JP7349827B2 - 検査装置 - Google Patents

検査装置 Download PDF

Info

Publication number
JP7349827B2
JP7349827B2 JP2019120295A JP2019120295A JP7349827B2 JP 7349827 B2 JP7349827 B2 JP 7349827B2 JP 2019120295 A JP2019120295 A JP 2019120295A JP 2019120295 A JP2019120295 A JP 2019120295A JP 7349827 B2 JP7349827 B2 JP 7349827B2
Authority
JP
Japan
Prior art keywords
image data
inspection
texture image
pixel value
generated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019120295A
Other languages
English (en)
Other versions
JP2020128971A (ja
Inventor
真達 下平
修平 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keyence Corp
Original Assignee
Keyence Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keyence Corp filed Critical Keyence Corp
Publication of JP2020128971A publication Critical patent/JP2020128971A/ja
Application granted granted Critical
Publication of JP7349827B2 publication Critical patent/JP7349827B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

本発明は、測定対象物の形状を検査する検査装置に関する。
測定対象物の形状の検査を行うために種々の検査装置が用いられる。このような検査装置として、三角測距の原理を用いて測定対象物の検査を行う三角測距方式の検査装置がある。三角測距方式の検査装置においては、投光部により測定対象物の表面に光が照射され、その反射光が1次元または2次元に配列された画素を有する受光部により受光される。受光部により得られる受光量分布のデータに基づいて、測定対象物の高さ画像を示す高さデータが生成される。このような高さデータは、工場等の生産現場において、生産された測定対象物の高さを検査(インライン検査)するために用いられることがある。
例えば、特許文献1の三次元画像処理装置においては、測定対象物がベルトコンベアにより搬送され、所定の位置で投光手段により測定対象物に光が多数回照射される。また、測定対象物からの各反射光が撮像部で受光されることにより測定対象物が撮像される。測定対象物の複数の画像データに基づいて、測定対象物の高さデータ(高さ画像)が生成される。
また、測定対象物の形状の検査を行うための検査装置としては、上記の三角測距方式の検査装置の他、フォトメトリックステレオ法を用いて測定対象物の検査を行う検査装置がある。この検査装置においては、例えば測定対象物に対して互いに異なる複数の位置に配置された複数の投光部から順次光が照射される。また、各投光部による光の照射時に、複数の投光部に対して予め定められた位置に配置された撮像部により測定対象物が撮像される。これにより、互いに異なる複数の光の照射方向にそれぞれ対応する複数の画像データが生成される。その後、フォトメトリックステレオ法を用いることにより、生成された複数の画像データに基づいて測定対象物の表面形状を示す形状データ(形状画像)が生成される。
特開2015-45587号公報
高さデータまたは形状データのみでなく、測定対象物の二次元画像(外観の画像)を示すテクスチャ画像データをさらに用いて上記のインライン検査を行うことが好ましい。しかしながら、高解像度の高さデータまたは形状データを生成するためには、光学系の位置関係が制限される。そのため、高さデータ生成用または形状データ生成用の光学系と共通の光学系を用いて検査に適したテクスチャ画像データを生成可能であるとは限らない。一方、テクスチャ画像データ生成用の光学系を追加すると、検査装置が大型になるとともに、構造的または光学設計的に複雑になる。また、コストが増加する。
本発明の目的は、コストの増加を抑制しつつ簡単な構成で測定対象物の検査を行うことが可能な検査装置を提供することである。
本発明の一局面に従う検査装置は、互いに異なる複数の方向からそれぞれ光を一の静止状態にある測定対象物に照射する複数の照明部と、周期的なパターンを有する構造化光を位相シフトさせつつ出射するように複数の照明部を制御する撮像処理部と、測定対象物により反射された構造化光を順次受光することにより各方向についての測定対象物の画像を示す複数のパターン画像データを順次生成する撮像部と、撮像部により生成された複数のパターン画像データに基づいて各方向についての測定対象物の高さ画像を示す高さデータを生成するとともに、撮像部により生成された各方向についての複数のパターン画像データに基づいて当該方向についてのテクスチャ画像データを生成し、生成された複数の方向についての複数のテクスチャ画像データに基づいてハレーションまたは照明の死角部分の影響が低減された検査用テクスチャ画像データと、複数の方向についての複数の高さデータを合成することにより、照明の死角部分に対応する測定不可能な部分が低減された合成高さデータとを生成する演算処理部と、演算処理部により生成された合成高さデータまたは検査用テクスチャ画像データを用いて測定対象物の検査を実行する検査部とを備える。
この検査装置においては、互いに異なる複数の方向から複数の照明部によりそれぞれ光が測定対象物に照射される。複数の照明部は、周期的なパターンを有する構造化光を位相シフトさせつつ出射するように撮像処理部により制御される。測定対象物により反射された構造化光が順次受光されることにより各方向についての測定対象物の画像を示す複数のパターン画像データが撮像部により順次生成される。また、撮像部により生成された各方向についての複数のパターン画像データに基づいて当該方向についてのテクスチャ画像データが生成され、生成された複数の方向についての複数のテクスチャ画像データが演算処理部により生成される。
撮像部により生成された複数のパターン画像データに基づいて各方向についての測定対象物の高さ画像を示す高さデータが演算処理部により生成される。また、生成された複数のテクスチャ画像データに基づいてハレーションまたは照明の死角部分の影響が低減された検査用テクスチャ画像データが演算処理部により生成される。また、複数の方向についての複数の高さデータが合成され、照明の死角部分に対応する測定不可能な部分が低減された合成高さデータが生成される。演算処理部により生成された合成高さデータまたは検査用テクスチャ画像データを用いて測定対象物の検査が検査部により実行される。
この構成によれば、高さデータ生成用の照明部と共通の照明部を用いて検査用テクスチャ画像データが生成される。検査用テクスチャ画像データにおいては、ハレーションまたは照明の死角部分の影響が低減される。したがって、検査用テクスチャ画像データは、測定対象物の検査に適したテクスチャ画像データとなる。この場合、測定対象物の検査に適したテクスチャ画像データを生成するために高さデータ生成用の照明部とは別個の照明部を追加する必要がない。これにより、コストの増加を抑制しつつ簡単な構成で測定対象物の検査を行うことが可能になる。
本発明の他の局面に従う検査装置は、互いに異なる複数の方向からそれぞれ光を測定対象物に照射する複数の照明部と、周期的なパターンを有する構造化光を位相シフトさせつつ出射するように複数の照明部を制御するとともに、一様光を測定対象物に照射するように複数の照明部を制御する撮像処理部と、測定対象物により反射された構造化光を順次受光することにより各方向についての測定対象物の画像を示す複数のパターン画像データを順次生成するとともに、測定対象物により反射された一様光を受光することにより複数の方向についての測定対象物の複数の画像をそれぞれ示す複数のテクスチャ画像データを生成する撮像部と、撮像部により生成された複数のパターン画像データに基づいて各方向についての測定対象物の高さ画像を示す高さデータを生成するとともに、撮像部により生成された複数のテクスチャ画像データに基づいてハレーションまたは照明の死角部分の影響が低減された検査用テクスチャ画像データを生成する演算処理部と、演算処理部により生成された高さデータまたは検査用テクスチャ画像データを用いて測定対象物の検査を実行する検査部とを備え、複数の照明部は、第1の方向において互いに対向するように配置される第1対の照明部と、第1の方向に交差する第2の方向において互いに対向するように配置される第2対の照明部とを含み、演算処理部は、検査用テクスチャ画像データの生成時に、第1対の照明部に対応する2つのテクスチャ画像データにおける互いに対応する各画素について2つの画素値のうち大きい画素値を第1画素値として選択し、第2対の照明部に対応する2つのテクスチャ画像データにおける互いに対応する各画素について2つの画素値のうち大きい画素値を第2画素値として選択し、各画素について互いに対応する第1画素値および第2画素値のうち小さい画素値を検査用テクスチャ画像データの画素値として決定する。
この場合、検査用テクスチャ画像データの生成時には、第1画素値および第2画素値の選択時に、対向配置された各対の照明部に対応する2つのテクスチャ画像データから照明の死角部分に起因する成分の少なくとも一部が除去される。また、第1画素値および第2画素値に基づく検査用テクスチャ画像データの各画素値の決定時に、ハレーションに起因する成分の少なくとも一部が除去される。その結果、ハレーションおよび照明の死角部分の影響が低減された検査用テクスチャ画像データを容易に生成することができる。
査装置は、当該検査装置の動作モードとして第1または第2の動作モードの指示を受け付けるモード受付部をさらに備え、第1の動作モード時に、撮像部は、複数の方向についての複数のテクスチャ画像データを生成し、演算処理部は、撮像部により生成された複数のテクスチャ画像データに基づいて検査用テクスチャ画像データを生成し、検査部は、演算処理部により生成された検査用テクスチャ画像データを用いて測定対象物の検査を実行し、第2の動作モード時に、撮像部は、少なくとも1つのテクスチャ画像データを生成し、検査部は、撮像部により生成された少なくとも1つのテクスチャ画像データを用いて測定対象物の検査を実行してもよい。
この構成によれば、ハレーションまたは照明の死角部分の影響が低減されたテクスチャ画像データを生成することが不要な場合に、第2の動作モードが指示されることにより、検査に用いるための少なくとも1つのテクスチャ画像データが生成される。これにより、測定対象物の検査をより短時間で終了することができる。
本発明のさらに他の局面に従う検査装置は、互いに異なる複数の方向からそれぞれ光を測定対象物に照射する複数の照明部と、周期的なパターンを有する構造化光を位相シフトさせつつ出射するように複数の照明部を制御するとともに、一様光を測定対象物に照射するように複数の照明部を制御する撮像処理部と、測定対象物により反射された構造化光を順次受光することにより各方向についての測定対象物の画像を示す複数のパターン画像データを順次生成するとともに、測定対象物により反射された一様光を受光することにより複数の方向についての測定対象物の複数の画像をそれぞれ示す複数のテクスチャ画像データを生成する撮像部と、撮像部により生成された複数のパターン画像データに基づいて各方向についての測定対象物の高さ画像を示す高さデータを生成するとともに、撮像部により生成された複数のテクスチャ画像データに基づいてハレーションまたは照明の死角部分の影響が低減された検査用テクスチャ画像データを生成する演算処理部と、演算処理部により生成された高さデータまたは検査用テクスチャ画像データを用いて測定対象物の検査を実行する検査部とを備え、複数の照明部の各々は、互いに異なる複数の波長の光を測定対象物に照射するように構成され、撮像処理部は、複数の波長の一様光を順次出射するように複数の照明部を制御し、撮像部は、各方向についてのテクスチャ画像データを各照明部により出射される一様光の波長に対応して生成し、演算処理部は、各波長に対応する複数のテクスチャ画像データに基づいて、当該波長に対応する検査用テクスチャ画像データを生成する。この場合、複数の波長にそれぞれ対応する複数の検査用テクスチャ画像データを用いて測定対象物をより正確に検査することができる。
算処理部は、複数の方向についての複数のテクスチャ画像データにおける互いに対応する各画素について、少なくとも最大の画素値または少なくとも最小の画素値を除いて予め定められた第1の規則に従って画素値を選択し、選択された画素値を検査用テクスチャ画像データにおいて対応する画素の画素値とすることにより検査用テクスチャ画像データを生成してもよい。この場合、ハレーションまたは照明の死角部分の影響が低減された検査用テクスチャ画像データを容易に生成することができる。
本発明のさらに他の局面に従う検査装置は、互いに異なる複数の方向からそれぞれ光を測定対象物に照射する複数の照明部と、周期的なパターンを有する構造化光を位相シフトさせつつ出射するように複数の照明部を制御する撮像処理部と、測定対象物により反射された構造化光を順次受光することにより各方向についての測定対象物の画像を示す複数のパターン画像データを順次生成する撮像部と、撮像部により生成された複数のパターン画像データに基づいて各方向についての測定対象物の高さ画像を示す高さデータを生成するとともに、撮像部により生成された各方向についての複数のパターン画像データに基づいて当該方向についてのテクスチャ画像データを生成し、生成された複数の方向についての複数のテクスチャ画像データに基づいてハレーションまたは照明の死角部分の影響が低減された検査用テクスチャ画像データを生成する演算処理部と、演算処理部により生成された高さデータまたは検査用テクスチャ画像データを用いて測定対象物の検査を実行する検査部とを備え、複数の照明部は、第1の方向において互いに対向するように配置される第1対の照明部と、第1の方向に交差する第2の方向において互いに対向するように配置される第2対の照明部とを含み、演算処理部は、検査用テクスチャ画像データの生成時に、第1対の照明部に対応する2つのテクスチャ画像データにおける互いに対応する各画素について2つの画素値のうち大きい画素値を第1画素値として選択し、第2対の照明部に対応する2つのテクスチャ画像データにおける互いに対応する各画素について2つの画素値のうち大きい画素値を第2画素値として選択し、各画素について互いに対応する第1画素値および第2画素値のうち小さい画素値を検査用テクスチャ画像データの画素値として決定する。
この場合、検査用テクスチャ画像データの生成時には、第1画素値および第2画素値の選択時に、対向配置された各対の照明部に対応する2つのテクスチャ画像データから照明の死角部分に起因する成分の少なくとも一部が除去される。また、第1画素値および第2画素値に基づく検査用テクスチャ画像データの各画素値の決定時に、ハレーションに起因する成分の少なくとも一部が除去される。その結果、ハレーションおよび照明の死角部分の影響が低減された検査用テクスチャ画像データを容易に生成することができる。
査装置は、当該検査装置の動作モードとして第1または第2の動作モードの指示を受け付けるモード受付部をさらに備え、第1の動作モード時に、演算処理部は、複数の方向についての複数のテクスチャ画像データを生成し、生成された複数のテクスチャ画像データに基づいて検査用テクスチャ画像データを生成し、検査部は、演算処理部により生成された検査用テクスチャ画像データを用いて測定対象物の検査を実行し、第2の動作モード時に、演算処理部は、少なくとも1つのテクスチャ画像データを生成し、検査部は、演算処理部により生成された少なくとも1つのテクスチャ画像データを用いて測定対象物の検査を実行してもよい。
この構成によれば、ハレーションまたは照明の死角部分の影響が低減されたテクスチャ画像データを生成することが不要な場合に、第2の動作モードが指示されることにより、検査に用いるための少なくとも1つのテクスチャ画像データが生成される。これにより、測定対象物の検査をより短時間で終了することができる。
本発明のさらに他の局面に従う検査装置は、互いに異なる複数の方向からそれぞれ光を測定対象物に照射する複数の照明部と、周期的なパターンを有する構造化光を位相シフトさせつつ出射するように複数の照明部を制御する撮像処理部と、測定対象物により反射された構造化光を順次受光することにより各方向についての測定対象物の画像を示す複数のパターン画像データを順次生成する撮像部と、撮像部により生成された複数のパターン画像データに基づいて各方向についての測定対象物の高さ画像を示す高さデータを生成するとともに、撮像部により生成された各方向についての複数のパターン画像データに基づいて当該方向についてのテクスチャ画像データを生成し、生成された複数の方向についての複数のテクスチャ画像データに基づいてハレーションまたは照明の死角部分の影響が低減された検査用テクスチャ画像データを生成する演算処理部と、演算処理部により生成された高さデータまたは検査用テクスチャ画像データを用いて測定対象物の検査を実行する検査部とを備え、複数の照明部の各々は、互いに異なる複数の波長の光を測定対象物に照射するように構成され、撮像処理部は、複数の波長の構造化光を順次出射するように複数の照明部を制御し、演算処理部は、各方向についてのテクスチャ画像データを各照明部により出射される構造化光の波長に対応して生成し、生成された各波長に対応する複数のテクスチャ画像データに基づいて、当該波長に対応する検査用テクスチャ画像データを生成する。この場合、複数の波長にそれぞれ対応する複数の検査用テクスチャ画像データを用いて測定対象物をより正確に検査することができる。
算処理部は、複数の波長にそれぞれ対応する複数の検査用テクスチャ画像データを合成することによりカラーの検査用テクスチャ画像データを生成してもよい。この場合、カラーの検査用テクスチャ画像データを用いて測定対象物をより正確にかつ効率よく検査することができる。
算処理部は、各方向についての複数のテクスチャ画像データにおいて、互いに対応する画素の画素値の平均値、合計値、または最大値のいずれかを画素ごとに代表画素値として特定し、複数の方向についてそれぞれ特定された複数の代表画素値のうち予め定められた第2の規則に従って1つの代表画素値を画素ごとに抽出し、抽出された代表画素値に対応する1つの方向を画素ごとに特定し、複数の検査用テクスチャ画像データにおいて互いに対応する画素の画素値が、特定された方向についてのテクスチャ画像データにおいて対応する画素の画素値となるように複数の検査用テクスチャ画像データを生成してもよい。
この場合、同一方向についての複数のテクスチャ画像データにおいて対応する画素の画素値を用いて、カラーの検査用テクスチャ画像データの画素が生成される。これにより、カラーの検査用テクスチャ画像データにおける各画素に偽の色を発生させることなく、各画素の色を正確に再現することができる。
算処理部は、カラーの検査用テクスチャ画像データをベイヤ配列を有する検査用ベイヤデータに変換し、検査部は、演算処理部により変換された検査用ベイヤデータを取得し、取得された検査用ベイヤデータを用いて測定対象物の検査を実行してもよい。この場合、カラーの検査用テクスチャ画像データのデータ量が低減される。これにより、演算処理部から検査部へのテクスチャ画像データの出力が短時間で行われる。その結果、測定対象物の検査をより短時間で終了することができる。
本発明のさらに他の局面に従う検査装置は、互いに異なる複数の方向からそれぞれ光を測定対象物に照射する複数の照明部と、周期的なパターンを有する構造化光を位相シフトさせつつ出射するように複数の照明部を制御するとともに、一様光を測定対象物に照射するように複数の照明部を制御する撮像処理部と、測定対象物により反射された構造化光を順次受光することにより各方向についての測定対象物の画像を示す複数のパターン画像データを順次生成するとともに、測定対象物により反射された一様光を受光することにより複数の方向についての測定対象物の複数の画像をそれぞれ示す複数のテクスチャ画像データを生成する撮像部と、撮像部により生成された複数のパターン画像データに基づいて各方向についての測定対象物の高さ画像を示す高さデータを生成するとともに、撮像部により生成された複数のテクスチャ画像データに基づいてハレーションまたは照明の死角部分の影響が低減された検査用テクスチャ画像データを生成する演算処理部と、演算処理部により生成された高さデータまたは検査用テクスチャ画像データを用いて測定対象物の検査を実行する検査部とを備え複数の照明部は、第1の方向において互いに対向するように配置される第1対の照明部と、第1の方向に交差する第2の方向において互いに対向するように配置される第2対の照明部とを含み、演算処理部は、第1および第2の生成方法のうち選択された生成方法により検査用テクスチャ画像データを生成可能に構成され、第1の生成方法による検査用テクスチャ画像データの生成時に、複数の方向についての複数のテクスチャ画像データにおける互いに対応する各画素について、少なくとも最大の画素値または少なくとも最小の画素値を除いて予め定められた第1の規則に従って画素値を選択し、選択された画素値を検査用テクスチャ画像データにおいて対応する画素の画素値として決定し、第2の生成方法による検査用テクスチャ画像データの生成時に、第1対の照明部に対応する2つのテクスチャ画像データにおける互いに対応する各画素について2つの画素値のうち大きい画素値を第1画素値として選択し、第2対の照明部に対応する2つのテクスチャ画像データにおける互いに対応する各画素について2つの画素値のうち大きい画素値を第2画素値として選択し、各画素について互いに対応する第1画素値および第2画素値のうち小さい画素値を検査用テクスチャ画像データの画素値として決定する。
