で表されるアルキルエステルアニオンのアンモニウム塩構造を有する化合物が磁性層に含まれることは、磁気テープについてX線光電子分光法(ESCA;Electron Spectroscopy for Chemical Analysis)、赤外分光法(IR;infrared spectroscopy)等により分析を行うことによって確認できる。
一形態では、Zで表されるアンモニウムカチオンは、例えば、含窒素ポリマーの窒素原子がカチオンとなることによってもたらされ得る。含窒素ポリマーとは、窒素原子を含むポリマーを意味する。本発明および本明細書において、「ポリマー」および「重合体」との語は、ホモポリマーとコポリマーとを包含する意味で用いられる。窒素原子は、一形態ではポリマーの主鎖を構成する原子として含まれることができ、また一形態ではポリマーの側鎖を構成する原子として含まれることができる。
含窒素ポリマーの一形態としては、ポリアルキレンイミンを挙げることができる。ポリアルキレンイミンは、アルキレンイミンの開環重合体であって、下記式2で表される繰り返し単位を複数有するポリマーである。
式2中の主鎖を構成する窒素原子Nが窒素カチオンNとなって式1中のZで表されるアンモニウムカチオンがもたらされ得る。そしてアルキルエステルアニオンと、例えば以下のようにアンモニウム塩構造を形成し得る。
以下、式2について更に詳細に説明する。
式2中、RおよびRは、それぞれ独立に水素原子またはアルキル基を表し、n1は2以上の整数を表す。
またはRで表されるアルキル基としては、例えば、炭素数1~6のアルキル基を挙げることができ、好ましくは炭素数1~3のアルキル基であり、より好ましくはメチル基またはエチル基であり、更に好ましくはメチル基である。RまたはRで表されるアルキル基は、好ましくは無置換アルキル基である。式2中のRおよびRの組み合わせとしては、一方が水素原子であって他方がアルキル基である形態、両方が水素原子である形態および両方がアルキル基(同一または異なるアルキル基)である形態があり、好ましくは両方が水素原子である形態である。ポリアルキレンイミンをもたらすアルキレンイミンとして、環を構成する炭素数が最少の構造はエチレンイミンであり、エチレンイミンの開環により得られたアルキレンイミン(エチレンイミン)の主鎖の炭素数は2である。したがって、式2中のn1は2以上である。式2中のn1は、例えば10以下、8以下、6以下または4以下であることができる。ポリアルキレンイミンは、式2で表される繰り返し構造として同一構造のみを含むホモポリマーであってもよく、式2で表される繰り返し構造として2種以上の異なる構造を含むコポリマーであってもよい。式1で表されるアルキルエステルアニオンのアンモニウム塩構造を有する化合物を形成するために使用可能なポリアルキレンイミンの数平均分子量は、例えば200以上であることができ、300以上であることが好ましく、400以上であることがより好ましい。また、上記ポリアルキレンイミンの数平均分子量は、例えば10,000以下であることができ、5,000以下であることが好ましく、2,000以下であることがより好ましい。
本発明および本明細書において、平均分子量(重量平均分子量および数平均分子量)とは、ゲル浸透クロマトグラフィー(GPC;Gel Permeation Chromatography)により測定され、標準ポリスチレン換算により求められる値をいうものとする。後述の実施例に示す平均分子量は、特記しない限り、GPCを用いて下記測定条件により測定された値を標準ポリスチレン換算して求めた値(ポリスチレン換算値)である。
GPC装置:HLC-8220(東ソー社製)
ガードカラム:TSKguardcolumn Super HZM-H
カラム:TSKgel Super HZ 2000、TSKgel Super HZ 4000、TSKgel Super HZ-M(東ソー社製、4.6mm(内径)×15.0cm、3種カラムを直列連結)
溶離液:テトラヒドロフラン(THF)、安定剤(2,6-ジ-t-ブチル-4-メチルフェノール)含有
溶離液流速:0.35mL/分
カラム温度:40℃
インレット温度:40℃
屈折率(RI;Refractive Index)測定温度:40℃
サンプル濃度:0.3質量%
サンプル注入量:10μL
また、含窒素ポリマーの他の一形態としては、ポリアリルアミンを挙げることができる。ポリアリルアミンは、アリルアミンの重合体であって、下記式3で表される繰り返し単位を複数有するポリマーである。
式3中の側鎖のアミノ基を構成する窒素原子Nが窒素カチオンNとなって式1中のZで表されるアンモニウムカチオンがもたらされ得る。そしてアルキルエステルアニオンと、例えば以下のようにアンモニウム塩構造を形成し得る。
式1で表されるアルキルエステルアニオンのアンモニウム塩構造を有する化合物を形成するために使用可能なポリアリルアミンの重量平均分子量は、例えば 200以上であることができ、1,000以上であることが好ましく、1,500以上であることがより好ましい。また、上記ポリアルキレンイミンの重量平均分子量は、例えば15,000以下であることができ、10,000以下であることが好ましく、8,000以下であることがより好ましい。
式1で表されるアルキルエステルアニオンのアンモニウム塩構造を有する化合物として、ポリアルキレンイミンまたはポリアリルイミン由来の構造を有する化合物が含まれることは、磁性層表面を飛行時間型二次イオン質量分析法(TOF-SIMS:Time-of-Flight Secondary Ion Mass Spectrometry)等により分析することによって確認できる。
式1で表されるアルキルエステルアニオンのアンモニウム塩構造を有する化合物は、含窒素ポリマーと炭素数7以上の脂肪酸および炭素数7以上のフッ化脂肪酸からなる群から選ばれる脂肪酸類の1種以上との塩であることができる。塩を形成する含窒素ポリマーは、1種または2種以上の含窒素ポリマーであることができ、例えばポリアルキレンイミンおよびポリアリルアミンからなる群から選択される含窒素ポリマーであることができる。塩を形成する脂肪酸類は、炭素数7以上の脂肪酸および炭素数7以上のフッ化脂肪酸からなる群から選ばれる脂肪酸類の1種または2種以上であることができる。フッ化脂肪酸は、脂肪酸においてカルボキシ基COOHと結合しているアルキル基を構成する水素原子の一部または全部がフッ素原子に置換された構造を有する。例えば、含窒素ポリマーと上記脂肪酸類とを室温で混合することによって、塩形成反応は容易に進行し得る。室温とは、例えば20~25℃程度である。一形態では、磁性層形成用組成物の成分として含窒素ポリマーの1種以上と脂肪酸類の1種以上を使用し、磁性層形成用組成物の調製工程においてこれらを混合することによって、塩形成反応を進行させることができる。また、一形態では、磁性層形成用組成物の調製前に、含窒素ポリマーの1種以上と脂肪酸類の1種以上とを混合して塩を形成した後に、この塩を磁性層形成用組成物の成分として使用して磁性層形成用組成物を調製することができる。この点は、式1で表されるアルキルエステルアニオンのアンモニウム塩構造を有する化合物を含む非磁性層を形成する場合にも当てはまる。例えば、磁性層に関しては、強磁性粉末100.0質量部あたり 0.1~10.0質量部の含窒素ポリマーを使用することができ、0.5~8.0質量部の含窒素ポリマーを使用することが好ましい。上記脂肪酸類は、強磁性粉末100.0質量部あたり、例えば0.05~10.0質量部使用することができ、0.1~5.0質量部使用することが好ましい。また、非磁性層に関しては、非磁性粉末100.0質量部あたり0.1~10.0質量部の含窒素ポリマーを使用することができ、0.5~8.0質量部の含窒素ポリマーを使用することが好ましい。上記脂肪酸類は、非磁性粉末100.0質量部あたり、例えば0.05~10.0質量部使用することができ、0.1~5.0質量部使用することが好ましい。尚、含窒素ポリマーと上記脂肪酸類とを混合して式1で表されるアルキルエステルアニオンのアンモニウム塩を形成する際、併せて含窒素ポリマーを構成する窒素原子と上記脂肪酸類のカルボキシ基とが反応して下記構造が形成される場合もあり、そのような構造を含む形態も上記化合物に包含される。
上記脂肪酸類としては、先に式1中のRとして記載したアルキル基を有する脂肪酸および先に式1中のRとして記載したフッ化アルキル基を有するフッ化脂肪酸を挙げることができる。
式1で表されるアルキルエステルアニオンのアンモニウム塩構造を有する化合物を形成するために使用する含窒素ポリマーと上記脂肪酸類との混合比は、含窒素ポリマー:上記脂肪酸類の質量比として、10:90~90:10であることが好ましく、20:80~85:15であることがより好ましく、30:70~80:20であることが更に好ましい。また、式1で表されるアルキルエステルアニオンのアンモニウム塩構造を有する化合物は、磁性層に強磁性粉末100.0質量部に対して0.01質量部以上含まれることが好ましく、0.1質量部以上含まれることがより好ましく、0.5質量部以上含まれることが更に好ましい。ここで磁性層における上記化合物の含有量とは、磁性層表面に液膜を形成している量と磁性層内部に含まれる量との合計量をいうものとする。一方、磁性層の強磁性粉末の含有量が多いことは高密度記録化の観点から好ましい。したがって、高密度記録化の観点からは強磁性粉末以外の成分の含有量が少ないことは好ましい。この観点から、磁性層の上記化合物の含有量は、強磁性粉末100.0質量部に対して15.0質量部以下であることが好ましく、10.0質量部以下であることがより好ましく、8.0質量部以下であることが更に好ましい。また、磁性層を形成するために使用される磁性層形成用組成物の上記化合物の含有量の好ましい範囲も同様である。
潤滑剤としては、例えば境界潤滑剤として機能し得る脂肪酸アミドを使用することができる。境界潤滑剤は、粉末(例えば強磁性粉末)の表面に吸着し強固な潤滑膜を形成することで接触摩擦を下げることのできる潤滑剤と考えられている。脂肪酸アミドとしては、例えば、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸、リノール酸、リノレン酸、ベヘン酸、エルカ酸、エライジン酸等の各種脂肪酸のアミド、具体的にはラウリン酸アミド、ミリスチン酸アミド、パルミチン酸アミド、ステアリン酸アミド等を挙げることができる。磁性層の脂肪酸アミド含有量は、強磁性粉末100.0質量部あたり、例えば0~3.0質量部であり、好ましくは0~2.0質量部であり、より好ましくは0~1.0質量部である。また、非磁性層にも脂肪酸アミドが含まれていてもよい。非磁性層の脂肪酸アミド含有量は、非磁性粉末100.0質量部あたり、例えば0~3.0質量部であり、好ましくは0~1.0質量部である。分散剤については、特開2012-133837号公報の段落0061および0071を参照できる。分散剤を非磁性層形成用組成物に添加してもよい。非磁性層形成用組成物に添加し得る分散剤については、特開2012-133837号公報の段落0061を参照できる。
磁気テープの長手方向にかかるテンションを調整することによって磁気テープの幅方向の寸法を制御して記録および/または再生を行う際に電磁変換特性の低下を抑制することに関して、本発明者は、以下のように考えている、
磁気テープの長手方向に加わるテンションが変化し得る場合、先に記載したように、磁気テープヘッドとの接触に起因する磁気テープヘッドの摩耗の程度が記録および/または再生中に大きく異なってしまう(摩耗の程度に大きなばらつきが生じてしまう)と推察される。この摩耗の程度に大きなばらつきが生じることが、電磁変換特性の低下の要因と考えられる。
ところで、摩耗には、研磨剤のサイズ、含有量、磁気ヘッドに対する剪断応力(摩擦特性に影響し得る)、垂直抗力等が影響すると考えられる。磁気テープの長手方向に加わるテンションが大きくなると垂直抗力が増す傾向があるため、磁気ヘッドへの研磨剤の食い込みが深くなり、摩擦が高くなり、摩耗が増加すると考えられる。これに対し、例えば液体潤滑剤として機能し得ると考えられる上記化合物を磁性層の成分として使用することは、磁性層表面の潤滑性(滑り性)を高めることにつながり、テンションの変化によって磁気ヘッドの摩耗の程度に大きなばらつきが生じることを抑制することに寄与し得ると考えられる。また、研磨剤については、磁性層に含まれる研磨剤量が多いほど、磁気テープの長手方向に加わるテンションが高い場合に磁気ヘッドの摩耗がより生じ易くなると推察される。磁気テープの長手方向に加わるテンションが低い場合には、サイズが異なる複数の研磨剤を磁性層の成分として使用する場合、サイズがより大きい研磨剤が、磁気ヘッドの摩耗をより引き起こし易いと推察される。
