JP7348478B2 - Light emitting device and its manufacturing method - Google Patents

Light emitting device and its manufacturing method Download PDF

Info

Publication number
JP7348478B2
JP7348478B2 JP2019105851A JP2019105851A JP7348478B2 JP 7348478 B2 JP7348478 B2 JP 7348478B2 JP 2019105851 A JP2019105851 A JP 2019105851A JP 2019105851 A JP2019105851 A JP 2019105851A JP 7348478 B2 JP7348478 B2 JP 7348478B2
Authority
JP
Japan
Prior art keywords
light emitting
reflective
emitting element
light
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019105851A
Other languages
Japanese (ja)
Other versions
JP2020013986A (en
Inventor
正人 相原
健司 小関
淳資 小島
千波 中井
和也 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to KR1020190082412A priority Critical patent/KR20200006017A/en
Priority to US16/506,125 priority patent/US11043621B2/en
Priority to CN201910613626.2A priority patent/CN110707202A/en
Priority to TW108124052A priority patent/TW202013769A/en
Publication of JP2020013986A publication Critical patent/JP2020013986A/en
Application granted granted Critical
Publication of JP7348478B2 publication Critical patent/JP7348478B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Description

本発明は、発光装置及びその製造方法に関する。 The present invention relates to a light emitting device and a method for manufacturing the same.

近年、発光ダイオード等の発光素子を含む発光装置が種々の用途に使用されており、より光取り出し効率が高い発光装置が求められている。例えば特許文献1には、半導体発光素子のシリコン基板の側面を覆い、且つ半導体発光素子の上面が露出するように設けられるフィラ含有樹脂を備えることで光取り出し効率を向上させた発光装置が記載されている。 In recent years, light-emitting devices including light-emitting elements such as light-emitting diodes have been used for various purposes, and there is a demand for light-emitting devices with higher light extraction efficiency. For example, Patent Document 1 describes a light-emitting device that improves light extraction efficiency by including a filler-containing resin that covers the side surface of a silicon substrate of a semiconductor light-emitting element and exposes the top surface of the semiconductor light-emitting element. ing.

特開2014-241341号公報JP2014-241341A

本発明は、フィラ含有樹脂(反射粒子含有部材)を備えた発光装置において更に光取り出し効率を向上させることができる発光装置及び発光装置の製造方法を提供することを目的とする。 An object of the present invention is to provide a light-emitting device and a method for manufacturing a light-emitting device that can further improve light extraction efficiency in a light-emitting device equipped with a filler-containing resin (reflective particle-containing member).

本発明の一態様に係る発光装置は、上面を有する基材と、前記上面に配置される第1配線と、を有する基板と、第1光取り出し面と、前記第1光取り出し面の反対側にある第1電極形成面と、前記第1光取り出し面と前記第1電極形成面との間にある第1側面と、前記第1電極形成面に一対の第1電極と、を有し、前記第1電極形成面と前記第1配線とが対向して前記第1配線上に載置される第1発光素子と、前記第1光取り出し面を露出し、前記基材の上面を被覆し、反射粒子を含有する第1反射部材と、前記第1光取り出し面を露出し、前記第1反射部材及び前記第1側面の少なくとも一部を被覆し、前記第1反射部材よりも前記反射粒子の濃度が低い第1被覆部材と、前記第1側面の少なくとも一部を被覆する第2被覆部材と、上面視において前記第2被覆部材を囲み、前記第2被覆部材及び前記第1反射部材と接する第2反射部材と、を備え、前記第2反射部材は、断面視において、前記第1反射部材と接する幅狭部と、前記幅狭部よりも上に配置される幅広部と、を有する。 A light emitting device according to one aspect of the present invention includes a substrate having a base material having an upper surface, a first wiring arranged on the upper surface, a first light extraction surface, and an opposite side of the first light extraction surface. a first electrode forming surface located on the surface, a first side surface located between the first light extraction surface and the first electrode forming surface, and a pair of first electrodes on the first electrode forming surface; a first light emitting element placed on the first wiring such that the first electrode forming surface and the first wiring face each other, and the first light extraction surface is exposed and the upper surface of the base material is covered; , a first reflective member containing reflective particles; the first light extraction surface is exposed, and at least a portion of the first reflective member and the first side surface are covered; a first covering member having a low concentration of the second covering member, a second covering member covering at least a portion of the first side surface, and a second covering member surrounding the second covering member in a top view, the second covering member and the first reflecting member; a second reflective member in contact with the first reflective member, the second reflective member having a narrow portion in contact with the first reflective member and a wide portion disposed above the narrow width portion in cross-sectional view. .

また、本発明の一態様に係る発光装置の製造方法は、上面を有する基材と、前記上面に配置される第1配線と、を備える基板を準備する工程と、前記第1光取り出し面と、前記第1光取り出し面の反対側にある第1電極形成面と、前記第1光取り出し面と前記第1電極形成面との間にある第1側面と、前記第1電極形成面に一対の第1電極と、を有する第1発光素子を準備する工程と、前記第1電極形成面と前記第1配線とを対向させて、前記第1配線上に第1発光素子を載置する工程と、上面視において、前記第1発光素子と重なる前記基材の上面の少なくとも一部が露出するように前記反射粒子含有部材を前記基材の上面に配置する工程と、前記第1発光素子と重なる前記基材の上面に前記反射粒子含有部材を遠心力により広げる工程と、を含む。 Further, a method for manufacturing a light emitting device according to one aspect of the present invention includes the steps of preparing a substrate including a base material having an upper surface and a first wiring disposed on the upper surface; , a first electrode forming surface on the opposite side of the first light extraction surface, a first side surface between the first light extraction surface and the first electrode forming surface, and a pair on the first electrode forming surface. a step of preparing a first light emitting element having a first electrode; and a step of placing the first light emitting element on the first wiring with the first electrode forming surface and the first wiring facing each other. and arranging the reflective particle-containing member on the upper surface of the base material so that at least a part of the upper surface of the base material that overlaps with the first light emitting element is exposed when viewed from above; The method includes the step of spreading the reflective particle-containing member on the overlapping upper surface of the base material by centrifugal force.

本発明に係る実施形態の発光装置によれば、光取り出し効率を向上させた発光装置を提供することができる。 According to the light emitting device of the embodiment of the present invention, it is possible to provide a light emitting device with improved light extraction efficiency.

図1Aは、実施形態1に係る発光装置の概略斜視図である。FIG. 1A is a schematic perspective view of a light emitting device according to Embodiment 1. 図1Bは、実施形態1に係る発光装置の概略斜視図である。FIG. 1B is a schematic perspective view of a light emitting device according to Embodiment 1. 図2Aは、実施形態1に係る発光装置の概略上面図である。FIG. 2A is a schematic top view of the light emitting device according to Embodiment 1. 図2Bは、図2AのIIB-IIB線における概略断面図である。FIG. 2B is a schematic cross-sectional view taken along line IIB-IIB in FIG. 2A. 図2Cは、図2AのIIC-IIC線における概略端面図である。FIG. 2C is a schematic end view taken along line IIC-IIC in FIG. 2A. 図3は、実施形態1に係る発光装置の変形例の概略断面図である。FIG. 3 is a schematic cross-sectional view of a modification of the light emitting device according to the first embodiment. 図4は、実施形態1に係る発光装置の変形例の概略断面図である。FIG. 4 is a schematic cross-sectional view of a modification of the light emitting device according to the first embodiment. 図5は、実施形態1に係る発光装置の変形例の概略断面図である。FIG. 5 is a schematic cross-sectional view of a modification of the light emitting device according to the first embodiment. 図6は、実施形態1に係る基板の概略上面図である。FIG. 6 is a schematic top view of the substrate according to the first embodiment. 図7は、実施形態1に係る発光装置の概略背面図である。FIG. 7 is a schematic rear view of the light emitting device according to the first embodiment. 図8は、実施形態1に係る発光装置の概略正面図である。FIG. 8 is a schematic front view of the light emitting device according to the first embodiment. 図9は、実施形態1に係る発光装置の概略側面図である。FIG. 9 is a schematic side view of the light emitting device according to the first embodiment. 図10は、実施形態2に係る発光装置の概略断面図である。FIG. 10 is a schematic cross-sectional view of a light emitting device according to Embodiment 2. 図11は、実施形態1に係る発光装置の製造方法を説明するための概略断面図である。FIG. 11 is a schematic cross-sectional view for explaining the method for manufacturing the light emitting device according to the first embodiment. 図12は、実施形態1に係る発光装置の製造方法を説明するための概略断面図である。FIG. 12 is a schematic cross-sectional view for explaining the method for manufacturing the light emitting device according to the first embodiment. 図13は、実施形態1に係る発光装置の製造方法を説明するための概略模式図である。FIG. 13 is a schematic diagram for explaining the method for manufacturing the light emitting device according to the first embodiment. 図14は、実施形態1に係る発光装置の製造方法を説明するための概略断面図である。FIG. 14 is a schematic cross-sectional view for explaining the method for manufacturing the light emitting device according to the first embodiment. 図15は、実施形態1に係る発光装置の製造方法を説明するための概略断面図である。FIG. 15 is a schematic cross-sectional view for explaining the method for manufacturing the light emitting device according to the first embodiment. 図16は、実施形態1に係る発光装置の製造方法を説明するための概略断面図である。FIG. 16 is a schematic cross-sectional view for explaining the method for manufacturing the light emitting device according to the first embodiment. 図17は、実施形態1に係る発光装置の製造方法を説明するための概略断面図である。FIG. 17 is a schematic cross-sectional view for explaining the method for manufacturing the light emitting device according to the first embodiment. 図18は、実施形態1に係る発光装置の製造方法を説明するための概略断面図である。FIG. 18 is a schematic cross-sectional view for explaining the method for manufacturing the light emitting device according to the first embodiment.