この場合、測定対象物の表面状態および形状等に応じて第1および第2の生成方法が選択されることにより、測定対象物に応じたより適切な検査用テクスチャ画像データを取得することができる。
本発明のさらに他の局面に従う検査装置は、互いに異なる複数の方向からそれぞれ光を測定対象物に照射する複数の照明部と、周期的なパターンを有する構造化光を位相シフトさせつつ出射するように複数の照明部を制御する撮像処理部と、測定対象物により反射された構造化光を順次受光することにより各方向についての測定対象物の画像を示す複数のパターン画像データを順次生成する撮像部と、撮像部により生成された複数のパターン画像データに基づいて各方向についての測定対象物の高さ画像を示す高さデータを生成するとともに、撮像部により生成された各方向についての複数のパターン画像データに基づいて当該方向についてのテクスチャ画像データを生成し、生成された複数の方向についての複数のテクスチャ画像データに基づいてハレーションまたは照明の死角部分の影響が低減された検査用テクスチャ画像データを生成する演算処理部と、演算処理部により生成された高さデータまたは検査用テクスチャ画像データを用いて測定対象物の検査を実行する検査部とを備え、複数の照明部は、第1の方向において互いに対向するように配置される第1対の照明部と、第1の方向に交差する第2の方向において互いに対向するように配置される第2対の照明部とを含み、演算処理部は、第1および第2の生成方法のうち選択された生成方法により検査用テクスチャ画像データを生成可能に構成され、第1の生成方法による検査用テクスチャ画像データの生成時に、複数の方向についての複数のテクスチャ画像データにおける互いに対応する各画素について、少なくとも最大の画素値または少なくとも最小の画素値を除いて予め定められた第1の規則に従って画素値を選択し、選択された画素値を検査用テクスチャ画像データにおいて対応する画素の画素値として決定し、第2の生成方法による検査用テクスチャ画像データの生成時に、第1対の照明部に対応する2つのテクスチャ画像データにおける互いに対応する各画素について2つの画素値のうち大きい画素値を第1画素値として選択し、第2対の照明部に対応する2つのテクスチャ画像データにおける互いに対応する各画素について2つの画素値のうち大きい画素値を第2画素値として選択し、各画素について互いに対応する第1画素値および第2画素値のうち小さい画素値を検査用テクスチャ画像データの画素値として決定する。
査装置は、使用者による第1および第2の生成方法のうちいずれかの選択を受け付ける生成方法受付部をさらに備え、演算処理部は、生成方法受付部により受け付けられた選択に従って、検査用テクスチャ画像データを生成してもよい。この場合、使用者は所望の方法で生成された検査用テクスチャ画像データを容易に取得することができる。
本発明のさらに他の局面に従う検査装置は、互いに異なる4以上の方向においてそれぞれ一様光を測定対象物に照射する4以上の照明部と、一様光が測定対象物に順次照射されるように4以上の照明部を制御する撮像処理部と、4以上の照明部から測定対象物に照射されて測定対象物により反射された4以上の一様光を順次受光することにより、4以上の方向についての測定対象物の4以上の画像をそれぞれ示す4以上のテクスチャ画像データを生成する撮像部と、撮像部により生成された4以上のテクスチャ画像データに基づいてフォトメトリックステレオ法により測定対象物の形状を示す形状データを生成するとともに、4以上のテクスチャ画像データを合成することによりハレーションまたは照明の死角部分の影響が低減された検査用テクスチャ画像データを生成する演算処理部と、演算処理部により生成された形状データおよび検査用テクスチャ画像データのうち少なくとも一方を用いて測定対象物の検査を実行可能な検査部とを備え、4以上の照明部は、第1の方向において互いに対向するように配置される第1対の照明部と、第1の方向に交差する第2の方向において互いに対向するように配置される第2対の照明部とを含み、演算処理部は、第1対の照明部に対応する2つのテクスチャ画像データにおける互いに対応する各画素について2つの画素値のうち大きい画素値を第1画素値として選択し、第2対の照明部に対応する2つのテクスチャ画像データにおける互いに対応する各画素について2つの画素値のうち大きい画素値を第2画素値として選択し、各画素について互いに対応する第1画素値および第2画素値のうち小さい画素値を検査用テクスチャ画像データの画素値として決定する。
この検査装置においては、互いに異なる4以上の方向から4以上の照明部によりそれぞれ光が測定対象物に照射される。4以上の照明部は、一様光を順次出射するように撮像処理部により制御される。測定対象物により反射された一様光が受光されることにより4以上の方向についての測定対象物の4以上の画像をそれぞれ示す4以上のテクスチャ画像データが撮像部により生成される。
撮像部により生成された4以上のパターン画像データに基づいて測定対象物の形状を示す形状データが演算処理部により生成される。また、撮像部により生成された4以上のテクスチャ画像データに基づいてハレーションまたは照明の死角部分の影響が低減された検査用テクスチャ画像データが演算処理部により生成される。演算処理部により生成された形状データおよび検査用テクスチャ画像データのうち少なくとも一方を用いて測定対象物の検査が検査部により実行される。
上記の構成によれば、形状データ生成用の照明部と共通の照明部を用いて検査用テクスチャ画像データが生成される。検査用テクスチャ画像データにおいては、ハレーションまたは照明の死角部分の影響が低減される。したがって、検査用テクスチャ画像データは、測定対象物の検査に適したテクスチャ画像データとなる。この場合、測定対象物の検査に適したテクスチャ画像データを生成するために形状データ生成用の照明部とは別個の照明部を追加する必要がない。これにより、コストの増加を抑制しつつ簡単な構成で測定対象物の検査を行うことが可能になる。
また、上記の構成によれば、検査用テクスチャ画像データの生成時には、第1画素値および第2画素値の選択時に、対向配置された各対の照明部に対応する2つのテクスチャ画像データから照明の死角部分に起因する成分の少なくとも一部が除去される。さらに、第1画素値および第2画素値に基づく検査用テクスチャ画像データの各画素値の決定時に、ハレーションに起因する成分の少なくとも一部が除去される。その結果、ハレーションおよび照明の死角部分の影響が低減された検査用テクスチャ画像データを容易に生成することができる。
本発明によれば、コストの増加を抑制しつつ簡単な構成で測定対象物の検査を行うことが可能になる。
本発明の第1の実施の形態に係る検査装置の構成を示すブロック図である。 本発明の第1の実施の形態に係る検査装置の構成を示すブロック図である。 図1の各照明部の構成の一例を示す図である。 三角測距方式の原理を説明するための図である。 測定対象物の一例を示す図である。 検査用高さデータに基づく測定対象物の高さ画像を示す図である。 複数の照明部から同時に一様光が出射されたときの測定対象物のテクスチャ画像を示す図である。 複数の照明部から個別に一様光が出射されたときの測定対象物の複数のテクスチャ画像を示す図である。 検査用テクスチャ画像データに基づく測定対象物のテクスチャ画像を示す図である。 図1の検査装置により実行される検査処理のアルゴリズムの一例を示すフローチャートである。 図1の演算部により実行される図10の高さ生成処理のアルゴリズムの一例を示すフローチャートである。 図1の演算部により実行される図10のテクスチャ生成処理のアルゴリズムの一例を示すフローチャートである。 図1の検査部により実行される図10の判定処理のアルゴリズムの一例を示すフローチャートである。 第2の実施の形態におけるテクスチャ生成処理のアルゴリズムの一例を示すフローチャートである。 第2の実施の形態におけるテクスチャ生成処理のアルゴリズムの一例を示すフローチャートである。 図14および図15のテクスチャ生成処理により生成された検査用データ群を示す図である。 第2の実施の形態の変形例におけるテクスチャ生成処理のアルゴリズムの一例を示すフローチャートである。 本発明の第3の実施の形態に係る検査装置の構成を示すブロック図である。 第2のグレーモードにおけるテクスチャ生成処理のアルゴリズムの一例を示すフローチャートである。 第2のカラーモードにおけるテクスチャ生成処理のアルゴリズムの一例を示すフローチャートである。 第1および第2のベイヤモードを説明するための図である。 第1のベイヤモードにおけるテクスチャ生成処理のアルゴリズムの一例を示すフローチャートである。 第1のベイヤモードにおけるテクスチャ生成処理のアルゴリズムの一例を示すフローチャートである。 第1のベイヤモードにおける判定処理のアルゴリズムの一例を示すフローチャートである。 第2のベイヤモードにおけるテクスチャ生成処理のアルゴリズムの一例を示すフローチャートである。 第2のベイヤモードにおける判定処理のアルゴリズムの一例を示すフローチャートである。 ヘアライン加工が施された金属製の測定対象物の一例を示す図である。 図27の突出部の上面の模式的な拡大図である。 図27の測定対象物の検査時における図2の4つの照明部および撮像部と測定対象物との位置関係の一例を示す模式的斜視図である。 図29の例において4つの照明部から個別に一様光が出射されたときの測定対象物の複数のテクスチャ画像を示す図である。 図30の4つのテクスチャ画像から各画素について4つの画素値のうち2番目に大きい画素値を選択する単純生成方法により得られる検査用テクスチャ画像データの画像を示す図である。 測定対象物の他の例を示す図である。 図31の測定対象物の検査時における図2の4つの照明部および撮像部と測定対象物との位置関係の一例を示す模式的斜視図である。 図33の例において4つの照明部から個別に一様光が出射されたときの測定対象物の複数のテクスチャ画像を示す図である。 図34の4つのテクスチャ画像から各画素について4つの画素値のうち3番目に大きい画素値を選択する単純生成方法により得られる検査用テクスチャ画像データの画像を示す図である。 第5の実施の形態に係るテクスチャ生成処理の概念図である。 図34の4つのテクスチャ画像からトーナメント生成方法により得られる検査用テクスチャ画像データの画像を示す図である。 第5の実施の形態におけるテクスチャ生成処理のアルゴリズムの一例を示すフローチャートである。 単純生成方法およびトーナメント生成方法を使用者に選択させるための操作画面の一例を示す図である。 形状生成処理のアルゴリズムの一例を示すフローチャートである。
以下、本発明の実施の形態に係る検査装置について図面を参照しながら説明する。
[1]第1の実施の形態
(1)検査装置の構成
図1および図2は、本発明の第1の実施の形態に係る検査装置の構成を示すブロック図である。図1および図2に示すように、検査装置300は、ヘッド部100、コントローラ部200、操作部310および表示部320を備える。コントローラ部200は、プログラマブルロジックコントローラ等の外部機器400に接続される。
図1に太い矢印で示すように、複数の測定対象物Sが、ヘッド部100の下方の空間を通過するようにベルトコンベア301により順次搬送される。各測定対象物Sがヘッド部100の下方の空間を通過する際には、当該測定対象物Sがヘッド部100の下方の所定の位置で一時的に静止するように、ベルトコンベア301が一定時間停止する。
ヘッド部100は、例えば投受光一体の撮像デバイスであり、複数の照明部110、撮像部120および演算部130を含む。なお、図2においては、演算部130の図示が省略されている。本実施の形態においては、4個の照明部110が90度間隔で撮像部120を取り囲むように設けられる(図2参照)。
各照明部110は、任意のパターンを有する白色の光とパターンを有しない一様な白色の光とを、選択的に斜め上方から測定対象物Sに照射可能に構成される。以下、任意のパターンを有する光を構造化光と呼び、一様な光を一様光と呼ぶ。また、4個の照明部110を区別する場合は、4個の照明部110をそれぞれ照明部110A,110B,110C,110Dと呼ぶ。照明部110Aと照明部110Bとは、例えばベルトコンベア301の上面に平行な第1の方向において撮像部120を挟んで対向する。また、照明部110Cと照明部110Dとは、例えばベルトコンベア301の上面に平行でかつ第1の方向に交差する第2の方向において撮像部120を挟んで対向する。なお、第1の方向は後述するX方向(図4)に対応し、第2の方向は後述するY方向(図4)に対応する。照明部110の構成については後述する。
撮像部120は、撮像素子121および受光レンズ122,123を含む。測定対象物Sにより上方に反射された光は、撮像部120の受光レンズ122,123により集光および結像された後、撮像素子121により受光される。撮像素子121は、例えばモノクロCCD(電荷結合素子)であり、各画素から受光量に対応するアナログの電気信号を出力することにより画像データを生成する。撮像素子121は、CMOS(相補性金属酸化膜半導体)イメージセンサ等の他の撮像素子であってもよい。
以下の説明では、構造化光が測定対象物Sに照射されたときの測定対象物Sの画像を示す画像データをパターン画像データと呼ぶ。これに対し、一様光が測定対象物Sに照射されたときの測定対象物Sの画像を示す画像データをテクスチャ画像データと呼ぶ。テクスチャ画像データが示す画像(後述するテクスチャ画像)においては、光が照射された測定対象物Sの表面における色、模様および濃淡等の外観に関する状態が識別可能に表される。
演算部130は、例えばFPGA(フィールドプログラマブルゲートアレイ)により実現され、撮像処理部131、演算処理部132、記憶部133および出力処理部134を含む。本実施の形態においては、演算部130はFPGAにより実現されるが、本発明はこれに限定されない。演算部130は、CPU(中央演算処理装置)およびRAM(ランダムアクセスメモリ)により実現されてもよいし、マイクロコンピュータにより実現されてもよい。
撮像処理部131は、照明部110および撮像部120の動作を制御する。演算処理部132は、複数のパターン画像データに基づいて測定対象物Sの高さ画像を示す高さデータを生成する。高さ画像においては、測定対象物Sの表面の各部の高さが識別可能に表される。また、演算処理部132は、複数のテクスチャ画像データに基づいて、ハレーションまたは照明の死角部分の影響が低減されたテクスチャ画像データを生成する。
記憶部133は、撮像部120または演算処理部132により生成されたパターン画像データ、テクスチャ画像データまたは高さデータを一時的に記憶する。出力処理部134は、記憶部133に記憶された高さデータまたはテクスチャ画像データを出力する。演算部130の詳細については後述する。
コントローラ部200は、ヘッド制御部210、画像メモリ220および検査部230を含む。ヘッド制御部210は、外部機器400により与えられる指令に基づいて、ヘッド部100の動作を制御する。画像メモリ220は、演算部130により出力された高さデータまたはテクスチャ画像データを記憶する。
検査部230は、使用者により指定された検査内容に基づいて、画像メモリ220に記憶された高さデータまたはテクスチャ画像データについてエッジ検出または寸法計測等の処理を実行する。また、検査部230は、計測値を所定のしきい値と比較することにより、測定対象物Sの良否を判定し、判定結果を外部機器400に与える。
コントローラ部200には、操作部310および表示部320が接続される。操作部310は、キーボード、ポインティングデバイスまたは専用のコンソールを含む。ポインティングデバイスとしては、マウスまたはジョイスティック等が用いられる。使用者は、操作部310を操作することにより、コントローラ部200に所望の検査内容を指定することができる。
表示部320は、例えばLCD(液晶ディスプレイ)パネルまたは有機EL(エレクトロルミネッセンス)パネルにより構成される。表示部320は、画像メモリ220に記憶された高さデータに基づく高さ画像等を表示する。また、表示部320は、検査部230による測定対象物Sの判定結果を表示する。
図3は、図1の各照明部110の構成の一例を示す図である。図3に示すように、各照明部110は、光源111,112,113、ダイクロイックミラー114,115、照明レンズ116、ミラー117、パターン生成部118および投光レンズ119を含む。光源111,112,113は、例えばLED(発光ダイオード)であり、緑色光、青色光および赤色光をそれぞれ出射する。各光源111~113はLED以外の他の光源であってもよい。
ダイクロイックミラー114は、光源111により出射された緑色光と光源112により出射された青色光とを重ね合わせ可能に配置される。ダイクロイックミラー115は、ダイクロイックミラー114により重ね合わされた光と光源113により出射された赤色光とを重ね合わせ可能に配置される。これにより、光源111~113によりそれぞれ出射された光が共通の光路上で重ね合わされ、白色光が生成可能となる。
照明レンズ116は、ダイクロイックミラー115を通過または反射した光を集光する。ミラー117は、照明レンズ116により集光された光をパターン生成部118に反射する。パターン生成部118は、例えばDMD(デジタルマイクロミラーデバイス)であり、入射した光に任意のパターンを付与する。パターン生成部118は、LCDまたはLCOS(反射型液晶素子)であってもよい。投光レンズ119は、パターン生成部118からの光を平行化し、図1の測定対象物Sに照射する。
図1の演算部130は、光源111~113による光の出射を制御するとともに、パターン生成部118により光に付与されるパターンを制御する。これにより、白色の構造化光と白色の一様光とを選択的に照明部110から出射することが可能となる。
(2)高さデータの生成
検査装置300においては、ヘッド部100に固有の三次元座標系(以下、装置座標系と呼ぶ。)が定義される。本例の装置座標系は、原点と互いに直交するX軸、Y軸およびZ軸とを含む。以下の説明では、装置座標系のX軸に平行な方向をX方向と呼び、Y軸に平行な方向をY方向と呼び、Z軸に平行な方向をZ方向と呼ぶ。X方向およびY方向は、ベルトコンベア301の上面(以下、基準面と呼ぶ。)に平行な面内で互いに直交する。Z方向は、基準面に対して直交する。
ヘッド部100においては、三角測距方式により測定対象物Sの高さ画像を示す高さデータが生成される。図4は、三角測距方式の原理を説明するための図である。図4には、X方向、Y方向およびZ方向がそれぞれ矢印で示される。図4に示すように、照明部110から出射される光の光軸と撮像部120に入射する光の光軸との間の角度αが予め設定される。角度αは、0度よりも大きく90度よりも小さい。
ヘッド部100の下方に測定対象物Sが存在しない場合、照明部110から出射される光は、基準面Rの点Oにより反射され、撮像部120に入射する。一方、ヘッド部100の下方に測定対象物Sが存在する場合、照明部110から出射される光は、測定対象物Sの表面の点Aにより反射され、撮像部120に入射する。これにより、測定対象物Sが撮像され、測定対象物Sの画像を示す画像データが生成される。
点Oと点Aとの間のX方向における距離をdとすると、基準面Rに対する測定対象物Sの点Aの高さhは、h=d÷tan(α)により与えられる。演算部130は、撮像部120により生成される画像データに基づいて、距離dを算出する。また、演算部130は、算出された距離dに基づいて、測定対象物Sの表面の点Aの高さhを算出する。測定対象物Sの表面の全ての点の高さを算出することにより、光が照射された全ての点について装置座標系で表される座標を特定することができる。それにより、測定対象物Sの高さデータが生成される。
測定対象物Sの表面の全ての点に光を照射するために、各照明部110から種々の構造化光が出射される。本実施の形態においては、Y方向に平行でかつX方向に並ぶような直線状の断面を有する縞状の構造化光(以下、縞状光と呼ぶ。)が、その空間位相が変化されつつ各照明部110から複数回出射される。また、Y方向に平行な直線状の断面を有しかつ明部分と暗部分とがX方向に並ぶコード状の構造化光(以下、コード状光と呼ぶ。)が、その明部分および暗部分がグレイコード状に変化されつつ各照明部110から複数回出射される。
また、本実施の形態においては、複数の照明部110により測定対象物Sに対して互いに異なる複数(本例では4個)の方向から光を出射することができる。それにより、いずれかの照明部110から出射される光により測定不可能な部分がある場合でも、その測定不可能な部分の形状を他の照明部110から出射される光を用いて測定することができる。そこで、複数の照明部110に対応して生成された高さデータを合成することにより、測定不可能な部分が低減された高さデータを生成することができる。
図5は、測定対象物Sの一例を示す図である。図5に示すように、本例における測定対象物Sは、矩形状の基部S1上に立方体形状の突出部S2および半球状の突出部S3が形成された構成を有する。以下の説明では、測定対象物Sとして図5の測定対象物Sを用いる。この測定対象物Sについて、図2の照明部110A~110Dにそれぞれ対応する4個の高さデータが生成され、これらの高さデータが合成される。以下の説明では、測定不可能な部分が低減されるように合成された高さデータを検査用高さデータと呼ぶ。