以上の点に関して、本発明者は、例えば、磁性層形成のために潤滑剤として使用する成分として上記化合物を使用すること、使用する研磨剤の組み合わせ、および/または、研磨剤の含有量の調整は、AlFeSil摩耗値0.2NおよびAlFeSil摩耗値1.5Nの値を制御することに寄与し得ると考えている。そして、AlFeSil摩耗値0.2NおよびAlFeSil摩耗値1.5Nの値を、いずれも先に記載した範囲に制御することが、磁気テープの長手方向にかかるテンションを調整することによって磁気テープの幅方向の寸法を制御して記録および/または再生を行う際に電磁変換特性の低下を抑制することにつながると推察される。
<非磁性層>
次に非磁性層について説明する。上記磁気テープは、非磁性支持体上に直接磁性層を有していてもよく、非磁性支持体と磁性層との間に非磁性粉末を含む非磁性層を有していてもよい。非磁性層に使用される非磁性粉末は、無機物質の粉末(無機粉末)でも有機物質の粉末(有機粉末)でもよい。また、カーボンブラック等も使用できる。無機物質としては、例えば金属、金属酸化物、金属炭酸塩、金属硫酸塩、金属窒化物、金属炭化物、金属硫化物等が挙げられる。これらの非磁性粉末は、市販品として入手可能であり、公知の方法で製造することもできる。その詳細については、特開2011-216149号公報の段落0146~0150を参照できる。非磁性層に使用可能なカーボンブラックについては、特開2010-24113号公報の段落0040~0041も参照できる。非磁性層における非磁性粉末の含有量(充填率)は、好ましくは50~90質量%の範囲であり、より好ましくは60~90質量%の範囲である。
非磁性層は、結合剤を含むことができ、添加剤を含むこともできる。非磁性層の結合剤、添加剤等のその他詳細については、非磁性層に関する公知技術を適用できる。また、例えば、結合剤の種類および含有量、添加剤の種類および含有量等に関しては、磁性層に関する公知技術も適用できる。
上記磁気テープの非磁性層には、非磁性粉末とともに、例えば不純物として、または意図的に、少量の強磁性粉末を含む実質的に非磁性な層も包含されるものとする。ここで実質的に非磁性な層とは、この層の残留磁束密度が10mT以下であるか、保磁力が7.96kA/m(100Oe)以下であるか、または、残留磁束密度が10mT以下であり、かつ保磁力が7.96kA/m(100Oe)以下である層をいうものとする。非磁性層は、残留磁束密度および保磁力を持たないことが好ましい。
<非磁性支持体>
次に、非磁性支持体について説明する。非磁性支持体(以下、単に「支持体」とも記載する。)としては、二軸延伸を行ったポリエチレンテレフタレート、ポリエチレンナフタレート、ポリアミド、ポリアミドイミド、芳香族ポリアミド等の公知のものが挙げられる。これらの中でもポリエチレンテレフタレート、ポリエチレンナフタレート、ポリアミドが好ましい。これらの支持体には、あらかじめコロナ放電、プラズマ処理、易接着処理、加熱処理等を行ってもよい。
<バックコート層>
上記テープは、非磁性支持体の磁性層を有する表面側とは反対の表面側に、非磁性粉末を含むバックコート層を有することもでき、有さないこともできる。バックコート層には、カーボンブラックおよび無機粉末の一方または両方が含有されていることが好ましい。バックコート層は、結合剤を含むことができ、添加剤を含むこともできる。バックコート層の非磁性粉末、結合剤、添加剤等の詳細については、バックコート層に関する公知技術を適用することができ、磁性層および/または非磁性層に関する公知技術を適用することもできる。例えば、特開2006-331625号公報の段落0018~0020および米国特許第7,029,774号明細書の第4欄65行目~第5欄38行目の記載を、バックコート層について参照できる。
<各種厚み>
磁気テープの厚み(総厚)に関して、近年の情報量の莫大な増大に伴い、磁気テープには記録容量を高めること(高容量化)が求められている。高容量化のための手段としては、磁気テープの厚みを薄くし、磁気テープカートリッジ1巻あたりに収容される磁気テープ長を増すことが挙げられる。この点から、上記磁気テープの厚み(総厚)は、5.6μm以下であることが好ましく、5.5μm以下であることがより好ましく、5.4μm以下であることがより好ましく、5.3μm以下であることが更に好ましく、5.2μm以下であることが一層好ましい。また、ハンドリングの容易性の観点からは、磁気テープの厚みは3.0μm以上であることが好ましく、3.5μm以上であることがより好ましい。
磁気テープの厚み(総厚)は、以下の方法によって測定することができる。
磁気テープの任意の部分からテープサンプル(例えば長さ5~10cm)を10枚切り出し、これらテープサンプルを重ねて厚みを測定する。測定された厚みを10分の1して得られた値(テープサンプル1枚当たりの厚み)を、テープ厚みとする。上記厚み測定は、0.1μmオーダーでの厚み測定が可能な公知の測定器を用いて行うことができる。
非磁性支持体の厚みは、好ましくは3.0~5.0μmである。
磁性層の厚みは、用いる磁気ヘッドの飽和磁化量、ヘッドギャップ長、記録信号の帯域等に応じて最適化することができ、一般には0.01μm~0.15μmであり、高密度記録化の観点から、好ましくは0.02μm~0.12μmであり、更に好ましくは0.03μm~0.1μmである。磁性層は少なくとも一層あればよく、磁性層を異なる磁気特性を有する二層以上に分離してもかまわず、公知の重層磁性層に関する構成が適用できる。二層以上に分離する場合の磁性層の厚みとは、これらの層の合計厚みとする。
非磁性層の厚みは、例えば0.1~1.5μmであり、0.1~1.0μmであることが好ましい。
バックコート層の厚みは、0.9μm以下が好ましく、0.1~0.7μmが更に好ましい。
磁性層の厚み等の各種厚みは、以下の方法により求めることができる。
磁気テープの厚み方向の断面を、イオンビームにより露出させた後、露出した断面において走査型電子顕微鏡または透過型電子顕微鏡による断面観察を行う。断面観察において任意の2箇所において求められた厚みの算術平均として、各種厚みを求めることができる。または、各種厚みは、製造条件等から算出される設計厚みとして求めることもできる。
<製造方法>
(各層形成用組成物の調製)
磁性層、非磁性層またはバックコート層を形成するための組成物は、先に説明した各種成分とともに、通常、溶媒を含む。溶媒としては、塗布型磁気記録媒体を製造するために一般に使用される各種有機溶媒を用いることができる。中でも、塗布型磁気記録媒体に通常使用される結合剤の溶解性の観点からは、各層形成用組成物には、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン、シクロヘキサノン、イソホロン、テトラヒドロフラン等のケトン溶媒の1種以上が含まれることが好ましい。各層形成用組成物における溶媒量は特に限定されるものではなく、通常の塗布型磁気記録媒体の各層形成用組成物と同様にすることができる。また、各層形成用組成物を調製する工程は、通常、少なくとも混練工程、分散工程、およびこれらの工程の前後に必要に応じて設けた混合工程を含むことができる。個々の工程はそれぞれ2段階以上に分かれていてもかまわない。各層形成用組成物の調製に用いられる成分は、どの工程の最初または途中で添加してもかまわない。また、個々の成分を2つ以上の工程で分割して添加してもかまわない。例えば、結合剤を混練工程、分散工程、および分散後の粘度調整のための混合工程で分割して投入してもよい。また、先に記載したように、磁性層形成用組成物の成分として、含窒素ポリマーの1種以上と上記脂肪酸類の1種以上とを使用し、磁性層形成用組成物の調製工程においてこれらを混合することによって、塩形成反応を進行させることができる。また、一形態では、磁性層形成用組成物の調製前に、含窒素ポリマーの1種以上と脂肪酸類の1種以上とを混合して塩を形成した後に、この塩を磁性層形成用組成物の成分として使用して磁性層形成用組成物を調製することができる。この点は、非磁性層形成用組成物の調製工程についても当てはまる。研磨剤液は、強磁性粉末および突起形成剤とは別分散して調製することが好ましい。研磨剤液は、好ましくは、強磁性粉末および突起形成剤とは別に、研磨剤と溶媒と好ましくは結合剤とを含む研磨剤液の1種または2種以上として準備して、磁性層形成用組成物の調製に使用することができる。研磨剤液の調製のために、分散処理および/または分級処理を行うことができる。これらの処理には、市販の装置を使用することができる。
上記磁気テープの製造工程では、従来の公知の製造技術を一部または全部の工程において用いることができる。混練工程では、オープンニーダ、連続ニーダ、加圧ニーダ、エクストルーダ等の強い混練力をもつニーダを使用することが好ましい。これらの混練処理の詳細については特開平1-106338号公報および特開平1-79274号公報に記載されている。また、各層形成用組成物を分散させるために、ガラスビーズおよび/またはその他のビーズを用いることができる。このような分散ビーズとしては、高比重の分散ビーズであるジルコニアビーズ、チタニアビーズ、およびスチールビーズが好適である。これら分散ビーズは、粒径(ビーズ径)と充填率を最適化して用いることが好ましい。分散機は公知のものを使用することができる。各層形成用組成物を、塗布工程に付す前に公知の方法によってろ過してもよい。ろ過は、例えばフィルタろ過によって行うことができる。ろ過に用いるフィルタとしては、例えば孔径0.01~3μmのフィルタ(例えばガラス繊維製フィルタ、ポリプロピレン製フィルタ等)を用いることができる。
磁性層形成用組成物の分散処理に関しては、一形態では、強磁性粉末の分散処理を二段階の分散処理により行い、第一の段階の分散処理により強磁性粉末の粗大な凝集物を解砕した後、分散ビーズとの衝突によって強磁性粉末の粒子に加わる衝突エネルギーが第一の分散処理より小さな第二の段階の分散処理を行うことができる。かかる分散処理によれば、強磁性粉末の分散性向上とチッピング(粒子が一部欠けること)の発生の抑制とを両立することができると考えられる。
上記の二段階の分散処理の一例としては、強磁性粉末、結合剤および溶媒を、第一の分散ビーズの存在下で分散処理することにより分散液を得る第一の段階と、第一の段階で得られた分散液を、第一の分散ビーズよりビーズ径および密度が小さい第二の分散ビーズの存在下で分散処理する第二の段階と、を含む分散処理を挙げることができる。以下に、上記の分散処理について、更に説明する。
強磁性粉末の分散性を高めるためには、上記の第一の段階および第二の段階は、強磁性粉末を他の粉末成分と混合する前の分散処理として行うことが好ましい。例えば、研磨剤および突起形成剤と混合する前に、強磁性粉末、結合剤、溶媒および任意に添加される添加剤を含む液(磁性液)の分散処理として、上記の第一の段階および第二の段階を行うことが好ましい。
第二の分散ビーズのビーズ径は、好ましくは、第一の分散ビーズのビーズ径の1/100以下であり、より好ましくは1/500以下である。また、第二の分散ビーズのビーズ径は、例えば第一の分散ビーズのビーズ径の1/10000以上であることができる。ただし、この範囲に限定されるものではない。例えば、第二の分散ビーズのビーズ径は、80~1000nmの範囲であることが好ましい。一方、第一の分散ビーズのビーズ径は、例えば0.2~1.0mmの範囲であることができる。
尚、本発明および本明細書におけるビーズ径は、先に記載した粉末の平均粒子サイズの測定方法と同様の方法で測定される値とする。
上記の第二の段階は、質量基準で、第二の分散ビーズが、強磁性六方晶フェライト粉末の10倍以上の量で存在する条件下で行うことが好ましく、10倍~30倍の量で存在する条件下で行うことがより好ましい。
一方、第一の段階における第一の分散ビーズ量も、上記範囲とすることが好ましい。
第二の分散ビーズは、第一の分散ビーズより密度が小さいビーズである。「密度」は、分散ビーズの質量(単位:g)を体積(単位:cm)で除して求められる。測定は、アルキメデス法によって行われる。第二の分散ビーズの密度は、好ましくは3.7g/cm以下であり、より好ましくは3.5g/cm以下である。第二の分散ビーズの密度は、例えば2.0g/cm以上であってもよく、2.0g/cmを下回ってもよい。密度の点から好ましい第二の分散ビーズとしては、ダイヤモンドビーズ、炭化ケイ素ビーズ、窒化ケイ素ビーズ等を挙げることができ、密度および硬度の点で好ましい第二の分散ビーズとしては、ダイヤモンドビーズを挙げることができる。
