JP7352384B2 - fuel injection valve - Google Patents

fuel injection valve Download PDF

Info

Publication number
JP7352384B2
JP7352384B2 JP2019105868A JP2019105868A JP7352384B2 JP 7352384 B2 JP7352384 B2 JP 7352384B2 JP 2019105868 A JP2019105868 A JP 2019105868A JP 2019105868 A JP2019105868 A JP 2019105868A JP 7352384 B2 JP7352384 B2 JP 7352384B2
Authority
JP
Japan
Prior art keywords
needle
fuel
housing
movable
movable core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019105868A
Other languages
Japanese (ja)
Other versions
JP2020200766A5 (en
JP2020200766A (en
Inventor
仁之 前川
友基 藤野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2019105868A priority Critical patent/JP7352384B2/en
Priority to PCT/JP2020/021340 priority patent/WO2020246385A1/en
Priority to DE112020002672.8T priority patent/DE112020002672T5/en
Publication of JP2020200766A publication Critical patent/JP2020200766A/en
Publication of JP2020200766A5 publication Critical patent/JP2020200766A5/ja
Application granted granted Critical
Publication of JP7352384B2 publication Critical patent/JP7352384B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0203Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels characterised by the type of gaseous fuel
    • F02M21/0206Non-hydrocarbon fuels, e.g. hydrogen, ammonia or carbon monoxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0248Injectors
    • F02M21/0251Details of actuators therefor
    • F02M21/0254Electric actuators, e.g. solenoid or piezoelectric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0248Injectors
    • F02M21/0257Details of the valve closing elements, e.g. valve seats, stems or arrangement of flow passages
    • F02M21/026Lift valves, i.e. stem operated valves
    • F02M21/0263Inwardly opening single or multi nozzle valves, e.g. needle valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0248Injectors
    • F02M21/0257Details of the valve closing elements, e.g. valve seats, stems or arrangement of flow passages
    • F02M21/026Lift valves, i.e. stem operated valves
    • F02M21/0263Inwardly opening single or multi nozzle valves, e.g. needle valves
    • F02M21/0266Hollow stem valves; Piston valves; Stems having a spherical tip
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/30Fuel-injection apparatus having mechanical parts, the movement of which is damped
    • F02M2200/304Fuel-injection apparatus having mechanical parts, the movement of which is damped using hydraulic means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

本開示は燃料噴射弁に関する。 TECHNICAL FIELD The present disclosure relates to fuel injection valves.

内燃機関に設けられる燃料噴射弁として、磁気吸引力によって内部の可動コアをニードルと共に動作させることにより、燃料の出口である噴孔の開閉を切り換える構成のものが知られている。 2. Description of the Related Art Fuel injection valves installed in internal combustion engines are known to have a structure in which an internal movable core is operated together with a needle by magnetic attraction to switch opening and closing of a nozzle hole, which is a fuel outlet.

例えば下記特許文献1に記載の燃料噴射弁は、ハウジングの内部に固定された固定コアと、ハウジングの内部において移動可能な状態で配置された可動コアと、固定コアと可動コアとの間に磁気吸引力を発生させるコイルと、を備えている。燃料噴射弁から燃料が噴射される際には、コイルに電流が供給される。そのとき発生した磁気吸引力によって、可動コアがニードルと共に固定コア側に移動し、噴孔が開かれた状態となる。 For example, the fuel injection valve described in Patent Document 1 below has a fixed core fixed inside a housing, a movable core disposed movably inside the housing, and a magnetic field between the fixed core and the movable core. It is equipped with a coil that generates suction power. When fuel is injected from the fuel injection valve, current is supplied to the coil. The magnetic attraction force generated at that time moves the movable core together with the needle toward the fixed core, opening the nozzle hole.

ニードル等の可動部材が動作する際において、その動作速度が大きいままハウジング等の固定部材に衝突すると、衝突箇所において部材の損傷や摩耗が生じ、燃料噴射弁の動作特性が変化してしまうことがある。これを防止するために、燃料噴射弁の内部には、可動部材の動作速度を減衰させるためのダンパー室が形成される。下記特許文献1には、可動コアの動作速度を減衰させるためのダンパー室を、ハウジングの内部、具体的には可動コアとハウジングとの間となる位置に形成した燃料噴射弁の例も記載されている。 When a movable member such as a needle is operating, if it collides with a fixed member such as a housing while operating at a high speed, the member may be damaged or worn at the collision location, which may change the operating characteristics of the fuel injector. be. To prevent this, a damper chamber is formed inside the fuel injection valve to damp the operating speed of the movable member. Patent Document 1 listed below also describes an example of a fuel injection valve in which a damper chamber for attenuating the operating speed of the movable core is formed inside the housing, specifically at a position between the movable core and the housing. ing.

特開2018-189002号公報JP 2018-189002 Publication

ハウジングの内部には、可動コアを、噴孔と反対側の方向に向けて付勢するためのバネが配置されることが多い。当該バネのばね定数が適切な値となっていない場合には、ハウジングの内部で共振が生じてしまうことがある。共振を確実に防止するためには、バネが配置される空間を比較的広く確保しておき、バネの設計自由度を高めておくことが好ましい。このため、上記のバネは、ハウジングの内部のうち比較的広い空間を確保し得る部分、具体的には、可動コアとハウジングとの間となる位置に配置することが好ましい。 A spring is often arranged inside the housing to bias the movable core in a direction opposite to the nozzle hole. If the spring constant of the spring is not an appropriate value, resonance may occur inside the housing. In order to reliably prevent resonance, it is preferable to secure a relatively large space in which the spring is arranged to increase the degree of freedom in designing the spring. For this reason, it is preferable that the above-mentioned spring be placed in a portion of the housing where a relatively large space can be secured, specifically, in a position between the movable core and the housing.

しかしながら、上記特許文献1に記載されている例のように、可動コアとハウジングとの間となる位置にダンパー室を形成した場合には、バネを配置するための広い空間を同位置に確保することができなくなってしまう。このように、バネを配置するための空間を広く確保することと、ダンパー室による減衰の効果を十分に発揮することと、を両立させるような構成については、従来の燃料噴射弁では更なる改良の余地があった。 However, when the damper chamber is formed at a position between the movable core and the housing, as in the example described in Patent Document 1, a large space for arranging the spring is secured at the same position. I become unable to do so. In this way, it is necessary to further improve the configuration of conventional fuel injection valves to ensure a wide space for arranging the spring and to fully demonstrate the damping effect of the damper chamber. There was room for.

本開示は、バネを配置するための空間を広く確保しながらも、ダンパー室による減衰の効果を十分に発揮することのできる燃料噴射弁、を提供することを目的とする。 An object of the present disclosure is to provide a fuel injection valve that can sufficiently exhibit the damping effect of a damper chamber while ensuring a wide space for arranging a spring.

本開示に係る燃料噴射弁(10)は、燃料を噴射するための噴孔(511)が、長手方向における一端に形成されたハウジング(100)と、ハウジングの内部において長手方向に沿って移動することにより、噴孔の開閉を切り換えるニードル(200)と、少なくとも一部が磁性体によって形成された部材であって、ハウジングの内部に固定されている固定コア(400)と、少なくとも一部が磁性体によって形成された部材であって、ハウジングの内部において、長手方向に沿ってニードルと共に移動可能な状態で配置されている可動コア(300)と、固定コアと可動コアとの間に磁気吸引力を発生させるコイル(600)と、を備える。ニードルとハウジングとの間には、ニードルの動作速度を減衰させるためのダンパー室(250)が形成されている。この燃料噴射弁は、可動コアを、長手方向に沿って噴孔とは反対側に向けて付勢する弾性部材を更に備える。ダンパー室は、長手方向に沿って弾性部材とは重ならない位置に配置されている。 A fuel injection valve (10) according to the present disclosure includes a housing (100) in which a nozzle hole (511) for injecting fuel is formed at one end in the longitudinal direction, and moves along the longitudinal direction inside the housing. By this, a needle (200) that switches opening and closing of the nozzle hole, a fixed core (400) that is a member at least partially made of a magnetic material and fixed inside the housing, and a fixed core (400) that is at least partially made of a magnetic material. A magnetic attraction force is created between a movable core (300), which is a member formed by a body and is disposed in a movable state along the longitudinal direction together with the needle inside the housing, and the fixed core and the movable core. A coil (600) that generates. A damper chamber (250) is formed between the needle and the housing to damp the operating speed of the needle. This fuel injection valve further includes an elastic member that urges the movable core toward the side opposite to the nozzle hole along the longitudinal direction. The damper chamber is arranged in a position that does not overlap the elastic member along the longitudinal direction.

このような構成の燃料噴射弁では、ニードルの動作速度を減衰させるためのダンパー室が、ニードルとハウジングとの間となる位置に形成されている。可動コアとハウジングとの間となる位置にはダンパー室を形成する必要がないので、当該位置に、バネを配置するための空間を広く確保することができる。これにより、バネを配置するための空間を広く確保しながらも、ダンパー室による減衰の効果を十分に発揮することが可能となる。 In a fuel injection valve having such a configuration, a damper chamber for damping the operating speed of the needle is formed at a position between the needle and the housing. Since there is no need to form a damper chamber at a position between the movable core and the housing, a large space for arranging the spring can be secured at this position. This makes it possible to sufficiently exhibit the damping effect of the damper chamber while ensuring a wide space for arranging the spring.

本開示によれば、バネを配置するための空間を広く確保しながらも、ダンパー室による減衰の効果を十分に発揮することのできる燃料噴射弁、が提供される。 According to the present disclosure, there is provided a fuel injection valve that can sufficiently exhibit the damping effect of a damper chamber while ensuring a wide space for arranging a spring.

図1は、第1実施形態に係る燃料噴射弁の内部構造を示す断面図である。FIG. 1 is a sectional view showing the internal structure of a fuel injection valve according to a first embodiment. 図2は、図1のA部における構成を拡大して示す図である。FIG. 2 is an enlarged view showing the configuration of section A in FIG. 1. As shown in FIG. 図3は、第2実施形態に係る燃料噴射弁の内部構造を示す断面図である。FIG. 3 is a sectional view showing the internal structure of the fuel injection valve according to the second embodiment. 図4は、図3のB部における構成を拡大して示す図である。FIG. 4 is an enlarged view showing the configuration in section B of FIG. 3. As shown in FIG. 図5は、第3実施形態に係る燃料噴射弁の、内部構造の一部を示す断面図である。FIG. 5 is a sectional view showing a part of the internal structure of the fuel injection valve according to the third embodiment. 図6は、第4実施形態に係る燃料噴射弁の、内部構造の一部を示す断面図である。FIG. 6 is a sectional view showing a part of the internal structure of the fuel injection valve according to the fourth embodiment. 図7は、第5実施形態に係る燃料噴射弁の、内部構造の一部を示す断面図である。FIG. 7 is a sectional view showing a part of the internal structure of the fuel injection valve according to the fifth embodiment.

以下、添付図面を参照しながら本実施形態について説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。 This embodiment will be described below with reference to the accompanying drawings. In order to facilitate understanding of the description, the same components in each drawing are denoted by the same reference numerals as much as possible, and redundant description will be omitted.

第1実施形態に係る燃料噴射弁10の構成について、図1を参照しながら説明する。燃料噴射弁10は、不図示の内燃機関に設けられ、当該内燃機関に燃料を噴射し供給するための装置である。燃料としては、本実施形態では気体燃料、具体的には水素が用いられる。燃料噴射弁10は、ハウジング100と、ニードル200と、可動コア300と、固定コア400と、コイル600と、を備えている。 The configuration of the fuel injection valve 10 according to the first embodiment will be described with reference to FIG. 1. The fuel injection valve 10 is provided in an internal combustion engine (not shown) and is a device for injecting and supplying fuel to the internal combustion engine. In this embodiment, gaseous fuel, specifically hydrogen, is used as the fuel. The fuel injection valve 10 includes a housing 100, a needle 200, a movable core 300, a fixed core 400, and a coil 600.