以下、発明の実施形態について適宜図面を参照して説明する。但し、以下に説明する発光装置は、本発明の技術思想を具体化するためのものであって、特定的な記載がない限り、本発明を以下のものに限定しない。一つの実施形態において説明する内容は、他の実施形態及び変形例にも適用可能である。また、図面が示す部材の大きさや位置関係等は、説明を明確にするため、誇張していることがある。さらに、同一の名称、符号については同一もしくは同質の部材を示しており、詳細説明を適宜省略する。 Embodiments of the invention will be described below with reference to the drawings as appropriate. However, the light emitting device described below is for embodying the technical idea of the present invention, and the present invention is not limited to the following unless there is a specific description. What is described in one embodiment is applicable to other embodiments and modifications. Furthermore, the sizes, positional relationships, etc. of members shown in the drawings may be exaggerated for clarity of explanation. Furthermore, the same names and symbols indicate the same or homogeneous members, and detailed explanations will be omitted as appropriate.

<実施形態1>
本発明の実施形態に係る発光装置1000を図1Aから図9に基づいて説明する。発光装置1000は、基板10と、少なくとも1つの第1発光素子20Aと、第1反射部材31と、第1被覆部材32と、第2被覆部材33と、第2反射部材40と、を備える。基板10は、上面111を有する基材11と、基材11の上面111に配置される第1配線12と、を備える。第1発光素子20Aは、第1光取り出し面201Aと、第1光取り出し面の反対側にある第1電極形成面203Aと、第1光取り出し面と第1電極形成面との間にある第1側面202Aと、第1電極形成面203Aに一対の第1電極21A、22Aと、を有する。第1発光素子20Aは、第1電極形成面203Aと、第1配線12と、が対向して、第1配線12上に載置される。第1発光素子20Aは、第1配線12と電気的に接続される。第1反射部材31は、第1光取り出し面201Aを露出し、基材11の上面111を被覆する。また、第1反射部材31は、反射粒子を含有する。第1被覆部材32は、第1光取り出し面201Aを露出し、第1反射部材31及び第1側面202Aの少なくとも一部を被覆する。また、第1被覆部材32は、第1反射部材31よりも反射粒子の濃度が低い。第2被覆部材33は、第1側面202Aの少なくとも一部を被覆する。第2反射部材40は、上面視において第2被覆部材33を囲む。また、第2反射部材40は、第2被覆部材33及び第1反射部材31と接する。第2反射部材40は、断面視において、第1反射部31と接する幅狭部42と、幅狭部42よりも上に配置される幅広部41と、を有する。尚、後述する第2発光素子20B、第3発光素子20C及び第1発光素子20A、を発光素子と呼ぶことがある。
<Embodiment 1>
A light emitting device 1000 according to an embodiment of the present invention will be described based on FIGS. 1A to 9. The light emitting device 1000 includes a substrate 10, at least one first light emitting element 20A, a first reflecting member 31, a first covering member 32, a second covering member 33, and a second reflecting member 40. The substrate 10 includes a base material 11 having an upper surface 111 and a first wiring 12 arranged on the upper surface 111 of the base material 11. The first light emitting element 20A includes a first light extraction surface 201A, a first electrode formation surface 203A opposite to the first light extraction surface, and a first light extraction surface 203A located between the first light extraction surface and the first electrode formation surface. It has one side surface 202A and a pair of first electrodes 21A and 22A on a first electrode forming surface 203A. The first light emitting element 20A is placed on the first wiring 12 with the first electrode forming surface 203A and the first wiring 12 facing each other. The first light emitting element 20A is electrically connected to the first wiring 12. The first reflective member 31 exposes the first light extraction surface 201A and covers the upper surface 111 of the base material 11. Moreover, the first reflective member 31 contains reflective particles. The first covering member 32 exposes the first light extraction surface 201A and covers at least a portion of the first reflecting member 31 and the first side surface 202A. Further, the first coating member 32 has a lower concentration of reflective particles than the first reflective member 31. The second covering member 33 covers at least a portion of the first side surface 202A. The second reflective member 40 surrounds the second covering member 33 when viewed from above. Further, the second reflecting member 40 is in contact with the second covering member 33 and the first reflecting member 31. The second reflecting member 40 has a narrow portion 42 in contact with the first reflecting portion 31 and a wide portion 41 disposed above the narrow portion 42 in a cross-sectional view. Note that a second light emitting element 20B, a third light emitting element 20C, and a first light emitting element 20A, which will be described later, may be referred to as light emitting elements.

第1被覆部材32は、第1反射部材31よりも反射粒子の濃度が低いために第1反射部材31よりも光透過率が高い。このため、第1側面202Aを被覆する第1被覆部材32を備えることで、第1発光素子20Aからの光を光透過率が高い第1被覆部材32から取り出すことができる。これにより、発光装置の光取り出し効率を向上させることができる。 The first covering member 32 has a lower concentration of reflective particles than the first reflecting member 31, and thus has a higher light transmittance than the first reflecting member 31. Therefore, by providing the first covering member 32 that covers the first side surface 202A, the light from the first light emitting element 20A can be extracted from the first covering member 32 having a high light transmittance. Thereby, the light extraction efficiency of the light emitting device can be improved.

反射粒子を含有し、反射率の高い第1反射部材31で基材11の上面を被覆することにより、第1発光素子20Aからの光が基板10に吸収されることを抑制できる。これにより、発光装置の光取り出し効率を向上させることができる。 By covering the upper surface of the base material 11 with the first reflective member 31 containing reflective particles and having a high reflectance, absorption of light from the first light emitting element 20A by the substrate 10 can be suppressed. Thereby, the light extraction efficiency of the light emitting device can be improved.

第1反射部材31及び第1被覆部材32を形成する手順としては、第1反射部材を形成した後に第1反射部材を被覆する第1被覆部材を形成してもよく、第1反射部材及び第1被覆部材を同じ工程で形成してもよい。例えば、第1反射部材を形成した後に硬化前の第1被覆部材をポッティング等で基材の上面に配置し、第1被覆部材を硬化する。これにより、第1反射部材を被覆する第1被覆部材を形成してもよい。第1反射部材及び第1被覆部材を同じ工程で形成する場合には、例えば、反射粒子を含有する硬化前の反射粒子含有部材を基板上に配置し、反射粒子含有部材の反射粒子を遠心力等で沈降させる。反射粒子含有部材の反射粒子を沈降させた場合には、反射粒子含有部材内において反射粒子が偏在する反射部と、反射部の上に位置し反射粒子が偏在していない透光部と、が形成される。尚、反射粒子含有部材において反射粒子が偏在する反射部を第1反射部材31と、呼び、反射部の上に位置し反射粒子が偏在していない透光部を第1被覆部材32と、呼ぶことがある。反射粒子含有部材の反射粒子を沈降させて第1被覆部材を形成する場合には、第1被覆部材32に粒径等によって沈降しない反射粒子を含んでいてもよい。反射粒子含有部材の反射粒子を沈降させることで、第1反射部材31の厚みを薄くさせやすくなる。これにより、第1発光素子20Aからの第1被覆部材32から取り出しやすくなるので、発光装置の光取り出し効率を向上させることができる。反射粒子含有部材の反射粒子を沈降させた場合には、第1反射部材31とは、反射粒子含有部材において反射粒子の含有率が10wt%以上の部分であり、第1被覆部材32とは、反射粒子含有部材において反射粒子の含有率が10wt%より低い部分である。なお、「wt%」は、重量パーセントであり、反射粒子含有部材の全重量に対する反射粒子の重量の比率を表す。 As a procedure for forming the first reflective member 31 and the first covering member 32, the first covering member that covers the first reflective member may be formed after forming the first reflective member, and the first reflective member and the first covering member 32 may be formed. One covering member may be formed in the same process. For example, after forming the first reflective member, the uncured first coating member is placed on the upper surface of the base material by potting or the like, and the first coating member is cured. This may form a first covering member that covers the first reflective member. When forming the first reflective member and the first coating member in the same process, for example, the reflective particle-containing member containing reflective particles before being cured is placed on the substrate, and the reflective particles of the reflective particle-containing member are moved by centrifugal force. Sediment with etc. When the reflective particles of the reflective particle-containing member are allowed to settle, the reflective particle-containing member has a reflective part in which the reflective particles are unevenly distributed, and a transparent part located above the reflective part and in which the reflective particles are not unevenly distributed. It is formed. In addition, in the reflective particle-containing member, the reflective part where reflective particles are unevenly distributed is called a first reflective member 31, and the transparent part located above the reflective part and where reflective particles are not unevenly distributed is called a first covering member 32. Sometimes. When forming the first covering member by settling the reflective particles of the reflective particle-containing member, the first covering member 32 may contain reflective particles that do not settle depending on the particle size or the like. By settling the reflective particles of the reflective particle-containing member, the thickness of the first reflective member 31 can be easily reduced. This makes it easier to take out the light from the first covering member 32 from the first light emitting element 20A, thereby improving the light extraction efficiency of the light emitting device. When the reflective particles of the reflective particle-containing member are precipitated, the first reflective member 31 is a portion of the reflective particle-containing member in which the content of reflective particles is 10 wt% or more, and the first coating member 32 is This is a portion in the reflective particle-containing member where the reflective particle content is lower than 10 wt%. Note that "wt%" is weight percent, and represents the ratio of the weight of the reflective particles to the total weight of the reflective particle-containing member.