一方、第一の分散ビーズとしては、密度が3.7g/cm超の分散ビーズが好ましく、密度が3.8g/cm以上の分散ビーズがより好ましく、4.0g/cm以上の分散ビーズが更に好ましい。第一の分散ビーズの密度は、例えば7.0g/cm以下であってもよく、7.0g/cm超でもよい。第一の分散ビーズとしては、ジルコニアビーズ、アルミナビーズ等を用いることが好ましく、ジルコニアビーズを用いることがより好ましい。
分散時間は特に限定されるものではなく、用いる分散機の種類等に応じて設定すればよい。
(塗布工程)
磁性層は、磁性層形成用組成物を、非磁性支持体表面上に直接塗布するか、または非磁性層形成用組成物と逐次もしくは同時に重層塗布することにより形成することができる。バックコート層は、バックコート層形成用組成物を、非磁性支持体の非磁性層および/または磁性層を有する(または非磁性層および/または磁性層が追って設けられる)表面とは反対側の表面に塗布することにより形成することができる。各層形成のための塗布の詳細については、特開2010-231843号公報の段落0066を参照できる。
(その他の工程)
磁気テープの製造のためのその他の各種工程については、公知技術を適用できる。各種工程については、例えば特開2010-231843号公報の段落0067~0070を参照できる。例えば、磁性層形成用組成物の塗布層には、この塗布層が湿潤状態にあるうちに、配向ゾーンにおいて配向処理を行うことができる。配向処理については、特開2010-24113号公報の段落0052の記載をはじめとする各種公知技術を適用することができる。例えば、垂直配向処理は、異極対向磁石を用いる方法等の公知の方法によって行うことができる。配向ゾーンでは、乾燥風の温度、風量および/または配向ゾーンにおける搬送速度によって塗布層の乾燥速度を制御することができる。また、配向ゾーンに搬送する前に塗布層を予備乾燥させてもよい。一例として、垂直配向処理における磁場強度は、0.1~1.5Tとすることができる。
各種工程を経ることによって、長尺状の磁気テープ原反を得ることができる。得られた磁気テープ原反は、公知の裁断機によって、磁気テープカートリッジに収容すべき磁気テープの幅に裁断(スリット)される。上記の幅は規格にしたがい決定でき、通常、1/2インチである。1インチ=2.54cmである。
スリットして得られた磁気テープには、通常、サーボパターンが形成される。
(サーボパターンの形成)
「サーボパターンの形成」は、「サーボ信号の記録」ということもできる。以下に、サーボパターンの形成について説明する。
サーボパターンは、通常、磁気テープの長手方向に沿って形成される。サーボ信号を利用する制御(サーボ制御)の方式としては、タイミングベースサーボ(TBS)、アンプリチュードサーボ、周波数サーボ等が挙げられる。
ECMA(European Computer Manufacturers Association)―319(June 2001)に示される通り、LTO(Linear Tape-Open)規格に準拠した磁気テープ(一般に「LTOテープ」と呼ばれる。)では、タイミングベースサーボ方式が採用されている。このタイミングベースサーボ方式において、サーボパターンは、互いに非平行な一対の磁気ストライプ(「サーボストライプ」とも呼ばれる。)が、磁気テープの長手方向に連続的に複数配置されることによって構成されている。本発明および本明細書において、「タイミングベースサーボパターン」とは、タイミングベースサーボ方式のサーボシステムにおけるヘッドトラッキングを可能とするサーボパターンをいう。上記のように、サーボパターンが互いに非平行な一対の磁気ストライプにより構成される理由は、サーボパターン上を通過するサーボ信号読み取り素子に、その通過位置を教えるためである。具体的には、上記の一対の磁気ストライプは、その間隔が磁気テープの幅方向に沿って連続的に変化するように形成されており、サーボ信号読み取り素子がその間隔を読み取ることによって、サーボパターンとサーボ信号読み取り素子との相対位置を知ることができる。この相対位置の情報が、データトラックのトラッキングを可能にする。そのために、サーボパターン上には、通常、磁気テープの幅方向に沿って、複数のサーボトラックが設定されている。
サーボバンドは、磁気テープの長手方向に連続するサーボパターンにより構成される。このサーボバンドは、通常、磁気テープに複数本設けられる。例えば、LTOテープにおいて、その数は5本である。隣接する2本のサーボバンドに挟まれた領域が、データバンドである。データバンドは、複数のデータトラックで構成されており、各データトラックは、各サーボトラックに対応している。
また、一形態では、特開2004-318983号公報に示されているように、各サーボバンドには、サーボバンドの番号を示す情報(「サーボバンドID(identification)」または「UDIM(Unique DataBand Identification Method)情報」とも呼ばれる。)が埋め込まれている。このサーボバンドIDは、サーボバンド中に複数ある一対のサーボストライプのうちの特定のものを、その位置が磁気テープの長手方向に相対的に変位するように、ずらすことによって記録されている。具体的には、複数ある一対のサーボストライプのうちの特定のもののずらし方を、サーボバンド毎に変えている。これにより、記録されたサーボバンドIDはサーボバンド毎にユニークなものとなるため、一つのサーボバンドをサーボ信号読み取り素子で読み取るだけで、そのサーボバンドを一意に(uniquely)特定することができる。
尚、サーボバンドを一意に特定する方法には、ECMA―319(June 2001)に示されているようなスタッガード方式を用いたものもある。このスタッガード方式では、磁気テープの長手方向に連続的に複数配置された、互いに非平行な一対の磁気ストライプ(サーボストライプ)の群を、サーボバンド毎に磁気テープの長手方向にずらすように記録する。隣接するサーボバンド間における、このずらし方の組み合わせは、磁気テープ全体においてユニークなものとされているため、2つのサーボ信号読み取り素子によりサーボパターンを読み取る際に、サーボバンドを一意に特定することも可能となっている。
また、各サーボバンドには、ECMA―319(June 2001)に示されている通り、通常、磁気テープの長手方向の位置を示す情報(「LPOS(Longitudinal Position)情報」とも呼ばれる。)も埋め込まれている。このLPOS情報も、UDIM情報と同様に、一対のサーボストライプの位置を、磁気テープの長手方向にずらすことによって記録されている。ただし、UDIM情報とは異なり、このLPOS情報では、各サーボバンドに同じ信号が記録されている。
上記のUDIM情報およびLPOS情報とは異なる他の情報を、サーボバンドに埋め込むことも可能である。この場合、埋め込まれる情報は、UDIM情報のようにサーボバンド毎に異なるものであってもよいし、LPOS情報のようにすべてのサーボバンドに共通のものであってもよい。
また、サーボバンドに情報を埋め込む方法としては、上記以外の方法を採用することも可能である。例えば、一対のサーボストライプの群の中から、所定の対を間引くことによって、所定のコードを記録するようにしてもよい。
サーボパターン形成用ヘッドは、サーボライトヘッドと呼ばれる。サーボライトヘッドは、通常、上記一対の磁気ストライプに対応した一対のギャップを、サーボバンドの数だけ有する。通常、各一対のギャップには、それぞれコアとコイルが接続されており、コイルに電流パルスを供給することによって、コアに発生した磁界が、一対のギャップに漏れ磁界を生じさせることができる。サーボパターンの形成の際には、サーボライトヘッド上に磁気テープを走行させながら電流パルスを入力することによって、一対のギャップに対応した磁気パターンを磁気テープに転写させて、サーボパターンを形成することができる。各ギャップの幅は、形成されるサーボパターンの密度に応じて適宜設定することができる。各ギャップの幅は、例えば、1μm以下、1~10μm、10μm以上等に設定可能である。
磁気テープにサーボパターンを形成する前には、磁気テープに対して、通常、消磁(イレース)処理が施される。このイレース処理は、直流磁石または交流磁石を用いて、磁気テープに一様な磁界を加えることによって行うことができる。イレース処理には、DC(Direct Current)イレースとAC(Alternating Current)イレースとがある。ACイレースは、磁気テープに印加する磁界の方向を反転させながら、その磁界の強度を徐々に下げることによって行われる。一方、DCイレースは、磁気テープに一方向の磁界を加えることによって行われる。DCイレースには、更に2つの方法がある。第一の方法は、磁気テープの長手方向に沿って一方向の磁界を加える、水平DCイレースである。第二の方法は、磁気テープの厚み方向に沿って一方向の磁界を加える、垂直DCイレースである。イレース処理は、磁気テープ全体に対して行ってもよいし、磁気テープのサーボバンド毎に行ってもよい。
形成されるサーボパターンの磁界の向きは、イレースの向きに応じて決まる。例えば、磁気テープに水平DCイレースが施されている場合、サーボパターンの形成は、磁界の向きがイレースの向きと反対になるように行われる。これにより、サーボパターンが読み取られて得られるサーボ信号の出力を、大きくすることができる。尚、特開2012-53940号公報に示されている通り、垂直DCイレースされた磁気テープに、上記ギャップを用いた磁気パターンの転写を行った場合、形成されたサーボパターンが読み取られて得られるサーボ信号は、単極パルス形状となる。一方、水平DCイレースされた磁気テープに、上記ギャップを用いた磁気パターンの転写を行った場合、形成されたサーボパターンが読み取られて得られるサーボ信号は、双極パルス形状となる。
[磁気テープカートリッジ]
本発明の一態様は、上記磁気テープを含む磁気テープカートリッジに関する。
上記磁気テープカートリッジに含まれる磁気テープの詳細は、先に記載した通りである。
磁気テープカートリッジでは、一般に、カートリッジ本体内部に磁気テープがリールに巻き取られた状態で収容されている。リールは、カートリッジ本体内部に回転可能に備えられている。磁気テープカートリッジとしては、カートリッジ本体内部にリールを1つ具備する単リール型の磁気テープカートリッジおよびカートリッジ本体内部にリールを2つ具備する双リール型の磁気テープカートリッジが広く用いられている。単リール型の磁気テープカートリッジは、磁気テープへのデータの記録および/または再生のために磁気テープ装置に装着されると、磁気テープカートリッジから磁気テープが引き出されて磁気テープ装置側のリールに巻き取られる。磁気テープカートリッジから巻き取りリールまでの磁気テープ搬送経路には、磁気ヘッドが配置されている。磁気テープカートリッジ側のリール(供給リール)と磁気テープ装置側のリール(巻き取りリール)との間で、磁気テープの送り出しと巻き取りが行われる。この間、磁気ヘッドと磁気テープの磁性層表面とが接触し摺動することにより、データの記録および/または再生が行われる。これに対し、双リール型の磁気テープカートリッジは、供給リールと巻き取りリールの両リールが、磁気テープカートリッジ内部に具備されている。
上記磁気テープカートリッジは、一形態では、カートリッジメモリを含むことができる。カートリッジメモリは、例えば不揮発メモリであることができ、テンション調整情報が既に記録されているメモリであるか、またはテンション調整情報が記録されるメモリであることができる。テンション調整情報は、磁気テープの長手方向にかかるテンションを調整するための情報である。カートリッジメモリについては、後述の記載も参照できる。
上記磁気テープおよび磁気テープカートリッジは、磁気テープの長手方向にかかるテンションを調整することによって磁気テープの幅方向の寸法を制御する磁気テープ装置(換言すれば磁気記録再生システム)において、好適に使用され得る。
[磁気テープ装置]
本発明の一態様は、上記磁気テープを含む磁気テープ装置に関する。上記磁気テープ装置において、磁気テープへのデータの記録および/または磁気テープに記録されたデータの再生は、磁気テープの磁性層表面と磁気ヘッドとを接触させて摺動させることにより行うことができる。上記磁気テープ装置は、本発明の一態様にかかる磁気テープカートリッジを着脱可能に含むことができる。