ハウジング100は、その全体が概ね筒状の容器として形成された部材である。図1では、ハウジング100がその長手方向を上下方向に沿わせた状態が描かれている。以下の説明においては、図1における上方側を示すものとして、単に「上方側」等の語を用いることがある。また、図1における下方側を示すものとして、単に「下方側」等の語を用いることがある。後の説明に用いる図2乃至図7においても同様である。 The housing 100 is a member that is generally formed as a cylindrical container. In FIG. 1, the housing 100 is shown with its longitudinal direction aligned in the vertical direction. In the following description, words such as "upper side" may be simply used to indicate the upper side in FIG. 1. Further, a term such as "lower side" may be simply used to indicate the lower side in FIG. 1 . The same applies to FIGS. 2 to 7 used for later explanation.

後に説明するように、燃料噴射弁10から噴射される燃料は、ハウジング100の内部を上方側から下方側に向かって流れる。後述のニードル200、可動コア300、及び固定コア400は、いずれのハウジング100の内部に収容されている。 As will be explained later, fuel injected from the fuel injection valve 10 flows inside the housing 100 from the upper side to the lower side. A needle 200, a movable core 300, and a fixed core 400, which will be described later, are housed inside any of the housings 100.

ハウジング100は、第1筒状部材110と、第2筒状部材120と、第3筒状部材130と、第4筒状部材140と、第5筒状部材150と、を有している。これらはいずれも略円筒状の部材として形成されており、それぞれの中心軸を互いに一致させた状態で配置されている。 The housing 100 includes a first cylindrical member 110, a second cylindrical member 120, a third cylindrical member 130, a fourth cylindrical member 140, and a fifth cylindrical member 150. All of these members are formed as substantially cylindrical members, and are arranged with their central axes aligned with each other.

第1筒状部材110は、ハウジング100のうち、燃料の流れる方向に沿って最も下流側となる位置に配置された部材である。第1筒状部材110はマルテンサイト系ステンレスによって形成されており、その硬度を高めるために焼き入れ処理が施されている。第1筒状部材110の内部には空間111が形成されており、この空間111に後述のニードル200が収容されている。 The first cylindrical member 110 is a member disposed in the housing 100 at the most downstream position along the fuel flow direction. The first cylindrical member 110 is made of martensitic stainless steel, and is hardened to increase its hardness. A space 111 is formed inside the first cylindrical member 110, and a needle 200, which will be described later, is accommodated in this space 111.

第1筒状部材110の下端部では、噴射ノズル500が内側に圧入され溶接されている。噴射ノズル500はハウジング100の一部をなすものであって、円筒部520と閉塞部510とを有している。円筒部520は円筒状に形成された部分である。円筒部520は、その中心軸を第1筒状部材110の中心軸と一致させた状態で、第1筒状部材110の内側に嵌め込まれている。円筒部520の内周面521は、ニードル200の摺接部222(後述)が当接した状態で摺動する面となっている。 At the lower end of the first cylindrical member 110, an injection nozzle 500 is press-fitted inside and welded. The injection nozzle 500 forms part of the housing 100 and includes a cylindrical portion 520 and a closing portion 510. The cylindrical portion 520 is a portion formed in a cylindrical shape. The cylindrical portion 520 is fitted inside the first cylindrical member 110 with its central axis aligned with the central axis of the first cylindrical member 110 . The inner circumferential surface 521 of the cylindrical portion 520 is a surface on which a sliding contact portion 222 (described later) of the needle 200 slides.

閉塞部510は、円筒部520のうち下方側の端部を塞ぐように形成された部分である。閉塞部510には噴孔511が形成されている。噴孔511は、閉塞部510の中心を図1の上下方向に貫くように形成された貫通穴である。噴孔511によって、第1筒状部材110の内部の空間111と外部空間とが連通されている。噴孔511は、燃料噴射弁10から噴射される燃料の出口として形成されている。このように、燃料噴射弁10では、燃料を噴射するための噴孔511が、ハウジング100の長手方向における一端に形成されている。 The closing portion 510 is a portion formed to close the lower end of the cylindrical portion 520. A nozzle hole 511 is formed in the closing portion 510 . The nozzle hole 511 is a through hole formed to penetrate the center of the closing portion 510 in the vertical direction in FIG. The interior space 111 of the first cylindrical member 110 and the exterior space communicate with each other through the nozzle hole 511 . The nozzle hole 511 is formed as an outlet for fuel injected from the fuel injection valve 10. Thus, in the fuel injection valve 10, the nozzle hole 511 for injecting fuel is formed at one end in the longitudinal direction of the housing 100.

閉塞部510の内面には、噴孔511の周囲を囲むように弁座512が形成されている。弁座512は、噴孔511を塞ぐために、ニードル200のシール部221(後述)が当接する部分である。 A valve seat 512 is formed on the inner surface of the closing portion 510 so as to surround the nozzle hole 511 . The valve seat 512 is a portion that a seal portion 221 (described later) of the needle 200 comes into contact with in order to close the nozzle hole 511 .

噴射ノズル500は、その全体がマルテンサイト系ステンレスによって形成されており、その硬度を高めるために焼き入れ処理が施されている。また、噴射ノズル500のうちニードル200が当接する部分、すなわち弁座512と内周面521とには、窒化処理が施されている。内周面521には、摩擦力を低下させるためのDLCコートが更に施されている。 The entire injection nozzle 500 is made of martensitic stainless steel, and is hardened to increase its hardness. Further, a portion of the injection nozzle 500 that the needle 200 comes into contact with, that is, the valve seat 512 and the inner circumferential surface 521, is subjected to a nitriding treatment. The inner circumferential surface 521 is further coated with a DLC coat to reduce frictional force.

第1筒状部材110のうち噴射ノズル500とは反対側、つまり上方側の部分は拡径されており、当該部分から更に上方側に向かって伸びるように拡径円筒部112が形成されている。拡径円筒部112の内面は、後に説明するように可動コア300の一部が当接した状態で摺動する部分となっている。このため、拡径円筒部112には窒化処理が施されている。拡径円筒部112の上端、つまり第1筒状部材110の上端には、第2筒状部材120の下端が接続されている。 A portion of the first cylindrical member 110 opposite to the injection nozzle 500, that is, on the upper side, has an enlarged diameter, and an enlarged diameter cylindrical portion 112 is formed to extend further upward from the portion. . The inner surface of the enlarged diameter cylindrical portion 112 is a portion on which a portion of the movable core 300 slides while being in contact with it, as will be described later. For this reason, the enlarged diameter cylindrical portion 112 is subjected to nitriding treatment. The lower end of the second cylindrical member 120 is connected to the upper end of the enlarged diameter cylindrical portion 112, that is, the upper end of the first cylindrical member 110.

第2筒状部材120は、ハウジング100のうち、燃料の流れる方向に沿って第1筒状部材110の上流側となる位置に配置された円筒形状の部材である。第2筒状部材120の内径及び外径は、拡径円筒部112の内径及び外径とそれぞれ等しい。第2筒状部材120は、磁性体であるフェライト系ステンレスによって形成されている。第2筒状部材120の上端には、第3筒状部材130の下端が接続されている。 The second cylindrical member 120 is a cylindrical member disposed in the housing 100 at a position upstream of the first cylindrical member 110 along the fuel flow direction. The inner diameter and outer diameter of the second cylindrical member 120 are equal to the inner diameter and outer diameter of the enlarged diameter cylindrical portion 112, respectively. The second cylindrical member 120 is made of ferritic stainless steel, which is a magnetic material. The lower end of the third cylindrical member 130 is connected to the upper end of the second cylindrical member 120.

第3筒状部材130は、ハウジング100のうち、燃料の流れる方向に沿って第2筒状部材120の上流側となる位置に配置された円筒形状の部材である。第3筒状部材130の内径及び外径は、第2筒状部材120の内径及び外径とそれぞれ等しい。第3筒状部材130は、非磁性体であるオーステナイト系ステンレスによって形成されている。第3筒状部材130の上端には、第4筒状部材140の下端が接続されている。 The third cylindrical member 130 is a cylindrical member disposed in the housing 100 at a position upstream of the second cylindrical member 120 along the fuel flow direction. The inner diameter and outer diameter of the third cylindrical member 130 are equal to the inner diameter and outer diameter of the second cylindrical member 120, respectively. The third cylindrical member 130 is made of austenitic stainless steel, which is a non-magnetic material. The lower end of the fourth cylindrical member 140 is connected to the upper end of the third cylindrical member 130 .

第4筒状部材140は、ハウジング100のうち、燃料の流れる方向に沿って第3筒状部材130の上流側となる位置に配置された円筒形状の部材である。第4筒状部材140の内径及び外径は、第3筒状部材130の内径及び外径とそれぞれ等しい。第4筒状部材140は、磁性体であるフェライト系ステンレスによって形成されている。第4筒状部材140の上方側部分では、第5筒状部材150の下端部分が内側に圧入され溶接されている。 The fourth cylindrical member 140 is a cylindrical member disposed in the housing 100 at a position upstream of the third cylindrical member 130 along the fuel flow direction. The inner diameter and outer diameter of the fourth cylindrical member 140 are equal to the inner diameter and outer diameter of the third cylindrical member 130, respectively. The fourth cylindrical member 140 is made of ferritic stainless steel, which is a magnetic material. In the upper part of the fourth cylindrical member 140, the lower end part of the fifth cylindrical member 150 is press-fitted inside and welded.

第5筒状部材150は、ハウジング100のうち、燃料の流れる方向に沿って最も上流側となる位置に配置された略円筒形状の部材である。第5筒状部材150はオーステナイト系ステンレスによって形成されている。第5筒状部材150の上端部には導入口153が形成されている。導入口153は、外部から導入される燃料の入口として形成された開口である。 The fifth cylindrical member 150 is a substantially cylindrical member disposed in the housing 100 at the most upstream position along the fuel flow direction. The fifth cylindrical member 150 is made of austenitic stainless steel. An introduction port 153 is formed at the upper end of the fifth cylindrical member 150 . The introduction port 153 is an opening formed as an inlet for fuel introduced from the outside.

第5筒状部材150の内部に形成された空間151のうち、導入口153の近傍となる位置には、フィルタ152が設けられている。フィルタ152は、導入口153から導入された燃料に含まれる異物を捕集するためのものである。 A filter 152 is provided in a space 151 formed inside the fifth cylindrical member 150 at a position near the introduction port 153. The filter 152 is for collecting foreign matter contained in the fuel introduced from the inlet 153.

ニードル200は、ハウジング100の内部に配置された棒状の部材である。ニードル200は、その中心軸をハウジング100の中心軸に移動させた状態で、ハウジング100の長手方向、すなわち図1の上下方向に沿って移動可能な状態で配置されている。ニードル200はマルテンサイト系ステンレスによって形成されており、硬度を高めるために焼き入れ処理が施されている。ニードル200のうち噴射ノズル500側の端部には、シール部221が形成されている。 The needle 200 is a rod-shaped member disposed inside the housing 100. The needle 200 is disposed so as to be movable along the longitudinal direction of the housing 100, that is, the vertical direction in FIG. 1, with its central axis moved to the central axis of the housing 100. The needle 200 is made of martensitic stainless steel, and is hardened to increase its hardness. A seal portion 221 is formed at the end of the needle 200 on the injection nozzle 500 side.