第1被覆部材32の母材は、透光性を有していればよく、例えば、シリコーン樹脂等公知の部材を用いることができる。なお、「透光性」とは、第1発光素子の発光ピーク波長における光透過率が、60%以上であることが好ましく、70%以上であることがより好ましく、80%以上であることがよりいっそう好ましい。第1反射部材31と第1被覆部材32を同じ工程で形成する場合に、用いる反射粒子含有部材としては、透光性の公知の母材中に反射粒子を含有した部材を用いることができる。第1反射部材31には、母材中に反射粒子を含有する部材を用いることができる。反射粒子としては、酸化チタン等の公知の材料を用いることができる。第1反射部材31は、第1発光素子からの光を反射する反射性を有していればよく、例えば、母材中に反射粒子を含有した部材を用いることができる。第1反射部材の第1発光素子の発光ピーク波長における反射率は、60%以上であることが好ましく、70%以上であることがより好ましく、80%以上であることがよりいっそう好ましい。 The base material of the first covering member 32 only needs to have translucency, and for example, a known material such as silicone resin can be used. Note that "light transmittance" means that the light transmittance of the first light emitting element at the emission peak wavelength is preferably 60% or more, more preferably 70% or more, and preferably 80% or more. Even more preferable. When forming the first reflective member 31 and the first covering member 32 in the same process, a member containing reflective particles in a known translucent base material can be used as the reflective particle-containing member. For the first reflective member 31, a member containing reflective particles in a base material can be used. As the reflective particles, known materials such as titanium oxide can be used. The first reflective member 31 only needs to have a reflective property to reflect light from the first light emitting element, and for example, a member containing reflective particles in a base material can be used. The reflectance of the first reflective member at the emission peak wavelength of the first light emitting element is preferably 60% or more, more preferably 70% or more, and even more preferably 80% or more.

第1被覆部材32は第2反射部材40と接していてもよく、第1被覆部材32は第2反射部材40と接していなくてもよい。第1被覆部材32が第2反射部材40と接している場合には、上面視において、光透過率が高い第1被覆部材32の面積を増加させることができるので、第1発光素子20Aの光を第1被覆部材32によってX方向及びY方向に広げやすくなるので、発光装置の輝度ムラを抑制することができる。 The first covering member 32 may be in contact with the second reflecting member 40, and the first covering member 32 may not be in contact with the second reflecting member 40. When the first covering member 32 is in contact with the second reflecting member 40, the area of the first covering member 32 having high light transmittance can be increased when viewed from above, so that the light emitted from the first light emitting element 20A Since the first covering member 32 facilitates spreading in the X direction and the Y direction, uneven brightness of the light emitting device can be suppressed.

図2B及び図2Cに示す発光装置1000ように、第1被覆部材32は第1発光素子20Aと接する部分の第1被覆部材32の厚みが、第1発光素子20Aから離間する部分の第1被覆部材32の厚みより厚くてもよい。例えば、第1被覆部材32と第2反射部材40とが接する場合には、第1被覆部材32は第1発光素子20Aと接する部分の第1被覆部材32の厚みが、第2反射部材40と接する部分の第1被覆部材32の厚みよりも厚くてもよい。また、図3に示す発光装置1000Aのように、第1被覆部材32の上面が平坦になるようにしてもよい。第1発光素子20Aと接する部分の第1被覆部材32の厚みが、第1発光素子20Aから離間する部分の第1被覆部材32の厚みよりも厚い場合には、第1側面202Aと第1被覆部材32の接合面積を増加させやすくなる。これにより、第1発光素子20Aからの光を第1被覆部材32から取り出しやすくなるので発光装置の光取り出し効率が向上する。第1被覆部材の上面が平坦な場合には、発光装置毎の第1被覆部材32の形状のバラツキを抑制しやすくなる。これにより、発光装置の歩留りを向上させることができる。第1被覆部材32の形状は、例えば、第1被覆部材及び/又は反射粒子含有部材の粘度を調整することにより変えることができる。尚、本明細書において、平坦とは±5μm程度の変動は許容されることを意味する。 As in the light emitting device 1000 shown in FIGS. 2B and 2C, the thickness of the first covering member 32 in the portion in contact with the first light emitting element 20A is the same as that in the portion spaced apart from the first light emitting element 20A. It may be thicker than the thickness of the member 32. For example, when the first covering member 32 and the second reflecting member 40 are in contact with each other, the thickness of the first covering member 32 in the portion where the first covering member 32 contacts the first light emitting element 20A is the same as that of the second reflecting member 40. It may be thicker than the thickness of the first covering member 32 at the contacting portion. Further, as in a light emitting device 1000A shown in FIG. 3, the upper surface of the first covering member 32 may be made flat. When the thickness of the first covering member 32 at the portion in contact with the first light emitting element 20A is thicker than the thickness of the first covering member 32 at a portion away from the first light emitting element 20A, the first side surface 202A and the first covering This makes it easier to increase the joint area of the member 32. This makes it easier to extract the light from the first light emitting element 20A from the first covering member 32, thereby improving the light extraction efficiency of the light emitting device. When the upper surface of the first covering member is flat, it becomes easier to suppress variations in the shape of the first covering member 32 for each light emitting device. Thereby, the yield of light emitting devices can be improved. The shape of the first covering member 32 can be changed, for example, by adjusting the viscosity of the first covering member and/or the reflective particle-containing member. Note that, in this specification, flatness means that a variation of approximately ±5 μm is allowed.

発光装置は、1つの発光素子を備えていてもよく、図2Bに示すように、発光装置は、第1発光素子20Aと、第2発光素子20Bと、の2つの発光素子を備えていてもよい。発光装置が第1発光素子及び第2発光素子を備える場合には、第1被覆部材32は第1発光素子20A及び第2発光素子20Bと接することが好ましい。このようにすることで、第1発光素子からの光及び第2発光素子からの光を第1被覆部材に導光することができる。例えば、第1発光素子及び第2発光素子の発光ピーク波長が同じ場合には、第1発光素子からの光、及び、第2発光素子からの光が第1被覆部材に導光されることで、第1発光素子と第2発光素子の間の輝度の低減を抑制することができる。これにより、発光装置の輝度ムラを抑制することができる。また、第1発光素子及び第2発光素子の発光ピーク波長が異なる場合には、第1発光素子からの光、及び、第2発光素子からの光が第1被覆部材に導光されることで、発光装置の混色性を向上させることができる。尚、本明細書において、発光ピーク波長が同じとは±10nm程度の変動は許容されることを意味する。 The light emitting device may include one light emitting element, or as shown in FIG. 2B, the light emitting device may include two light emitting elements, a first light emitting element 20A and a second light emitting element 20B. good. When the light emitting device includes a first light emitting element and a second light emitting element, the first covering member 32 preferably contacts the first light emitting element 20A and the second light emitting element 20B. By doing so, the light from the first light emitting element and the light from the second light emitting element can be guided to the first covering member. For example, when the emission peak wavelengths of the first light emitting element and the second light emitting element are the same, the light from the first light emitting element and the light from the second light emitting element are guided to the first covering member. , reduction in brightness between the first light emitting element and the second light emitting element can be suppressed. Thereby, uneven brightness of the light emitting device can be suppressed. Moreover, when the emission peak wavelengths of the first light emitting element and the second light emitting element are different, the light from the first light emitting element and the light from the second light emitting element are guided to the first covering member. , the color mixing properties of the light emitting device can be improved. Note that in this specification, the expression that the emission peak wavelengths are the same means that a variation of about ±10 nm is allowed.

第1反射部材31は、第1発光素子20Aと接していてもよく、第1発光素子20Aと接していなくてもよい。図2Bに示すように、第1反射部材31と、第1発光素子20Aと、が接している場合には、第1反射部材31は一対の第1電極21A、22Aを直接被覆することが好ましい。このようにすることで、第1発光素子20Aからの光が第1電極21A、22Aに吸収されることを抑制することができる。また、第1反射部材31と、第1発光素子20Aと、が接している場合には、第1反射部材31は、第1発光素子20Aの第1半導体層23Aの側面を被覆することが好ましい。このようにすることで、Z方向における第1反射部材31の厚みを厚くすることができるので、第1反射部材31が一対の第1電極21A、22Aを被覆しやすくなる。 The first reflective member 31 may or may not be in contact with the first light emitting element 20A. As shown in FIG. 2B, when the first reflective member 31 and the first light emitting element 20A are in contact with each other, it is preferable that the first reflective member 31 directly covers the pair of first electrodes 21A and 22A. . By doing so, it is possible to suppress light from the first light emitting element 20A from being absorbed by the first electrodes 21A and 22A. Further, when the first reflective member 31 and the first light emitting element 20A are in contact with each other, it is preferable that the first reflective member 31 covers the side surface of the first semiconductor layer 23A of the first light emitting element 20A. . By doing so, the thickness of the first reflective member 31 in the Z direction can be increased, so that the first reflective member 31 can easily cover the pair of first electrodes 21A and 22A.