上記磁気テープカートリッジは、磁気ヘッドを備えた磁気テープ装置に装着させ、データの記録および/または再生を行うために用いることができる。本発明および本明細書において、「磁気テープ装置」とは、磁気テープへのデータの記録および磁気テープに記録されたデータの再生の少なくとも一方を行うことができる装置を意味するものとする。かかる装置は、一般にドライブと呼ばれる。上記磁気テープ装置に含まれる磁気ヘッドは、磁気テープへのデータの記録を行うことができる記録ヘッドであることができ、磁気テープに記録されたデータの再生を行うことができる再生ヘッドであることもできる。また、上記磁気テープ装置は、一形態では、別々の磁気ヘッドとして、記録ヘッドと再生ヘッドの両方を含むことができる。他の一形態では、上記磁気テープ装置に含まれる磁気ヘッドは、記録素子と再生素子の両方を1つの磁気ヘッドに備えた構成を有することもできる。再生ヘッドとしては、磁気テープに記録された情報を感度よく読み取ることができる磁気抵抗効果型(MR;Magnetoresistive)素子を再生素子として含む磁気ヘッド(MRヘッド)が好ましい。MRヘッドとしては、公知の各種MRヘッド(例えば、GMR(Giant Magnetoresistive)ヘッド、TMR(Tunnel Magnetoresistive)ヘッド等)を用いることができる。また、データの記録および/またはデータの再生を行う磁気ヘッドには、サーボ信号読み取り素子が含まれていてもよい。または、データの記録および/またはデータの再生を行う磁気ヘッドとは別のヘッドとして、サーボ信号読み取り素子を備えた磁気ヘッド(サーボヘッド)が上記磁気テープ装置に含まれていてもよい。例えば、データの記録および/または記録されたデータの再生を行う磁気ヘッド(以下、「記録再生ヘッド」とも呼ぶ。)は、サーボ信号読み取り素子を2つ含むことができ、2つのサーボ信号読み取り素子のそれぞれが、データバンドを挟んで隣り合う2本のサーボバンドを同時に読み取ることができる。2つのサーボ信号読み取り素子の間に、1つまたは複数のデータ用素子を配置することができる。データの記録のための素子(記録素子)とデータの再生のための素子(再生素子)を、「データ用素子」と総称する。
再生素子として再生素子幅が狭い再生素子を使用してデータの再生を行うことにより、高密度記録されたデータを高感度に再生することができる。この観点から、再生素子の再生素子幅は、0.8μm以下であることが好ましい。再生素子の再生素子幅は、例えば0.3μm以上であることができる。ただし、この値を下回ることも上記観点からは好ましい。
他方、再生素子幅が狭くなるほど、オフトラックに起因する再生不良等の現象が発生し易くなる。このような現象の発生を抑制するために、磁気テープの長手方向にかかるテンションを調整することによって、磁気テープの幅方向の寸法を制御する磁気テープ装置は好ましい。
ここで「再生素子幅」とは、再生素子幅の物理的な寸法をいうものとする。かかる物理的な寸法は、光学顕微鏡、走査型電子顕微鏡等により測定が可能である。
データの記録および/または記録されたデータの再生の際には、まず、サーボ信号を用いたトラッキングを行うことができる。即ち、サーボ信号読み取り素子を所定のサーボトラックに追従させることによって、データ用素子が、目的とするデータトラック上を通過するように制御することができる。データトラックの移動は、サーボ信号読み取り素子が読み取るサーボトラックを、テープ幅方向に変更することにより行われる。
また、記録再生ヘッドは、他のデータバンドに対する記録および/または再生を行うことも可能である。その際には、先に記載したUDIM情報を利用してサーボ信号読み取り素子を所定のサーボバンドに移動させ、そのサーボバンドに対するトラッキングを開始すればよい。
図1に、データバンドおよびサーボバンドの配置例を示す。図1中、磁気テープMTの磁性層には、複数のサーボバンド1が、ガイドバンド3に挟まれて配置されている。2本のサーボバンドに挟まれた複数の領域2が、データバンドである。サーボパターンは、磁化領域であって、サーボライトヘッドにより磁性層の特定の領域を磁化することによって形成される。サーボライトヘッドにより磁化する領域(サーボパターンを形成する位置)は規格により定められている。例えば業界標準規格であるLTO Ultriumフォーマットテープには、磁気テープ製造時に、図2に示すようにテープ幅方向に対して傾斜した複数のサーボパターンが、サーボバンド上に形成される。詳しくは、図2中、サーボバンド1上のサーボフレームSFは、サーボサブフレーム1(SSF1)およびサーボサブフレーム2(SSF2)から構成される。サーボサブフレーム1は、Aバースト(図2中、符号A)およびBバースト(図2中、符号B)から構成される。AバーストはサーボパターンA1~A5から構成され、BバーストはサーボパターンB1~B5から構成される。一方、サーボサブフレーム2は、Cバースト(図2中、符号C)およびDバースト(図2中、符号D)から構成される。CバーストはサーボパターンC1~C4から構成され、DバーストはサーボパターンD1~D4から構成される。このような18本のサーボパターンが5本と4本のセットで、5、5、4、4、の配列で並べられたサブフレームに配置され、サーボフレームを識別するために用いられる。図2には、説明のために1つのサーボフレームを示した。ただし、実際には、タイミングベースサーボ方式のヘッドトラッキングが行われる磁気テープの磁性層には、各サーボバンドに、複数のサーボフレームが走行方向に配置されている。図2中、矢印は走行方向を示している。例えば、LTO Ultriumフォーマットテープは、通常、磁性層の各サーボバンドに、テープ長1mあたり5000以上のサーボフレームを有する。
磁気テープ装置は、磁気テープ装置内を走行する磁気テープの長手方向にかかるテンションを調整可能なテンション調整機構を有することができる。かかるテンション調整機構は、磁気テープの長手方向にかかるテンションを可変に制御することができ、好ましくは、磁気テープの長手方向にかかるテンションを調整することによって、磁気テープの幅方向の寸法を制御することができる。上記テンション調整において、磁気テープの長手方向にかかるテンションは変化し得る。以下に、図3を参照して、かかる磁気テープ装置の一例について説明する。ただし本発明は、図3に示す例に限定されるものではない。
<磁気テープ装置の構成>
図3に示す磁気テープ装置10は、制御装置11からの命令により記録再生ヘッドユニット12を制御し、磁気テープMTへのデータの記録および再生を行う。
磁気テープ装置10は、磁気テープカートリッジリールと巻取りリールを回転制御するスピンドルモーター17A、17Bおよびそれらの駆動装置18A、18Bから磁気テープの長手方向に加わるテンションの検出および調整が可能な構成を有している。
磁気テープ装置10は、磁気テープカートリッジ13を装填可能な構成を有している。
磁気テープ装置10は、磁気テープカートリッジ13内のカートリッジメモリ131について読み取りおよび書き込みが可能なカートリッジメモリリードライト装置14を有している。
磁気テープ装置10に装着された磁気テープカートリッジ13からは、磁気テープMTの端部またはリーダーピンが自動のローディング機構または手動により引き出され、磁気テープMTの磁性層表面が記録再生ヘッドユニット12の記録再生ヘッド表面に接する向きでガイドローラー15A、15Bを通して記録再生ヘッド上をパスし、磁気テープMTが巻取りリール16に巻き取られる。
制御装置11からの信号によりスピンドルモーター17Aとスピンドルモーター17Bの回転およびトルクが制御され、磁気テープMTが任意の速度とテンションで走行される。テープ速度の制御には、磁気テープ上に予め形成されたサーボパターンを利用することができる。テンションの検出のために、磁気テープカートリッジ13と巻取りリール16との間にテンション検出機構を設けてもよい。テンションの制御は、スピンドルモーター17Aおよび17Bによる制御の他に、ガイドローラー15Aおよび15Bを用いて行ってもよい。
カートリッジメモリリードライト装置14は、制御装置11からの命令により、カートリッジメモリ131の情報の読み出しと書き込みが可能に構成されている。カートリッジメモリリードライト装置14とカートリッジメモリ131との間の通信方式としては、例えば、ISO(International Organization for Standardization)14443方式を採用できる。
制御装置11は、例えば、制御部、記憶部、通信部等を含む。
記録再生ヘッドユニット12は、例えば、記録再生ヘッド、記録再生ヘッドのトラック幅方向の位置を調整するサーボトラッキングアクチュエータ、記録再生アンプ19、制御装置11と接続するためのコネクタケーブル等から構成される。記録再生ヘッドは、例えば、磁気テープにデータを記録する記録素子、磁気テープのデータを再生する再生素子および磁気テープ上に記録されたサーボ信号を読み取るサーボ信号読み取り素子から構成される。1つの磁気ヘッド内に、記録素子、再生素子、サーボ信号読み取り素子は、例えば、それぞれ1個以上搭載されている。または、磁気テープの走行方向に応じた複数の磁気ヘッド内に別々にそれぞれの素子を有していてもよい。
記録再生ヘッドユニット12は、制御装置11からの命令に応じて、磁気テープMTに対してデータを記録することが可能に構成されている。また、制御装置11からの命令に応じて、磁気テープMTに記録されたデータを再生することが可能に構成されている。
制御装置11は、磁気テープMTの走行時にサーボバンドから読み取られるサーボ信号から磁気テープの走行位置を求め、狙いの走行位置(トラック位置)に記録素子および/または再生素子が位置するように、サーボトラッキングアクチュエータを制御する機構を有している。このトラック位置の制御は、例えば、フィードバック制御により行われる。
制御装置11は、磁気テープMTの走行時に隣り合う2本のサーボバンドから読み取られるサーボ信号から、サーボバンド間隔を求める機構を有している。またサーボバンド間隔が狙いの値になるように、スピンドルモーター17Aおよびスピンドルモーター17Bのトルクおよび/またはガイドローラー15Aおよび15Bを制御して磁気テープの長手方向のテンションを制御する機構を有している。このテンションの制御は、例えば、フィードバック制御により行われる。また、制御装置11は、求めたサーボバンド間隔の情報を、制御装置11の内部の記憶部、カートリッジメモリ131、外部の接続機器等に保存することができる。
以下に、本発明を実施例に基づき説明する。ただし、本発明は実施例に示す態様に限定されるものではない。以下に記載の「部」、「%」の表示は、特記しない限り、「質量部」、「質量%」を示す。以下に記載の工程および評価は、特記しない限り、温度23℃±1℃の環境において行った。また、以下に記載の「eq」は、SI単位系に換算不可の単位である当量(equivalent)を示す。
[強磁性粉末]
表2中、「BaFe」は、平均粒子サイズ(平均板径)21nmの六方晶バリウムフェライト粉末である。
表2中、「SrFe1」は、以下の方法により作製された六方晶ストロンチウムフェライト粉末である。
SrCOを1707g、HBOを687g、Feを1120g、Al(OH)を45g、BaCOを24g、CaCOを13g、およびNdを235g秤量し、ミキサーにて混合し原料混合物を得た。
得られた原料混合物を、白金ルツボで溶融温度1390℃で溶融し、融液を撹拌しつつ白金ルツボの底に設けた出湯口を加熱し、融液を約6g/秒で棒状に出湯させた。出湯液を水冷双ローラーで圧延急冷して非晶質体を作製した。
作製した非晶質体280gを電気炉に仕込み、昇温速度3.5℃/分にて635℃(結晶化温度)まで昇温し、同温度で5時間保持して六方晶ストロンチウムフェライト粒子を析出(結晶化)させた。
次いで六方晶ストロンチウムフェライト粒子を含む上記で得られた結晶化物を乳鉢で粗粉砕し、ガラス瓶に粒径1mmのジルコニアビーズ1000gおよび濃度1%の酢酸水溶液800mlを加えてペイントシェーカーにて3時間分散処理を行った。その後、得られた分散液をビーズと分離させステンレスビーカーに入れた。分散液を液温100℃で3時間静置させてガラス成分の溶解処理を行った後、遠心分離器で沈澱させてデカンテーションを繰り返して洗浄し、炉内温度110℃の加熱炉内で6時間乾燥させて六方晶ストロンチウムフェライト粉末を得た。
上記で得られた六方晶ストロンチウムフェライト粉末の平均粒子サイズは18nm、活性化体積は902nm、異方性定数Kuは2.2×10J/m、質量磁化σsは49A・m/kgであった。