ニードル200が、その可動範囲のうち最も下方側まで移動すると、図1に示されるようにシール部221が弁座512に当接し、噴孔511が閉じられた状態となる。これにより、噴孔511からの燃料の噴射が停止される。ニードル200が上方側に移動し、シール部221が弁座512から離れると、噴孔511が開かれた状態となる。これにより、噴孔511からの燃料の噴射が行われる。このように、ニードル200は、ハウジング100の内部において長手方向に沿って移動することにより、噴孔511の開閉を切り換えるための部材として設けられている。 When the needle 200 moves to the lowest position within its movable range, the seal portion 221 comes into contact with the valve seat 512, as shown in FIG. 1, and the nozzle hole 511 is closed. As a result, injection of fuel from the nozzle hole 511 is stopped. When the needle 200 moves upward and the seal portion 221 separates from the valve seat 512, the nozzle hole 511 becomes open. As a result, fuel is injected from the nozzle hole 511. In this way, the needle 200 is provided as a member for switching the opening and closing of the nozzle hole 511 by moving along the longitudinal direction inside the housing 100.

以下の説明においては、噴孔511が開かれるようにニードル200が移動する方向の側、すなわち図1における上側のことを、「開弁側」とも称することがある。また、噴孔511が閉じられるようにニードル200が移動する方向の側、すなわち図1における下側のことを、「閉弁側」とも称することがある。 In the following description, the side in which the needle 200 moves so that the nozzle hole 511 is opened, that is, the upper side in FIG. 1, may also be referred to as the "valve opening side." Further, the side in which the needle 200 moves so that the nozzle hole 511 is closed, that is, the lower side in FIG. 1 may also be referred to as the "valve closing side."

ニードル200の側面のうち、シール部221よりも僅かに開弁側となる位置には、外方に向けて突出する摺接部222が複数形成されている。摺接部222は、その先端を円筒部520の内周面521に当接させた状態で摺動する部分である。複数の摺接部222は、ニードル200の周方向に沿って並ぶように形成されている。互いに隣り合う摺接部222同士の間には、燃料が通るための経路として凹部が形成されている。ニードル200のうちシール部221及び摺接部222には、窒化処理が施されている。摺接部222には更にDLCコートが施されている。これにより、摺接部222と内周面521との間における摩擦抵抗が低下している。 A plurality of sliding contact portions 222 protruding outward are formed on the side surface of the needle 200 at positions slightly closer to the valve opening side than the seal portion 221 . The sliding contact portion 222 is a portion that slides with its tip in contact with the inner circumferential surface 521 of the cylindrical portion 520. The plurality of sliding contact parts 222 are formed so as to be lined up along the circumferential direction of the needle 200. A recess is formed between adjacent sliding contact portions 222 as a path for fuel to pass through. The seal portion 221 and sliding contact portion 222 of the needle 200 are subjected to nitriding treatment. The sliding contact portion 222 is further coated with DLC. As a result, the frictional resistance between the sliding contact portion 222 and the inner circumferential surface 521 is reduced.

ニードル200は、後に説明する可動コア300を上下方向に貫いた状態で配置されている。ニードル200の上端部は、可動コア300の上端よりも更に上方側に配置されている。ニードル200の上端部分における側面には、外方に向けて突出するように拡径部210が形成されている。拡径部210のうち可動コア300側の面、すなわち閉弁側の面は、可動コア300の端面に当接している。 The needle 200 is arranged so as to vertically penetrate a movable core 300, which will be described later. The upper end of the needle 200 is arranged further above the upper end of the movable core 300. An enlarged diameter portion 210 is formed on the side surface of the upper end portion of the needle 200 so as to protrude outward. The surface of the expanded diameter portion 210 on the movable core 300 side, that is, the surface on the valve closing side, is in contact with the end surface of the movable core 300.

ニードル200の内部には空間201が形成されている。空間201は、ニードル200のうち拡径部210の開弁側端部から、可動コア300よりも閉弁側となる位置まで伸びるように形成されている。ニードル200のうち開弁側の端部では、空間201が外部に開放されている。空間201のうち可動コア300よりも閉弁側となる位置では、ニードル200に貫通穴202が複数形成されている。この貫通穴202により、空間201と空間111とが連通されている。 A space 201 is formed inside the needle 200. The space 201 is formed to extend from the valve-opening end of the enlarged diameter portion 210 of the needle 200 to a position closer to the valve-closing side than the movable core 300 . At the end of the needle 200 on the valve opening side, a space 201 is open to the outside. A plurality of through holes 202 are formed in the needle 200 at a position in the space 201 that is closer to the valve closing side than the movable core 300 . This through hole 202 allows the space 201 and the space 111 to communicate with each other.

可動コア300は、その全体が略円筒形状に形成された部材である。可動コア300は、その中心軸をハウジング100の中心軸に移動させた状態で、ニードル200と共にハウジング100の長手方向、すなわち図1の上下方向に沿って移動可能な状態で配置されている。可動コア300は、可動側高硬度部310と可動側低硬度部320とを有している。 The movable core 300 is a member whose entirety is formed into a substantially cylindrical shape. The movable core 300 is movable along the longitudinal direction of the housing 100, that is, the vertical direction in FIG. 1, together with the needle 200, with its center axis moved to the center axis of the housing 100. The movable core 300 has a movable side high hardness section 310 and a movable side low hardness section 320.

可動側高硬度部310は、その一部が可動側低硬度部320よりも内側となる位置に配置された略円筒形状の部分である。可動側高硬度部310は、非磁性体であり且つ比較的硬度の高い材料であるマルテンサイト系ステンレスによって形成されている。可動側高硬度部310には、その硬度を高めるために焼き入れ処理が施されている。可動側高硬度部310の中央には、これを上下方向、すなわちハウジング100の長手方向に貫くように可動側貫通穴313が形成されている。先に説明したニードル200は、この可動側貫通穴313に挿通されている。ニードル200の外側面は、可動側貫通穴313の内面に当接した状態で摺動可能となっている。可動側貫通穴313の内面には窒化処理が施されている。また、ニードル200の外側面にも窒化処理が施されており、更にDLCコートが施されている。 The movable-side high-hardness portion 310 is a substantially cylindrical portion with a portion located inside the movable-side low-hardness portion 320 . The movable side high hardness portion 310 is made of martensitic stainless steel, which is a non-magnetic material and has relatively high hardness. The movable side high hardness portion 310 is hardened to increase its hardness. A movable-side through hole 313 is formed in the center of the movable-side high-hardness portion 310 so as to pass through the movable-side high-hardness portion 310 in the vertical direction, that is, in the longitudinal direction of the housing 100 . The needle 200 described above is inserted into this movable side through hole 313. The outer surface of the needle 200 is slidable while being in contact with the inner surface of the movable through hole 313. The inner surface of the movable side through hole 313 is nitrided. Further, the outer surface of the needle 200 is also nitrided and further coated with DLC.

可動側高硬度部310のうち開弁側の端面には、ニードル200の拡径部210が上方側から当接している。尚、可動側高硬度部310の開弁側の端面の一部は、後に説明するように、開弁時において固定コア400に当たる部分となっている。可動側高硬度部310の開弁側の端面では、ニードル200の拡径部210が当接する部分と、固定コア400に当たる部分と、のそれぞれに対して窒化処理が施されている。また、拡径部210のうち閉弁側の端面にも窒化処理が施されている。 The enlarged diameter portion 210 of the needle 200 is in contact with the end face of the movable side high hardness portion 310 on the valve opening side from above. In addition, a part of the end surface of the movable side high hardness part 310 on the valve opening side corresponds to the fixed core 400 when the valve is opened, as will be explained later. On the valve-opening side end face of the movable-side high-hardness portion 310, a nitriding treatment is applied to each of the portion that contacts the expanded diameter portion 210 of the needle 200 and the portion that contacts the fixed core 400. Further, the end face of the enlarged diameter portion 210 on the valve closing side is also nitrided.

可動側高硬度部310のうち閉弁側の部分は拡径されており、側方に向けて突出する拡径部311が形成されている。拡径部311の先端面312は、第1筒状部材110のうち拡径円筒部112の内面に当接している。可動コア300が移動する際には、拡径部311の先端面312が拡径円筒部112の内面に当接した状態で摺動する。先端面312には窒化処理が施されており、更にDLCコートが施されている。 A portion of the movable side high hardness portion 310 on the valve closing side has an enlarged diameter, and an enlarged diameter portion 311 that protrudes laterally is formed. The distal end surface 312 of the enlarged diameter portion 311 is in contact with the inner surface of the enlarged diameter cylindrical portion 112 of the first cylindrical member 110 . When the movable core 300 moves, the distal end surface 312 of the enlarged diameter section 311 slides while being in contact with the inner surface of the enlarged diameter cylindrical section 112 . The tip surface 312 is nitrided and further coated with DLC.

可動側低硬度部320は、可動側高硬度部310よりも外側となる位置に配置された略円筒形状の部分である。可動側低硬度部320は、その内面を可動側高硬度部310の外面に当接させた状態で、可動側高硬度部310に対し所謂「打ち込み」によって固定されている。可動側低硬度部320の閉弁側の端面は、可動側高硬度部310の拡径部311に当接している。 The movable side low hardness section 320 is a substantially cylindrical portion disposed at a position outside the movable side high hardness section 310. The movable-side low-hardness section 320 is fixed to the movable-side high-hardness section 310 by so-called "driving" with its inner surface in contact with the outer surface of the movable-side high-hardness section 310. The end surface of the movable side low hardness section 320 on the valve closing side is in contact with the enlarged diameter section 311 of the movable side high hardness section 310 .

可動側低硬度部320は、磁性体であるフェライト系ステンレスによって形成されている。その結果、可動側低硬度部320は、可動側高硬度部310よりも硬度が低い部分となっている。ハウジング100の内部において可動側低硬度部320が配置されている位置は、第2筒状部材120と概ね対向する位置となっている。 The movable side low hardness portion 320 is made of ferritic stainless steel, which is a magnetic material. As a result, the movable side low hardness section 320 has a lower hardness than the movable side high hardness section 310. The position where the movable side low hardness part 320 is arranged inside the housing 100 is a position generally facing the second cylindrical member 120.

可動側低硬度部320の開弁側の端面の位置は、可動側高硬度部310の開弁側の端面の位置よりも、僅かに閉弁側となっている。換言すれば、可動側高硬度部310の上端面は、可動側低硬度部320の上端面よりも僅かに上方側に向けて突出している。 The position of the end surface of the movable side low hardness section 320 on the valve opening side is slightly closer to the valve closing side than the position of the end surface of the movable side high hardness section 310 on the valve opening side. In other words, the upper end surface of the movable side high hardness section 310 protrudes slightly upward than the upper end surface of the movable side low hardness section 320.

その結果、可動側高硬度部310は、可動コア300のうち、ハウジング100の長手方向に沿った一方側の端部である上端部から、他方側の端部である下端部まで伸びるように形成されている。 As a result, the movable-side high-hardness portion 310 is formed to extend from the upper end, which is one end along the longitudinal direction of the housing 100, to the lower end, which is the other end, of the movable core 300. has been done.

可動コア300のうち外周部近くとなる位置には、可動コア300を上下方向に沿って貫く貫通穴301が複数形成されている。それぞれの貫通穴301は、可動側高硬度部310の拡径部311と、可動側低硬度部320との両方を貫くように形成されている。貫通穴301の機能については後述する。 A plurality of through holes 301 passing through the movable core 300 in the vertical direction are formed at positions near the outer circumference of the movable core 300. Each through hole 301 is formed to penetrate both the enlarged diameter portion 311 of the movable side high hardness portion 310 and the movable side low hardness portion 320. The function of the through hole 301 will be described later.