図6は、検査用高さデータに基づく測定対象物Sの高さ画像を示す図である。なお、本例の高さ画像においては、測定対象物Sの各部分の高さが色の濃淡により表示される。図6に示すように、上記の4個の高さデータが合成されることにより、測定不可能な部分が存在しない測定対象物Sの高さ画像を示す検査用高さデータHを生成することができる。
(3)テクスチャ画像データ
図2の複数の照明部110A~110Dから同時に一様光が出射された状態で測定対象物Sが撮像されることにより、測定対象物Sの画像(以下、テクスチャ画像と呼ぶ。)を示すテクスチャ画像データを生成することが可能である。図7は、複数の照明部110A~110Dから同時に一様光が出射されたときの測定対象物Sのテクスチャ画像を示す図である。
図7に示すように、テクスチャ画像データTにおいては、突出部S3における複数の部分h1~h4にハレーションが発生する。また、基部S1における突出部S2の周辺の複数の部分s1~s4に照明の死角部分として影が発生する。そのため、部分s1~s4,h1~h4に対応する測定対象物Sの部分を検査する場合には、図7のテクスチャ画像データTを用いると、正確な検査を行うことができない。
一方、複数の照明部110A~110Dから個別に一様光が出射された状態で測定対象物Sが撮像されることにより、測定対象物Sの複数のテクスチャ画像をそれぞれ示す複数のテクスチャ画像データを生成することも可能である。図8は、複数の照明部110A~110Dから個別に一様光が出射されたときの測定対象物Sの複数のテクスチャ画像を示す図である。テクスチャ画像データT1~T4は、それぞれ照明部110A~110Dに対応する。
図8に示すように、テクスチャ画像データT1においては、突出部S3における左の部分h1にハレーションが発生するが、他の部分にはハレーションはほとんど発生しない。また、基部S1における突出部S2の右方の部分s1に影が発生するが、他の部分には影はほとんど発生しない。テクスチャ画像データT2においては、突出部S3における右の部分h2にハレーションが発生するが、他の部分にはハレーションはほとんど発生しない。また、基部S1における突出部S2の左方の部分s2に影が発生するが、他の部分には影はほとんど発生しない。
テクスチャ画像データT3においては、突出部S3における上の部分h3にハレーションが発生するが、他の部分にはハレーションはほとんど発生しない。また、基部S1における突出部S2の下方の部分s3に影が発生するが、他の部分には影はほとんど発生しない。テクスチャ画像データT4においては、突出部S4における下の部分h4にハレーションが発生するが、他の部分にはハレーションはほとんど発生しない。また、基部S1における突出部S2の上方の部分s4に影が発生するが、他の部分には影はほとんど発生しない。
そこで、複数の方向にそれぞれ対応する複数のテクスチャ画像データに基づいて、ハレーションまたは照明の死角部分の影響が低減されたテクスチャ画像データが生成される。以下の説明では、複数のテクスチャ画像データに基づいて、ハレーションまたは照明の死角部分の影響が低減されるように生成されたテクスチャ画像データを検査用テクスチャ画像データと呼ぶ。
検査用テクスチャ画像データの生成の一例として、複数のテクスチャ画像データにおいて互いに対応する各画素について、当該画素の複数の画素値のうち最も大きい画素値または最も小さい画素値を除いて予め定められた規則に従って画素値が選択される。選択された各画素の画素値が、検査用テクスチャ画像データの各画素の画素値とされる。
図9は、検査用テクスチャ画像データに基づく測定対象物Sのテクスチャ画像を示す図である。図9の例においては、図8のテクスチャ画像データT1~T4において互いに対応する各画素について、当該画素の4個の画素値のうち2番目に大きい画素値が選択される。選択された各画素の画素値が、検査用テクスチャ画像データT0の各画素の画素値とされる。これにより、図9に示すように、ハレーションおよび影がほとんど発生しないテクスチャ画像データT0を生成することができる。
(4)検査処理
図10は、図1の検査装置300により実行される検査処理のアルゴリズムの一例を示すフローチャートである。検査処理では、図10に示すように、高さ生成処理が実行される(ステップS10)。高さ生成処理は、ヘッド部100において、検査用高さデータを生成し、生成された検査用高さデータをコントローラ部200の画像メモリ220に蓄積させる処理である。
また、テクスチャ生成処理が実行される(ステップS30)。テクスチャ生成処理は、ヘッド部100において、検査用テクスチャ画像データを生成し、生成された検査用テクスチャ画像データをコントローラ部200の画像メモリ220に蓄積させる処理である。高さ生成処理およびテクスチャ生成処理の後、判定処理が実行される(ステップS50)。判定処理は、コントローラ部200において、画像メモリ220に蓄積された検査用高さデータまたは検査用テクスチャ画像データに基づいて測定対象物Sの良否を判定する処理である。
図11は、図1の演算部130により実行される図10の高さ生成処理のアルゴリズムの一例を示すフローチャートである。高さ生成処理では、図11に示すように、撮像処理部131は、照明部110A~110Dのうち、いずれか1つの照明部110を選択する(ステップS11)。次に、撮像処理部131は、所定のパターンを有する白色の構造化光を出射するように、ステップS11または後述するステップS19で選択された照明部110を制御する(ステップS12)。
また、撮像処理部131は、ステップS12における構造化光の出射と同期して測定対象物Sを撮像するように撮像部120を制御する(ステップS13)。これにより、測定対象物Sのパターン画像データが撮像部120により生成される。その後、撮像処理部131は、ステップS13で生成されたパターン画像データを記憶部133に記憶させる(ステップS14)。続いて、撮像処理部131は、所定の回数撮像が実行されたか否かを判定する(ステップS15)。
ステップS15で、所定の回数撮像が実行されていない場合、撮像処理部131は、構造化光のパターンを変更するように図3のパターン生成部118を制御し(ステップS16)、ステップS12に戻る。所定の回数撮像が実行されるまで、ステップS12~S16が繰り返される。これにより、パターンが変化されつつ縞状光およびコード状が測定対象物Sに順次照射されたときの複数のパターン画像データが記憶部133に記憶される。なお、縞状光とコード状とは、いずれが先に出射されてもよい。
ステップS15で、所定の回数撮像が実行された場合、演算処理部132は、記憶部133に記憶された複数のパターン画像データについて演算を行うことにより、高さデータを生成する(ステップS17)。次に、演算処理部132は、所定数(本例では4個)の高さデータが生成されたか否かを判定する(ステップS18)。所定数の高さデータが生成されていない場合、撮像処理部131は、他の照明部110を選択し(ステップS19)、ステップS12に戻る。所定数の高さデータが生成されるまで、ステップS12~S19が繰り返される。
ステップS18で、所定数の高さデータが生成された場合、演算処理部132は、生成された所定数の高さデータを合成することにより検査用高さデータを生成する(ステップS20)。また、出力処理部134は、ステップS20で生成された検査用高さデータをコントローラ部200に出力する(ステップS21)。これにより、コントローラ部200の画像メモリ220に検査用高さデータが蓄積され、高さ生成処理が終了する。
図12は、図1の演算部130により実行される図10のテクスチャ生成処理のアルゴリズムの一例を示すフローチャートである。テクスチャ生成処理では、図12に示すように、撮像処理部131は、照明部110A~110Dのうち、いずれか1つの照明部110を選択する(ステップS31)。次に、撮像処理部131は、白色の一様光を出射するように、ステップS31または後述するステップS36で選択された照明部110を制御する(ステップS32)。
また、撮像処理部131は、ステップS32における一様光の出射と同期して測定対象物Sを撮像するように撮像部120を制御する(ステップS33)。これにより、測定対象物Sのテクスチャ画像データが撮像部120により生成される。その後、撮像処理部131は、ステップS33で生成されたテクスチャ画像データを記憶部133に記憶させる(ステップS34)。
続いて、撮像処理部131は、所定数(本例では4個)のテクスチャ画像データが生成されたか否かを判定する(ステップS35)。所定数のテクスチャ画像データが生成されていない場合、撮像処理部131は、他の照明部110を選択し(ステップS36)、ステップS32に戻る。所定数のテクスチャ画像データが生成されるまで、ステップS32~S36が繰り返される。
ステップS35で、所定数のテクスチャ画像データが生成された場合、演算処理部132は、生成された所定数のテクスチャ画像データに基づいて検査用テクスチャ画像データを生成する(ステップS37)。例えば、演算処理部132は、生成された所定数のテクスチャ画像データの互いに対応する各画素について、当該画素の所定数の画素値のうち2番目に大きい画素値を予め定められた規則に従う画素値として選択する。また、演算処理部132は、各画素の画素値を選択された画素値とする画像データを検査用テクスチャ画像データとして生成する。
その後、出力処理部134は、ステップS37で生成された検査用テクスチャ画像データをコントローラ部200に出力する(ステップS38)。これにより、コントローラ部200の画像メモリ220に検査用テクスチャ画像データが蓄積され、テクスチャ生成処理が終了する。
高さ生成処理とテクスチャ生成処理とは、いずれが先に実行されてもよいし、部分的に並列して実行されてもよい。例えば、高さ生成処理のステップS15の後にテクスチャ生成処理のステップS32,S33が実行されてもよい。この場合、テクスチャ生成処理のステップS31,S35,S36が省略される。そのため、撮像に要する時間を短縮することができる。また、テクスチャ生成処理のステップS32~S34,S37,S38は、高さ生成処理のステップS17と並列して実行されてもよい。この場合、処理時間をさらに短縮することができる。
図13は、図1の検査部230により実行される図10の判定処理のアルゴリズムの一例を示すフローチャートである。判定処理では、図13に示すように、検査部230は、画像メモリ220に蓄積された検査用高さデータまたは検査用テクスチャ画像データに画像処理を実行する(ステップS51)。これにより、使用者により予め指定された検査内容に基づいて、検査用高さデータまたは検査用テクスチャ画像データにおける所定部分の計測が実行される。
次に、検査部230は、ステップS51で得られた計測値を所定のしきい値と比較することにより測定対象物Sの良否を判定し(ステップS52)、判定処理を終了する。なお、検査部230は、ステップS52における判定結果を表示部320に表示してもよいし、外部機器400に与えてもよい。
(5)効果
本実施の形態に係る検査装置300においては、互いに異なる複数の方向から複数の照明部110によりそれぞれ光が測定対象物Sに照射される。各照明部110は、周期的なパターンを有する構造化光を位相シフトさせつつ出射するように撮像処理部131により制御される。また、各照明部110は、一様光を測定対象物Sにさらに照射するように撮像処理部131により制御される。
測定対象物Sにより反射された構造化光が順次受光されることにより各方向についての測定対象物Sの画像を示す複数のパターン画像データが撮像部120により順次生成される。また、測定対象物Sにより反射された一様光が受光されることにより複数の方向についての複数のテクスチャ画像データが撮像部120により生成される。
撮像部120により生成された複数のパターン画像データに基づいて各方向についての測定対象物Sの高さ画像を示す高さデータが演算処理部132により生成される。また、複数の高さデータが合成されることにより、測定不可能な部分が低減された検査用高さデータが演算処理部132により生成される。さらに、撮像部120により生成された複数のテクスチャ画像データに基づいてハレーションまたは照明の死角部分の影響が低減された検査用テクスチャ画像データが演算処理部132により生成される。演算処理部132により生成された高さデータまたは検査用テクスチャ画像データを用いて測定対象物Sの検査が検査部230により実行される。
この構成によれば、高さデータ生成用の照明部110と共通の照明部110を用いて検査用テクスチャ画像データが生成される。検査用テクスチャ画像データにおいては、ハレーションまたは照明の死角部分の影響が低減される。したがって、検査用テクスチャ画像データは、測定対象物Sの検査に適したテクスチャ画像データとなる。この場合、測定対象物Sの検査に適したテクスチャ画像データを生成するために高さデータ生成用の照明部110とは別個の照明部を追加する必要がない。これにより、コストの増加を抑制しつつ簡単な構成で測定対象物Sの検査を行うことが可能になる。また、検査用高さデータを用いることにより、測定対象物Sの広範囲に渡る部分を容易に検査することができる。
[2]第2の実施の形態
(1)検査装置の構成
第2の実施の形態に係る検査装置300について、第1の実施の形態に係る検査装置300と異なる点を説明する。本実施の形態においては、図1の演算部130は、図3の照明部110から出射される光に所望のパターンが付与されるようにパターン生成部118を制御するとともに、光源111~113による光の出射を個別に制御する。これにより、白色の構造化光と、赤色、緑色または青色の一様光とが各照明部110から選択的に出射される。
赤色、緑色および青色の一様光がそれぞれ測定対象物Sに照射されたときのテクスチャ画像データをRデータ、GデータおよびBデータと呼ぶ。本実施の形態においては、4個の照明部110A~110Dの各々に対応して、Rデータ、GデータおよびBデータが生成される。すなわち、合計12個のテクスチャ画像データが生成される。
また、第1の実施の形態と同様の方法により、4個のRデータに基づいて検査用Rデータが生成される。同様に、4個のGデータに基づいて検査用Gデータが生成される。4個のBデータに基づいて検査用Bデータが生成される。以下の説明では、検査用Rデータ、検査用Gデータおよび検査用Bデータのセットを検査用データ群と呼ぶ。検査用データ群が合成されることにより、カラーの検査用テクスチャ画像データが生成される。この場合、カラーの検査用テクスチャ画像データを用いて測定対象物Sをより正確にかつ効率よく検査することができる。
(2)検査処理
以下、本実施の形態における検査処理をフローチャートを用いて説明する。第1の実施の形態における図10の検査処理と同様に、本実施の形態における検査処理は、高さ生成処理、テクスチャ生成処理および判定処理からなる。本実施の形態における高さ生成処理は、第1の実施の形態における図11の高さ生成処理と同様である。
図14および図15は、第2の実施の形態におけるテクスチャ生成処理のアルゴリズムの一例を示すフローチャートである。本実施の形態におけるテクスチャ生成処理は、以下の点を除き、第1の実施の形態における図12のテクスチャ生成処理と基本的に同様である。本実施の形態のテクスチャ生成処理においては、図14に示すように、ステップS32~S34に代えてステップS32A~S32C,S33A~S33C,S34A~S34Cが実行される。また、図15に示すように、ステップS37の前にステップS37A~S37Cが追加される。
具体的には、ステップS31の後、撮像処理部131は、赤色の一様光を出射するように、ステップS31またはステップS36で選択された照明部110を制御する(ステップS32A)。また、撮像処理部131は、ステップS32Aにおける赤色の一様光の出射と同期して測定対象物Sを撮像するように撮像部120を制御する(ステップS33A)。これにより、測定対象物SのRデータが撮像部120により生成される。その後、撮像処理部131は、ステップS33Aで生成されたRデータを記憶部133に記憶させる(ステップS34A)。
次に、撮像処理部131は、緑色の一様光を出射するように、ステップS31またはステップS36で選択された照明部110を制御する(ステップS32B)。また、撮像処理部131は、ステップS32Bにおける緑色の一様光の出射と同期して測定対象物Sを撮像するように撮像部120を制御する(ステップS33B)。これにより、測定対象物SのGデータが撮像部120により生成される。その後、撮像処理部131は、ステップS33Bで生成されたGデータを記憶部133に記憶させる(ステップS34B)。
次に、撮像処理部131は、青色の一様光を出射するように、ステップS31またはステップS36で選択された照明部110を制御する(ステップS32C)。また、撮像処理部131は、ステップS32Cにおける青色の一様光の出射と同期して測定対象物Sを撮像するように撮像部120を制御する(ステップS33C)。これにより、測定対象物SのBデータが撮像部120により生成される。その後、撮像処理部131は、ステップS33Cで生成されたBデータを記憶部133に記憶させる(ステップS34C)。
ステップS32A,S33A,S34Aと、ステップS32B,S33B,S34Bと、ステップS32C,S33C,S34Cとは、いずれが先に実行されてもよい。これらの処理が実行された後、撮像処理部131はステップS35に進む。なお、本例のステップS35においては、4個ではなく12個のテクスチャ画像データが生成されたか否かが判定される。
ステップS35で12個のテクスチャ画像データが生成された場合、演算処理部132は、4個のRデータに基づいて検査用Rデータを生成する(ステップS37A)。また、演算処理部132は、4個のGデータに基づいて検査用Gデータを生成する(ステップS37B)。さらに、演算処理部132は、4個のBデータに基づいて検査用Bデータを生成する(ステップS37C)。ステップS37Aと、ステップS37Bと、ステップS37Cとは、いずれが先に実行されてもよい。
その後、ステップS37では、ステップS37A~S37Cでそれぞれ生成された検査用Rデータ、検査用Gデータおよび検査用Bデータが合成されることにより、カラーの検査用テクスチャ画像データが生成される。また、ステップS38では、ステップS37で生成されたカラーの検査用テクスチャ画像データがコントローラ部200に出力される。本実施の形態における判定処理は、第1の実施の形態における図13の判定処理と同様である。
(3)テクスチャ生成処理の変形例
図14および図15のテクスチャ生成処理によれば、単純な処理により検査用データ群を生成することができる。また、検査用データ群を合成することによりカラーの検査用テクスチャ画像データを生成することができる。図16は、図14および図15のテクスチャ生成処理により生成された検査用データ群を示す図である。
図16の例では、検査用Rデータ、検査用Gデータ、検査用Bデータおよび検査用テクスチャ画像データにおける画素p1~p4が図示されている。検査用Rデータの画素p1と、検査用Gデータの画素p1と、検査用Bデータの画素p1とは互いに対応し、これらの画素p1が合成されることにより、検査用テクスチャ画像データの画素p1が生成される。画素p2~p4についても同様である。
図16に示すように、検査用Rデータにおいては、画素p1~p3は照明部110Aに対応するRデータの画素により生成され、画素p4は照明部110Bに対応するRデータの画素により生成される。検査用Gデータにおいては、画素p1~p3は照明部110Aに対応するGデータの画素により生成され、画素p4は照明部110Cに対応するGデータの画素により生成される。検査用Bデータにおいては、画素p1~p3は照明部110Aに対応するBデータの画素により生成され、画素p4は照明部110Dに対応するBデータの画素により生成される。
このように、検査用Rデータ、検査用Gデータおよび検査用Bデータにおいて、画素p1~p3は、同一の照明部110(すなわち同一の方向)に対応する。この場合、これらの検査用Rデータ、検査用Gデータおよび検査用Bデータが合成された検査用テクスチャ画像データの画素p1~p3においては、検査用Rデータ、検査用Gデータおよび検査用Bデータの画素値の比が維持される。そのため、テクスチャ画像データにおける画素p1~p3の色が正確に再現される。
一方、検査用Rデータ、検査用Gデータおよび検査用Bデータにおいて、画素p4は、それぞれ異なる照明部110(すなわち異なる方向)に対応する。この場合、これらの検査用Rデータ、検査用Gデータおよび検査用Bデータが合成された検査用テクスチャ画像データの画素p4においては、検査用Rデータ、検査用Gデータおよび検査用Bデータの画素値の比が維持されない。そのため、テクスチャ画像データにおける画素p4の色が正確に再現されず、画素p4に偽の色が発生する。
そこで、本実施の形態におけるテクスチャ生成処理の変形例では、以下の処理が行われる。図17は、第2の実施の形態の変形例におけるテクスチャ生成処理のアルゴリズムの一例を示すフローチャートである。図17では、図14のステップS32A~S34A,S32B~S34B,S32C~S34Cの一連の処理が、「測定対象物の撮像によるRデータ、GデータおよびBデータの生成および記憶」という1つの処理ブロックで示される。図17に示すように、テクスチャ生成処理の変形例においては、図14のステップS35で所定数のテクスチャ画像データが生成されたと判定された後、ステップS39~S41が実行される。
ステップS39で、演算処理部132は、各方向に対応するRデータ、GデータおよびBデータにおいて、互いに対応する画素の代表となる画素値(以下、代表画素値と呼ぶ。)を画素ごとに特定する(ステップS39)。代表画素値は、例えばRデータ、GデータおよびBデータにおける対応画素の画素値の平均値であってもよいし、合計値であってもよいし、最大値であってもよい。