第1反射部材31は、第1電極形成面203Aを被覆してもよい。第1反射部材31は、第1電極形成面203Aを直接被覆してもよく、第1被覆部材32を介して第1電極形成面203Aを被覆してもよい。このようにすることで、第1発光素子20Aからの光が第1反射部材31によって反射されるので、第1発光素子20Aからの光が基板10に吸収されることを抑制することができる。これにより、発光装置の光取り出し効率が向上する。 The first reflective member 31 may cover the first electrode forming surface 203A. The first reflective member 31 may directly cover the first electrode forming surface 203A, or may cover the first electrode forming surface 203A via the first covering member 32. By doing so, the light from the first light emitting element 20A is reflected by the first reflecting member 31, so that it is possible to suppress the light from the first light emitting element 20A from being absorbed by the substrate 10. This improves the light extraction efficiency of the light emitting device.

図2Bに示すように、発光装置1000が第1発光素子20A及び第2発光素子20Bを備える場合には、第1反射部材31は第1電極形成面203A及び第2電極形成面203Bを被覆することが好ましい。このようにすることで、第1発光素子20Aからの光、及び、第2発光素子20Bからの光を第1反射部材31が反射するので、発光装置1000の光取り出し効率を向上させることができる。 As shown in FIG. 2B, when the light emitting device 1000 includes the first light emitting element 20A and the second light emitting element 20B, the first reflective member 31 covers the first electrode forming surface 203A and the second electrode forming surface 203B. It is preferable. By doing so, the first reflecting member 31 reflects the light from the first light emitting element 20A and the light from the second light emitting element 20B, so the light extraction efficiency of the light emitting device 1000 can be improved. .

第1反射部材31が、第1発光素子20Aの第1側面202Aを被覆する場合には、Z方向における第1反射部材31と第1側面202Aとが接する長さH1が、第1側面202Aの長さH2の0.5倍以下が好ましく、0.3倍以下がより好ましい。このようにすることで、第1発光素子20AからX方向及び/又はY方向に進む光が遮られにくいので発光装置の輝度ムラを抑制することができる。 When the first reflective member 31 covers the first side surface 202A of the first light emitting element 20A, the length H1 of the contact between the first reflective member 31 and the first side surface 202A in the Z direction is equal to the length H1 of the first side surface 202A in the Z direction. The length is preferably 0.5 times or less, more preferably 0.3 times or less of the length H2. By doing so, the light traveling from the first light emitting element 20A in the X direction and/or the Y direction is less likely to be blocked, so that uneven brightness of the light emitting device can be suppressed.

Z方向における第1反射部材31の最大厚みは、例えば、10μm以上200μm以下であることが好ましい。第1反射部材31の最大厚みが10μm以上であれば、第1反射部材31を形成しやすくなる。また、第1反射部材31の最大厚みが200μm以下であれば、前記した第1発光素子20Aの第1側面の一部と対向しない第1反射部材31を形成しやすくなる。このようにすることで、第1発光素子20AからX方向及び/又はY方向に進む光が遮られにくいので発光装置の輝度ムラを抑制することができる。 It is preferable that the maximum thickness of the first reflective member 31 in the Z direction is, for example, 10 μm or more and 200 μm or less. If the maximum thickness of the first reflective member 31 is 10 μm or more, it becomes easier to form the first reflective member 31. Moreover, if the maximum thickness of the first reflective member 31 is 200 μm or less, it becomes easy to form the first reflective member 31 that does not face a part of the first side surface of the first light emitting element 20A described above. By doing so, the light traveling from the first light emitting element 20A in the X direction and/or the Y direction is less likely to be blocked, so that uneven brightness of the light emitting device can be suppressed.

発光装置が複数の発光素子を備える場合には、複数の発光素子の発光ピーク波長は、同じでもよく、異なっていてもよい。複数の発光素子の発光ピーク波長が異なることで発光装置の色再現性を向上させることができる。例えば、第1発光素子20Aの発光ピーク波長が430nm以上490nm未満(青色領域の波長範囲)の範囲であり、第2発光素子20Bの発光ピーク波長が490nm以上570nm以下(緑色領域の波長範囲)の範囲であってもよい。発光素子の構成の一例として、第1発光素子20Aを説明する。 When the light emitting device includes a plurality of light emitting elements, the light emission peak wavelengths of the plurality of light emitting elements may be the same or different. Color reproducibility of the light emitting device can be improved by having different emission peak wavelengths of the plurality of light emitting elements. For example, the emission peak wavelength of the first light emitting element 20A is in the range of 430 nm or more and less than 490 nm (wavelength range in the blue region), and the emission peak wavelength of the second light emitting element 20B is in the range of 490 nm or more and less than 570 nm (wavelength range in the green region). It may be a range. The first light emitting element 20A will be described as an example of the configuration of the light emitting element.

第1発光素子20Aは、第1光取り出し面201Aと、第1光取り出し面の反対側にある第1電極形成面203Aと、第1光取り出し面201Aと第1電極形成面203Aとの間にある第1側面202Aと、を有している。第1側面202Aは、第1光取り出し面201Aに対して、垂直であってもよいし、内側又は外側に傾斜していてもよい。第1電極形成面203Aには一対の第1電極21A、22Aが設けられている。 The first light emitting element 20A has a first light extraction surface 201A, a first electrode formation surface 203A on the opposite side of the first light extraction surface, and a space between the first light extraction surface 201A and the first electrode formation surface 203A. It has a certain first side surface 202A. The first side surface 202A may be perpendicular to the first light extraction surface 201A, or may be inclined inwardly or outwardly. A pair of first electrodes 21A and 22A are provided on the first electrode forming surface 203A.

第1発光素子20Aは、第1素子基板24Aと、第1素子基板24Aに接して形成される第1半導体層23Aと、を備えている。一対の第1電極21A、22Aは、第1半導体層23Aと電気的に接続されている。なお、本実施形態では、第1発光素子20Aが第1素子基板24Aを備える構成を一例に挙げて説明するが、第1素子基板24Aは除去されていてもよい。 The first light emitting element 20A includes a first element substrate 24A and a first semiconductor layer 23A formed in contact with the first element substrate 24A. The pair of first electrodes 21A and 22A are electrically connected to the first semiconductor layer 23A. Note that in this embodiment, a configuration in which the first light emitting element 20A includes the first element substrate 24A will be described as an example, but the first element substrate 24A may be removed.

第1発光素子20Aは、上面視における形状は、三角形でもよく、四角形でもよく、六角形でもよく、その他の形状であってもよい。図2Aに示すように、発光装置1000が第1発光素子20A及び第2発光素子20Bを備え、上面視において第1発光素子20A及び第2発光素子20Bが長方形形状である場合には、第1発光素子の第1光取り出し面201Aの一方の短辺2011Aと、第2発光素子の第2光取り出し面201Bの一方の短辺2011Bとが対向して配置されることが好ましい。このようにすることで、Y方向において発光装置1000を薄型化することができる。 The first light emitting element 20A may have a triangular, quadrangular, hexagonal, or other shape when viewed from above. As shown in FIG. 2A, when the light emitting device 1000 includes a first light emitting element 20A and a second light emitting element 20B, and the first light emitting element 20A and the second light emitting element 20B have a rectangular shape when viewed from above, the first It is preferable that one short side 2011A of the first light extraction surface 201A of the light emitting element and one short side 2011B of the second light extraction surface 201B of the second light emitting element are arranged to face each other. By doing so, the light emitting device 1000 can be made thinner in the Y direction.