尚、本実施形態では上記のように、可動コア300の一部である可動側低硬度部320が磁性体によって形成されており、その他の部分である可動側高硬度部310が非磁性体によって形成されている。このような態様に替えて、可動コア300の全体が、磁性体からなる単一の材料によって形成されているような態様であってもよい。 In this embodiment, as described above, the movable side low hardness section 320, which is a part of the movable core 300, is formed of a magnetic material, and the movable side high hardness section 310, which is the other part, is formed of a nonmagnetic material. It is formed. Instead of this embodiment, the entire movable core 300 may be formed of a single magnetic material.

固定コア400は、可動コア300と同様に、その全体が略円筒形状に形成された部材である。固定コア400は、その中心軸をハウジング100の中心軸に移動させた状態で、ハウジング100の内部に固定されている。固定コア400が設けられている位置は、開弁側において可動コア300と隣り合う位置である。図1のようにニードル200のシール部221が弁座512に当接しているときにおいては、固定コア400と可動コア300との間には隙間が形成されている。固定コア400は、固定側低硬度部420と固定側高硬度部410とを有している。 Fixed core 400, like movable core 300, is a member whose entirety is formed into a substantially cylindrical shape. The fixed core 400 is fixed inside the housing 100 with its central axis moved to the central axis of the housing 100. The fixed core 400 is provided at a position adjacent to the movable core 300 on the valve opening side. When the seal portion 221 of the needle 200 is in contact with the valve seat 512 as shown in FIG. 1, a gap is formed between the fixed core 400 and the movable core 300. The fixed core 400 has a fixed side low hardness section 420 and a fixed side high hardness section 410.

固定側低硬度部420は、可動コア300の上方側となる位置に配置された略円筒形状の部分である。ハウジング100の内部において固定側低硬度部420が配置されている位置は、第4筒状部材140と概ね対向する位置となっている。固定側低硬度部420の外側面は、第4筒状部材140の内面に対して溶接によって固定されている。 The fixed side low hardness portion 420 is a substantially cylindrical portion disposed above the movable core 300. The fixed side low hardness portion 420 is disposed at a position inside the housing 100 that is generally opposed to the fourth cylindrical member 140 . The outer surface of the fixed side low hardness portion 420 is fixed to the inner surface of the fourth cylindrical member 140 by welding.

固定側低硬度部420には、これを上下方向に沿って貫くように貫通穴421が形成されている。固定側低硬度部420は、磁性体であるフェライト系ステンレスによって形成されている。その結果、固定側低硬度部420は、次に述べる固定側高硬度部410よりも硬度が低い部分となっている。 A through hole 421 is formed in the fixed side low hardness portion 420 so as to pass through the fixed side low hardness portion 420 in the vertical direction. The fixed side low hardness portion 420 is made of ferritic stainless steel, which is a magnetic material. As a result, the fixed side low hardness portion 420 has a lower hardness than the fixed side high hardness portion 410 described below.

固定側高硬度部410は、固定側低硬度部420よりも内側となる位置、具体的には貫通穴421のうち下方側の部分に配置された略円筒形状の部分である。固定側高硬度部410は、非磁性体であり且つ比較的硬度の高い材料であるマルテンサイト系ステンレスによって形成されている。固定側高硬度部410には、その硬度を高めるために焼き入れ処理が施されている。固定側高硬度部410のうち可動コア300側の端面は、可動コア300の可動側高硬度部310が当たる部分となっている。このため、当該端面には窒化処理が施されている。固定側高硬度部410は、その外面を固定側低硬度部420の内面に当接させた状態で、固定側低硬度部420に対して溶接によって固定されている。 The fixed-side high-hardness portion 410 is a substantially cylindrical portion disposed inside the fixed-side low-hardness portion 420, specifically, in a lower portion of the through hole 421. The fixed-side high-hardness portion 410 is made of martensitic stainless steel, which is a non-magnetic material and has relatively high hardness. The fixed-side high-hardness portion 410 is hardened to increase its hardness. The end surface of the fixed side high hardness section 410 on the movable core 300 side is a part that the movable side high hardness section 310 of the movable core 300 comes into contact with. For this reason, the end face is nitrided. The fixed-side high-hardness section 410 is fixed to the fixed-side low-hardness section 420 by welding with its outer surface in contact with the inner surface of the fixed-side low-hardness section 420.

固定側高硬度部410の中央には、これを上下方向に貫くように固定側貫通穴401が形成されている。先に説明したニードル200の空間201は、この固定側貫通穴401及び貫通穴421を介して第5筒状部材150の空間151に連通されている。 A fixed-side through hole 401 is formed in the center of the fixed-side high-hardness portion 410 so as to vertically penetrate through the fixed-side high-hardness portion 410 . The space 201 of the needle 200 described above is communicated with the space 151 of the fifth cylindrical member 150 via the fixed side through hole 401 and the through hole 421.

固定側貫通穴401のうち可動コア300側の部分には、ニードル200の拡径部210が下方から挿通されている。当該部分における固定側貫通穴401の内径は、他の部分における固定側貫通穴401の内径よりも僅かに大きくなっている。このため、ニードル200の拡径部210と、固定側貫通穴401の内面との間には隙間が形成されている。 The enlarged diameter portion 210 of the needle 200 is inserted into the portion of the fixed side through hole 401 on the movable core 300 side from below. The inner diameter of the fixed side through hole 401 in this part is slightly larger than the inner diameter of the fixed side through hole 401 in other parts. Therefore, a gap is formed between the enlarged diameter portion 210 of the needle 200 and the inner surface of the fixed side through hole 401.

固定側低硬度部420の閉弁側の端面の位置は、固定側高硬度部410の閉弁側の端面の位置よりも、僅かに開弁側となっている。換言すれば、固定側高硬度部410の下端面は、固定側低硬度部420の下端面よりも僅かに下方側、すなわち可動コア300側に向けて突出している。固定側高硬度部410の下端面は、その全体が、可動側高硬度部310の上端面に対向している。 The position of the end surface of the fixed side low hardness section 420 on the valve closing side is slightly closer to the valve opening side than the position of the end surface of the fixed side high hardness section 410 on the valve closing side. In other words, the lower end surface of the fixed-side high-hardness section 410 protrudes slightly lower than the lower end surface of the fixed-side low-hardness section 420, that is, toward the movable core 300 side. The entire lower end surface of the fixed side high hardness section 410 faces the upper end surface of the movable side high hardness section 310.

尚、本実施形態では上記のように、固定コア400の一部である固定側低硬度部420が磁性体によって形成されており、その他の部分である固定側高硬度部410が非磁性体によって形成されている。このような態様に替えて、固定コア400の全体が、磁性体からなる単一の材料によって形成されているような態様であってもよい。 In this embodiment, as described above, the fixed side low hardness section 420, which is a part of the fixed core 400, is formed of a magnetic material, and the fixed side high hardness section 410, which is the other part, is formed of a nonmagnetic material. It is formed. Instead of this embodiment, the entire fixed core 400 may be made of a single magnetic material.

コイル600は、電流の供給を受けて磁力を生じさせるものである。コイル600はボビン610に巻かれた状態で、ハウジング100のうち第3筒状部材130の全体と、第4筒状部材140の一部とを外側から覆うように配置されている。コイル600に電流が供給されると、固定側低硬度部420、可動側低硬度部320、第2筒状部材120、及び第4筒状部材140等を磁束が通るように磁気回路が形成される。その結果として、固定コア400と可動コア300との間に磁気吸引力が発生する。この磁気吸引力によって、可動コア300は、ニードル200と共に開弁側に移動する。コイル600に対する電流の供給が停止すると、上記の磁気吸引力は0となる。その際、可動コア300は、後述のバネ820の付勢力によって、ニードル200と共に閉弁側に移動する。 The coil 600 generates magnetic force when supplied with current. The coil 600 is wound around the bobbin 610 and is arranged to cover the entire third cylindrical member 130 and a part of the fourth cylindrical member 140 of the housing 100 from the outside. When a current is supplied to the coil 600, a magnetic circuit is formed such that magnetic flux passes through the fixed side low hardness section 420, the movable side low hardness section 320, the second cylindrical member 120, the fourth cylindrical member 140, etc. Ru. As a result, a magnetic attraction force is generated between the fixed core 400 and the movable core 300. Due to this magnetic attraction force, the movable core 300 moves to the valve opening side together with the needle 200. When the supply of current to the coil 600 is stopped, the magnetic attraction force described above becomes zero. At this time, the movable core 300 moves toward the valve closing side together with the needle 200 by the urging force of a spring 820, which will be described later.

燃料噴射弁10のその他の構成について説明する。固定側低硬度部420に形成された貫通穴421のうち、固定側高硬度部410よりもの上方側の部分には、アジャスティングパイプ430が圧入され固定されている。アジャスティングパイプ430は円筒形状の部材であって、その内側には、アジャスティングパイプ430を上下方向に貫く貫通穴431が形成されている。 Other configurations of the fuel injection valve 10 will be explained. An adjusting pipe 430 is press-fitted and fixed in a portion of the through hole 421 formed in the fixed side low hardness section 420 above the fixed side high hardness section 410. The adjusting pipe 430 is a cylindrical member, and a through hole 431 passing through the adjusting pipe 430 in the vertical direction is formed inside the adjusting pipe 430.

アジャスティングパイプ430の下方側には、バネ820が配置されている。バネ820は、その略全体が固定側貫通穴401の内側に配置されている。バネ820は、その伸縮方向が上下方向に沿っている弾性部材である。バネ820の一端は、アジャスティングパイプ430の閉弁側端部に当接している。バネ820の他端は、ニードル200のうち拡径部210の開弁側端部に当接している。バネ820は、その長さを自由長よりも短くした状態となっている。このため、ニードル200の拡径部210は、バネ820からの力によって可動側高硬度部310に対して押し付けられている。その結果、バネ820は、ニードル200と可動コア300との両方を閉弁側に付勢している。 A spring 820 is arranged below the adjusting pipe 430. Almost the entire spring 820 is arranged inside the fixed side through hole 401. The spring 820 is an elastic member whose expansion/contraction direction is along the vertical direction. One end of the spring 820 is in contact with the valve-closing end of the adjusting pipe 430. The other end of the spring 820 is in contact with the valve opening side end of the enlarged diameter portion 210 of the needle 200. The length of the spring 820 is shorter than its free length. Therefore, the enlarged diameter portion 210 of the needle 200 is pressed against the movable side high hardness portion 310 by the force from the spring 820. As a result, the spring 820 biases both the needle 200 and the movable core 300 toward the valve closing side.

可動コア300の下方側には、バネ810が配置されている。バネ810は、その伸縮方向が上下方向に沿っている弾性部材である。バネ810の一端は、可動側高硬度部310の閉弁側端面に形成された段差部に当接している。バネ810の他端は、第1筒状部材110のうち開弁側の端部近傍に形成された段差部に当接している。このように、バネ810は、可動コア300とハウジング100との間となる位置に配置されている。 A spring 810 is arranged below the movable core 300. The spring 810 is an elastic member whose expansion/contraction direction is along the vertical direction. One end of the spring 810 is in contact with a stepped portion formed on the end surface of the movable high-hardness portion 310 on the valve-closing side. The other end of the spring 810 is in contact with a stepped portion formed near the end of the first cylindrical member 110 on the valve opening side. In this way, the spring 810 is arranged at a position between the movable core 300 and the housing 100.

バネ810は、その長さを自由長よりも短くした状態となっている。このため、可動コア300の可動側高硬度部310は、バネ810からの力によってニードル200の拡径部210に対して押し付けられている。その結果、バネ810は、ニードル200と可動コア300との両方を開弁側に付勢している。バネ810とバネ820とが設けられていることにより、拡径部210と可動側高硬度部310とが互いに当接している状態が維持されている。 The length of the spring 810 is shorter than its free length. Therefore, the movable side high hardness portion 310 of the movable core 300 is pressed against the enlarged diameter portion 210 of the needle 200 by the force from the spring 810. As a result, the spring 810 biases both the needle 200 and the movable core 300 toward the valve opening side. By providing the spring 810 and the spring 820, the expanded diameter portion 210 and the movable side high hardness portion 310 are maintained in contact with each other.