次に、演算処理部132は、複数の方向にそれぞれ対応する複数の代表画素値のうち、最も大きい代表画素値または最も小さい代表画素値を除外した1つの代表画素値を画素ごとに選択する(ステップS40)。本例では、4つの方向にそれぞれ対応する4つの代表画素値のうち、最も大きい代表画素値および最も小さい代表画素値を除外した1つの代表画素値が画素ごとに選択される。
続いて、演算処理部132は、ステップS40で選択された1つの代表画素値に対応する方向を画素ごとに特定する(ステップS41)。その後、演算処理部132は、ステップS37A~S38に進む。
ステップS37Aにおいては、ステップS41で特定された方向に対応するRデータの各画素の画素値が、検査用Rデータの対応画素の画素値とされる。ステップS37Bにおいては、ステップS41で特定された方向に対応するGデータの各画素の画素値が、検査用Gデータの対応画素の画素値とされる。ステップS37Cにおいては、ステップS41で特定された方向に対応するBデータの各画素の画素値が、検査用Bデータの対応画素の画素値とされる。
この変形例によれば、検査用Rデータ、検査用Gデータおよび検査用Bデータにおける同一の画素は、同一の方向に対応する。したがって、検査用テクスチャ画像データの対応画素においては、検査用Rデータ、検査用Gデータおよび検査用Bデータの画素値の比が維持される。これにより、テクスチャ画像データにおける各画素に偽の色を発生させることなく、各画素の色を正確に再現することができる。
[3]第3の実施の形態
(1)検査装置の構成
第3の実施の形態に係る検査装置300について、第1または第2の実施の形態に係る検査装置300と異なる点を説明する。図18は、本発明の第3の実施の形態に係る検査装置の構成を示すブロック図である。図18に示すように、本実施の形態においては、コントローラ部200は、ヘッド制御部210、画像メモリ220および検査部230に加えて、モード受付部240を含む。
モード受付部240は、操作部310から検査装置300の動作モードの選択を受け付ける。動作モードは、第1のグレーモード、第1のカラーモード、第2のグレーモードおよび第2のカラーモードを含む。使用者は、操作部310を操作することにより、いずれかの動作モードを選択することができる。ヘッド制御部210および検査部230は、モード受付部240により受け付けられた動作モードで動作する。
第1のグレーモードにおいては、第1の実施の形態と同様の検査処理が実行される。第1のカラーモードにおいては、第2の実施の形態と同様の検査処理が実行される。第2のグレーモードにおいては、ハレーションおよび照明の死角部分の影響が低減されたテクスチャ画像データが生成されない点を除き、第1のグレーモードと同様の検査処理が実行される。第2のカラーモードにおいては、ハレーションおよび照明の死角部分の影響が低減されたテクスチャ画像データが生成されない点を除き、第1のカラーモードと同様の検査処理が実行される。
以下、各動作モードにおける検査処理をフローチャートを用いて説明する。なお、第1のグレーモードにおける検査処理のフローチャートは、図10~図13のフローチャートと同様である。また、第1のカラーモードにおける検査処理のフローチャートは、図10、図11、図14、図15および図17のフローチャートと同様である。そのため、第1のグレーモードおよび第1のカラーモードにおける検査処理の説明を省略する。
(2)第2のグレーモード
第1の実施の形態における図10の検査処理と同様に、第2のグレーモードにおける検査処理は、高さ生成処理、テクスチャ生成処理および判定処理からなる。第2のグレーモードにおける高さ生成処理は、第1の実施の形態における図11の高さ生成処理と同様である。
図19は、第2のグレーモードにおけるテクスチャ生成処理のアルゴリズムの一例を示すフローチャートである。第2のグレーモードにおけるテクスチャ生成処理は、以下の点を除き、第1の実施の形態における図12のテクスチャ生成処理と基本的に同様である。第2のグレーモードにおけるテクスチャ生成処理においては、図19に示すように、ステップS35~S37が実行されず、ステップS31,S38に代えてステップS31A,S38Aがそれぞれ実行される。
具体的には、ステップS31Aで、撮像処理部131は、全部の照明部110を選択する(ステップS31A)。この場合、ステップS32で白色の一様光を出射するように全部の照明部110が制御され、ステップS33で一様光の出射と同期して測定対象物Sを撮像するように撮像部120が制御される。これにより、測定対象物Sのテクスチャ画像データが撮像部120により生成される。その後、ステップS34で、生成されたテクスチャ画像データが記憶部133に記憶される。
その後、出力処理部134は、ステップS34で記憶部133に記憶されたテクスチャ画像データをコントローラ部200に出力する(ステップS38A)。これにより、コントローラ部200の画像メモリ220にテクスチャ画像データが蓄積され、テクスチャ生成処理が終了する。
第2のグレーモードにおける判定処理は、検査用テクスチャ画像データではなく、上記のテクスチャ画像データの計測が行われる点を除き、第1の実施の形態における図13の判定処理と同様である。
(3)第2のカラーモード
第2の実施の形態における検査処理と同様に、第2のカラーモードにおける検査処理は、高さ生成処理、テクスチャ生成処理および判定処理からなる。第2のカラーモードにおける高さ生成処理は、第2の実施の形態における高さ生成処理と同様である。
図20は、第2のカラーモードにおけるテクスチャ生成処理のアルゴリズムの一例を示すフローチャートである。第2のカラーモードにおけるテクスチャ生成処理は、以下の点を除き、第2の実施の形態における図14および図15のテクスチャ生成処理と基本的に同様である。第2のカラーモードにおけるテクスチャ生成処理においては、図20に示すように、ステップS35,S36,S37A~S37Cが実行されず、ステップS31,S37,S38に代えて、ステップS31B,S37D,S38Bがそれぞれ実行される。
具体的には、ステップS31Bで、撮像処理部131は、全部の照明部110を選択する(ステップS31B)。この場合、ステップS32Aで赤色の一様光を出射するように全部の照明部110が制御され、ステップS33Aで一様光の出射と同期して測定対象物Sを撮像するように撮像部120が制御される。これにより、測定対象物SのRデータが撮像部120により生成される。その後、ステップS34Aで、生成されたRデータが記憶部133に記憶される。
また、ステップS32Bで緑色の一様光を出射するように全部の照明部110が制御され、ステップS33Bで一様光の出射と同期して測定対象物Sを撮像するように撮像部120が制御される。これにより、測定対象物SのGデータが撮像部120により生成される。その後、ステップS34Bで、生成されたGデータが記憶部133に記憶される。
さらに、ステップS32Cで青色の一様光を出射するように全部の照明部110が制御され、ステップS33Cで一様光の出射と同期して測定対象物Sを撮像するように撮像部120が制御される。これにより、測定対象物SのBデータが撮像部120により生成される。その後、ステップS34Cで、生成されたBデータが記憶部133に記憶される。
次に、演算処理部132は、ステップS34A~S34Cで記憶部133にそれぞれ記憶されたRデータ、GデータおよびBデータを合成することにより、カラーのテクスチャ画像データを生成する(ステップS37D)。その後、出力処理部134は、ステップS37Dで生成されたテクスチャ画像データをコントローラ部200に出力する(ステップS38B)。これにより、コントローラ部200の画像メモリ220にカラーのテクスチャ画像データが蓄積され、テクスチャ生成処理が終了する。
第2のカラーモードにおける判定処理は、検査用テクスチャ画像データではなく、上記のテクスチャ画像データの計測が行われる点を除き、第2の実施の形態における判定処理と同様である。
(4)効果
第1または第2の実施の形態においては、ハレーションまたは照明の死角部分の影響が低減された高品質な検査用テクスチャ画像データが生成される。これにより、より正確な検査を行うことができる。しかしながら、撮像回数および処理時間が増加するため、検査のタクトタイムが長くなる。
一方で、測定対象物Sにおける検査を行う部分が、テクスチャ画像データにおけるハレーションまたは照明の死角が発生しない部分に対応する場合には、高品質なテクスチャ画像データを用いる必要がない。あるいは、テクスチャ画像データが、高さ画像の確認のために補助的に用いられ、計測には用いられない場合には、当該テクスチャ画像データにハレーションまたは照明の死角が発生してもよい。これらの場合には、高品質なテクスチャ画像データが生成されることよりも、より高速にテクスチャ画像データが生成されることが求められる。
そこで、高品質なテクスチャ画像データを生成することが不要な場合には、使用者は、第2のグレーモードまたは第2のカラーモードを選択する。これにより、テクスチャ画像データがより高速に画像メモリ220に蓄積される。その結果、測定対象物Sの検査をより短時間で終了することができる。なお、画像メモリ220へのテクスチャ画像データの蓄積が終了するまでの時間の短さは、第2のグレーモード、第2のカラーモード、第1のグレーモードおよび第1のカラーモードの順となる。
[4]第4の実施の形態
(1)検査装置の構成
第4の実施の形態に係る検査装置300について、第3の実施の形態に係る検査装置300と異なる点を説明する。本実施の形態においては、検査装置300の動作モードは、第1のグレーモード、第1のカラーモード、第2のグレーモードおよび第2のカラーモードに加えて、第1のベイヤモードおよび第2のベイヤモードを含む。
図21は、第1および第2のベイヤモードを説明するための図である。図21においては、Rデータの画素が第1のハッチングパターンおよび文字「R」により示される。Gデータの画素がドットパターンおよび文字「G」により示される。Bデータの画素が第2のハッチングパターンおよび文字「B」により示される。
第1および第2のベイヤモードでは、図21に示すように、ヘッド部100において、Rデータ、GデータおよびBデータに基づいてベイヤ配列に変換されたテクスチャ画像データが生成される。ベイヤ配列に変換されたテクスチャ画像データをベイヤデータと呼ぶ。ベイヤデータは、Rデータの画素、Gデータの画素およびBデータの画素を1:2:1の割合で含む。検査用ベイヤデータは、ハレーションまたは照明の死角部分の影響が低減されたベイヤデータである。
第1のベイヤモードでは、検査用ベイヤデータが生成される。第2のベイヤモードでは、単なるベイヤデータが生成される。生成されたベイヤデータは、コントローラ部200に出力される。コントローラ部200において、ベイヤデータにディベイヤ処理が施される。これにより、ベイヤデータが非ベイヤ配列に変換されることにより、テクスチャ画像データが再生成される。再生成されたテクスチャ画像データに基づいて計測が実行される。以下、第1および第2のベイヤモードにおける検査処理をフローチャートを用いて説明する。
(2)第1のベイヤモード
第1のカラーモードにおける検査処理と同様に、第1のベイヤモードにおける検査処理は、高さ生成処理、テクスチャ生成処理および判定処理からなる。第1のベイヤモードにおける高さ生成処理は、第1のカラーモードにおける高さ生成処理と同様である。
図22および図23は、第1のベイヤモードにおけるテクスチャ生成処理のアルゴリズムの一例を示すフローチャートである。第1のベイヤモードにおけるテクスチャ生成処理は、以下の点を除き、第1のカラーモードにおける図14および図15のテクスチャ生成処理と基本的に同様である。第1のベイヤモードにおけるテクスチャ生成処理においては、図22および図23に示すように、ステップS37の後にステップS37Eが追加されるとともに、ステップS38に代えてステップS38Cが実行される。
具体的には、ステップS37の後、演算処理部132は、ステップS37で生成された検査用テクスチャ画像データにベイヤ処理を実行する(ステップS37E)。これにより、検査用ベイヤデータが生成される。その後、出力処理部134は、ステップS37Eで生成された検査用ベイヤデータをコントローラ部200に出力する(ステップS38C)。これにより、コントローラ部200の画像メモリ220に検査用ベイヤデータが蓄積され、テクスチャ生成処理が終了する。
図24は、第1のベイヤモードにおける判定処理のアルゴリズムの一例を示すフローチャートである。第1のベイヤモードにおける判定処理は、以下の点を除き、第1のカラーモードにおける判定処理と同様である。第1のベイヤモードにおける判定処理においては、図24に示すように、ステップS51の前にステップS53が追加される。
具体的には、検査部230は、ステップS38Cで画像メモリ220に蓄積された検査用ベイヤデータにディベイヤ処理を実行する(ステップS53)。これにより、検査用ベイヤデータが非ベイヤ配列に変換され、検査用テクスチャ画像データが再生成される。その後、ステップS53で再生成された検査用テクスチャ画像データを用いて、ステップS51が実行される。
(3)第2のベイヤモード
第2のカラーモードにおける検査処理と同様に、第2のベイヤモードにおける検査処理は、高さ生成処理、テクスチャ生成処理および判定処理からなる。第2のベイヤモードにおける高さ生成処理は、第2のカラーモードにおける高さ生成処理と同様である。
図25は、第2のベイヤモードにおけるテクスチャ生成処理のアルゴリズムの一例を示すフローチャートである。第2のベイヤモードにおけるテクスチャ生成処理は、以下の点を除き、第2のカラーモードにおける図20のテクスチャ生成処理と基本的に同様である。第2のベイヤモードにおけるテクスチャ生成処理においては、図25に示すように、ステップS37Dの後にステップS37Fが追加されるとともに、ステップS38Bに代えてステップS38Dが実行される。
具体的には、ステップS37Dの後、演算処理部132は、ステップS37Dで生成されたテクスチャ画像データにベイヤ処理を実行する(ステップS37F)。これにより、ベイヤデータが生成される。その後、出力処理部134は、ステップS37Fで生成されたベイヤデータをコントローラ部200に出力する(ステップS38D)。これにより、コントローラ部200の画像メモリ220にベイヤデータが蓄積され、テクスチャ生成処理が終了する。
図26は、第2のベイヤモードにおける判定処理のアルゴリズムの一例を示すフローチャートである。第2のベイヤモードにおける判定処理は、以下の点を除き、第2のカラーモードにおける判定処理と同様である。第2のベイヤモードにおける判定処理においては、図26に示すように、ステップS51の前にステップS54が追加される。
具体的には、検査部230は、ステップS38Dで画像メモリ220に蓄積されたベイヤデータにディベイヤ処理を実行する(ステップS54)。これにより、ベイヤデータが非ベイヤ配列に変換され、テクスチャ画像データが再生成される。その後、ステップS54で再生成されたテクスチャ画像データを用いて、ステップS51が実行される。
(4)効果
第1のカラーモードまたは第2のカラーモードにおいては、高い解像度を有するカラーのテクスチャ画像データ(検査用テクスチャ画像データを含む。)が生成される。しかしながら、カラーのテクスチャ画像データのデータ量は大きいため、ヘッド部100からコントローラ部200へのテクスチャ画像データの出力に長時間を要する。
これに対し、第1のベイヤモードまたは第2のベイヤモードにおいては、カラーのテクスチャ画像データの解像度は低下するものの、カラーのテクスチャ画像データのデータ量はモノクロのテクスチャ画像データのデータ量と同程度に低減される。これにより、ヘッド部100からコントローラ部200へのテクスチャ画像データの出力が短時間で行われる。
そこで、高解像度を有するテクスチャ画像データを生成することが不要な場合には、使用者は、第1のベイヤモードまたは第2のベイヤモードを選択する。これにより、テクスチャ画像データがより高速に画像メモリ220に蓄積される。その結果、測定対象物Sの検査をより短時間で終了することができる。その結果、測定対象物Sの検査をより短時間で終了することができる。
なお、本実施の形態においては、ヘッド部100とコントローラ部200との間の通信に要する時間は、種々のテクスチャ画像データの生成に要する時間よりも短い。この場合、画像メモリ220へのテクスチャ画像データの蓄積が終了するまでの時間の短さは、第2のグレーモード、第2のベイヤモード、第2のカラーモード、第1のグレーモード、第1のベイヤモードおよび第1のカラーモードの順となる。
[5]第5の実施の形態
(1)測定対象物の表面状態および形状がテクスチャ画像に及ぼす影響
第1の実施の形態では、検査用テクスチャ画像データを得るために、複数の照明部110による光の照射方向にそれぞれ対応する複数のテクスチャ画像データが生成される。また、生成された複数のテクスチャ画像データの互いに対応する各画素について、複数の画素値のうち最も大きい画素値または最も小さい画素値を除いて予め定められた規則に従って画素値が選択される。予め定められた規則は、例えば複数の画素値の大きさの順位で定められる。各画素の画素値を選択された画素値とする画像データが検査用テクスチャ画像データとして生成される。このような、第1の実施の形態に係る検査用テクスチャ画像データの生成方法を単純生成方法と呼ぶ。単純生成方法により生成された検査用テクスチャ画像データによれば、ハレーションおよび影がほとんど存在しないテクスチャ画像が得られると考えられる。
しかしながら、実際には、測定対象物Sの表面状態によっては、単純生成方法で生成される検査用テクスチャ画像データであっても、ハレーション成分を十分に除去することができない場合がある。単純生成方法による検査用テクスチャ画像データの生成時にハレーションの成分を除去することができない例について説明する。
金属製の測定対象物Sにおいては、その表面にヘアライン加工が施される場合がある。ヘアライン加工によれば、測定対象物Sの表面に一方向に延びる微細なライン状の溝がその一方向に直交する方向に多数並ぶように形成される。それにより、測定対象物Sの外観に所定の質感が与えられる。
図27は、ヘアライン加工が施された金属製の測定対象物Sの一例を示す図である。図27の測定対象物Sは、突出部S2の上面USにヘアライン加工が施されている点を除いて、図5の測定対象物Sと同じ形状を有する。図28は、図27の突出部S2の上面USの模式的な拡大図である。図28に示すように、突出部S2の上面USには、多数のライン状の溝が形成されている。
ここで、測定対象物Sの上面USにおいてライン状の溝が延びる方向をヘアライン方向と呼び、測定対象物Sの上面USにおいてヘアライン方向に直交する方向を交差方向と呼ぶ。図28に示すように、上面US上の各溝は、ヘアライン方向に直交する断面がV字形状を示すように形成されている。そのため、上面USには、ヘアライン方向に延びかつ斜め上方を向く多数の傾斜面が微視的に形成されている。
このような構成を有する測定対象物Sについて、図2のヘッド部100を用いて4つの照明部110にそれぞれ対応する4つのテクスチャ画像データを生成する場合を想定する。
図29は、図27の測定対象物Sの検査時における図2の4つの照明部110および撮像部120と測定対象物Sとの位置関係の一例を示す模式的斜視図である。図29では、複数の照明部110と撮像部120との位置関係の把握を容易にするために、図2の4個の照明部110A,110B,110C,110Dおよび撮像部120が丸印で示される。また、撮像部120を通ってX方向およびY方向にそれぞれ平行に延びる2本の直線が一点鎖線で示される。
本例では、測定対象物Sは、そのヘアライン方向がX方向に平行となるようにベルトコンベア301上に載置されている。この場合、照明部110Cと照明部110Dとは、測定対象物Sの交差方向において撮像部120を挟んで対向することになる。
それにより、照明部110Cから突出部S2の上面USに照射される一様光の一部は、その上面USにおける照明部110Cの方向に向く多数の傾斜面により正反射されて撮像部120に入射する。また、照明部110Dから突出部S2の上面USに照射される一様光の一部は、その上面USにおける照明部110Dの方向に向く多数の傾斜面により正反射されて撮像部120に入射する。したがって、2つの照明部110C,110Dにそれぞれ対応して生成される2つのテクスチャ画像データにおいては、測定対象物Sの上面US部分についてほぼ同等のハレーションが発生することになる。
図30は、図29の例において4つの照明部110A~110Dから個別に一様光が出射されたときの測定対象物Sの複数のテクスチャ画像を示す図である。テクスチャ画像データT1~T4は、それぞれ照明部110A~110Dに対応する。図30では、テクスチャ画像におけるハレーションの発生部分の識別を容易にするために、ハレーションの発生部分をドットパターンで表す。
ここで、測定対象物Sの突出部S2の上面USの画像に着目すると、図30に示すように、テクスチャ画像データT1,T2では、突出部S2の上面USの部分にハレーションはほとんど発生していない。一方、テクスチャ画像データT3,T4では、突出部S2の上面USの部分に同程度のハレーションが発生している。
この場合、各画素について4つの画素値のうち2番目に大きい画素値を選択するという規則に基づく単純生成方法では、突出部S2の上面USを示すテクスチャ画像データT3,T4のいずれかのハレーション成分が検査用テクスチャ画像データに残留することになる。