第1光取り出し面201A及び第2光取り出し面201Bは、Z方向において、略同じ高さであってもよく、異なる高さであってもよい。また、上面視において、第1光取り出し面201A及び第2光取り出し面201Bの面積は同じでもよく、異なっていてもよい。特に発光装置が波長変換部材を備える場合には、波長変換部材を励起させやすい発光ピーク波長を有する発光素子の光取り出し面が大きいことが好ましい。波長変換部材とは、発光素子が発する一次光の少なくとも一部を吸収して、一次光とは異なる波長の二次光を発する部材である。例えば、発光装置が赤色発光する波長変換部材であるマンガン賦活フッ化珪酸カリウムの蛍光体(例えばKSiF:Mn)を備え、第1発光素子の発光ピーク波長が430nm以上490nm未満(青色領域の波長範囲)の範囲であり、第2発光素子の発光ピーク波長が490nm以上570nm以下(緑色領域の波長範囲)の範囲である場合には、第1発光素子20Aの第1光取り出し面201Aが第2発光素子20Bの第2光取り出し面201Bよりも大きいことが好ましい。例えば、第1発光素子20Aの第1光取り出し面201Aが第2発光素子20Bの第2光取り出し面201Bの1.2倍以上2倍以下であることが好ましい。マンガン賦活フッ化珪酸カリウムの蛍光体(例えばKSiF:Mn)は、490nm以上570nm以下の光よりも430nm以上490nm未満の光で励起されやすい。第1発光素子の第1光取り出し面201Aが第2発光素子の第2光取り出し面201Bよりも大きいことで、第1発光素子20Aからの光の割合を増やすことができるので、第1発光素子からの光の一部がマンガン賦活フッ化物系蛍光体によって変換されても発光装置から出射される第1発光素子からの光の割合が低減することを抑制できる。これにより、発光装置1000の色再現性を向上させることができる。 The first light extraction surface 201A and the second light extraction surface 201B may have substantially the same height or may have different heights in the Z direction. Moreover, in a top view, the areas of the first light extraction surface 201A and the second light extraction surface 201B may be the same or different. Particularly when the light emitting device includes a wavelength conversion member, it is preferable that the light extraction surface of the light emitting element having an emission peak wavelength that easily excites the wavelength conversion member is large. The wavelength conversion member is a member that absorbs at least a portion of the primary light emitted by the light emitting element and emits secondary light having a wavelength different from that of the primary light. For example, the light-emitting device includes a manganese-activated potassium fluorosilicate phosphor (for example, K 2 SiF 6 :Mn) which is a wavelength conversion member that emits red light, and the emission peak wavelength of the first light-emitting element is 430 nm or more and less than 490 nm (in the blue region). wavelength range), and when the emission peak wavelength of the second light emitting element is in the range of 490 nm or more and 570 nm or less (wavelength range in the green region), the first light extraction surface 201A of the first light emitting element 20A is It is preferably larger than the second light extraction surface 201B of the second light emitting element 20B. For example, it is preferable that the first light extraction surface 201A of the first light emitting element 20A is 1.2 times or more and twice or less the second light extraction surface 201B of the second light emitting element 20B. A manganese-activated potassium fluorosilicate phosphor (for example, K 2 SiF 6 :Mn) is more easily excited by light of 430 nm or more and less than 490 nm than light of 490 nm or more and 570 nm or less. Since the first light extraction surface 201A of the first light emitting element is larger than the second light extraction surface 201B of the second light emitting element, the proportion of light from the first light emitting element 20A can be increased. Even if a part of the light from the first light-emitting element is converted by the manganese-activated fluoride-based phosphor, it is possible to suppress a reduction in the proportion of light from the first light-emitting element emitted from the light-emitting device. Thereby, the color reproducibility of the light emitting device 1000 can be improved.

第2被覆部材33は、透光性であり、第1側面202Aの少なくとも一部を被覆する。第2被覆部材33が第1側面202Aを被覆することで第1発光素子20Aからの光を第2被覆部材33から取り出すことができるので発光装置の光取り出し効率が向上する。第2被覆部材33は、第1側面202Aを直接被覆してもよく、第1被覆部材32を介して第1側面202Aを被覆してもよい。また、第2被覆部材33は、第1側面202Aを直接被覆する部分と、第1被覆部材32を介して第1側面202Aを被覆する部分の両方を備えていてもよい。第1被覆部材32の母材と第1素子基板24Aの屈折率差が、第2被覆部材33の母材と第1素子基板24Aの屈折率差よりも小さい場合には、第2被覆部材33が第1被覆部材32を介して第1素子基板24Aの側面を含む第1側面を202A被覆することが好ましい。このようにすることで、第1被覆部材32と第1素子基板24Aとの接合面積を増加させやすくなるので、第1発光素子からの光を1被覆部材32から取り出しやすくなる。第1被覆部材32の母材と第1半導体層23Aの屈折率差が、第2被覆部材33の母材と第1素子基板24Aの屈折率差よりも小さい場合には、第2被覆部材33が第1被覆部材32を介して第1半導体層23Aの側面を含む第1側面を202A被覆する部分を備えることが好ましい。このようにすることで、第1発光素子からの光を第1被覆部材32から取り出しやすくなる。 The second covering member 33 is translucent and covers at least a portion of the first side surface 202A. Since the second covering member 33 covers the first side surface 202A, the light from the first light emitting element 20A can be extracted from the second covering member 33, thereby improving the light extraction efficiency of the light emitting device. The second covering member 33 may directly cover the first side surface 202A, or may cover the first side surface 202A via the first covering member 32. Further, the second covering member 33 may include both a portion that directly covers the first side surface 202A and a portion that covers the first side surface 202A via the first covering member 32. When the refractive index difference between the base material of the first covering member 32 and the first element substrate 24A is smaller than the refractive index difference between the base material of the second covering member 33 and the first element substrate 24A, the second covering member 33 It is preferable that 202A cover the first side surface including the side surface of the first element substrate 24A via the first covering member 32. By doing so, it becomes easier to increase the bonding area between the first covering member 32 and the first element substrate 24A, so it becomes easier to extract light from the first light emitting element from the first covering member 32. When the refractive index difference between the base material of the first covering member 32 and the first semiconductor layer 23A is smaller than the refractive index difference between the base material of the second covering member 33 and the first element substrate 24A, the second covering member 33 It is preferable that the first covering member 32 include a portion 202A that covers the first side surface including the side surface of the first semiconductor layer 23A. By doing so, it becomes easier to extract light from the first light emitting element from the first covering member 32.

図4に示す発光装置1000Bように、第2被覆部材33は第1光取り出し面201Aを被覆してもよく、図2Bに示す発光装置1000のように、第2被覆部材33は第1光取り出し面201Aを露出してもよい。第2被覆部材33が第1光取り出し面201Aを被覆する場合には、第1光取り出し面201Aからの外力から第1発光素子20Aを保護できる。第1光取り出し面201Aが第2被覆部材33から露出される場合には、発光装置のZ方向における厚みを薄くできるので発光装置を小型化できる。 As in the light emitting device 1000B shown in FIG. 4, the second covering member 33 may cover the first light extraction surface 201A, and as in the light emitting device 1000 shown in FIG. 2B, the second covering member 33 may cover the first light extraction surface 201A. The surface 201A may be exposed. When the second covering member 33 covers the first light extraction surface 201A, the first light emitting element 20A can be protected from external force from the first light extraction surface 201A. When the first light extraction surface 201A is exposed from the second covering member 33, the thickness of the light emitting device in the Z direction can be reduced, so that the light emitting device can be made smaller.

発光装置が、第2発光素子20Bを備える場合には、第2被覆部材33は第1側面202A及び第2側面202Bを被覆することが好ましい。このようにすることで、第1発光素子20Aからの光と、第2発光素子20Bからの光が第2被覆部材33に導光されやすくなる。例えば、第1発光素子及び第2発光素子の発光ピーク波長が同じ場合には、第1発光素子からの光と、第2発光素子からの光が第2被覆部材に導光されることで、第1発光素子と第2発光素子の間の輝度ムラを抑制することができる。また、第1発光素子及び第2発光素子の発光ピーク波長が異なる場合には、第1発光素子からの光と、第2発光素子からの光が第2被覆部材に導光されることで、発光装置の混色性を向上させることができる。第2被覆部材は第1側面及び/又は第2側面と接していてもよく、第1被覆部材を介して第1側面及び/又は第2側面を被覆してもよい。 When the light emitting device includes the second light emitting element 20B, the second covering member 33 preferably covers the first side surface 202A and the second side surface 202B. By doing so, the light from the first light emitting element 20A and the light from the second light emitting element 20B are easily guided to the second covering member 33. For example, when the emission peak wavelengths of the first light emitting element and the second light emitting element are the same, the light from the first light emitting element and the light from the second light emitting element are guided to the second covering member. Luminance unevenness between the first light emitting element and the second light emitting element can be suppressed. Moreover, when the emission peak wavelengths of the first light emitting element and the second light emitting element are different, the light from the first light emitting element and the light from the second light emitting element are guided to the second covering member. The color mixing properties of the light emitting device can be improved. The second covering member may be in contact with the first side surface and/or the second side surface, or may cover the first side surface and/or the second side surface via the first covering member.

第2被覆部材33は、波長変換部材を含有してもよい。このようにすることで、発光装置の色調整が容易になる。波長変換部材は第2被覆部材33中に均一に分散させてもよく、第2被覆部材の上面よりも第1被覆部材側に波長変換部材を偏在させてもよい。第2被覆部材に含有する波長変換部材としては、例えば、発光ピーク波長が490nm以上570nm以下である緑色発光する波長変換部材や、発光ピーク波長が610nm以上750nm以下である赤色発光する波長変換部材等を用いることができる。第2被覆部材に含有する波長変換部材は1種類でもよく、複数の種類を含有させてもよい。例えば、緑色発光する波長変換部材と赤色発光する波長変換部材を導光部材に含有させてもよい。緑色発光する波長変換部材としては、例えば、βサイアロン系蛍光体(例えばSi6-zAl8-z:Eu(0<z<4.2)が挙げられる。赤色発光する波長変換部材としては、例えば、マンガン賦活フッ化珪酸カリウムの蛍光体(例えばKSiF:Mn)が挙げられる。 The second covering member 33 may contain a wavelength conversion member. By doing so, color adjustment of the light emitting device becomes easy. The wavelength converting member may be uniformly dispersed in the second covering member 33, or the wavelength converting member may be unevenly distributed closer to the first covering member than the upper surface of the second covering member. Examples of the wavelength conversion member contained in the second coating member include a wavelength conversion member that emits green light with an emission peak wavelength of 490 nm or more and 570 nm or less, a wavelength conversion member that emits red light and whose emission peak wavelength is 610 nm or more and 750 nm or less, etc. can be used. The second covering member may contain one type of wavelength conversion member, or may contain a plurality of types. For example, the light guide member may contain a wavelength conversion member that emits green light and a wavelength conversion member that emits red light. Examples of wavelength conversion members that emit green light include β-sialon-based phosphors (for example, Si 6-z Al z O z N 8-z :Eu (0<z<4.2). Wavelength conversion members that emit red light Examples of the member include manganese-activated potassium fluorosilicate phosphor (eg, K 2 SiF 6 :Mn).