本実施形態では、バネ820の付勢力が、バネ810の付勢力よりも大きくなっている。このため、コイル600に対する電流の供給が停止しており、固定コア400と可動コア300との間に磁気吸引力が発生していないときには、ニードル200のシール部221が弁座512に当接した状態、すなわち噴孔511が塞がれた状態となる。 In this embodiment, the biasing force of the spring 820 is greater than the biasing force of the spring 810. Therefore, when the supply of current to the coil 600 is stopped and no magnetic attraction force is generated between the fixed core 400 and the movable core 300, the seal portion 221 of the needle 200 is in contact with the valve seat 512. In other words, the nozzle hole 511 is in a blocked state.

コイル600、第4筒状部材140、及び第5筒状部材150の一部は、樹脂900によって外側からモールドされている。この樹脂900の一部は外側に向かって突出しており、この突出した部分がコネクタ910として形成されている。コネクタ910は、コイル600に対して電流を供給するための線が接続される部分である。コネクタ910の内側には給電端子920が配置されている。給電端子920は、コイル600に繋がる給電線の一端に設けられた端子である。コイル600への電流の供給はこの給電端子920から行われる。 A portion of the coil 600, the fourth cylindrical member 140, and the fifth cylindrical member 150 are molded from the outside with resin 900. A portion of this resin 900 protrudes outward, and this protruding portion is formed as a connector 910. Connector 910 is a portion to which a wire for supplying current to coil 600 is connected. A power supply terminal 920 is arranged inside the connector 910. The power supply terminal 920 is a terminal provided at one end of the power supply line connected to the coil 600. Current is supplied to the coil 600 from this power supply terminal 920.

樹脂900のうち、第4筒状部材140をモールドしている部分の更に外側には、ホルダ700が配置されている。ホルダ700は磁性体からなる筒状の部材であって、拡径円筒部112の外側となる位置から、コイル600の開弁側端部よりも更に開弁側となる位置まで伸びるように形成されている。ホルダ700の内側であって、且つコイル600よりも開弁側となる位置にはカバー710が配置されている。カバー710は、磁性体からなる略円管状の部材であって、第4筒状部材140を外側から囲むように配置されている。カバー710のうちコネクタ910の近傍となる部分は、コネクタ910との干渉を避けるために切り欠かれている。このため、図1においては、第4筒状部材140の右側となる位置においてのみカバー710の断面が表れている。ホルダ700及びカバー710は、コイル600で発生した磁束が通る磁気回路の一部を成すものである。 A holder 700 is placed further outside the portion of the resin 900 in which the fourth cylindrical member 140 is molded. The holder 700 is a cylindrical member made of a magnetic material, and is formed to extend from a position outside the enlarged diameter cylindrical portion 112 to a position further on the valve opening side than the valve opening side end of the coil 600. ing. A cover 710 is disposed inside the holder 700 and at a position closer to the valve opening side than the coil 600. The cover 710 is a substantially cylindrical member made of a magnetic material, and is arranged to surround the fourth cylindrical member 140 from the outside. A portion of the cover 710 near the connector 910 is cut out to avoid interference with the connector 910. Therefore, in FIG. 1, the cross section of the cover 710 is shown only at a position on the right side of the fourth cylindrical member 140. The holder 700 and the cover 710 form part of a magnetic circuit through which the magnetic flux generated by the coil 600 passes.

燃料噴射弁10の動作について説明する。第5筒状部材150には、導入口153から燃料が供給されている。コイル600への電流供給が行われていないときには、既に述べたように噴孔511は閉じられている。このため、燃料噴射弁10の内部は燃料によって加圧された状態となっている。 The operation of the fuel injection valve 10 will be explained. Fuel is supplied to the fifth cylindrical member 150 from an inlet 153. When no current is being supplied to the coil 600, the nozzle hole 511 is closed, as described above. Therefore, the inside of the fuel injection valve 10 is pressurized by the fuel.

コイル600への電流供給が開始されると、固定コア400と可動コア300との間に磁気吸引力が発生し、可動コア300は開弁側に移動する。その際、ニードル200の拡径部210は可動コア300の可動側高硬度部310に当接しているので、可動コア300と共にニードル200も開弁側に移動する。ニードル200のシール部221が弁座512から離れて、噴孔511が開かれた状態になるので、噴孔511からの燃料の噴射が開始される。 When current supply to the coil 600 is started, a magnetic attraction force is generated between the fixed core 400 and the movable core 300, and the movable core 300 moves toward the valve opening side. At this time, since the enlarged diameter portion 210 of the needle 200 is in contact with the movable side high hardness portion 310 of the movable core 300, the needle 200 also moves to the valve opening side together with the movable core 300. Since the seal portion 221 of the needle 200 is separated from the valve seat 512 and the nozzle hole 511 is opened, injection of fuel from the nozzle hole 511 is started.

燃料は、導入口153から空間151に流入した後、貫通穴431、固定側貫通穴401、空間201、貫通穴202、及び空間111を順に通り、噴孔511から噴射される。このように燃料が通る経路は、ハウジング100の内部に形成された経路であって、外部から供給された燃料を噴孔511に導くための「燃料通路」に該当する。 After flowing into the space 151 from the introduction port 153, the fuel passes through the through hole 431, the fixed side through hole 401, the space 201, the through hole 202, and the space 111 in this order, and is injected from the nozzle hole 511. The path through which the fuel passes in this way is a path formed inside the housing 100, and corresponds to a "fuel passage" for guiding fuel supplied from the outside to the nozzle hole 511.

尚、可動コア300の周囲は燃料で満たされた状態となっている。可動コア300が開弁側に移動する際には、可動コア300よりも開弁側の空間に存在していた燃料が、可動コア300を貫く貫通穴301を通って、可動コア300よりも閉弁側の空間に移動する。貫通穴301を通って燃料がスムーズに移動するので、可動コア300の移動が燃料によって妨げられてしまうことが無い。可動コア300が、その後閉弁側に移動する際においても同様である。可動コア300の上下の空間、及びこれらを繋ぐ貫通穴301も、燃料通路の一部に該当する。 Note that the area around the movable core 300 is filled with fuel. When the movable core 300 moves to the valve opening side, the fuel that was present in the space on the valve opening side of the movable core 300 passes through the through hole 301 penetrating the movable core 300 and moves toward the valve opening side of the movable core 300. Move to the valve side space. Since the fuel moves smoothly through the through hole 301, the movement of the movable core 300 is not hindered by the fuel. The same applies when the movable core 300 subsequently moves to the valve closing side. The space above and below the movable core 300 and the through hole 301 connecting these spaces also correspond to part of the fuel passage.

開弁側に移動し始めた可動コア300はその後、固定コア400に当たって止まる。本実施形態では既に述べたように、可動側高硬度部310の上端面が固定コア400側に向けて突出しており、固定側高硬度部410の下端面が可動コア300側に向けて突出している。このため、可動コア300は、可動側高硬度部310が固定コア400に当たる一方で、可動側低硬度部320は固定コア400には当たらない。また、固定コア400のうち固定側高硬度部410には可動コア300が当たるのであるが、固定側低硬度部420には可動コア300が当たらない。 The movable core 300 that has started moving toward the valve opening side then hits the fixed core 400 and stops. In this embodiment, as already described, the upper end surface of the movable side high hardness section 310 protrudes toward the fixed core 400 side, and the lower end surface of the fixed side high hardness section 410 protrudes toward the movable core 300 side. There is. Therefore, in the movable core 300, the movable side high hardness section 310 comes into contact with the fixed core 400, while the movable side low hardness section 320 does not come into contact with the fixed core 400. Further, the movable core 300 hits the fixed side high hardness portion 410 of the fixed core 400, but the movable core 300 does not hit the fixed side low hardness portion 420.

このように、本実施形態に係る燃料噴射弁10は、コイル600に電流が供給されると、発生した磁気吸引力によって可動コア300がニードル200と共に固定コア400側に移動し、可動側高硬度部310が固定側高硬度部410に当たるように構成されている。 As described above, in the fuel injection valve 10 according to the present embodiment, when current is supplied to the coil 600, the movable core 300 moves together with the needle 200 toward the fixed core 400 due to the generated magnetic attraction force, and the movable side has a high hardness. The portion 310 is configured to contact the fixed side high hardness portion 410.

本実施形態では、可動コア300のうち比較的硬度の高い部分である可動側高硬度部310と、固定コア400のうち比較的硬度の高い部分である固定側高硬度部410とが互いに衝突する。このため、固定コア及び可動コアのいずれにおいても、衝突による損傷の発生が抑制される。 In this embodiment, the movable-side high-hardness section 310, which is a relatively hard part of the movable core 300, and the fixed-side high-hardness part 410, which is a relatively hard part of the fixed core 400, collide with each other. . Therefore, damage caused by collision is suppressed in both the fixed core and the movable core.

一方、磁気吸引力に寄与する部分である可動側低硬度部320及び固定側低硬度部420は、比較的硬度の低い磁性体によって形成されているのであるが、これらには他の部材が衝突しない構成となっている。燃料噴射弁10では、磁性体を用いて磁気吸引力を効率的に発生させ得る構成としながらも、磁性体が衝突によって損傷してしまうことが防止されている。 On the other hand, the movable-side low-hardness section 320 and the fixed-side low-hardness section 420, which contribute to the magnetic attraction force, are formed of a magnetic material with relatively low hardness, but other members collide with them. The configuration is such that it does not. The fuel injection valve 10 uses a magnetic material to efficiently generate a magnetic attraction force, but prevents the magnetic material from being damaged by a collision.

噴孔511が開かれている状態で、コイル600への電流供給が停止されると、固定コア400と可動コア300との間に磁気吸引力が働かなくなる。可動コア300及びニードル200は、バネ820の付勢力によって閉弁側に移動し、最終的にはシール部221が弁座512に当接した状態、すなわち噴孔511が塞がれた状態となる。これにより、噴孔511からの燃料の噴射が停止する。 If the current supply to the coil 600 is stopped while the nozzle hole 511 is open, the magnetic attraction force will no longer work between the fixed core 400 and the movable core 300. The movable core 300 and the needle 200 are moved toward the valve closing side by the biasing force of the spring 820, and eventually the seal portion 221 comes into contact with the valve seat 512, that is, the nozzle hole 511 is closed. . As a result, injection of fuel from the nozzle hole 511 is stopped.

上記のように、燃料の噴射が開始される際には、可動コア300が開弁側に移動して固定コアに衝突する。また、燃料の噴射が停止される際には、ニードル200が閉弁側に移動して弁座512に衝突する。燃料噴射弁10を構成する各部材の摩耗や変形を抑制するためには、衝突時のエネルギーは小さい方が好ましい。衝突時のエネルギーを低減するための工夫点について、図2を参照しながら説明する。図2は、図1のA部における構成を拡大して示す図である。 As described above, when fuel injection is started, the movable core 300 moves toward the valve opening side and collides with the fixed core. Further, when fuel injection is stopped, the needle 200 moves toward the valve closing side and collides with the valve seat 512. In order to suppress wear and deformation of each member constituting the fuel injection valve 10, it is preferable that the energy at the time of collision be small. Points for reducing energy during a collision will be explained with reference to FIG. 2. FIG. 2 is an enlarged view showing the configuration of section A in FIG. 1. As shown in FIG.