図31は、図30の4つのテクスチャ画像から各画素について4つの画素値のうち2番目に大きい画素値を選択する単純生成方法により得られる検査用テクスチャ画像データの画像を示す図である。図31においても、図30の例と同様に、テクスチャ画像におけるハレーションの発生部分をドットパターンで表す。図31によれば、測定対象物Sにおける突出部S2の上面US部分にハレーションが発生している。
上記の点を考慮すると、単純生成方法における画素値を選択するための規則を変更することにより、検査用テクスチャ画像データを生成することが考えられる。例えば、4つのテクスチャ画像データの互いに対応する各画素について4つの画素値のうち3番目に大きい画素値を選択する単純生成方法により、検査用テクスチャ画像データを生成することが考えられる。この場合、突出部S2の上面USを示すテクスチャ画像データT3,T4の画素値が検査用テクスチャ画像データとして選択されることが防止される。しかしながら、この場合であっても、測定対象物Sの形状によっては、影の成分を十分に除去することができない場合がある。単純生成方法による検査用テクスチャ画像データの生成時に影の成分を除去することができない例について説明する。
図32は、測定対象物Sの他の例を示す図である。図33は、図31の測定対象物Sの検査時における図2の4つの照明部110および撮像部120と測定対象物Sとの位置関係の一例を示す模式的斜視図である。図33では、図29の例と同様に、図2の4個の照明部110A,110B,110C,110Dおよび撮像部120が丸印で示される。また、撮像部120を通ってX方向およびY方向にそれぞれ平行に延びる2本の直線が一点鎖線で示される。
図32の測定対象物Sは、上面が開放された扁平な箱形状を有する。具体的には、本例の測定対象物Sは、正方形状を有する底板部S4と、底板部S4の4辺からそれぞれ上方に延びる第1側壁S5a、第2側壁S5b、第3側壁S5cおよび第4側壁S5dとを有する。第1側壁S5aおよび第2側壁S5bは互いに対向し、第3側壁S5cおよび第4側壁S5dは互いに対向する。底板部S4の上面は灰色であり、第1側壁S5a、第2側壁S5b、第3側壁S5cおよび第4側壁S5dの上端面は光沢のない白色である。
図33の例では、第1側壁S5aおよび第2側壁S5bがX方向において対向しかつ第3側壁S5cおよび第4側壁S5dがY方向において対向しかつ底板部S4の上面が撮像部120に対向するように、測定対象物Sがベルトコンベア301上に載置されている。この場合、4つの照明部110A~110Dから個別に一様光が照射されると、底板部S4上には少なくとも一部に影が発生する。
図34は、図33の例において4つの照明部110A~110Dから個別に一様光が出射されたときの測定対象物Sの複数のテクスチャ画像を示す図である。テクスチャ画像データT1~T4は、それぞれ照明部110A~110Dに対応する。図34では、テクスチャ画像における影の発生部分をハッチングで表す。
図34に示すように、4つのテクスチャ画像データT1~T4の各々においては、底板部S4の上面のうち光が出射される照明部に最も近い位置にある側壁から一定幅の領域に影が発生している。この場合、各画素について4つの画素値のうち3番目に大きい画素値を選択するという規則に基づく単純生成方法では、生成される検査用テクスチャ画像データの一部に影の成分が残留することになる。
図35は、図34の4つのテクスチャ画像から各画素について4つの画素値のうち3番目に大きい画素値を選択する単純生成方法により得られる検査用テクスチャ画像データの画像を示す図である。図35においても、図34の例と同様に、テクスチャ画像における影の発生部分をハッチングで表す。図35によれば、測定対象物Sにおける底板部S4の上面の四隅に影が発生している。
そこで、第5の実施の形態に係る検査装置300においては、図27および図32の測定対象物Sについてハレーションおよび影がほとんど発生しないテクスチャ画像データが生成されるように、テクスチャ生成処理が行われる。なお、本実施の形態に係る検査装置300は、テクスチャ生成処理の処理内容が異なる点を除いて、第1の実施の形態に係る検査装置300と同じ構成および動作を有する。
(2)第5の実施の形態に係るテクスチャ生成処理の概念
図36は、第5の実施の形態に係るテクスチャ生成処理の概念図である。図36に太い点線で示すように、本実施の形態に係るテクスチャ生成処理では、まず照明部110A~110Dにそれぞれ対応するテクスチャ画像データが生成される。その後、X方向において撮像部120を挟んで対向する照明部110A,110Bに対応して生成された第1対のテクスチャ画像データが合成され、第1の合成画像データが生成される。この合成時には、互いに対応する各画素について2つの画素値が比較される。また、2つの画素値のうち大きい画素値が第1画素値として選択され、選択された第1画素値が、第1の合成画像データの当該画素の画素値とされる。これにより、第1対のテクスチャ画像データにそれぞれ存在する画素値の低い成分が除去される。すなわち、第1対のテクスチャ画像データにおける影等に起因する成分の少なくとも一部が除去される。
続いて、Y方向において撮像部120を挟んで対向する照明部110C,110Dに対応して生成された第2対のテクスチャ画像データが合成され、第2の合成画像データが生成される。この合成時においても、第1の合成画像データの生成時と同様に、互いに対応する各画素について2つの画素値が比較される。また、2つの画素値のうち大きい画素値が第2画素値として選択され、選択された第2画素値が、第2の合成画像データの当該画素の画素値とされる。これにより、第2対のテクスチャ画像データにそれぞれ存在する画素値の低い成分が除去される。すなわち、第2対のテクスチャ画像データにおける影等に起因する成分の少なくとも一部が除去される。
最後に、第1の合成画像データと第2の合成画像データとが合成され、検査用テクスチャ画像データが生成される。この合成時には、互いに対応する各画素について2つの画素値が比較される。また、2つの画素値のうち小さい画素値が検査用テクスチャ画像データの画素値として決定される。これにより、第1および第2の合成画像データにそれぞれ存在する画素値の高い成分が除去される。すなわち、第1および第2の合成画像データにおけるハレーション等に起因する成分の少なくとも一部が除去される。これらの結果、ハレーションおよび照明の死角部分の影響が低減された検査用テクスチャ画像データが得られる。
以下の説明では、図36に示される検査用テクスチャ画像データの生成方法をトーナメント生成方法と呼ぶ。
図30の4つのテクスチャ画像からトーナメント生成方法により得られる検査用テクスチャ画像データの画像においては、図31の例で示された突出部S2の上面USのハレーションが除去される。その結果、図9に示されるように、ハレーションが十分に低減された画像が得られる。
図37は、図34の4つのテクスチャ画像からトーナメント生成方法により得られる検査用テクスチャ画像データの画像を示す図である。図37の画像によれば、図36の例で示された底板部S4の上面の四隅の影が除去されている。
なお、トーナメント生成方法においては、画素ごとに第1画素値および第2画素値のいずれかが選択されていれば、選択された画素値に基づいて検査用テクスチャ画像データの各画素値を決定することができる。そのため、第1および第2の合成画像データは必ずしも生成されなくてよい。
(3)テクスチャ生成処理
図38は、第5の実施の形態におけるテクスチャ生成処理のアルゴリズムの一例を示すフローチャートである。本実施の形態におけるテクスチャ生成処理においては、図38に示すように、図12のステップS37の処理に代えてステップS37G~S37Iが実行される。それにより、トーナメント生成方法に従って検査用テクスチャ画像データが生成される。
具体的には、ステップS35において所定数(本例では4個)のテクスチャ画像データが生成された場合、演算処理部132は、上記の第1対のテクスチャ画像データにおける互いに対応する各画素について2つの画素値のうち大きい画素値を第1画素値として選択する(ステップS37G)。
また、演算処理部132は、上記の第2対のテクスチャ画像データにおける互いに対応する各画素について2つの画素値のうち大きい画素値を第2画素値として選択する(ステップS37H)。
続いて、演算処理部132は、各画素について選択されかつ互いに対応する第1画素値および第2画素値のうち小さい画素値を検査用テクスチャ画像データの画素値として決定する(ステップS37I)。これにより、全ての画素について画素値が決定されることにより検査用テクスチャ画像データが生成される。その後、ステップS38では、ステップS37Iにより生成された検査用テクスチャ画像データがコントローラ部200に出力される。
(4)効果
本実施の形態に係る検査装置300においては、トーナメント生成方法に従って検査用テクスチャ画像データが生成される。この場合、第1画素値および第2画素値の選択時には、対向配置された各対の照明部110に対応する2つのテクスチャ画像データから照明の死角部分に起因する影成分の少なくとも一部が除去される。また、第1画素値および第2画素値に基づく検査用テクスチャ画像データの各画素値の決定時に、ハレーション成分の少なくとも一部が除去される。その結果、ハレーションおよび照明の死角部分の影響が低減された検査用テクスチャ画像データを容易に生成することができる。
(5)第5の実施の形態における変形例
(5-a)本実施の形態に係る検査装置300は、トーナメント生成方法に従って検査用テクスチャ画像データを生成するために互いに対向配置された2対の照明部110を備えるが、検査装置300は、互いに対向配置された3以上の複数対の照明部110を備えてもよい。検査装置300は、n(nは3以上の整数)対の照明部110を備える場合、検査用テクスチャ画像データの各画素の決定候補として第1画素値~第n画素値までの3以上の複数の画素値を取得することができる。この場合、演算処理部132は、互いに対応する第1画素値~第n画素値のうち最大の画素値を検査用テクスチャ画像データの画素値として決定する。それにより、ハレーションおよび照明の死角部分の影響がさらに低減された検査用テクスチャ画像データを容易に生成することができる。
(5-b)本実施の形態に係る検査装置300においては、第2の実施の形態と同様に、テクスチャ生成処理時に4個の照明部110A~110Dの各々に対応するRデータ、GデータおよびBデータが生成されてもよい。この場合、4個のRデータに基づいてトーナメント生成方法により検査用Rデータを生成することができる。また、4個のGデータに基づいてトーナメント生成方法により検査用Gデータを生成することができる。また、4個のBデータに基づいてトーナメント生成方法により検査用Bデータを生成することができる。生成された検査用データ群が合成されることにより、ハレーションおよび照明の死角部分の影響が低減されたカラーの検査用テクスチャ画像データを生成することができる。
[6]第6の実施の形態
第6の実施の形態に係る検査装置300は、単純生成方法およびトーナメント生成方法による検査用テクスチャ画像データの生成が可能でかつそれらの生成方法が使用者により選択可能である点が第1および第5の実施の形態に係る検査装置300とは異なる。
本実施の形態においては、例えば測定対象物Sの検査時に、図1の表示部320に検査用テクスチャ画像データの生成方法として単純生成方法およびトーナメント生成方法を使用者に選択させるための操作画面が表示される。
図39は、単純生成方法およびトーナメント生成方法を使用者に選択させるための操作画面の一例を示す図である。図39の操作画面では、検査用テクスチャ画像データの生成方法として単純生成方法およびトーナメント生成方法にそれぞれ対応する2つのチェックボックスCBが表示されている。
この場合、使用者は、図1の操作部310を操作することにより、所望の生成方法に対応するチェックボックスCBをチェックすることができる。使用者が2つのチェックボックスCBのうちいずれか一方をチェックすることにより、コントローラ部200はチェックされた生成方法の選択を受け付ける。また、コントローラ部200のヘッド制御部210は、受け付けた方法で検査用テクスチャ画像データを生成するようにヘッド部100に指令する。それにより、演算処理部132は、受け付けられた選択に従って検査用テクスチャ画像データを生成する。
このような構成により、使用者は、測定対象物Sの表面状態および形状等に応じて第1および第2の生成方法のうち所望の方法を選択することにより、測定対象物Sに応じたより適切な検査用テクスチャ画像データを取得することができる。
なお、図39のいずれのチェックボックスCBもチェックされない場合には、4つの照明部110から一様光が同時に出射された状態で測定対象物Sが撮像されることにより得られるテクスチャ画像が検査用テクスチャ画像とされてもよい。
また、本実施の形態では、単純生成方法およびトーナメント生成方法の選択は、使用者による手動操作に基づいて行われるが、その選択は予め定められた条件に従って自動的に行われてもよい。
[7]第7の実施の形態
(1)検査装置の構成および動作
第7の実施の形態に係る検査装置300は、ヘッド部100において測定対象物Sの高さデータに代えて測定対象物Sの表面形状を示す形状データ(形状画像)が生成される点が第1の実施の形態に係る検査装置300とは異なる。
そのため、本実施の形態では、検査処理が開始されると図10の高さ生成処理に代えて形状生成処理が行われる。形状生成処理後には、第1の実施の形態と同様に、テクスチャ生成処理および判定処理が行われる。なお、第7の実施の形態において行われるテクスチャ生成処理は、第1の実施の形態と同様に単純生成方法に従うものであってもよいし、第5の実施の形態と同様にトーナメント生成方法に従うものであってもよい。
ここで、形状データは、測定対象物Sの表面における複数の部分の凹凸および傾きの状態を測定対象物Sの表面画像として示す画像データであり、フォトメトリックステレオ法により生成される。
フォトメトリックステレオ法による形状データを生成する際には、4つの照明部110A~110Dから白色の一様光が測定対象物Sに順次照射され、各照射時に測定対象物Sが撮像される。それにより、照明部110A~110Dにそれぞれ対応する4つのテクスチャ画像データが得られる。
これらの4つのテクスチャ画像データによれば、各画素について互いに対応する画素値に基づいて当該画素に対応する反射率および法線ベクトルを求めることができる。そこで、各画素について、法線ベクトルが求められた上で、例えば各画素についてX方向の傾きを示す傾き画像と各画素についてY方向の傾きを示す傾き画像とが生成される。これらの傾き画像から各画素についての高さ成分が抽出されることにより測定対象物Sの形状データが生成される。
図40は、形状生成処理のアルゴリズムの一例を示すフローチャートである。図40に示すように、形状生成処理が開始されると、撮像処理部131は、第1の実施の形態に係るテクスチャ生成処理のステップS31~S36(図12)と同様のステップS61~S66の処理を行う。
ステップS65で、所定数(本例では4つ)のテクスチャ画像データが生成された場合、演算処理部132は、生成された所定数のテクスチャ画像データに基づいて形状データを生成する(ステップS67)。
その後、出力処理部134は、ステップS67で生成された形状データをコントローラ部200に出力する(ステップS68)。これにより、コントローラ部200の画像メモリ220に形状データが蓄積され、形状生成処理が終了する。
上記のように、本実施の形態では、検査用高さデータに代えて形状データが生成される。そのため、判定処理では、形状データおよび検査用テクスチャ画像データのうち少なくとも一方に基づいて測定対象物Sの良否が判定される。
(2)効果
本実施の形態に係る検査装置300においては、複数の照明部110A~110Dにそれぞれ対応する複数のテクスチャ画像データに基づいて形状データが生成される。また、複数のテクスチャ画像データに基づいてハレーションまたは照明の死角部分の影響が低減された検査用テクスチャ画像データが生成される。
この構成によれば、形状データ生成用の照明部110と共通の照明部110を用いて検査用テクスチャ画像データが生成される。検査用テクスチャ画像データにおいては、ハレーションまたは照明の死角部分の影響が低減される。そのため、測定対象物Sの検査に適したテクスチャ画像データを生成するために形状データ生成用の照明部110とは別個の照明部を追加する必要がない。これにより、コストの増加を抑制しつつ簡単な構成で測定対象物Sの検査を行うことが可能になる。また、検査用高さデータを用いることにより、測定対象物Sの広範囲に渡る部分を容易に検査することができる。
(3)第7の実施の形態における変形例
本実施の形態に係る検査装置300は、第6の実施の形態に係る検査装置300と同様に、単純生成方法およびトーナメント生成方法による検査用テクスチャ画像データの生成が可能でかつそれらの生成方法が使用者により選択可能に構成されてもよい。
[8]他の実施の形態
(1)上記実施の形態において、ヘッド部100は4個の照明部110A~110Dを含むが、本発明はこれに限定されない。ヘッド部100は2個の照明部110A,110Bを含んでもよいし、3個の照明部110を含んでもよいし、5個以上の任意の数の照明部110を含んでもよい。
(2)上記実施の形態において、一様光が測定対象物Sに照射されたときの測定対象物Sが撮像されることによりテクスチャ画像データが生成されるが、本発明はこれに限定されない。複数のパターン画像データが合成されることにより、一様光が測定対象物Sに照射されたときと同様の測定対象物Sの画像を示すテクスチャ画像データが生成されてもよい。
例えば、第1の実施の形態においては、図11の高さ生成処理のステップS12~S16で、空間位相が変化されつつ縞状光が測定対象物Sに複数回照射される。したがって、測定対象物Sの各部に縞状光の明部分が1回ずつ照射される。そこで、複数のパターン画像データを平均または合計することにより、テクスチャ画像データを生成することができる。この方法においては、測定対象物Sへの一様光の照射および撮像を行う必要がない。そのため、図12のテクスチャ生成処理におけるステップS31~S36が実行されない。したがって、複数のテクスチャ画像データを高速に生成することができる。
第2の実施の形態においても、赤色、緑色または青色の縞状光を用いて同様の処理を行うことが可能である。この場合、赤色、緑色および青色の縞状光にそれぞれ対応する3個のパターン画像データが合成されることにより、白色の縞状光に対応するパターン画像データが生成される。このようにして生成された複数のパターン画像データに基づいて高さデータが生成される。
また、赤色の縞状光に対応する複数のパターン画像データが合成されることによりRデータが生成される。緑色の縞状光に対応する複数のパターン画像データが合成されることによりGデータが生成される。青色の縞状光に対応する複数のパターン画像データが合成されることによりBデータが生成される。そのため、測定対象物Sに赤色、緑色および青色の一様光を照射する必要がない。
(3)上記第1~第4の実施の形態において、各画素における4個の画素値のうち2番目に大きい画素値に基づいて検査用テクスチャ画像データが生成されるが、本発明はこれに限定されない。他の方法により検査用テクスチャ画像データが生成されてもよい。
例えば、各画素における4個の画素値のうち、3番目に大きい画素値に基づいて検査用テクスチャ画像データが生成されてもよいし、2番目に大きい画素値と3番目に大きい画素値との平均値に基づいて検査用テクスチャ画像データが生成されてもよい。あるいは、各画素における全部の画素値の平均値に基づいて検査用テクスチャ画像データが生成されてもよい。これらの方法における平均値は、重み付き平均値を含む。
また、ヘッド部100が5個以上の照明部110を含む場合には、各画素における複数の画素値のうち、例えば4番目に大きい画素値に基づいて検査用テクスチャ画像データが生成されてもよい。
さらに、第1~第6の実施の形態においては、高さデータに加えて、または高さデータに代えて、第7の実施の形態の例と同様に、例えばフォトメトリックステレオ法を用いることにより、検査に適した形状データが生成されてもよい。
(4)上記第1~第6の実施の形態において、複数の高さデータが合成されることにより検査用高さデータが生成されるが、本発明はこれに限定されない。複数の高さデータは、合成されることなく測定対象物Sの検査に用いられてもよい。この場合、図11の高さ生成処理においては、ステップS20で複数の高さデータの合成が行われず、ステップS21で複数の高さデータの各々がコントローラ部200に出力される。
(5)第2の実施の形態において、検査用データ群が合成されることによりカラーの検査用テクスチャ画像データが生成されるが、本発明はこれに限定されない。検査用データ群は、合成されることなく測定対象物Sの検査に用いられてもよい。この場合でも、検査用Rデータ、検査用Gデータおよび検査用Bデータを用いて測定対象物Sをより正確に検査することができる。この処理においては、図17のテクスチャ生成処理で、ステップS37が省略される。また、ステップS38で、検査用データ群が出力される。第3または第4の実施の形態における第1のカラーモードにおいても同様である。
同様に、第3または第4の実施の形態における第2のカラーモードにおいて、Rデータ、GデータおよびBデータが合成されることによりカラーのテクスチャ画像データが生成されるが、本発明はこれに限定されない。Rデータ、GデータおよびBデータは、合成されることなく測定対象物Sの検査に用いられてもよい。この処理においては、図20のテクスチャ生成処理で、ステップS37Dが省略される。また、ステップS38Bで、Rデータ、GデータおよびBデータが出力される。
[9]請求項の各構成要素と実施の形態の各部との対応関係