上記で得られた六方晶ストロンチウムフェライト粉末から試料粉末を12mg採取し、この試料粉末を先に例示した溶解条件によって部分溶解して得られたろ液の元素分析をICP分析装置によって行い、ネオジム原子の表層部含有率を求めた。
別途、上記で得られた六方晶ストロンチウムフェライト粉末から試料粉末を12mg採取し、この試料粉末を先に例示した溶解条件によって全溶解して得られたろ液の元素分析をICP分析装置によって行い、ネオジム原子のバルク含有率を求めた。
上記で得られた六方晶ストロンチウムフェライト粉末の鉄原子100原子%に対するネオジム原子の含有率(バルク含有率)は、2.9原子%であった。また、ネオジム原子の表層部含有率は8.0原子%であった。表層部含有率とバルク含有率との比率、「表層部含有率/バルク含有率」は2.8であり、ネオジム原子が粒子の表層に偏在していることが確認された。
上記で得られた粉末が六方晶フェライトの結晶構造を示すことは、CuKα線を電圧45kVかつ強度40mAの条件で走査し、下記条件でX線回折パターンを測定すること(X線回折分析)により確認した。上記で得られた粉末は、マグネトプランバイト型(M型)の六方晶フェライトの結晶構造を示した。また、X線回折分析により検出された結晶相は、マグネトプランバイト型の単一相であった。
PANalytical X’Pert Pro回折計、PIXcel検出器
入射ビームおよび回折ビームのSollerスリット:0.017ラジアン
分散スリットの固定角:1/4度
マスク:10mm
散乱防止スリット:1/4度
測定モード:連続
1段階あたりの測定時間:3秒
測定速度:毎秒0.017度
測定ステップ:0.05度
表2中、「SrFe2」は、以下の方法により作製された六方晶ストロンチウムフェライト粉末である。
SrCOを1725g、HBOを666g、Feを1332g、Al(OH)を52g、CaCOを34g、BaCOを141g秤量し、ミキサーにて混合し原料混合物を得た。
得られた原料混合物を、白金ルツボで溶融温度1380℃で溶融し、融液を撹拌しつつ白金ルツボの底に設けた出湯口を加熱し、融液を約6g/秒で棒状に出湯させた。出湯液を水冷双ロールで圧延急冷して非晶質体を作製した。
得られた非晶質体280gを電気炉に仕込み、645℃(結晶化温度)まで昇温し、同温度で5時間保持し六方晶ストロンチウムフェライト粒子を析出(結晶化)させた。
次いで六方晶ストロンチウムフェライト粒子を含む上記で得られた結晶化物を乳鉢で粗粉砕し、ガラス瓶に粒径1mmのジルコニアビーズ1000gおよび濃度1%の酢酸水溶液800mlを加えてペイントシェーカーにて3時間分散処理を行った。その後、得られた分散液をビーズと分離させステンレスビーカーに入れた。分散液を液温100℃で3時間静置させてガラス成分の溶解処理を行った後、遠心分離器で沈澱させてデカンテーションを繰り返して洗浄し、炉内温度110℃の加熱炉内で6時間乾燥させて六方晶ストロンチウムフェライト粉末を得た。
得られた六方晶ストロンチウムフェライト粉末の平均粒子サイズは19nm、活性化体積は1102nm、異方性定数Kuは2.0×10J/m、質量磁化σsは50A・m/kgであった。
表2中、「ε-酸化鉄」は、以下の方法により作製されたε-酸化鉄粉末である。
純水90gに、硝酸鉄(III)9水和物8.3g、硝酸ガリウム(III)8水和物1.3g、硝酸コバルト(II)6水和物190mg、硫酸チタン(IV)150mg、およびポリビニルピロリドン(PVP)1.5gを溶解させたものを、マグネチックスターラーを用いて撹拌しながら、大気雰囲気中、雰囲気温度25℃の条件下で、濃度25%のアンモニア水溶液4.0gを添加し、雰囲気温度25℃の温度条件のまま2時間撹拌した。得られた溶液に、クエン酸1gを純水9gに溶解させて得たクエン酸溶液を加え、1時間撹拌した。撹拌後に沈殿した粉末を遠心分離によって採集し、純水で洗浄し、炉内温度80℃の加熱炉内で乾燥させた。
乾燥させた粉末に純水800gを加えて再度粉末を水に分散させて分散液を得た。得られた分散液を液温50℃に昇温し、撹拌しながら濃度25%アンモニア水溶液を40g滴下した。50℃の温度を保ったまま1時間撹拌した後、テトラエトキシシラン(TEOS)14mLを滴下し、24時間撹拌した。得られた反応溶液に、硫酸アンモニウム50gを加え、沈殿した粉末を遠心分離によって採集し、純水で洗浄し、炉内温度80℃の加熱炉内で24時間乾燥させ、強磁性粉末の前駆体を得た。
得られた強磁性粉末の前駆体を、大気雰囲気下、炉内温度1000℃の加熱炉内に装填し、4時間の加熱処理を施した。
加熱処理した強磁性粉末の前駆体を、4mol/Lの水酸化ナトリウム(NaOH)水溶液中に投入し、液温を70℃に維持して24時間撹拌することにより、加熱処理した強磁性粉末の前駆体から不純物であるケイ酸化合物を除去した。
その後、遠心分離処理により、ケイ酸化合物を除去した強磁性粉末を採集し、純水で洗浄を行い、強磁性粉末を得た。
得られた強磁性粉末の組成を高周波誘導結合プラズマ発光分光分析(ICP-OES;Inductively Coupled Plasma-Optical Emission Spectrometry)により確認したところ、Ga、CoおよびTi置換型ε-酸化鉄(ε-Ga0.28Co0.05Ti0.05Fe1.62)であった。また、先にSrFe1について記載した条件と同様の条件でX線回折分析を行い、X線回折パターンのピークから、得られた強磁性粉末が、α相およびγ相の結晶構造を含まない、ε相の単相の結晶構造(ε-酸化鉄型の結晶構造)を有することを確認した。
得られたε-酸化鉄粉末の平均粒子サイズは12nm、活性化体積は746nm、異方性定数Kuは1.2×10J/m、質量磁化σsは16A・m/kgであった。
上記の六方晶ストロンチウムフェライト粉末およびε-酸化鉄粉末の活性化体積および異方性定数Kuは、各強磁性粉末について、振動試料型磁力計(東英工業社製)を用いて、先に記載の方法により求められた値である。
また、質量磁化σsは、振動試料型磁力計(東英工業社製)を用いて磁場強度15kOeで測定された値である。
[研磨剤液の調製]
<研磨剤液Aの調製>
表1に示す研磨剤(アルミナ粉末)100.0部に対し、表1に示す量の2,3-ジヒドロキシナフタレン(東京化成社製)、極性基としてSONa基を有するポリエステルポリウレタン樹脂(東洋紡社製UR-4800(極性基量:80meq/kg))の32%溶液(溶媒はメチルエチルケトンとトルエンの混合溶媒)31.3部、溶媒としてメチルエチルケトンとシクロヘキサノン1:1(質量比)の混合液570.0部を混合し、ジルコニアビーズ(ビーズ径:0.1mm)存在下で、ペイントシェーカーにより、表1に示す時間(ビーズ分散時間)、分散させた。
分散後、メッシュにより分散液とビーズとを分離して得られた分散液の遠心分離処理を実施した。遠心分離処理は、遠心分離器として日立工機社製CS150GXL(使用ローターは同社製S100AT6)を使用し、表1に示す回転数(rpm;rotation per minute)で表1に示す時間(遠心分離時間)、実施した。この遠心分離処理により、粒子サイズが比較的大きい粒子は沈殿し、粒子サイズが比較的小さい粒子は上澄み液に分散する。
その後、デカンテーションにより上澄み液を回収した。この回収された液を、「研磨剤液A」と呼ぶ。
<研磨剤液B、Cの調製>
各種項目を表1に示すように変更した点以外、研磨剤液Aの調製方法と同様にして研磨剤液Bおよび研磨剤液Cをそれぞれ調製した。
[実施例1]
<磁性層形成用組成物の調製>
(磁性液)
強磁性粉末(表2参照):100.0部
オレイン酸:2.0部
塩化ビニル共重合体(日本ゼオン製MR-104):10.0部
SONa基含有ポリウレタン樹脂:4.0部
(重量平均分子量70000、SONa基:0.07meq/g)
ポリアルキレンイミン系ポリマー(特開2016-51493号公報の段落0115~0123に記載の方法により得られた合成品):6.0部
メチルエチルケトン:150.0部
シクロヘキサノン:150.0部
(研磨剤液)
表2に示す研磨剤液を、研磨剤液中の研磨剤量が表2に示す量となるように使用
(その他の成分)
カーボンブラック(平均粒子サイズ:20nm):0.7部
ポリエチレンイミン(日本触媒社製、数平均分子量300):2.0部
ステアリン酸:0.5部
ステアリン酸アミド:0.3部
ステアリン酸ブチル:6.0部
メチルエチルケトン:110.0部
シクロヘキサノン:110.0部
ポリイソシアネート(東ソー社製コロネート(登録商標)L):3.0部
(調製方法)
上記磁性液の各種成分を、バッチ式縦型サンドミルによりビーズ径0.5mmのジルコニアビーズ(第一の分散ビーズ、密度6.0g/cm)を使用して24時間分散し(第一の段階)、その後、0.5μmの孔径を有するフィルタを用いてろ過することにより分散液Aを調製した。ジルコニアビーズは、強磁性粉末の質量に対して、質量基準で10倍量用いた。
その後、分散液Aをバッチ式縦型サンドミルによりビーズ径500nmのダイヤモンドビーズ(第二の分散ビーズ、密度3.5g/cm)を使用して1時間分散し(第二の段階)、遠心分離器を用いてダイヤモンドビーズを分離した分散液(分散液B)を調製した。ダイヤモンドビーズは、強磁性粉末の質量に対して、質量基準で10倍量用いた。
上記で得た分散液B、研磨剤液および上記のその他の成分をディゾルバー撹拌機に導入し、周速10m/秒で360分間撹拌した。その後、フロー式超音波分散機により流量7.5kg/分で60分間超音波分散処理を行った後に、孔径0.3μmのフィルタで3回ろ過して磁性層形成用組成物を調製した。
<非磁性層形成用組成物の調製>
下記の非磁性層形成用組成物の各種成分を、バッチ式縦型サンドミルによりビーズ径0.1mmのジルコニアビーズを使用して24時間分散し、その後、0.5μmの孔径を有するフィルタを用いてろ過することにより、非磁性層形成用組成物を調製した。
非磁性無機粉末 α酸化鉄:100.0部
(平均粒子サイズ10nm、BET比表面積75m/g)
カーボンブラック:25.0部
(平均粒子サイズ20nm)
SONa基含有ポリウレタン樹脂:18.0部
(重量平均分子量70000、SONa基含有量0.2meq/g)
ステアリン酸:1.0部
シクロヘキサノン:300.0部
メチルエチルケトン:300.0部
<バックコート層形成用組成物の調製>
下記のバックコート層形成用組成物の各種成分のうち潤滑剤(ステアリン酸およびステアリン酸ブチル)、ポリイソシアネートならびにシクロヘキサノン200.0部を除いた成分をオープンニーダにより混練および希釈した後、横型ビーズミル分散機によりビーズ径1mmのジルコニアビーズを用い、ビーズ充填率80体積%、ローター先端周速10m/秒で1パスあたりの滞留時間を2分間とし、12パスの分散処理に供した。その後、上記の残りの成分を添加してディゾルバーで撹拌し、得られた分散液を1μmの孔径を有するフィルタを用いてろ過することにより、バックコート層形成用組成物を調製した。
非磁性無機粉末 α酸化鉄:80.0部
(平均粒子サイズ0.15μm、BET比表面積52m/g)
カーボンブラック:20.0部
(平均粒子サイズ20nm)
塩化ビニル共重合体:13.0部
スルホン酸塩基含有ポリウレタン樹脂:6.0部
フェニルホスホン酸:3.0部
シクロヘキサノン:155.0部
メチルエチルケトン:155.0部
ステアリン酸:3.0部
ステアリン酸ブチル:3.0部
ポリイソシアネート:5.0部
シクロヘキサノン:200.0部
<磁気テープおよび磁気テープカートリッジの作製>
厚み4.1μmのポリエチレンナフタレート製支持体の表面上に、乾燥後の厚みが0.7μmとなるように上記で調製した非磁性層形成用組成物を塗布および乾燥させて非磁性層を形成した。
次いで、非磁性層上に乾燥後の厚みが0.1μmとなるように上記で調製した磁性層形成用組成物を塗布して塗布層を形成した。
その後、磁性層形成用組成物の塗布層が湿潤状態にあるうちに、磁場強度0.3Tの磁場を塗布層の表面に対し垂直方向に印加して垂直配向処理を行った後、乾燥させ、磁性層を形成した。
その後、支持体の非磁性層および磁性層を形成した表面とは反対側の表面に、乾燥後の厚みが0.3μmとなるように上記で調製したバックコート層形成用組成物を塗布および乾燥させてバックコート層を形成した。
その後、金属ロールのみから構成されるカレンダロールを用いて、速度100m/分、線圧300kg/cm、および90℃のカレンダ温度(カレンダロールの表面温度)にて、表面平滑化処理(カレンダ処理)を行った。こうして、長尺状の磁気テープ原反を得た。
その後、雰囲気温度70℃の環境で36時間加熱処理を行った後、長尺状の磁気テープ原反を1/2インチ幅にスリットして、磁気テープを得た。