同図に示されるように、ニードル200のうち拡径部210よりも下方側の部分には、第1部分231と第2部分232とが設けられている。第1部分231は、拡径部210から下方側に向けて伸びている部分であって、その外径が比較的大きい部分である。第2部分232は、第1部分231の下端から更に下方側に向けて伸びている部分であって、その外径が、第1部分231の外径よりも小さくなっている部分である。第1部分231は、本実施形態における「大経部」に該当する。第2部分232は、本実施形態における「小経部」に該当する。大経部である第1部分231と、小径部である第2部分232とは、上記のように、ハウジング100の長手方向に沿って並ぶように設けられている。 As shown in the figure, a first portion 231 and a second portion 232 are provided in a portion of the needle 200 below the enlarged diameter portion 210. The first portion 231 is a portion extending downward from the enlarged diameter portion 210 and has a relatively large outer diameter. The second portion 232 is a portion that extends further downward from the lower end of the first portion 231 and has an outer diameter smaller than the outer diameter of the first portion 231 . The first portion 231 corresponds to the "large meridian section" in this embodiment. The second portion 232 corresponds to the "small meridian" in this embodiment. The first portion 231, which is the large diameter portion, and the second portion 232, which is the small diameter portion, are provided so as to be lined up along the longitudinal direction of the housing 100, as described above.

第1部分231の下端部近傍は、第1筒状部材110の内周面に対して対向しており、当該内周面によって摺動可能な状態で支持されている。このように、ニードル200の第1部分231の一部と、第1筒状部材110の内周面とが対向している部分のことを、以下では「摺動部271」とも称する。摺動部271では、第1部分231と第1筒状部材110との間に数μmから数十μm程度の隙間が形成されている。尚、摺動部271においては、一部においてニードル200と第1筒状部材110とが互いに当接していてもよい。 The vicinity of the lower end of the first portion 231 faces the inner circumferential surface of the first cylindrical member 110 and is slidably supported by the inner circumferential surface. The portion where a portion of the first portion 231 of the needle 200 and the inner circumferential surface of the first cylindrical member 110 face each other in this manner is hereinafter also referred to as a "sliding portion 271." In the sliding portion 271, a gap of approximately several μm to several tens of μm is formed between the first portion 231 and the first cylindrical member 110. In addition, in the sliding part 271, the needle 200 and the 1st cylindrical member 110 may contact|abut mutually in a part.

摺動部271よりも下方側では、第2部分232と第1筒状部材110の内周面との間に空間が形成されている。当該空間は、後に説明するように、ニードル200の動作速度を減衰させるためのダンパー室250として機能する空間である。ダンパー室250は、小径部である第2部分232の上端部近傍において、第2部分232の周りに形成された空間となっている。 Below the sliding portion 271, a space is formed between the second portion 232 and the inner peripheral surface of the first cylindrical member 110. This space is a space that functions as a damper chamber 250 for damping the operating speed of the needle 200, as will be described later. The damper chamber 250 is a space formed around the second portion 232 near the upper end of the second portion 232, which is a small diameter portion.

第1筒状部材110の内周面のうち、ダンパー室250よりも下方側の部分は、全周に亘って第2部分232に向かって突出している。このように突出している部分のことを、以下では「突出部260」とも称する。先に述べた空間111は、第1筒状部材110の内部のうち、この突出部260よりも下方側の空間となっている。 A portion of the inner peripheral surface of the first cylindrical member 110 located below the damper chamber 250 protrudes toward the second portion 232 over the entire circumference. The protruding portion as described above will also be referred to as a "protruding portion 260" hereinafter. The space 111 described above is a space inside the first cylindrical member 110 below the protrusion 260.

第2部分232のうちダンパー室250よりも下方側の部分は、第1筒状部材110の内周面、具体的には突出部260の内周面に対して対向しており、当該内周面によって摺動可能な状態で支持されている。このように、ニードル200の第2部分232の一部と、第1筒状部材110の内周面とが対向している部分のことを、以下では「摺動部272」とも称する。摺動部272では、第2部分232と突出部260との間に数μmから数十μm程度の隙間が形成されている。尚、摺動部272においては、一部においてニードル200と第1筒状部材110とが互いに当接していてもよい。突出部260は、ダンパー室250の下端部分を区画するための壁、ということもできる。先に述べた貫通穴202は、ニードル200のうち突出部260よりも下方側となる位置に形成されている。 A portion of the second portion 232 on the lower side than the damper chamber 250 faces the inner circumferential surface of the first cylindrical member 110, specifically, the inner circumferential surface of the protrusion 260. It is slidably supported by a surface. The portion where a portion of the second portion 232 of the needle 200 and the inner circumferential surface of the first cylindrical member 110 face each other in this way is hereinafter also referred to as a "sliding portion 272." In the sliding portion 272, a gap of approximately several μm to several tens of μm is formed between the second portion 232 and the protruding portion 260. In addition, in the sliding part 272, the needle 200 and the 1st cylindrical member 110 may contact|abut mutually in a part. The protrusion 260 can also be called a wall for partitioning the lower end portion of the damper chamber 250. The aforementioned through hole 202 is formed in the needle 200 at a position below the protrusion 260.

ダンパー室250は、燃料通路である空間111等と繋がっているので、ダンパー室250には燃料が流入又は流出する。しかしながら、ダンパー室250と燃料通路との間には、隙間の小さい摺動部271や摺動部272が設けられているので、ダンパー室250における燃料の出入りは制限されており、ダンパー室250は準密閉空間となっている。 Since the damper chamber 250 is connected to the space 111, which is a fuel passage, fuel flows into or out of the damper chamber 250. However, since a sliding portion 271 and a sliding portion 272 with small gaps are provided between the damper chamber 250 and the fuel passage, the flow of fuel into and out of the damper chamber 250 is restricted. It is a semi-closed space.

燃料の噴射が開始される際には、先に述べたようにニードル200が開弁側に向かって移動する。その際、ニードル200の移動に伴って、ダンパー室250の容積は拡大するので、ダンパー室250における燃料の圧力は低下する。ダンパー室250と燃料通路との圧力差に起因して、ニードル200には閉弁側に向かう方向の力が加えられる。その結果、開弁側に向かう方向に移動しているニードル200及び可動コア300には、同方向への動作速度を減衰させるような力が働くこととなる。これにより、可動部材であるニードル200や可動コア300が、固定部材である固定コア400等に対して衝突する際の衝突エネルギーが低減される。 When fuel injection is started, the needle 200 moves toward the valve opening side as described above. At this time, as the needle 200 moves, the volume of the damper chamber 250 expands, so the pressure of the fuel in the damper chamber 250 decreases. Due to the pressure difference between the damper chamber 250 and the fuel passage, a force is applied to the needle 200 in a direction toward the valve closing side. As a result, a force is applied to the needle 200 and the movable core 300 that are moving in the direction toward the valve opening side, which reduces the speed of movement in the same direction. This reduces the collision energy when the needle 200 and the movable core 300, which are movable members, collide with the fixed core 400, which is a fixed member, and the like.

燃料の噴射が停止される際には、先に述べたようにニードル200が閉弁側に向かって移動する。その際、ニードル200の移動に伴って、ダンパー室250の容積は縮小するので、ダンパー室250における燃料の圧力は増加する。ダンパー室250と燃料通路との圧力差に起因して、ニードル200には開弁側に向かう方向の力が加えられる。その結果、閉弁側に向かう方向に移動しているニードル200には、同方向への動作速度を減衰させるような力が働くこととなる。これにより、可動部材であるニードル200が、固定部材である弁座512等に対して衝突する際の衝突エネルギーが、閉弁時においても低減される。 When fuel injection is stopped, the needle 200 moves toward the valve closing side, as described above. At this time, as the needle 200 moves, the volume of the damper chamber 250 decreases, so the pressure of the fuel in the damper chamber 250 increases. Due to the pressure difference between the damper chamber 250 and the fuel passage, a force is applied to the needle 200 in a direction toward the valve opening side. As a result, the needle 200 moving in the direction toward the valve closing side is subjected to a force that attenuates the speed of movement in the same direction. As a result, the collision energy when the needle 200, which is a movable member, collides with the valve seat 512, which is a fixed member, is reduced even when the valve is closed.

尚、このようなダンパー室250は、従来のように、可動コア300とハウジング100との間、具体的には可動コア300の直下となる位置に形成することも可能である。しかしながら、そのような構成においては、同位置にバネ810を配置することが難しくなってしまう。ダンパー室250の機能を十分に発揮させるためには、ダンパー室250の容積を小さくする必要があるのであるが、これにより、同位置に配置されるバネ810の設計自由度が低下してしまうからである。 Incidentally, such a damper chamber 250 can also be formed between the movable core 300 and the housing 100, specifically, at a position immediately below the movable core 300, as in the conventional case. However, in such a configuration, it becomes difficult to arrange the spring 810 at the same position. In order to fully utilize the function of the damper chamber 250, it is necessary to reduce the volume of the damper chamber 250, but this reduces the degree of freedom in designing the spring 810 arranged at the same position. It is.

バネ810のばね定数が適切な値となっていない場合には、ハウジング100の内部で共振が生じてしまうことがある。共振を確実に防止するためには、バネ810が配置される空間を比較的広く確保しておき、バネ810の設計自由度を高めておくことが好ましい。このため、バネ810は、ハウジング100の内部のうち比較的広い空間を確保し得る部分、すなわち、本実施形態のように可動コア300とハウジング100との間となる位置に配置することが好ましい。 If the spring constant of the spring 810 is not an appropriate value, resonance may occur inside the housing 100. In order to reliably prevent resonance, it is preferable to secure a relatively large space in which the spring 810 is arranged to increase the degree of freedom in designing the spring 810. For this reason, it is preferable that the spring 810 be disposed inside the housing 100 in a portion where a relatively large space can be secured, that is, in a position between the movable core 300 and the housing 100 as in the present embodiment.

本実施形態では、ニードル200の動作速度を減衰させるためのダンパー室250が、ニードル200とハウジング100との間となる位置、具体的には、第2部分232と第1筒状部材110との間となる位置に形成されている。可動コア300とハウジング100との間となる位置にはダンパー室を形成する必要がないので、当該位置に、バネ810を配置するための空間を広く確保することができている。これにより、バネ810を配置するための空間を広く確保しながらも、ダンパー室250による減衰の効果を十分に発揮することが可能となっている。 In this embodiment, the damper chamber 250 for damping the operating speed of the needle 200 is located between the needle 200 and the housing 100, specifically, between the second portion 232 and the first cylindrical member 110. It is formed in a position between the two. Since there is no need to form a damper chamber at a position between the movable core 300 and the housing 100, a wide space for arranging the spring 810 can be secured at this position. This makes it possible to sufficiently exhibit the damping effect of the damper chamber 250 while ensuring a wide space for arranging the spring 810.

以上に説明したような燃料噴射弁10の構成は、液体燃料を噴射するための燃料噴射弁にも採用することができる。しかしながら、気体燃料を噴射するための燃料噴射弁10においては、燃料の粘度が小さく、ニードル200等の動作速度が大きくなり過ぎる傾向が高いので、本実施形態の構成を採用することの効果が大きい。 The configuration of the fuel injection valve 10 as described above can also be adopted as a fuel injection valve for injecting liquid fuel. However, in the fuel injection valve 10 for injecting gaseous fuel, the viscosity of the fuel is low and the operating speed of the needle 200 etc. tends to become too high, so the adoption of the configuration of this embodiment is highly effective. .

また、気体燃料として、本実施形態のように水素が用いられる場合には、燃料噴射弁10の各部を構成する材料が、所謂水素脆性によって脆くなる傾向がある。水素脆性が生じた際に、ニードル200等の可動部材が激しく衝突すると、燃料噴射弁10の各部が摩耗などによって変形し、燃料噴射弁10の動作特性が短期間で変化してしまう可能性がある。このため、気体燃料として水素が用いられる場合には、以上に説明したような燃料噴射弁10の構成を採用することの効果が特に大きくなる。 Further, when hydrogen is used as the gaseous fuel as in this embodiment, the materials forming each part of the fuel injection valve 10 tend to become brittle due to so-called hydrogen embrittlement. When hydrogen embrittlement occurs, if movable members such as the needle 200 collide violently, each part of the fuel injector 10 may be deformed due to wear etc., and the operating characteristics of the fuel injector 10 may change in a short period of time. be. Therefore, when hydrogen is used as the gaseous fuel, the effect of adopting the configuration of the fuel injection valve 10 as described above becomes particularly large.