第2反射部材40は、上面視において第2被覆部材33を囲み、第2被覆部材33及び第1反射部材31と接する。また、第2反射部材40は、断面視において、第1反射部材31と接する幅狭部42と、幅狭部42よりも上に配置される幅広部41と、を有する。第2反射部材40は内側面401と外側面402とを有する。幅狭部42及び幅広部41の幅とは、内側面401から外側面402までの最短距離を意味する。 The second reflecting member 40 surrounds the second covering member 33 in a top view and is in contact with the second covering member 33 and the first reflecting member 31. Further, the second reflecting member 40 has a narrow portion 42 in contact with the first reflecting member 31 and a wide portion 41 disposed above the narrow portion 42 in a cross-sectional view. The second reflective member 40 has an inner surface 401 and an outer surface 402. The widths of the narrow portion 42 and the wide portion 41 mean the shortest distance from the inner surface 401 to the outer surface 402.

第2反射部材40は、上面視において環状である。また、第2反射部材40が第2被覆部材33を囲むことにより、第1発光素子20AからX方向及び/又はY方向に進む光を第2反射部材40が反射しZ方向に進む光を増加させることができる。 The second reflecting member 40 is annular in top view. Furthermore, by surrounding the second covering member 33 with the second reflecting member 40, the second reflecting member 40 reflects the light traveling in the X direction and/or the Y direction from the first light emitting element 20A, thereby increasing the light traveling in the Z direction. can be done.

第2反射部材40として、例えば、母材中に反射粒子を含有した樹脂材料等の公知の部材を用いることができる。第2反射部材40の形成方法としては、例えば、第1反射部材31及び第2被覆部材33に切り欠きを形成し、その切り欠き内に硬化前の第2反射部材を充填し、硬化前の第2反射部材を硬化することで第2反射部材を形成してもよい。例えば、幅狭部と幅広部を有するブレードを使用することで、ブレードで形成した切り欠きも幅狭部と幅広部を有することができる。尚、ブレードの先端が幅狭部である。ブレードの先端を幅狭部にすることで、幅が一定のブレードを使用する場合よりも、第1反射部材31及び第2被覆部材33に切り欠きを形成することが容易になる。 As the second reflective member 40, for example, a known member such as a resin material containing reflective particles in a base material can be used. As a method for forming the second reflective member 40, for example, a notch is formed in the first reflective member 31 and the second covering member 33, and the uncured second reflective member is filled in the notch. The second reflective member may be formed by curing the second reflective member. For example, by using a blade having a narrow portion and a wide portion, a notch formed by the blade may also have a narrow portion and a wide portion. Note that the tip of the blade is the narrow part. By making the tip of the blade narrow, it becomes easier to form the notches in the first reflective member 31 and the second covering member 33 than when using a blade with a constant width.

第2反射部材40の幅狭部42は、第1反射部材31と接する。これにより、厚みの薄い第2反射部材40の幅狭部42から第1発光素子20Aからの光が第2反射部材40の幅狭部を透過することを抑制できる。このため、発光装置の光取り出し効率を向上させることができる。 The narrow portion 42 of the second reflective member 40 contacts the first reflective member 31 . Thereby, it is possible to suppress the light from the first light emitting element 20A from passing through the narrow width part 42 of the second reflection member 40, which is thin. Therefore, the light extraction efficiency of the light emitting device can be improved.

上面視において、第2反射部材40の幅広部41の幅は、10μm以上50μm以下であることが好ましい。第1反射部材の幅が50μm以下であることで、発光装置を小型化できる。また、第1反射部材の幅が10μm以上であることで、第1発光素子からの光が第2反射部材40の幅広部41を透過することを抑制することができる。 In a top view, the width of the wide portion 41 of the second reflective member 40 is preferably 10 μm or more and 50 μm or less. Since the width of the first reflective member is 50 μm or less, the light emitting device can be miniaturized. Furthermore, by setting the width of the first reflective member to 10 μm or more, it is possible to suppress the light from the first light emitting element from passing through the wide portion 41 of the second reflective member 40 .

基板10は、基材11と、第1配線12と、を有する。基材11は、上面111と、上面の反対側にある下面112と、上面111と隣接し上面111と直交する背面113と、背面113の反対側に位置する正面114と、を有する。また、基材11は、上面111と下面112の間に側面115を有する。 The substrate 10 includes a base material 11 and a first wiring 12. The base material 11 has a top surface 111, a bottom surface 112 opposite to the top surface, a back surface 113 adjacent to the top surface 111 and perpendicular to the top surface 111, and a front surface 114 located on the opposite side of the back surface 113. Further, the base material 11 has a side surface 115 between the upper surface 111 and the lower surface 112.

基材11は、特に、第1発光素子20Aの線膨張係数に近い物性を有する材料によって形成されることが好ましく、例えば、樹脂若しくは繊維強化樹脂、セラミックス、ガラスなどの絶縁性部材、などが挙げられる。樹脂若しくは繊維強化樹脂としては、例えば、エポキシ、ガラスエポキシ、ビスマレイミドトリアジン(BT)、ポリイミド、などを用いることができ、セラミックスとしては、例えば、酸化アルミニウム、窒化アルミニウム、酸化ジルコニウム、窒化ジルコニウム、酸化チタン、窒化チタン、若しくはこれらの混合物、などを用いることができる。
基材11の厚さの下限値は、強度の観点から、0.05mm以上であることが好ましく、0.2mm以上であることがより好ましい。また、基材11の厚さの上限値は、Z方向における発光装置の厚さ(奥行き)の観点から、0.5mm以下であることが好ましく、0.4mm以下であることがより好ましい。
The base material 11 is preferably formed of a material having physical properties close to the coefficient of linear expansion of the first light emitting element 20A, such as an insulating member such as resin or fiber reinforced resin, ceramics, or glass. It will be done. As the resin or fiber reinforced resin, for example, epoxy, glass epoxy, bismaleimide triazine (BT), polyimide, etc. can be used, and as the ceramic, for example, aluminum oxide, aluminum nitride, zirconium oxide, zirconium nitride, zirconium oxide, etc. can be used. Titanium, titanium nitride, a mixture thereof, or the like can be used.
From the viewpoint of strength, the lower limit of the thickness of the base material 11 is preferably 0.05 mm or more, and more preferably 0.2 mm or more. Moreover, from the viewpoint of the thickness (depth) of the light emitting device in the Z direction, the upper limit value of the thickness of the base material 11 is preferably 0.5 mm or less, and more preferably 0.4 mm or less.

図2Bに示すように、基板10は、下面112に配置される第2配線13を備えていてもよい。基板10が、第1配線12及び第2配線13を備える場合には、基板10は、第1配線12及び第2配線13を接続するビア15を備えていてもよい。ビア15は、上面視において円形状であることが好ましい。このようにすることで、ドリル等により容易に形成することができる。ビア15が、上面視において円形状である場合には、ビアの直径は100μm以上150μm以下であることが好ましい。ビアの直径が100μm以上であることで発光装置の放熱性が向上し、ビアの直径が150μm以下であることで基材の強度低下が低減される。本明細書において、円形状とは真円のみならず、これに近い形(例えば、楕円形状や四角形の四隅が大きく円弧状に面取りされたような形状であっても良い)を含むものである。 As shown in FIG. 2B, the substrate 10 may include a second wiring 13 arranged on the lower surface 112. When the substrate 10 includes the first wiring 12 and the second wiring 13, the substrate 10 may include a via 15 that connects the first wiring 12 and the second wiring 13. It is preferable that the via 15 has a circular shape when viewed from above. By doing so, it can be easily formed using a drill or the like. When the via 15 is circular in top view, the diameter of the via is preferably 100 μm or more and 150 μm or less. When the diameter of the via is 100 μm or more, the heat dissipation of the light emitting device is improved, and when the diameter of the via is 150 μm or less, a decrease in the strength of the base material is reduced. In this specification, a circular shape includes not only a perfect circle but also a shape close to this (for example, an elliptical shape or a shape where the four corners of a quadrilateral are chamfered into large arcs).