得られた磁気テープの磁性層に市販のサーボライターによってサーボ信号を記録することにより、LTO(Linear Tape-Open) Ultriumフォーマットにしたがう配置でデータバンド、サーボバンド、およびガイドバンドを有し、かつサーボバンド上にLTO Ultriumフォーマットにしたがう配置および形状のサーボパターン(タイミングベースサーボパターン)を有する磁気テープを得た。こうして形成されたサーボパターンは、JIS(Japanese Industrial Standards) X6175:2006およびStandard ECMA-319(June 2001)の記載にしたがうサーボパターンである。サーボバンドの合計本数は5、データバンドの合計本数は4である。 こうしてサーボ信号が記録された磁気テープ(長さ960m)を、磁気テープカートリッジ(LTO Ultrium8データカートリッジ)のリールに巻き取った。
こうして、磁気テープがリールに巻装された実施例1の磁気テープカートリッジを作製した。
磁気テープの磁性層にポリエチレンイミンとステアリン酸により形成された、式1で表されるアルキルエステルアニオンのアンモニウム塩構造を含む化合物が含まれることは、以下の方法により確認できる。
磁気テープからサンプルを切り出し、磁性層表面(測定領域:300μm×700μm)においてESCA装置を用いてX線光電子分光分析を行う。詳しくは、下記測定条件でESCA装置によりワイドスキャン測定を行う。測定結果では、エステルアニオンの結合エネルギーの位置およびアンモニウムカチオンの結合エネルギーの位置にピークが確認される。
装置:島津製作所製AXIS-ULTRA
励起X線源:単色化Al-Kα線
スキャン範囲:0~1200eV
パスエネルギー:160eV
エネルギー分解能 1eV/step
取り込み時間:100ms/step
積算回数:5
また、磁気テープから長さ3cmのサンプル片を切り出し、磁性層表面のATR-FT-IR(Attenuated total reflection-fourier transform-infrared spectrometer)測定(反射法)を行い、測定結果において、COOの吸収に対応する波数(1540cm-1または1430cm-1)、およびアンモニウムカチオンの吸収に対応する波数(2400cm-1)に吸収が確認される。
[実施例2~14、比較例1~13]
表2に示す項目を表2に示すように変更した点以外、実施例1と同じ方法により磁気テープおよび磁気テープカートリッジを得た。
上記実施例および比較例について、それぞれ磁気テープカートリッジを2つ作製し、1つは下記の電磁変換特性の低下に関する評価に使用し、他の1つは下記の磁気テープの評価に使用した。
[電磁変換特性の低下に関する評価(SNR(Signal-to-Noise-Ratio)低下量)]
以下の方法によって、電磁変換特性の低下に関する評価として、SNR低下量を求めた。下記の記録および再生は、磁気ヘッドを固定した1/2インチリールテスターを用いて行った。
実施例および比較例の各磁気テープ(磁気テープ全長:960m)に対して、温度23℃相対湿度50%の環境において、磁気テープの長手方向に1.5Nのテンション(以下、「走行テンション」と記載する。)をかけて記録および再生を1000パス行い、次いで磁気テープの長手方向に0.2Nのテンションをかけて記録および再生を1000パス行った。磁気テープと磁気ヘッドとの相対速度は8m/秒とし、記録は、記録ヘッドとしてMIG(Metal-in-gap)ヘッド(ギャップ長0.15μm、トラック幅1.0μm)を使用し、記録電流を各磁気テープの最適記録電流に設定して行った。再生は、再生ヘッドとしてGMR(Giant-magnetoresistive)ヘッド(素子厚み15nm、シールド間隔0.1μm、再生素子幅0.8μm)を使用して行った。線記録密度300kfciの信号を記録し、再生信号をシバソク社製のスペクトラムアナライザーで測定した。単位kfciとは、線記録密度の単位(SI単位系に換算不可)である。信号としては、磁気テープ走行開始後に信号が十分に安定した部分を使用した。
走行テンション1.5Nにおける1パス目のSNRと、走行テンション0.2Nにおける1000パス目のSNRとの差分(走行テンション0.2Nにおける1000パス目のSNR-走行テンション1.5Nにおける1パス目のSNR)を算出し、SNR低下量とした。
[磁気テープの評価]
(1)AlFeSil摩耗値0.2N、AlFeSil摩耗値1.5N
実施例および比較例の各磁気テープカートリッジから磁気テープを取り出し、温度23℃相対湿度50%の環境において、先に記載した方法によってAlFeSil摩耗値0.2NおよびAlFeSil摩耗値1.5Nを求めた。
(2)テープ厚み
実施例および比較例の各磁気テープカートリッジから取りだした磁気テープの任意の部分からテープサンプル(長さ5cm)を10枚切り出し、これらテープサンプルを重ねて厚みを測定した。厚みの測定は、MARH社製Millimar 1240コンパクトアンプとMillimar 1301誘導プローブのデジタル厚み計を用いて行った。測定された厚みを10分の1して得られた値(テープサンプル1枚当たりの厚み)を、テープ厚みとした。各磁気テープについて、テープ厚みは、いずれも5.2μmであった。
以上の結果を、表2に示す。
表2に示すように、AlFeSil摩耗値0.2NおよびAlFeSil摩耗値1.5Nがいずれも先に記載した範囲である実施例の磁気テープでは、走行テンションを変化させて測定された電磁変換特性の低下量が、比較例の磁気テープと比べて小さかった。上記結果から、実施例の磁気テープは、磁気テープの長手方向にかかるテンションを調整することによって磁気テープの幅方向の寸法を制御する磁気テープ装置において、電磁変換特性の低下を抑制できる磁気テープであると言うことができる。
本発明の一態様は、各種データストレージの技術分野において有用である。