請求項の各構成要素と実施の形態の各部との対応の例について説明する。上記実施の形態においては、測定対象物Sが測定対象物の例であり、照明部110が照明部の例であり、撮像処理部131が撮像処理部の例であり、撮像部120が撮像部の例である。演算処理部132が演算処理部の例であり、検査部230が検査部の例であり、検査装置300が検査装置の例であり、モード受付部240がモード受付部の例である。
また、互いに対向する照明部110Aおよび照明部110B(または照明部110Cおよび照明部110D)が第1対の照明部の例であり、互いに対向する照明部110Cおよび照明部110D(または照明部110Aおよび照明部110B)が第2対の照明部の例であり、操作部310、表示部320およびヘッド制御部210が生成方法受付部の例である。
[10]参考形態
(1)第1の参考形態に係る検査装置は、互いに異なる複数の方向からそれぞれ光を測定対象物に照射する複数の照明部と、周期的なパターンを有する構造化光を位相シフトさせつつ出射するように複数の照明部を制御するとともに、一様光を測定対象物に照射するように複数の照明部を制御する撮像処理部と、測定対象物により反射された構造化光を順次受光することにより各方向についての測定対象物の画像を示す複数のパターン画像データを順次生成するとともに、測定対象物により反射された一様光を受光することにより複数の方向についての測定対象物の複数の画像をそれぞれ示す複数のテクスチャ画像データを生成する撮像部と、撮像部により生成された複数のパターン画像データに基づいて各方向についての測定対象物の高さ画像を示す高さデータを生成するとともに、撮像部により生成された複数のテクスチャ画像データに基づいてハレーションまたは照明の死角部分の影響が低減された検査用テクスチャ画像データを生成する演算処理部と、演算処理部により生成された高さデータまたは検査用テクスチャ画像データを用いて測定対象物の検査を実行する検査部とを備える。
この検査装置においては、互いに異なる複数の方向から複数の照明部によりそれぞれ光が測定対象物に照射される。複数の照明部は、周期的なパターンを有する構造化光を位相シフトさせつつ出射するように撮像処理部により制御される。測定対象物により反射された構造化光が順次受光されることにより各方向についての測定対象物の画像を示す複数のパターン画像データが撮像部により順次生成される。また、複数の照明部は、一様光を出射するように撮像処理部により制御される。測定対象物により反射された一様光が受光されることにより複数の方向についての測定対象物の複数の画像をそれぞれ示す複数のテクスチャ画像データが撮像部により生成される。
撮像部により生成された複数のパターン画像データに基づいて各方向についての測定対象物の高さ画像を示す高さデータが演算処理部により生成される。また、撮像部により生成された複数のテクスチャ画像データに基づいてハレーションまたは照明の死角部分の影響が低減された検査用テクスチャ画像データが演算処理部により生成される。演算処理部により生成された高さデータまたは検査用テクスチャ画像データを用いて測定対象物の検査が検査部により実行される。
この構成によれば、高さデータ生成用の照明部と共通の照明部を用いて検査用テクスチャ画像データが生成される。検査用テクスチャ画像データにおいては、ハレーションまたは照明の死角部分の影響が低減される。したがって、検査用テクスチャ画像データは、測定対象物の検査に適したテクスチャ画像データとなる。この場合、測定対象物の検査に適したテクスチャ画像データを生成するために高さデータ生成用の照明部とは別個の照明部を追加する必要がない。これにより、コストの増加を抑制しつつ簡単な構成で測定対象物の検査を行うことが可能になる。
(2)第2の参考形態に係る検査装置は、互いに異なる複数の方向からそれぞれ光を測定対象物に照射する複数の照明部と、周期的なパターンを有する構造化光を位相シフトさせつつ出射するように複数の照明部を制御する撮像処理部と、測定対象物により反射された構造化光を順次受光することにより各方向についての測定対象物の画像を示す複数のパターン画像データを順次生成する撮像部と、撮像部により生成された複数のパターン画像データに基づいて各方向についての測定対象物の高さ画像を示す高さデータを生成するとともに、撮像部により生成された各方向についての複数のパターン画像データに基づいて当該方向についてのテクスチャ画像データを生成し、生成された複数の方向についての複数のテクスチャ画像データに基づいてハレーションまたは照明の死角部分の影響が低減された検査用テクスチャ画像データを生成する演算処理部と、演算処理部により生成された高さデータまたは検査用テクスチャ画像データを用いて測定対象物の検査を実行する検査部とを備える。
この検査装置においては、互いに異なる複数の方向から複数の照明部によりそれぞれ光が測定対象物に照射される。複数の照明部は、周期的なパターンを有する構造化光を位相シフトさせつつ出射するように撮像処理部により制御される。測定対象物により反射された構造化光が順次受光されることにより各方向についての測定対象物の画像を示す複数のパターン画像データが撮像部により順次生成される。また、撮像部により生成された各方向についての複数のパターン画像データに基づいて当該方向についてのテクスチャ画像データが生成され、生成された複数の方向についての複数のテクスチャ画像データが演算処理部により生成される。
撮像部により生成された複数のパターン画像データに基づいて各方向についての測定対象物の高さ画像を示す高さデータが演算処理部により生成される。また、生成された複数のテクスチャ画像データに基づいてハレーションまたは照明の死角部分の影響が低減された検査用テクスチャ画像データが演算処理部により生成される。演算処理部により生成された高さデータまたは検査用テクスチャ画像データを用いて測定対象物の検査が検査部により実行される。
この構成によれば、高さデータ生成用の照明部と共通の照明部を用いて検査用テクスチャ画像データが生成される。検査用テクスチャ画像データにおいては、ハレーションまたは照明の死角部分の影響が低減される。したがって、検査用テクスチャ画像データは、測定対象物の検査に適したテクスチャ画像データとなる。この場合、測定対象物の検査に適したテクスチャ画像データを生成するために高さデータ生成用の照明部とは別個の照明部を追加する必要がない。これにより、コストの増加を抑制しつつ簡単な構成で測定対象物の検査を行うことが可能になる。
(3)演算処理部は、複数の方向についての複数のテクスチャ画像データにおける互いに対応する各画素について、少なくとも最大の画素値または少なくとも最小の画素値を除いて予め定められた第1の規則に従って画素値を選択し、選択された画素値を検査用テクスチャ画像データにおいて対応する画素の画素値とすることにより検査用テクスチャ画像データを生成してもよい。この場合、ハレーションまたは照明の死角部分の影響が低減された検査用テクスチャ画像データを容易に生成することができる。
(4)複数の照明部は、第1の方向において互いに対向するように配置される第1対の照明部と、第1の方向に交差する第2の方向において互いに対向するように配置される第2対の照明部とを含み、演算処理部は、検査用テクスチャ画像データの生成時に、第1対の照明部に対応する2つのテクスチャ画像データにおける互いに対応する各画素について2つの画素値のうち大きい画素値を第1画素値として選択し、第2対の照明部に対応する2つのテクスチャ画像データにおける互いに対応する各画素について2つの画素値のうち大きい画素値を第2画素値として選択し、各画素について互いに対応する第1画素値および第2画素値のうち小さい画素値を検査用テクスチャ画像データの画素値として決定してもよい。
この場合、検査用テクスチャ画像データの生成時には、第1画素値および第2画素値の選択時に、対向配置された各対の照明部に対応する2つのテクスチャ画像データから照明の死角部分に起因する成分の少なくとも一部が除去される。また、第1画素値および第2画素値に基づく検査用テクスチャ画像データの各画素値の決定時に、ハレーションに起因する成分の少なくとも一部が除去される。その結果、ハレーションおよび照明の死角部分の影響が低減された検査用テクスチャ画像データを容易に生成することができる。
(5)検査装置は、当該検査装置の動作モードとして第1または第2の動作モードの指示を受け付けるモード受付部をさらに備え、第1の動作モード時に、撮像部は、複数の方向についての複数のテクスチャ画像データを生成し、演算処理部は、撮像部により生成された複数のテクスチャ画像データに基づいて検査用テクスチャ画像データを生成し、検査部は、演算処理部により生成された検査用テクスチャ画像データを用いて測定対象物の検査を実行し、第2の動作モード時に、撮像部は、少なくとも1つのテクスチャ画像データを生成し、検査部は、撮像部により生成された少なくとも1つのテクスチャ画像データを用いて測定対象物の検査を実行してもよい。
この構成によれば、ハレーションまたは照明の死角部分の影響が低減されたテクスチャ画像データを生成することが不要な場合に、第2の動作モードが指示されることにより、検査に用いるための少なくとも1つのテクスチャ画像データが生成される。これにより、測定対象物の検査をより短時間で終了することができる。
(6)複数の照明部の各々は、互いに異なる複数の波長の光を測定対象物に照射するように構成され、撮像処理部は、複数の波長の一様光を順次出射するように複数の照明部を制御し、撮像部は、各方向についてのテクスチャ画像データを各照明部により出射される一様光の波長に対応して生成し、演算処理部は、各波長に対応する複数のテクスチャ画像データに基づいて、当該波長に対応する検査用テクスチャ画像データを生成してもよい。この場合、複数の波長にそれぞれ対応する複数の検査用テクスチャ画像データを用いて測定対象物をより正確に検査することができる。
(7)演算処理部は、複数の方向についての複数のテクスチャ画像データにおける互いに対応する各画素について、少なくとも最大の画素値または少なくとも最小の画素値を除いて予め定められた第1の規則に従って画素値を選択し、選択された画素値を検査用テクスチャ画像データにおいて対応する画素の画素値とすることにより検査用テクスチャ画像データを生成してもよい。この場合、ハレーションまたは照明の死角部分の影響が低減された検査用テクスチャ画像データを容易に生成することができる。
(8)複数の照明部は、第1の方向において互いに対向するように配置される第1対の照明部と、第1の方向に交差する第2の方向において互いに対向するように配置される第2対の照明部とを含み、演算処理部は、検査用テクスチャ画像データの生成時に、第1対の照明部に対応する2つのテクスチャ画像データにおける互いに対応する各画素について2つの画素値のうち大きい画素値を第1画素値として選択し、第2対の照明部に対応する2つのテクスチャ画像データにおける互いに対応する各画素について2つの画素値のうち大きい画素値を第2画素値として選択し、各画素について互いに対応する第1画素値および第2画素値のうち小さい画素値を検査用テクスチャ画像データの画素値として決定してもよい。
この場合、検査用テクスチャ画像データの生成時には、第1画素値および第2画素値の選択時に、対向配置された各対の照明部に対応する2つのテクスチャ画像データから照明の死角部分に起因する成分の少なくとも一部が除去される。また、第1画素値および第2画素値に基づく検査用テクスチャ画像データの各画素値の決定時に、ハレーションに起因する成分の少なくとも一部が除去される。その結果、ハレーションおよび照明の死角部分の影響が低減された検査用テクスチャ画像データを容易に生成することができる。
(9)検査装置は、当該検査装置の動作モードとして第1または第2の動作モードの指示を受け付けるモード受付部をさらに備え、第1の動作モード時に、演算処理部は、複数の方向についての複数のテクスチャ画像データを生成し、生成された複数のテクスチャ画像データに基づいて検査用テクスチャ画像データを生成し、検査部は、演算処理部により生成された検査用テクスチャ画像データを用いて測定対象物の検査を実行し、第2の動作モード時に、演算処理部は、少なくとも1つのテクスチャ画像データを生成し、検査部は、演算処理部により生成された少なくとも1つのテクスチャ画像データを用いて測定対象物の検査を実行してもよい。
この構成によれば、ハレーションまたは照明の死角部分の影響が低減されたテクスチャ画像データを生成することが不要な場合に、第2の動作モードが指示されることにより、検査に用いるための少なくとも1つのテクスチャ画像データが生成される。これにより、測定対象物の検査をより短時間で終了することができる。
(10)複数の照明部の各々は、互いに異なる複数の波長の光を測定対象物に照射するように構成され、撮像処理部は、複数の波長の構造化光を順次出射するように複数の照明部を制御し、演算処理部は、各方向についてのテクスチャ画像データを各照明部により出射される構造化光の波長に対応して生成し、生成された各波長に対応する複数のテクスチャ画像データに基づいて、当該波長に対応する検査用テクスチャ画像データを生成してもよい。この場合、複数の波長にそれぞれ対応する複数の検査用テクスチャ画像データを用いて測定対象物をより正確に検査することができる。
(11)演算処理部は、複数の波長にそれぞれ対応する複数の検査用テクスチャ画像データを合成することによりカラーの検査用テクスチャ画像データを生成してもよい。この場合、カラーの検査用テクスチャ画像データを用いて測定対象物をより正確にかつ効率よく検査することができる。
(12)演算処理部は、各方向についての複数のテクスチャ画像データにおいて、互いに対応する画素の代表となる画素値を画素ごとに代表画素値として特定し、複数の方向についてそれぞれ特定された複数の代表画素値のうち予め定められた第2の規則に従って1つの代表画素値を画素ごとに抽出し、抽出された代表画素値に対応する1つの方向を画素ごとに特定し、複数の検査用テクスチャ画像データにおいて互いに対応する画素の画素値が、特定された方向についてのテクスチャ画像データにおいて対応する画素の画素値となるように複数の検査用テクスチャ画像データを生成してもよい。
この場合、同一方向についての複数のテクスチャ画像データにおいて対応する画素の画素値を用いて、カラーの検査用テクスチャ画像データの画素が生成される。これにより、カラーの検査用テクスチャ画像データにおける各画素に偽の色を発生させることなく、各画素の色を正確に再現することができる。
(13)演算処理部は、カラーの検査用テクスチャ画像データをベイヤ配列を有する検査用ベイヤデータに変換し、検査部は、演算処理部により変換された検査用ベイヤデータを取得し、取得された検査用ベイヤデータを用いて測定対象物の検査を実行してもよい。この場合、カラーの検査用テクスチャ画像データのデータ量が低減される。これにより、演算処理部から検査部へのテクスチャ画像データの出力が短時間で行われる。その結果、測定対象物の検査をより短時間で終了することができる。
(14)複数の照明部は、第1の方向において互いに対向するように配置される第1対の照明部と、第1の方向に交差する第2の方向において互いに対向するように配置される第2対の照明部とを含み、演算処理部は、第1および第2の生成方法のうち選択された生成方法により検査用テクスチャ画像データを生成可能に構成され、第1の生成方法による検査用テクスチャ画像データの生成時に、複数の方向についての複数のテクスチャ画像データにおける互いに対応する各画素について、少なくとも最大の画素値または少なくとも最小の画素値を除いて予め定められた第1の規則に従って画素値を選択し、選択された画素値を検査用テクスチャ画像データにおいて対応する画素の画素値として決定し、第2の生成方法による検査用テクスチャ画像データの生成時に、第1対の照明部に対応する2つのテクスチャ画像データにおける互いに対応する各画素について2つの画素値のうち大きい画素値を第1画素値として選択し、第2対の照明部に対応する2つのテクスチャ画像データにおける互いに対応する各画素について2つの画素値のうち大きい画素値を第2画素値として選択し、各画素について互いに対応する第1画素値および第2画素値のうち小さい画素値を検査用テクスチャ画像データの画素値として決定してもよい。
この場合、測定対象物の表面状態および形状等に応じて第1および第2の生成方法が選択されることにより、測定対象物に応じたより適切な検査用テクスチャ画像データを取得することができる。
(15)検査装置は、使用者による第1および第2の生成方法のうちいずれかの選択を受け付ける生成方法受付部をさらに備え、演算処理部は、生成方法受付部により受け付けられた選択に従って、検査用テクスチャ画像データを生成してもよい。この場合、使用者は所望の方法で生成された検査用テクスチャ画像データを容易に取得することができる。
(16)演算処理部は、複数の方向についての複数の高さデータを合成することにより測定不可能な部分が低減された検査用高さデータを生成し、検査部は、演算処理部により生成された検査用高さデータを用いて測定対象物の検査を実行してもよい。この場合、検査用高さデータを用いて測定対象物の広範囲に渡る部分を容易に検査することができる。
(17)第3の参考形態に係る検査装置は、互いに異なる4以上の方向においてそれぞれ一様光を測定対象物に照射する4以上の照明部と、一様光が測定対象物に順次照射されるように4以上の照明部を制御する撮像処理部と、4以上の照明部から測定対象物に照射されて測定対象物により反射された4以上の一様光を順次受光することにより、4以上の方向についての測定対象物の4以上の画像をそれぞれ示す4以上のテクスチャ画像データを生成する撮像部と、撮像部により生成された4以上のテクスチャ画像データに基づいてフォトメトリックステレオ法により測定対象物の形状を示す形状データを生成するとともに、4以上のテクスチャ画像データを合成することによりハレーションまたは照明の死角部分の影響が低減された検査用テクスチャ画像データを生成する演算処理部と、演算処理部により生成された形状データおよび検査用テクスチャ画像データのうち少なくとも一方を用いて測定対象物の検査を実行可能な検査部とを備え、4以上の照明部は、第1の方向において互いに対向するように配置される第1対の照明部と、第1の方向に交差する第2の方向において互いに対向するように配置される第2対の照明部とを含み、演算処理部は、第1対の照明部に対応する2つのテクスチャ画像データにおける互いに対応する各画素について2つの画素値のうち大きい画素値を第1画素値として選択し、第2対の照明部に対応する2つのテクスチャ画像データにおける互いに対応する各画素について2つの画素値のうち大きい画素値を第2画素値として選択し、各画素について互いに対応する第1画素値および第2画素値のうち小さい画素値を検査用テクスチャ画像データの画素値として決定する。
この検査装置においては、互いに異なる4以上の方向から4以上の照明部によりそれぞれ光が測定対象物に照射される。4以上の照明部は、一様光を順次出射するように撮像処理部により制御される。測定対象物により反射された一様光が受光されることにより4以上の方向についての測定対象物の4以上の画像をそれぞれ示す4以上のテクスチャ画像データが撮像部により生成される。
撮像部により生成された4以上のパターン画像データに基づいて測定対象物の形状を示す形状データが演算処理部により生成される。また、撮像部により生成された4以上のテクスチャ画像データに基づいてハレーションまたは照明の死角部分の影響が低減された検査用テクスチャ画像データが演算処理部により生成される。演算処理部により生成された形状データおよび検査用テクスチャ画像データのうち少なくとも一方を用いて測定対象物の検査が検査部により実行される。
上記の構成によれば、形状データ生成用の照明部と共通の照明部を用いて検査用テクスチャ画像データが生成される。検査用テクスチャ画像データにおいては、ハレーションまたは照明の死角部分の影響が低減される。したがって、検査用テクスチャ画像データは、測定対象物の検査に適したテクスチャ画像データとなる。この場合、測定対象物の検査に適したテクスチャ画像データを生成するために形状データ生成用の照明部とは別個の照明部を追加する必要がない。これにより、コストの増加を抑制しつつ簡単な構成で測定対象物の検査を行うことが可能になる。
また、上記の構成によれば、検査用テクスチャ画像データの生成時には、第1画素値および第2画素値の選択時に、対向配置された各対の照明部に対応する2つのテクスチャ画像データから照明の死角部分に起因する成分の少なくとも一部が除去される。さらに、第1画素値および第2画素値に基づく検査用テクスチャ画像データの各画素値の決定時に、ハレーションに起因する成分の少なくとも一部が除去される。その結果、ハレーションおよび照明の死角部分の影響が低減された検査用テクスチャ画像データを容易に生成することができる。
100…ヘッド部,110,110A~110D…照明部,光源111~113,114,115…ダイクロイックミラー,116…照明レンズ,117…ミラー,118…パターン生成部,119…投光レンズ,120…撮像部,121…撮像素子,122,123…受光レンズ,130…演算部,131…撮像処理部,132…演算処理部,133…記憶部,134…出力処理部,200…コントローラ部,210…ヘッド制御部,220…画像メモリ,230…検査部,240…モード受付部,300…検査装置,301…ベルトコンベア,310…操作部,320…表示部,400…外部機器,CB…チェックボックス,H…検査用高さデータ,h1~h4,s1~s4…部分,p1~p4…画素,R…基準面,S…測定対象物,S1…基部,S2,S3…突出部,S4…底板部,S5a…第1側壁,S5b…第2側壁,S5c…第3側壁,S5d…第4側壁,T,T1~T4…テクスチャ画像データ,T0…検査用テクスチャ画像データ,US…上面