ビア15は、基材11の貫通孔内に導電性材料が充填されることで構成されてもよく、図2Bに示すように、基材11の貫通孔の表面を被覆する第4配線151と第4配線151に囲まれた領域に充填された充填部材152とを備えていてもよい。充填部材152は、導電性でもよく、絶縁性でもよい。充填部材152には、樹脂材料を使用することが好ましい。一般的に硬化前の樹脂材料は、硬化前の金属材料よりも流動性が高いので第4配線151内に充填しやすい。このため、充填部材に樹脂材料を使用することで基板の製造が容易になる。充填しやすい樹脂材料としては、例えばエポキシ樹脂が挙げられる。充填部材として樹脂材料を用いる場合は、線膨張係数を下げるために添加部材を含有することが好ましい。このようにすることで、第4配線との線膨張係数の差が小さくなるので、発光素子からの熱によって第4配線と充填部材との間に隙間ができることを抑制できる。添加部材としては、例えば酸化ケイ素が挙げられる。また、充填部材152に金属材料を使用した場合には、放熱性を向上させることができる。また、ビア15が基材の貫通孔内に導電性材料が充填されて構成される場合には、熱伝導性が高いAg、Cu等の金属材料を用いることが好ましい。 The via 15 may be formed by filling a conductive material into the through hole of the base material 11, and as shown in FIG. A filling member 152 filled in a region surrounded by the fourth wiring 151 may also be provided. Filling member 152 may be conductive or insulating. It is preferable to use a resin material for the filling member 152. In general, a resin material before hardening has higher fluidity than a metal material before hardening, so it is easier to fill the fourth wiring 151. Therefore, by using a resin material for the filling member, manufacturing of the substrate becomes easier. Examples of resin materials that are easy to fill include epoxy resin. When using a resin material as the filling member, it is preferable to include an additive member in order to lower the coefficient of linear expansion. By doing so, the difference in linear expansion coefficient with the fourth wiring becomes small, so it is possible to suppress the formation of a gap between the fourth wiring and the filling member due to heat from the light emitting element. Examples of the additive include silicon oxide. Moreover, when a metal material is used for the filling member 152, heat dissipation can be improved. Further, when the via 15 is configured by filling a through hole of the base material with a conductive material, it is preferable to use a metal material such as Ag or Cu having high thermal conductivity.

図2Bに示すように、第1発光素子20Aの一対の第1電極21A、22Aと対応する位置に第1配線12は凸部121を備えていることが好ましい。換言すると、上面視において、第1電極21A、22Aと重なる位置に第1配線12は凸部121を備えていることが好ましい。第1配線12が凸部121を備えることで、導電性接着部材60を介して第1配線12と、第1電極21A、22Aと、が接続する時に、セルフアライメント効果により第1発光素子と基板との位置合わせを容易に行うことができる。Z方向における凸部121の厚みは10μm以上30μm以下が好ましい。X方向及び/又はY方向における凸部121の幅は対向する発光素子の電極の大きさによって適宜変更してもよい。 As shown in FIG. 2B, the first wiring 12 preferably includes a convex portion 121 at a position corresponding to the pair of first electrodes 21A and 22A of the first light emitting element 20A. In other words, it is preferable that the first wiring 12 includes a convex portion 121 at a position overlapping the first electrodes 21A and 22A when viewed from above. By providing the first wiring 12 with the convex portion 121, when the first wiring 12 and the first electrodes 21A, 22A are connected via the conductive adhesive member 60, a self-alignment effect occurs between the first light emitting element and the substrate. It is possible to easily align the position with the The thickness of the convex portion 121 in the Z direction is preferably 10 μm or more and 30 μm or less. The width of the convex portion 121 in the X direction and/or the Y direction may be changed as appropriate depending on the size of the electrode of the opposing light emitting element.

導電性接着部材60は、第1発光素子20Aに設けられる一対の第1電極21A、22Aと第1配線12とを電気的に接続する部材である。導電性接着部材60の材料としては、例えば、金、銀、銅などのバンプ、銀、金、銅、プラチナ、アルミニウム、パラジウムなどの金属粉末と樹脂バインダを含む金属ペースト、錫-ビスマス系、錫-銅系、錫-銀系、金-錫系などの半田、低融点金属などのろう材等公知の材料を用いることができる。 The conductive adhesive member 60 is a member that electrically connects the first wiring 12 to the pair of first electrodes 21A and 22A provided on the first light emitting element 20A. Examples of the material of the conductive adhesive member 60 include bumps made of gold, silver, copper, etc., metal pastes containing metal powders such as silver, gold, copper, platinum, aluminum, palladium, and resin binders, tin-bismuth, tin, etc. - Known materials such as copper-based, tin-silver-based, gold-tin-based solders, and brazing materials such as low-melting point metals can be used.

発光装置が第2発光素子20Bを備える場合には、第2発光素子の一対の電極21B、22Bと対応する位置に第1配線12は凸部121を備えていることが好ましい。このようにすることで、セルフアライメント効果により発光素子と基板との位置合わせを容易に行うことができる。 When the light emitting device includes the second light emitting element 20B, the first wiring 12 preferably includes a convex portion 121 at a position corresponding to the pair of electrodes 21B and 22B of the second light emitting element. By doing so, the light emitting element and the substrate can be easily aligned due to the self-alignment effect.

基材11が、基材の下面112と基材の背面113とに開口する窪み16を備えていてもよく、窪み16を備えていなくてもよい。窪み16を備える場合には、発光装置1000Aと実装基板との接合強度を向上させることができる。発光装置1000が、基材11の下面112と、実装基板と、を対向させて実装する上面発光型(トップビュータイプ)でも、基材11の背面113と、実装基板と、を対向させて実装する側面発光型(サイドビュータイプ)でも、接合部材の体積が増加することで、実装基板との接合強度を向上させることができる。発光装置1000と実装基板の接合強度は、特に側面発光型の場合に向上させることができる。基材の窪みの数は1つでもよく、複数でもよい。窪みが複数あることで、更に発光装置1000と実装基板との接合強度を向上させることができる。 The base material 11 may be provided with a recess 16 that opens to the lower surface 112 of the base material and the back surface 113 of the base material, or may not be provided with the recess 16. When the recess 16 is provided, the bonding strength between the light emitting device 1000A and the mounting board can be improved. Even if the light emitting device 1000 is a top-emitting type (top view type) in which the lower surface 112 of the base material 11 and the mounting board are mounted facing each other, the light emitting device 1000 may be mounted with the back surface 113 of the base material 11 facing the mounting board. Even in the side-emitting type (side view type), the bonding strength with the mounting board can be improved by increasing the volume of the bonding member. The bonding strength between the light emitting device 1000 and the mounting board can be improved especially in the case of a side-emitting type. The number of depressions in the base material may be one or more. By having a plurality of depressions, it is possible to further improve the bonding strength between the light emitting device 1000 and the mounting board.

Z方向における窪み16の深さのそれぞれの最大は、Z方向における基材11の厚みの0.4倍から0.9倍であることが好ましい。窪みの深さが基材の厚みの0.4倍よりも深いことで、窪み内に形成される接合部材の体積が増加するので発光装置と実装基板の接合強度を向上させることができる。窪みの深さが基材の厚みの0.9倍よりも浅いことで、基材の強度低下を抑制することができる。 The maximum depth of each of the depressions 16 in the Z direction is preferably 0.4 to 0.9 times the thickness of the base material 11 in the Z direction. When the depth of the recess is deeper than 0.4 times the thickness of the base material, the volume of the bonding member formed in the recess increases, so that the bonding strength between the light emitting device and the mounting board can be improved. By making the depth of the depression shallower than 0.9 times the thickness of the base material, it is possible to suppress a decrease in the strength of the base material.

図2Bに示す発光装置1000のように、基材11の上面111は、凹部118を有していてもよく、図5に示す発光装置1000Cのように、基材11の上面111は、凹部118を有していなくてもよい。基材11の上面111が凹部118を有する場合には、第2反射部材40の一部は凹部118内に配置されることが好ましい。このようにすることで、基材11と第2反射部材40とが接するので、基材と第2反射部材の接合強度が向上する。基材11の上面111に形成された凹部118は、図6に示すように、基材11の上面111の外周を囲むように形成されることが好ましい。このようにすることで、基材11と第2反射部材40とが接する面積が増加するので、基材と第2反射部材の接合強度が向上する。 As in the light emitting device 1000 shown in FIG. 2B, the upper surface 111 of the base material 11 may have a recess 118, and as in the light emitting device 1000C shown in FIG. It does not have to have. When the upper surface 111 of the base material 11 has a recess 118 , it is preferable that a portion of the second reflective member 40 be disposed within the recess 118 . By doing so, the base material 11 and the second reflective member 40 are in contact with each other, so that the bonding strength between the base material and the second reflective member is improved. The recess 118 formed on the upper surface 111 of the base material 11 is preferably formed so as to surround the outer periphery of the upper surface 111 of the base material 11, as shown in FIG. By doing so, the area where the base material 11 and the second reflective member 40 are in contact increases, so that the bonding strength between the base material and the second reflective member is improved.

図7、図8及び図9に示す発光装置1000のように基材の外縁と、第2反射部材の外側面402と、が面一であることが好ましい。このようにすることで、X方向及び/又はY方向において発光装置を小型化することができる。 It is preferable that the outer edge of the base material and the outer surface 402 of the second reflective member are flush with each other as in the light emitting device 1000 shown in FIGS. 7, 8, and 9. By doing so, the light emitting device can be downsized in the X direction and/or the Y direction.

発光装置1000は、第2配線13の一部を被覆する絶縁膜18を備えてもよい。絶縁膜18を備えることで、下面112における絶縁性の確保及び短絡の防止を図ることができる。また、基材11から第2配線13が剥がれることを防止することができる。 The light emitting device 1000 may include an insulating film 18 covering a portion of the second wiring 13. By providing the insulating film 18, insulation on the lower surface 112 can be ensured and short circuits can be prevented. Moreover, peeling of the second wiring 13 from the base material 11 can be prevented.