Claims (12)

  1. 非磁性支持体と、強磁性粉末を含む磁性層と、を有する磁気テープであって、
    前記磁性層は、下記式1で表されるアルキルエステルアニオンのアンモニウム塩構造を有する化合物を含み、
    式1中、Rは炭素数7以上のアルキル基または炭素数7以上のフッ化アルキル基を表し、Z はアンモニウムカチオンを表し、
    温度23℃相対湿度50%の環境において、
    磁気テープの長手方向に0.2Nのテンションをかけて測定される磁性層表面のAlFeSil摩耗値0.2Nが20~50μmの範囲であり、かつ
    磁気テープの長手方向に1.5Nのテンションをかけて測定される磁性層表面のAlFeSil摩耗値1.5Nが20~50μmの範囲である、磁気テープ。
  2. 前記AlFeSil摩耗値0.2Nは、20~45μmの範囲である、請求項1に記載の磁気テープ。
  3. 前記AlFeSil摩耗値1.5Nは、30~50μmの範囲である、請求項1または2に記載の磁気テープ。
  4. 前記磁性層は、1種以上の非磁性粉末を含む、請求項1~3のいずれか1項に記載の磁気テープ。
  5. 前記非磁性粉末は、アルミナ粉末を含む、請求項4に記載の磁気テープ。
  6. 前記非磁性支持体と前記磁性層との間に、非磁性粉末を含む非磁性層を有する、請求項1~5のいずれか1項に記載の磁気テープ。
  7. 前記非磁性支持体の前記磁性層を有する表面側とは反対の表面側に、非磁性粉末を含むバックコート層を有する、請求項1~6のいずれか1項に記載の磁気テープ。
  8. テープ厚みが5.2μm以下である、請求項1~7のいずれか1項に記載の磁気テープ。
  9. 請求項1~8のいずれか1項に記載の磁気テープを含む磁気テープカートリッジ。
  10. 請求項1~8のいずれか1項に記載の磁気テープを含む磁気テープ装置。
  11. 磁気テープ装置内を走行する磁気テープの長手方向にかかるテンションを調整可能なテンション調整機構を有する、請求項10に記載の磁気テープ装置。
  12. 再生素子幅が0.8μm以下の磁気ヘッドを有する、請求項10または11に記載の磁気テープ装置。
JP2020123167A 2020-07-17 2020-07-17 磁気テープ、磁気テープカートリッジおよび磁気テープ装置 Active JP7351811B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020123167A JP7351811B2 (ja) 2020-07-17 2020-07-17 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
US17/376,175 US20220020393A1 (en) 2020-07-17 2021-07-15 Magnetic tape, magnetic tape cartridge, and magnetic tape apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020123167A JP7351811B2 (ja) 2020-07-17 2020-07-17 磁気テープ、磁気テープカートリッジおよび磁気テープ装置