Claims (15)

  1. 互いに異なる複数の方向からそれぞれ光を測定対象物に照射する複数の照明部と、
    周期的なパターンを有する構造化光を位相シフトさせつつ出射するように前記複数の照明部を制御するとともに、一様光を測定対象物に照射するように前記複数の照明部を制御する撮像処理部と、
    測定対象物により反射された構造化光を順次受光することにより各方向についての測定対象物の画像を示す複数のパターン画像データを順次生成するとともに、測定対象物により反射された一様光を受光することにより前記複数の方向についての測定対象物の複数の画像をそれぞれ示す複数のテクスチャ画像データを生成する撮像部と、
    前記撮像部により生成された複数のパターン画像データに基づいて各方向についての測定対象物の高さ画像を示す高さデータを生成するとともに、前記撮像部により生成された複数のテクスチャ画像データに基づいてハレーションまたは照明の死角部分の影響が低減された検査用テクスチャ画像データを生成する演算処理部と、
    前記演算処理部により生成された高さデータまたは検査用テクスチャ画像データを用いて測定対象物の検査を実行する検査部とを備え、
    前記複数の照明部の各々は、互いに異なる複数の波長の光を測定対象物に照射するように構成され、
    前記撮像処理部は、前記複数の波長の一様光を順次出射するように前記複数の照明部を制御し、
    前記撮像部は、各方向についてのテクスチャ画像データを各照明部により出射される一様光の波長に対応して生成し、
    前記演算処理部は、各波長に対応する複数のテクスチャ画像データに基づいて、当該波長に対応する検査用テクスチャ画像データを生成する、検査装置。
  2. 互いに異なる複数の方向からそれぞれ光を測定対象物に照射する複数の照明部と、
    周期的なパターンを有する構造化光を位相シフトさせつつ出射するように前記複数の照明部を制御する撮像処理部と、
    測定対象物により反射された構造化光を順次受光することにより各方向についての測定対象物の画像を示す複数のパターン画像データを順次生成する撮像部と、
    前記撮像部により生成された複数のパターン画像データに基づいて各方向についての測定対象物の高さ画像を示す高さデータを生成するとともに、前記撮像部により生成された各方向についての複数のパターン画像データに基づいて当該方向についてのテクスチャ画像データを生成し、生成された複数の方向についての複数のテクスチャ画像データに基づいてハレーションまたは照明の死角部分の影響が低減された検査用テクスチャ画像データを生成する演算処理部と、
    前記演算処理部により生成された高さデータまたは検査用テクスチャ画像データを用いて測定対象物の検査を実行する検査部とを備え、
    前記複数の照明部の各々は、互いに異なる複数の波長の光を測定対象物に照射するように構成され、
    前記撮像処理部は、前記複数の波長の構造化光を順次出射するように前記複数の照明部を制御し、
    前記演算処理部は、各方向についてのテクスチャ画像データを各照明部により出射される構造化光の波長に対応して生成し、生成された各波長に対応する複数のテクスチャ画像データに基づいて、当該波長に対応する検査用テクスチャ画像データを生成する、検査装置。
  3. 前記演算処理部は、前記複数の波長にそれぞれ対応する複数の検査用テクスチャ画像データを合成することによりカラーの検査用テクスチャ画像データを生成する、請求項または記載の検査装置。
  4. 前記演算処理部は、
    各方向についての複数のテクスチャ画像データにおいて、互いに対応する画素の画素値の平均値、合計値、または最大値のいずれかを画素ごとに代表画素値として特定し、
    前記複数の方向についてそれぞれ特定された複数の代表画素値のうち予め定められた第2の規則に従って1つの代表画素値を画素ごとに抽出し、
    抽出された代表画素値に対応する1つの方向を画素ごとに特定し、
    複数の検査用テクスチャ画像データにおいて互いに対応する画素の画素値が、特定された方向についてのテクスチャ画像データにおいて対応する画素の画素値となるように複数の検査用テクスチャ画像データを生成する、請求項記載の検査装置。
  5. 前記演算処理部は、カラーの検査用テクスチャ画像データをベイヤ配列を有する検査用ベイヤデータに変換し、
    前記検査部は、前記演算処理部により変換された検査用ベイヤデータを取得し、取得された検査用ベイヤデータを用いて測定対象物の検査を実行する、請求項または記載の検査装置。
  6. 互いに異なる複数の方向からそれぞれ光を測定対象物に照射する複数の照明部と、
    周期的なパターンを有する構造化光を位相シフトさせつつ出射するように前記複数の照明部を制御するとともに、一様光を測定対象物に照射するように前記複数の照明部を制御する撮像処理部と、
    測定対象物により反射された構造化光を順次受光することにより各方向についての測定対象物の画像を示す複数のパターン画像データを順次生成するとともに、測定対象物により反射された一様光を受光することにより前記複数の方向についての測定対象物の複数の画像をそれぞれ示す複数のテクスチャ画像データを生成する撮像部と、
    前記撮像部により生成された複数のパターン画像データに基づいて各方向についての測定対象物の高さ画像を示す高さデータを生成するとともに、前記撮像部により生成された複数のテクスチャ画像データに基づいてハレーションまたは照明の死角部分の影響が低減された検査用テクスチャ画像データを生成する演算処理部と、
    前記演算処理部により生成された高さデータまたは検査用テクスチャ画像データを用いて測定対象物の検査を実行する検査部とを備え、
    前記複数の照明部は、
    第1の方向において互いに対向するように配置される第1対の照明部と、
    前記第1の方向に交差する第2の方向において互いに対向するように配置される第2対の照明部とを含み、
    前記演算処理部は、検査用テクスチャ画像データの生成時に、前記第1対の照明部に対応する2つのテクスチャ画像データにおける互いに対応する各画素について2つの画素値のうち大きい画素値を第1画素値として選択し、前記第2対の照明部に対応する2つのテクスチャ画像データにおける互いに対応する各画素について2つの画素値のうち大きい画素値を第2画素値として選択し、各画素について互いに対応する第1画素値および第2画素値のうち小さい画素値を前記検査用テクスチャ画像データの画素値として決定する、検査装置。
  7. 前記検査装置の動作モードとして第1または第2の動作モードの指示を受け付けるモード受付部をさらに備え、
    前記第1の動作モード時に、
    前記撮像部は、前記複数の方向についての複数のテクスチャ画像データを生成し、
    前記演算処理部は、前記撮像部により生成された複数のテクスチャ画像データに基づいて検査用テクスチャ画像データを生成し、
    前記検査部は、前記演算処理部により生成された検査用テクスチャ画像データを用いて測定対象物の検査を実行し、
    前記第2の動作モード時に、
    前記撮像部は、少なくとも1つのテクスチャ画像データを生成し、
    前記検査部は、前記撮像部により生成された少なくとも1つのテクスチャ画像データを用いて測定対象物の検査を実行する、請求項記載の検査装置。
  8. 互いに異なる複数の方向からそれぞれ光を測定対象物に照射する複数の照明部と、
    周期的なパターンを有する構造化光を位相シフトさせつつ出射するように前記複数の照明部を制御する撮像処理部と、
    測定対象物により反射された構造化光を順次受光することにより各方向についての測定対象物の画像を示す複数のパターン画像データを順次生成する撮像部と、
    前記撮像部により生成された複数のパターン画像データに基づいて各方向についての測定対象物の高さ画像を示す高さデータを生成するとともに、前記撮像部により生成された各方向についての複数のパターン画像データに基づいて当該方向についてのテクスチャ画像データを生成し、生成された複数の方向についての複数のテクスチャ画像データに基づいてハレーションまたは照明の死角部分の影響が低減された検査用テクスチャ画像データを生成する演算処理部と、
    前記演算処理部により生成された高さデータまたは検査用テクスチャ画像データを用いて測定対象物の検査を実行する検査部とを備え、
    前記複数の照明部は、
    第1の方向において互いに対向するように配置される第1対の照明部と、
    前記第1の方向に交差する第2の方向において互いに対向するように配置される第2対の照明部とを含み、
    前記演算処理部は、検査用テクスチャ画像データの生成時に、前記第1対の照明部に対応する2つのテクスチャ画像データにおける互いに対応する各画素について2つの画素値のうち大きい画素値を第1画素値として選択し、前記第2対の照明部に対応する2つのテクスチャ画像データにおける互いに対応する各画素について2つの画素値のうち大きい画素値を第2画素値として選択し、各画素について互いに対応する第1画素値および第2画素値のうち小さい画素値を前記検査用テクスチャ画像データの画素値として決定する、検査装置。
  9. 互いに異なる複数の方向からそれぞれ光を一の静止状態にある測定対象物に照射する複数の照明部と、
    周期的なパターンを有する構造化光を位相シフトさせつつ出射するように前記複数の照明部を制御する撮像処理部と、
    測定対象物により反射された構造化光を順次受光することにより各方向についての測定対象物の画像を示す複数のパターン画像データを順次生成する撮像部と、
    前記撮像部により生成された複数のパターン画像データに基づいて各方向についての測定対象物の高さ画像を示す高さデータを生成するとともに、前記撮像部により生成された各方向についての複数のパターン画像データに基づいて当該方向についてのテクスチャ画像データを生成し、生成された複数の方向についての複数のテクスチャ画像データに基づいてハレーションまたは照明の死角部分の影響が低減された検査用テクスチャ画像データと、前記複数の方向についての複数の高さデータを合成することにより、前記照明の死角部分に対応する測定不可能な部分が低減された合成高さデータとを生成する演算処理部と、
    前記演算処理部により生成された合成高さデータまたは検査用テクスチャ画像データを用いて測定対象物の検査を実行する検査部とを備える、検査装置。
  10. 前記演算処理部は、前記複数の方向についての複数のテクスチャ画像データにおける互いに対応する各画素について、少なくとも最大の画素値または少なくとも最小の画素値を除いて予め定められた第1の規則に従って画素値を選択し、選択された画素値を検査用テクスチャ画像データにおいて対応する画素の画素値とすることにより検査用テクスチャ画像データを生成する、請求項記載の検査装置。
  11. 前記検査装置の動作モードとして第1または第2の動作モードの指示を受け付けるモード受付部をさらに備え、
    前記第1の動作モード時に、
    前記演算処理部は、前記複数の方向についての複数のテクスチャ画像データを生成し、生成された複数のテクスチャ画像データに基づいて検査用テクスチャ画像データを生成し、
    前記検査部は、前記演算処理部により生成された検査用テクスチャ画像データを用いて測定対象物の検査を実行し、
    前記第2の動作モード時に、
    前記演算処理部は、少なくとも1つのテクスチャ画像データを生成し、
    前記検査部は、前記演算処理部により生成された少なくとも1つのテクスチャ画像データを用いて測定対象物の検査を実行する、請求項および10のいずれか一項に記載の検査装置。
  12. 互いに異なる複数の方向からそれぞれ光を測定対象物に照射する複数の照明部と、
    周期的なパターンを有する構造化光を位相シフトさせつつ出射するように前記複数の照明部を制御するとともに、一様光を測定対象物に照射するように前記複数の照明部を制御する撮像処理部と、
    測定対象物により反射された構造化光を順次受光することにより各方向についての測定対象物の画像を示す複数のパターン画像データを順次生成するとともに、測定対象物により反射された一様光を受光することにより前記複数の方向についての測定対象物の複数の画像をそれぞれ示す複数のテクスチャ画像データを生成する撮像部と、
    前記撮像部により生成された複数のパターン画像データに基づいて各方向についての測定対象物の高さ画像を示す高さデータを生成するとともに、前記撮像部により生成された複数のテクスチャ画像データに基づいてハレーションまたは照明の死角部分の影響が低減された検査用テクスチャ画像データを生成する演算処理部と、
    前記演算処理部により生成された高さデータまたは検査用テクスチャ画像データを用いて測定対象物の検査を実行する検査部とを備え
    前記複数の照明部は、
    第1の方向において互いに対向するように配置される第1対の照明部と、
    前記第1の方向に交差する第2の方向において互いに対向するように配置される第2対の照明部とを含み、
    前記演算処理部は、
    第1および第2の生成方法のうち選択された生成方法により検査用テクスチャ画像データを生成可能に構成され、
    前記第1の生成方法による検査用テクスチャ画像データの生成時に、前記複数の方向についての複数のテクスチャ画像データにおける互いに対応する各画素について、少なくとも最大の画素値または少なくとも最小の画素値を除いて予め定められた第1の規則に従って画素値を選択し、選択された画素値を検査用テクスチャ画像データにおいて対応する画素の画素値として決定し、
    前記第2の生成方法による検査用テクスチャ画像データの生成時に、前記第1対の照明部に対応する2つのテクスチャ画像データにおける互いに対応する各画素について2つの画素値のうち大きい画素値を第1画素値として選択し、前記第2対の照明部に対応する2つのテクスチャ画像データにおける互いに対応する各画素について2つの画素値のうち大きい画素値を第2画素値として選択し、各画素について互いに対応する第1画素値および第2画素値のうち小さい画素値を前記検査用テクスチャ画像データの画素値として決定する、検査装置。
  13. 互いに異なる複数の方向からそれぞれ光を測定対象物に照射する複数の照明部と、
    周期的なパターンを有する構造化光を位相シフトさせつつ出射するように前記複数の照明部を制御する撮像処理部と、
    測定対象物により反射された構造化光を順次受光することにより各方向についての測定対象物の画像を示す複数のパターン画像データを順次生成する撮像部と、
    前記撮像部により生成された複数のパターン画像データに基づいて各方向についての測定対象物の高さ画像を示す高さデータを生成するとともに、前記撮像部により生成された各方向についての複数のパターン画像データに基づいて当該方向についてのテクスチャ画像データを生成し、生成された複数の方向についての複数のテクスチャ画像データに基づいてハレーションまたは照明の死角部分の影響が低減された検査用テクスチャ画像データを生成する演算処理部と、
    前記演算処理部により生成された高さデータまたは検査用テクスチャ画像データを用いて測定対象物の検査を実行する検査部とを備え、
    前記複数の照明部は、
    第1の方向において互いに対向するように配置される第1対の照明部と、
    前記第1の方向に交差する第2の方向において互いに対向するように配置される第2対の照明部とを含み、
    前記演算処理部は、
    第1および第2の生成方法のうち選択された生成方法により検査用テクスチャ画像データを生成可能に構成され、
    前記第1の生成方法による検査用テクスチャ画像データの生成時に、前記複数の方向についての複数のテクスチャ画像データにおける互いに対応する各画素について、少なくとも最大の画素値または少なくとも最小の画素値を除いて予め定められた第1の規則に従って画素値を選択し、選択された画素値を検査用テクスチャ画像データにおいて対応する画素の画素値として決定し、
    前記第2の生成方法による検査用テクスチャ画像データの生成時に、前記第1対の照明部に対応する2つのテクスチャ画像データにおける互いに対応する各画素について2つの画素値のうち大きい画素値を第1画素値として選択し、前記第2対の照明部に対応する2つのテクスチャ画像データにおける互いに対応する各画素について2つの画素値のうち大きい画素値を第2画素値として選択し、各画素について互いに対応する第1画素値および第2画素値のうち小さい画素値を前記検査用テクスチャ画像データの画素値として決定する、検査装置。
  14. 使用者による前記第1および第2の生成方法のうちいずれかの選択を受け付ける生成方法受付部をさらに備え、
    前記演算処理部は、前記生成方法受付部により受け付けられた選択に従って、検査用テクスチャ画像データを生成する、請求項12または13記載の検査装置。
  15. 互いに異なる4以上の方向においてそれぞれ一様光を測定対象物に照射する4以上の照明部と、
    一様光が測定対象物に順次照射されるように前記4以上の照明部を制御する撮像処理部と、
    前記4以上の照明部から測定対象物に照射されて測定対象物により反射された4以上の一様光を順次受光することにより、前記4以上の方向についての測定対象物の4以上の画像をそれぞれ示す4以上のテクスチャ画像データを生成する撮像部と、
    前記撮像部により生成された4以上のテクスチャ画像データに基づいてフォトメトリックステレオ法により測定対象物の形状を示す形状データを生成するとともに、前記4以上のテクスチャ画像データを合成することによりハレーションまたは照明の死角部分の影響が低減された検査用テクスチャ画像データを生成する演算処理部と、
    前記演算処理部により生成された形状データおよび検査用テクスチャ画像データのうち少なくとも一方を用いて測定対象物の検査を実行可能な検査部とを備え、
    前記4以上の照明部は、
    第1の方向において互いに対向するように配置される第1対の照明部と、
    前記第1の方向に交差する第2の方向において互いに対向するように配置される第2対の照明部とを含み、
    前記演算処理部は、前記第1対の照明部に対応する2つのテクスチャ画像データにおける互いに対応する各画素について2つの画素値のうち大きい画素値を第1画素値として選択し、前記第2対の照明部に対応する2つのテクスチャ画像データにおける互いに対応する各画素について2つの画素値のうち大きい画素値を第2画素値として選択し、各画素について互いに対応する第1画素値および第2画素値のうち小さい画素値を前記検査用テクスチャ画像データの画素値として決定する、検査装置。
JP2019120295A 2019-02-08 2019-06-27 検査装置 Active JP7349827B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019021809 2019-02-08
JP2019021809 2019-02-08