第2実施形態について説明する。以下では、第1実施形態と異なる点について主に説明し、第1実施形態と共通する点については適宜説明を省略する。図3には、本実施形態に係る燃料噴射弁10の全体構造が示されている。図4は、図3のB部における構成を拡大して示したものである。本実施形態に係る燃料噴射弁10は、図4に示される部分の構成において第1実施形態と異なっている。 A second embodiment will be described. In the following, points different from the first embodiment will be mainly explained, and explanations of points common to the first embodiment will be omitted as appropriate. FIG. 3 shows the overall structure of the fuel injection valve 10 according to this embodiment. FIG. 4 shows an enlarged view of the configuration in section B of FIG. The fuel injection valve 10 according to this embodiment differs from the first embodiment in the configuration of the portion shown in FIG.

図4に示されるように、本実施形態においては、ニードル200に拡径部材240が取り付けられている。拡径部材240は略円筒形状の部材である。拡径部材240の外径は、第1部分231の外径よりも大きい。拡径部材240の内径は、第2部分232の外径に概ね等しい。拡径部材240は、その内側にニードル200の第2部分232が挿通されており、拡径部材240の上端は第1部分231の下端に当接している。拡径部材240は、このような位置において、例えば溶接や圧入等によりニードル200に対して固定されている。その結果、拡径部材240はニードル200の一部となっている。拡径部材240は、本実施形態における「大経部」に該当する。また、第2部分232は、その外径が拡径部材240の外径よりも小さいので、実施形態における「小経部」に該当する。 As shown in FIG. 4, in this embodiment, a diameter expanding member 240 is attached to the needle 200. The diameter expanding member 240 is a substantially cylindrical member. The outer diameter of the expanding diameter member 240 is larger than the outer diameter of the first portion 231. The inner diameter of the enlarged diameter member 240 is approximately equal to the outer diameter of the second portion 232. The second portion 232 of the needle 200 is inserted into the inside of the diameter expanding member 240, and the upper end of the diameter expanding member 240 is in contact with the lower end of the first portion 231. The diameter expanding member 240 is fixed to the needle 200 at such a position, for example, by welding, press fitting, or the like. As a result, the enlarged diameter member 240 becomes a part of the needle 200. The diameter expanding member 240 corresponds to the "large diameter section" in this embodiment. Furthermore, since the second portion 232 has an outer diameter smaller than the outer diameter of the diameter expanding member 240, it corresponds to the "small diameter section" in the embodiment.

拡径部材240の外周面は、第1筒状部材110の内周面に対して対向しており、当該内周面によって摺動可能な状態で支持されている。このように、ニードル200の拡径部材240と、第1筒状部材110の内周面とが対向している部分のことを、以下では「摺動部273」とも称する。摺動部273では、拡径部材240と第1筒状部材110との間に数μmから数十μm程度の隙間が形成されている。尚、摺動部273においては、一部において拡径部材240と第1筒状部材110とが互いに当接していてもよい。 The outer circumferential surface of the expanding diameter member 240 faces the inner circumferential surface of the first cylindrical member 110, and is slidably supported by the inner circumferential surface. The portion where the diameter-expanding member 240 of the needle 200 and the inner circumferential surface of the first cylindrical member 110 face each other in this manner is hereinafter also referred to as a "sliding portion 273." In the sliding portion 273, a gap of approximately several μm to several tens of μm is formed between the diameter expanding member 240 and the first cylindrical member 110. Note that in the sliding portion 273, the expanding diameter member 240 and the first cylindrical member 110 may be in contact with each other in a portion.

摺動部273よりも下方側では、第2部分232と第1筒状部材110の内周面との間に空間が形成されている。当該空間は、本実施形態におけるダンパー室250として機能する空間である。 Below the sliding portion 273, a space is formed between the second portion 232 and the inner peripheral surface of the first cylindrical member 110. This space is a space that functions as the damper chamber 250 in this embodiment.

ダンパー室250は、燃料通路である空間111等と繋がっているので、ダンパー室250には燃料が流入又は流出する。しかしながら、ダンパー室250と燃料通路との間には、隙間の小さい摺動部273や摺動部272が設けられているので、ダンパー室250における燃料の出入りは制限されており、ダンパー室250は準密閉空間となっている。 Since the damper chamber 250 is connected to the space 111, which is a fuel passage, fuel flows into or out of the damper chamber 250. However, since the sliding portion 273 and the sliding portion 272 with small gaps are provided between the damper chamber 250 and the fuel passage, the flow of fuel into and out of the damper chamber 250 is restricted. It is a semi-closed space.

本実施形態でも、ダンパー室250は、小径部である第2部分232の周りに形成された空間となっている。ダンパー室250の上部は拡径部材240によって区画されており、ダンパー室250の下部は突出部260によって区画されている。このような構成においても、ダンパー室250は、可動コア300やニードル200の動作速度を減衰させる。 Also in this embodiment, the damper chamber 250 is a space formed around the second portion 232, which is a small diameter portion. The upper part of the damper chamber 250 is divided by the diameter expanding member 240, and the lower part of the damper chamber 250 is divided by the protruding part 260. Even in such a configuration, the damper chamber 250 damps the operating speed of the movable core 300 and the needle 200.

本実施形態では、ダンパー室250の上端が拡径部材240によって区画されているので、上方側から見た場合におけるダンパー室250の面積を、第1実施形態の場合よりも広く確保することができている。 In this embodiment, since the upper end of the damper chamber 250 is partitioned by the diameter expanding member 240, the area of the damper chamber 250 when viewed from above can be secured larger than in the first embodiment. ing.

本実施形態では、拡径部材240が設けられていない状態のニードル200を、可動コア300の可動側貫通穴313に予め挿通した後、拡径部材240をニードル200に取り付けることにより構成されている。これにより、上方側から見た場合におけるダンパー室250の面積を、可動側貫通穴313の面積よりも広く確保することができている。その結果、ダンパー室250による減衰の効果を大きく発揮させることが可能となっている。 In this embodiment, the diameter expanding member 240 is attached to the needle 200 after the needle 200 without the diameter expanding member 240 is inserted into the movable side through hole 313 of the movable core 300 in advance. . Thereby, the area of the damper chamber 250 when viewed from above can be ensured to be larger than the area of the movable side through hole 313. As a result, it is possible to greatly exhibit the damping effect of the damper chamber 250.

第3実施形態について説明する。以下では、第1実施形態と異なる点について主に説明し、第1実施形態と共通する点については適宜説明を省略する。図5は、本実施形態に係る燃料噴射弁10のうち、図1のA部に対応する部分を拡大して示したものである。本実施形態では、当該部分の構成において第1実施形態と異なっている。 A third embodiment will be described. In the following, points different from the first embodiment will be mainly explained, and explanations of points common to the first embodiment will be omitted as appropriate. FIG. 5 is an enlarged view of a portion of the fuel injection valve 10 according to the present embodiment, which corresponds to section A in FIG. This embodiment differs from the first embodiment in the configuration of the relevant portion.

本実施形態においては、ニードル200の第2部分232のうち、ダンパー室250と隣り合う部分を貫くように、複数の連通路233が形成されている。連通路233は、ニードル200の内側の空間201、すなわち燃料通路と、ダンパー室250との間を連通させるように形成された貫通穴である。連通路233は、燃料通路とダンパー室250との間を連通させる通路ではあるが、同様の通路といえる摺動部271や摺動部272とは異なる位置に形成されている。 In this embodiment, a plurality of communication passages 233 are formed so as to penetrate through a portion of the second portion 232 of the needle 200 that is adjacent to the damper chamber 250. The communication passage 233 is a through hole formed to communicate between the space 201 inside the needle 200, that is, the fuel passage, and the damper chamber 250. Although the communication passage 233 is a passage that communicates between the fuel passage and the damper chamber 250, it is formed at a different position from the sliding part 271 and the sliding part 272, which can be said to be similar passages.

ニードル200が動作する際には、燃料の一部は連通路233を通って、ダンパー室250と空間201との間を行き来する。このため、連通路233が形成されていることで、ダンパー室250の機能、すなわちニードル200の動作速度を減衰させる機能は抑えられることとなる。本実施形態では、連通路233の内径や数を調整することで、ニードル200等の動作速度を適宜調整し、ニードル200等が減速され過ぎてしまうようなことを防止することが可能となっている。 When the needle 200 operates, a portion of the fuel passes between the damper chamber 250 and the space 201 through the communication path 233. Therefore, by forming the communication passage 233, the function of the damper chamber 250, that is, the function of damping the operating speed of the needle 200 is suppressed. In this embodiment, by adjusting the inner diameter and number of communication passages 233, it is possible to appropriately adjust the operating speed of the needle 200, etc., and prevent the needle 200, etc. from being decelerated too much. There is.

第4実施形態について説明する。以下では、図4の第2実施形態と異なる点について主に説明し、第2実施形態と共通する点については適宜説明を省略する。図6は、本実施形態に係る燃料噴射弁10のうち、図4に対応する部分、すなわち図3のB部に対応する部分を拡大して示したものである。本実施形態では、当該部分の構成において第2実施形態と異なっている。 A fourth embodiment will be described. In the following, points different from the second embodiment shown in FIG. 4 will be mainly described, and descriptions of points common to the second embodiment will be omitted as appropriate. FIG. 6 is an enlarged view of a portion of the fuel injection valve 10 according to the present embodiment that corresponds to FIG. 4, that is, a portion corresponding to section B in FIG. This embodiment differs from the second embodiment in the configuration of the relevant portion.

本実施形態では、拡径部材240のうち、第1部分231よりも外側に突出している部分を上下に貫くように、複数の連通路241が形成されている。それぞれの連通路241の途中は絞られており、絞り部242が形成されている。 In this embodiment, a plurality of communication passages 241 are formed to vertically penetrate a portion of the diameter-expanding member 240 that protrudes outward from the first portion 231 . The middle of each communication path 241 is constricted to form a constricted portion 242.

連通路241は、燃料通路のうち拡径部材240よりも上方側の空間と、ダンパー室250との間を連通させるように形成された貫通穴である。連通路241は、燃料通路とダンパー室250との間を連通させる通路ではあるが、同様の通路といえる摺動部273や摺動部272とは異なる位置に形成されている。 The communication passage 241 is a through hole formed to communicate between a space above the diameter expanding member 240 in the fuel passage and the damper chamber 250. Although the communication passage 241 is a passage that communicates between the fuel passage and the damper chamber 250, it is formed at a different position from the sliding part 273 and the sliding part 272, which can be said to be similar passages.

ニードル200が動作する際には、燃料の一部は連通路241を通って、ダンパー室250と、燃料通路のうち拡径部材240よりも上方側の空間との間を行き来する。このため、連通路241が形成されていることで、ダンパー室250の機能、すなわちニードル200の動作速度を減衰させる機能は抑えられることとなる。本実施形態では、連通路241の内径や数、及び絞り部242の内径を調整することで、ニードル200等の動作速度を適宜調整し、ニードル200等が減速され過ぎてしまうようなことを防止することができる。 When the needle 200 operates, a portion of the fuel passes through the communication passage 241 and moves back and forth between the damper chamber 250 and the space above the diameter expanding member 240 in the fuel passage. Therefore, by forming the communication path 241, the function of the damper chamber 250, that is, the function of damping the operating speed of the needle 200, is suppressed. In this embodiment, by adjusting the inner diameter and number of communication passages 241 and the inner diameter of the throttle part 242, the operating speed of the needle 200, etc. is adjusted appropriately, and the needle 200, etc. is prevented from being decelerated too much. can do.