Publications (2)

Publication Number Publication Date
JP2022019371A JP2022019371A (ja) 2022-01-27
JP7351811B2 true JP7351811B2 (ja) 2023-09-27

Family

ID=79292711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020123167A Active JP7351811B2 (ja) 2020-07-17 2020-07-17 磁気テープ、磁気テープカートリッジおよび磁気テープ装置

Country Status (2)

Country Link
US (1) US20220020393A1 (ja)
JP (1) JP7351811B2 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003036516A (ja) 2001-07-23 2003-02-07 Fuji Photo Film Co Ltd 磁気記録媒体
JP2004288332A (ja) 2003-03-24 2004-10-14 Hitachi Maxell Ltd 磁気記録媒体
JP2007026564A (ja) 2005-07-19 2007-02-01 Fujifilm Corp 磁気記録媒体
JP2017033617A (ja) 2015-07-31 2017-02-09 富士フイルム株式会社 磁気記録媒体
JP2017157252A (ja) 2016-02-29 2017-09-07 富士フイルム株式会社 磁気テープ

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5799045B2 (ja) * 2013-03-15 2015-10-21 富士フイルム株式会社 磁気記録媒体およびその製造方法
JP6318108B2 (ja) * 2015-03-18 2018-04-25 富士フイルム株式会社 磁気テープ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003036516A (ja) 2001-07-23 2003-02-07 Fuji Photo Film Co Ltd 磁気記録媒体
JP2004288332A (ja) 2003-03-24 2004-10-14 Hitachi Maxell Ltd 磁気記録媒体
JP2007026564A (ja) 2005-07-19 2007-02-01 Fujifilm Corp 磁気記録媒体
JP2017033617A (ja) 2015-07-31 2017-02-09 富士フイルム株式会社 磁気記録媒体
JP2017157252A (ja) 2016-02-29 2017-09-07 富士フイルム株式会社 磁気テープ

Also Published As

Publication number Publication date
US20220020393A1 (en) 2022-01-20
JP2022019371A (ja) 2022-01-27

Similar Documents

Publication Publication Date Title
US11869555B2 (en) Magnetic tape having characterized magnetic layer surface, magnetic tape cartridge, and magnetic tape device
JP7520745B2 (ja) 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
JP7352535B2 (ja) 磁気記録再生装置
US11869558B2 (en) Magnetic tape having characterized magnetic layer surface, magnetic tape cartridge, and magnetic tape device
JP7425909B2 (ja) 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
JP2023049189A (ja) 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
JP2023050108A (ja) 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
JP2022100077A (ja) 磁気テープ装置、磁気テープおよび磁気テープカートリッジ
WO2023008292A1 (ja) 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
US20220254373A1 (en) Magnetic tape, magnetic tape cartridge, and magnetic tape apparatus
JP7351810B2 (ja) 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
JP2023050114A (ja) 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
JP7352536B2 (ja) 磁気記録再生装置
JP7321124B2 (ja) 磁気テープ装置、磁気テープおよび磁気テープカートリッジ
JP7266012B2 (ja) 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
JP2023113322A (ja) 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
JP7351811B2 (ja) 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
WO2023100879A1 (ja) 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
WO2023100878A1 (ja) 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
WO2023008293A1 (ja) 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
WO2023100884A1 (ja) 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
WO2022138310A1 (ja) 磁気テープ装置、磁気テープおよび磁気テープカートリッジ
WO2023100883A1 (ja) 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
JP2023050122A (ja) 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
JP2023050109A (ja) 磁気テープ、磁気テープカートリッジおよび磁気テープ装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230914

R150 Certificate of patent or registration of utility model

Ref document number: 7351811

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150