Publications (2)

Publication Number Publication Date
JP2020128971A JP2020128971A (ja) 2020-08-27
JP7349827B2 true JP7349827B2 (ja) 2023-09-25

Family

ID=72174473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019120295A Active JP7349827B2 (ja) 2019-02-08 2019-06-27 検査装置

Country Status (1)

Country Link
JP (1) JP7349827B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7406467B2 (ja) 2020-07-30 2023-12-27 ルネサスエレクトロニクス株式会社 半導体装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005003409A (ja) 2003-06-10 2005-01-06 Kokan Keisoku Kk 3次元曲面形状の測定装置及び測定方法
JP2018004277A (ja) 2016-06-27 2018-01-11 株式会社キーエンス 測定装置
JP2018040649A (ja) 2016-09-06 2018-03-15 株式会社キーエンス 画像検査装置、画像検査方法、画像検査プログラム及びコンピュータで読み取り可能な記録媒体並びに記録した機器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005003409A (ja) 2003-06-10 2005-01-06 Kokan Keisoku Kk 3次元曲面形状の測定装置及び測定方法
JP2018004277A (ja) 2016-06-27 2018-01-11 株式会社キーエンス 測定装置
JP2018040649A (ja) 2016-09-06 2018-03-15 株式会社キーエンス 画像検査装置、画像検査方法、画像検査プログラム及びコンピュータで読み取り可能な記録媒体並びに記録した機器

Also Published As

Publication number Publication date
JP2020128971A (ja) 2020-08-27

Similar Documents

Publication Publication Date Title
JP5170154B2 (ja) 形状計測装置およびキャリブレーション方法
JP5648749B2 (ja) 形状計測装置および形状計測方法
US10262431B2 (en) Three-dimensional measurement device
JP6184289B2 (ja) 三次元画像処理装置、三次元画像処理方法、三次元画像処理プログラム及びコンピュータで読み取り可能な記録媒体並びに記録した機器
JP5432864B2 (ja) 検査装置及び検査方法
KR20120088773A (ko) 검사 장치, 3차원 형상 측정 장치, 구조물의 제조 방법
JP6939641B2 (ja) 画像検査装置および画像検査方法
JP6256249B2 (ja) 計測装置、基板検査装置、及びその制御方法
US11493331B2 (en) Three-dimensional shape measuring apparatus, three-dimensional shape measuring method, three-dimensional shape measuring computer-readable storage medium, and three-dimensional shape measuring computer-readable storage device
EP3327402A1 (en) Inspection system and inspection method
JP7176600B2 (ja) 画像検査装置および画像検査方法
JP2017122614A (ja) 画像生成方法及び検査装置
JP7349827B2 (ja) 検査装置
US11170518B2 (en) Inspection device for generating height data of a measurement target
US10909702B2 (en) Inspection device
JP5461841B2 (ja) 被検査体の検査装置
JP5867123B2 (ja) 3次元形状計測装置およびキャリブレーション方法
JP7266416B2 (ja) 検査装置
JP6506784B2 (ja) 検査情報表示装置、検査情報表示方法および検査情報表示プログラム
CN114450579A (zh) 图像处理系统、设定方法和程序
JP7247032B2 (ja) 検査装置
JP7176969B2 (ja) 検査装置
JP7424074B2 (ja) 三次元形状計測装置、三次元形状計測方法及びプログラム
JP7459525B2 (ja) 三次元形状計測装置、三次元形状計測方法及びプログラム
JP2020128933A (ja) 検査装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230912

R150 Certificate of patent or registration of utility model

Ref document number: 7349827

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150