第5実施形態について説明する。以下では、図4の第2実施形態と異なる点について主に説明し、第2実施形態と共通する点については適宜説明を省略する。図7は、本実施形態に係る燃料噴射弁10のうち、図4に対応する部分、すなわち図3のB部に対応する部分を拡大して示したものである。本実施形態では、当該部分の構成において第2実施形態と異なっている。 A fifth embodiment will be described. In the following, points different from the second embodiment shown in FIG. 4 will be mainly described, and descriptions of points common to the second embodiment will be omitted as appropriate. FIG. 7 is an enlarged view of a portion of the fuel injection valve 10 according to the present embodiment that corresponds to FIG. 4, that is, a portion corresponding to section B in FIG. This embodiment differs from the second embodiment in the configuration of the relevant portion.

本実施形態では、突出部260を上下に貫くように、複数の連通路261が形成されている。それぞれの連通路261の途中は絞られており、絞り部262が形成されている。 In this embodiment, a plurality of communication passages 261 are formed to vertically penetrate the protrusion 260. The middle of each communication path 261 is constricted to form a constricted portion 262.

連通路261は、燃料通路のうち突出部260よりも下方側の空間111と、ダンパー室250との間を連通させるように形成された貫通穴である。連通路261は、燃料通路とダンパー室250との間を連通させる通路ではあるが、同様の通路といえる摺動部273や摺動部272とは異なる位置に形成されている。 The communication passage 261 is a through hole formed to communicate between the damper chamber 250 and the space 111 below the protrusion 260 in the fuel passage. Although the communication passage 261 is a passage that communicates between the fuel passage and the damper chamber 250, it is formed at a different position from the sliding part 273 and the sliding part 272, which can be said to be similar passages.

ニードル200が動作する際には、燃料の一部は連通路261を通って、ダンパー室250と、燃料通路である空間111との間を行き来する。このため、連通路261が形成されていることで、ダンパー室250の機能、すなわちニードル200の動作速度を減衰させる機能は抑えられることとなる。本実施形態では、連通路261の内径や数、及び絞り部262の内径を調整することで、ニードル200等の動作速度を適宜調整し、ニードル200等が減速され過ぎてしまうようなことを防止することができる。 When the needle 200 operates, a portion of the fuel passes through the communication passage 261 and moves back and forth between the damper chamber 250 and the space 111, which is a fuel passage. Therefore, by forming the communication passage 261, the function of the damper chamber 250, that is, the function of damping the operating speed of the needle 200, is suppressed. In this embodiment, by adjusting the inner diameter and number of communication passages 261 and the inner diameter of the constricted portion 262, the operating speed of the needle 200, etc. can be adjusted as appropriate, and the needle 200, etc. can be prevented from being decelerated too much. can do.

以上、具体例を参照しつつ本実施形態について説明した。しかし、本開示はこれらの具体例に限定されるものではない。これら具体例に、当業者が適宜設計変更を加えたものも、本開示の特徴を備えている限り、本開示の範囲に包含される。前述した各具体例が備える各要素およびその配置、条件、形状などは、例示したものに限定されるわけではなく適宜変更することができる。前述した各具体例が備える各要素は、技術的な矛盾が生じない限り、適宜組み合わせを変えることができる。 The present embodiment has been described above with reference to specific examples. However, the present disclosure is not limited to these specific examples. Design changes made by those skilled in the art as appropriate to these specific examples are also included within the scope of the present disclosure as long as they have the characteristics of the present disclosure. The elements included in each of the specific examples described above, their arrangement, conditions, shapes, etc. are not limited to those illustrated, and can be changed as appropriate. The elements included in each of the specific examples described above can be appropriately combined as long as no technical contradiction occurs.

10:燃料噴射弁
100:ハウジング
200:ニードル
250:ダンパー室
300:可動コア
400:固定コア
600:コイル
511:噴孔
10: Fuel injection valve 100: Housing 200: Needle 250: Damper chamber 300: Movable core 400: Fixed core 600: Coil 511: Nozzle hole

Claims (5)

燃料を噴射するための噴孔(511)が、長手方向における一端に形成されたハウジング(100)と、
前記ハウジングの内部において前記長手方向に沿って移動することにより、前記噴孔の開閉を切り換えるニードル(200)と、
少なくとも一部が磁性体によって形成された部材であって、前記ハウジングの内部に固定されている固定コア(400)と、
少なくとも一部が磁性体によって形成された部材であって、前記ハウジングの内部において、前記長手方向に沿って前記ニードルと共に移動可能な状態で配置されている可動コア(300)と、
前記固定コアと前記可動コアとの間に磁気吸引力を発生させるコイル(600)と、を備え、
前記ニードルと前記ハウジングとの間には、前記ニードルの動作速度を減衰させるためのダンパー室(250)が形成されており、
前記可動コアを、前記長手方向に沿って前記噴孔とは反対側に向けて付勢する弾性部材を更に備え、
前記可動コアは、前記弾性部材を挟んで前記噴とは反対側に配置され、
前記ダンパー室は、前記弾性部材よりも前記噴側に配置されている燃料噴射弁。
a housing (100) in which a nozzle hole (511) for injecting fuel is formed at one end in the longitudinal direction;
a needle (200) that switches opening and closing of the nozzle hole by moving along the longitudinal direction inside the housing;
a fixed core (400) that is a member at least partially made of a magnetic material and that is fixed inside the housing;
a movable core (300), which is a member at least partially made of a magnetic material, and is disposed inside the housing so as to be movable together with the needle along the longitudinal direction;
a coil (600) that generates a magnetic attraction force between the fixed core and the movable core;
A damper chamber (250) is formed between the needle and the housing to damp the operating speed of the needle,
further comprising an elastic member that urges the movable core toward a side opposite to the nozzle hole along the longitudinal direction,
The movable core is arranged on the opposite side of the nozzle hole with the elastic member in between,
In the fuel injection valve, the damper chamber is arranged closer to the injection hole than the elastic member.
前記ニードルには、
小径部(232)と、前記小径部よりも外径の大きな部分である大経部(231,240)とが、前記長手方向に沿って並ぶように設けられており、
前記ダンパー室は前記小径部の周りに形成されている、請求項1に記載の燃料噴射弁。
The needle includes:
A small diameter portion (232) and a large diameter portion (231, 240) having a larger outer diameter than the small diameter portion are provided so as to be lined up along the longitudinal direction,
The fuel injection valve according to claim 1, wherein the damper chamber is formed around the small diameter portion.
前記ハウジングの内部には、外部から供給された燃料を前記噴孔に導くための燃料通路が形成されており、
前記ニードルと前記ハウジングとが互いに対向している摺動部(271,272,273)とは異なる位置に、前記ダンパー室と前記燃料通路との間を連通させる連通路(233,241,261)が形成されている、請求項1又は2に記載の燃料噴射弁。
A fuel passage for guiding fuel supplied from the outside to the nozzle hole is formed inside the housing,
A communication passage (233, 241, 261) that communicates between the damper chamber and the fuel passage is located at a different position from the sliding part (271, 272, 273) where the needle and the housing face each other. The fuel injection valve according to claim 1 or 2, wherein: is formed.
燃料として気体燃料が用いられる、請求項1乃至3のいずれか1項に記載の燃料噴射弁。 The fuel injection valve according to any one of claims 1 to 3, wherein gaseous fuel is used as the fuel. 燃料として水素が用いられる、請求項4に記載の燃料噴射弁。 The fuel injection valve according to claim 4, wherein hydrogen is used as the fuel.
JP2019105868A 2019-06-06 2019-06-06 fuel injection valve Active JP7352384B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019105868A JP7352384B2 (en) 2019-06-06 2019-06-06 fuel injection valve
PCT/JP2020/021340 WO2020246385A1 (en) 2019-06-06 2020-05-29 Fuel injection valve
DE112020002672.8T DE112020002672T5 (en) 2019-06-06 2020-05-29 fuel injector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019105868A JP7352384B2 (en) 2019-06-06 2019-06-06 fuel injection valve

Publications (3)

Publication Number Publication Date
JP2020200766A JP2020200766A (en) 2020-12-17
JP2020200766A5 JP2020200766A5 (en) 2021-08-12
JP7352384B2 true JP7352384B2 (en) 2023-09-28

Family

ID=73653203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019105868A Active JP7352384B2 (en) 2019-06-06 2019-06-06 fuel injection valve

Country Status (3)

Country Link
JP (1) JP7352384B2 (en)
DE (1) DE112020002672T5 (en)
WO (1) WO2020246385A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007023965A (en) 2005-07-20 2007-02-01 Denso Corp Fuel injection valve
JP2011163242A (en) 2010-02-11 2011-08-25 Denso Corp Fuel injection valve
JP2015021470A (en) 2013-07-23 2015-02-02 マツダ株式会社 Fuel injection valve
JP2016505746A (en) 2012-11-02 2016-02-25 マキャリスター テクノロジーズ、エルエルシー Fuel injector with enhanced thrust
WO2017022163A1 (en) 2015-08-06 2017-02-09 株式会社デンソー Fuel injection device
JP2018189002A (en) 2017-04-28 2018-11-29 株式会社Soken Fuel injection valve

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019105868A (en) 2017-12-08 2019-06-27 エヌ・ティ・ティ・コムウェア株式会社 Input support apparatus, input support method and program

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007023965A (en) 2005-07-20 2007-02-01 Denso Corp Fuel injection valve
JP2011163242A (en) 2010-02-11 2011-08-25 Denso Corp Fuel injection valve
JP2016505746A (en) 2012-11-02 2016-02-25 マキャリスター テクノロジーズ、エルエルシー Fuel injector with enhanced thrust
JP2015021470A (en) 2013-07-23 2015-02-02 マツダ株式会社 Fuel injection valve
WO2017022163A1 (en) 2015-08-06 2017-02-09 株式会社デンソー Fuel injection device
JP2018189002A (en) 2017-04-28 2018-11-29 株式会社Soken Fuel injection valve

Also Published As

Publication number Publication date
WO2020246385A1 (en) 2020-12-10
JP2020200766A (en) 2020-12-17
DE112020002672T5 (en) 2022-03-03

Similar Documents

Publication Publication Date Title
JP4483940B2 (en) Fuel injection valve
JP6327191B2 (en) Fuel injection valve
CN107850021B (en) Fuel injection device
WO2018198592A1 (en) Fuel injection valve
KR20120138710A (en) Valve assembly for an injection valve and injection valve
KR101709518B1 (en) Valve assembly for an injection valve and injection valve
JP6544416B2 (en) Fuel injection valve
JP7352384B2 (en) fuel injection valve
JP7311315B2 (en) fuel injector
JP4038462B2 (en) Fuel injection valve
JP7116609B2 (en) fuel injector
EP3156638B1 (en) Fuel injector
JP7063741B2 (en) Fuel injection valve
JP6733701B2 (en) Injector
CN111344483B (en) Fuel injection device
JP7323445B2 (en) fuel injector
JP7284063B2 (en) fuel injector
JP6566077B2 (en) Fuel injection valve and fuel injection valve manufacturing method
JP7323444B2 (en) fuel injector
JP7376337B2 (en) fuel injection valve
JP2019203406A (en) Fuel injection valve
WO2019017097A1 (en) Fuel injection valve
JP6090069B2 (en) Fuel injection valve
JP2012225185A (en) Fuel injection valve
JP7268546B2 (en) injector

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210705

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230915

R150 Certificate of patent or registration of utility model

Ref document number: 7352384

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150