発光装置は、第1光取り出し面を被覆する透光性部材50を備えていてもよい。第1発光素子の第1光取り出し面201Aが透光性部材50に被覆されることで、第1発光素子20Aを外部応力から保護することができる。透光性部材50は、第1光取り出し面に接して被覆していてもよく、図2Bに示すように、透光性の接着層34を介して第1光取り出し面を被覆していてもよい。発光装置が第2発光素子20Bを備える場合には、1つの透光性部材50が第1光取り出し面201A及び第2光取り出し面201Bを被覆してもよい。また、発光装置が複数の透光性部材を備えていてもよい。例えば、発光装置が第1透光性部材及び第2透光性部材を備え、第1透光性部材が第1光取り出し面を被覆し、第2透光性部材が第2光取り出し面を被覆するようにしてもよい。1つの透光性部材50によって第1光取り出し面201A及び第2光取り出し面201Bを被覆される場合には、第1発光素子からの光及び第2発光素子からの光が透光性部材50に導光されることで、第1発光素子と第2発光素子の間の輝度の低減を抑制することができる。これにより、発光装置の輝度ムラを抑制することができる。 The light emitting device may include a translucent member 50 covering the first light extraction surface. By covering the first light extraction surface 201A of the first light emitting element with the translucent member 50, the first light emitting element 20A can be protected from external stress. The translucent member 50 may be in contact with and cover the first light extraction surface, or may be coated on the first light extraction surface with a translucent adhesive layer 34 interposed therebetween, as shown in FIG. 2B. good. When the light emitting device includes the second light emitting element 20B, one translucent member 50 may cover the first light extraction surface 201A and the second light extraction surface 201B. Further, the light emitting device may include a plurality of light-transmitting members. For example, a light-emitting device includes a first light-transmitting member and a second light-transmitting member, the first light-transmitting member covers the first light extraction surface, and the second light-transmitting member covers the second light extraction surface. It may be covered. When the first light extraction surface 201A and the second light extraction surface 201B are covered with one light-transmitting member 50, the light from the first light-emitting element and the light from the second light-emitting element are covered by the light-transmitting member 50. By being guided by the light, reduction in brightness between the first light emitting element and the second light emitting element can be suppressed. Thereby, uneven brightness of the light emitting device can be suppressed.

発光装置が透光性部材50を備える場合には、透光性部材の側面は、第2反射部材に被覆されることが好ましい。このようにすることで、発光領域と非発光領域とのコントラストが高い、「見切り性」の良好な発光装置とすることができる。 When the light emitting device includes the light-transmitting member 50, the side surface of the light-transmitting member is preferably covered with a second reflective member. By doing so, it is possible to provide a light-emitting device with a high contrast between the light-emitting region and the non-light-emitting region, and with good "parting performance".

透光性部材50は波長変換部材を含有してもよい。このようにすることで、発光装置の色調整が容易になる。透光性部材に含有する波長変換部材の発光ピーク波長は、610nm以上750nm以下(赤色領域の波長範囲)であることが好ましい。例えば、第1発光素子の発光ピーク波長が青色領域の波長範囲にあり、第2発光素子の発光ピーク波長が緑色領域の波長範囲にあるので、透光性部材に含有する波長変換部材の発光ピーク波長が赤色領域の波長範囲にあることで発光装置の色再現性が向上する。透光性部材に含有する波長変換部材は1種類でもよく、複数の種類を含有させてもよい。例えば、緑色発光する波長変換部材と赤色発光する波長変換部材を透光性部材に含有させてもよい。透光性部材が緑色発光する波長変換部材を備えることで、発光装置の色調整が容易になる。緑色発光する波長変換部材としては、例えば、βサイアロン系蛍光体(例えばSi6-zAl8-z:Eu(0<z<4.2)が挙げられる。赤色発光する波長変換部材としては、例えば、マンガン賦活フッ化珪酸カリウムの蛍光体(例えばKSiF:Mn)が挙げられる。 The translucent member 50 may contain a wavelength conversion member. By doing so, color adjustment of the light emitting device becomes easy. The emission peak wavelength of the wavelength conversion member contained in the translucent member is preferably 610 nm or more and 750 nm or less (wavelength range in the red region). For example, since the emission peak wavelength of the first light emitting element is in the wavelength range of the blue region and the emission peak wavelength of the second light emitting element is in the wavelength range of the green region, the emission peak of the wavelength conversion member contained in the translucent member When the wavelength is in the red wavelength range, the color reproducibility of the light emitting device is improved. The light-transmitting member may contain one type of wavelength conversion member, or may contain a plurality of types. For example, the translucent member may contain a wavelength conversion member that emits green light and a wavelength conversion member that emits red light. By including the wavelength conversion member in which the light-transmitting member emits green light, color adjustment of the light-emitting device becomes easy. Examples of wavelength conversion members that emit green light include β-sialon-based phosphors (for example, Si 6-z Al z O z N 8-z :Eu (0<z<4.2). Wavelength conversion members that emit red light Examples of the member include manganese-activated potassium fluorosilicate phosphor (eg, K 2 SiF 6 :Mn).

波長変換部材は透光性部材中に均一に分散させてもよいし、透光性部材の上面よりも第1発光素子の近傍に波長変換部材を偏在させてもよい。透光性部材の上面よりも第1発光素子の近傍に波長変換部材を偏在させることで、水分に弱い波長変換部材を使用しても透光性部材の母材が保護層としても機能を果たすので波長変換部材の劣化を抑制できる。図2Bに示す発光装置1000のように、透光性部材50が波長変換部材を含有する層51と、波長変換部材を実質的に含有しない層52と、を備えていてもよい。Z方向において、波長変換部材を実質的に含有しない層は、波長変換部材を含有する層よりも上側に位置する。このようにすることで、波長変換部材を実質的に含有しない層が保護層としても機能を果たすので波長変換部材の劣化を抑制できる。水分に弱い波長変換部材としては、例えばマンガン賦活フッ化珪酸カリウムの蛍光体が挙げられる。マンガン賦活フッ化珪酸カリウムの蛍光体は、スペクトル線幅の比較的狭い発光が得られ色再現性の観点において好ましい部材である。「波長変換部材を実質的に含有しない」とは、不可避的に混入する波長変換部材を排除しないことを意味し、波長変換部材の含有率が0.05重量%以下であることが好ましい。 The wavelength conversion member may be uniformly dispersed in the transparent member, or the wavelength conversion member may be unevenly distributed closer to the first light emitting element than the upper surface of the transparent member. By unevenly distributing the wavelength conversion member closer to the first light emitting element than the upper surface of the translucent member, the base material of the translucent member also functions as a protective layer even if a wavelength conversion member that is sensitive to moisture is used. Therefore, deterioration of the wavelength conversion member can be suppressed. Like the light-emitting device 1000 shown in FIG. 2B, the light-transmitting member 50 may include a layer 51 containing a wavelength conversion member and a layer 52 that does not substantially contain the wavelength conversion member. In the Z direction, the layer that does not substantially contain the wavelength conversion member is located above the layer that contains the wavelength conversion member. By doing so, the layer that does not substantially contain the wavelength conversion member also functions as a protective layer, so that deterioration of the wavelength conversion member can be suppressed. Examples of wavelength conversion members that are sensitive to moisture include manganese-activated potassium fluorosilicate phosphors. A manganese-activated potassium fluorosilicate phosphor is a preferable member from the viewpoint of color reproducibility because it can emit light with a relatively narrow spectral line width. "Substantially no wavelength conversion member is contained" means that the wavelength conversion member that is unavoidably mixed is not excluded, and the content of the wavelength conversion member is preferably 0.05% by weight or less.

透光性部材50の波長変換部材を含有する層51は単層でもよく、複数の層でもよい。例えば、図3に示す発光装置1000Aのように、透光性部材50が、第1波長変換層51Aと、第1波長変換層51Aを被覆する第2波長変換層51Bと、を備えていてもよい。第2波長変換層51Bは、第1波長変換層51Aを直接被覆してもよく、透光性の別の層を介して第1波長変換層51Aを被覆してもよい。尚、第1波長変換層51Aは、第2波長変換層51Bよりも第1発光素子20Aの第1光取り出し面201Aから近い位置に配置される。第1波長変換層51Aに含有される波長変換部材の発光ピーク波長は、第2波長変換層51Bに含有される波長変換部材の発光ピーク波長よりも短いことが好ましい。このようにすることで、第1発光素子に励起された第1波長変換層51Aからの光によって、第2波長変換層51Bの波長変換部材を励起することができる。これにより、第2波長変換層51Bの波長変換部材からの光を増加させることができる。 The layer 51 containing the wavelength conversion member of the transparent member 50 may be a single layer or may be a plurality of layers. For example, like a light emitting device 1000A shown in FIG. 3, the transparent member 50 may include a first wavelength conversion layer 51A and a second wavelength conversion layer 51B covering the first wavelength conversion layer 51A. good. The second wavelength conversion layer 51B may directly cover the first wavelength conversion layer 51A, or may cover the first wavelength conversion layer 51A via another transparent layer. Note that the first wavelength conversion layer 51A is arranged closer to the first light extraction surface 201A of the first light emitting element 20A than the second wavelength conversion layer 51B. It is preferable that the emission peak wavelength of the wavelength conversion member contained in the first wavelength conversion layer 51A is shorter than the emission peak wavelength of the wavelength conversion member contained in the second wavelength conversion layer 51B. By doing so, the wavelength conversion member of the second wavelength conversion layer 51B can be excited by the light from the first wavelength conversion layer 51A excited by the first light emitting element. Thereby, the light from the wavelength conversion member of the second wavelength conversion layer 51B can be increased.

第1波長変換層51Aに含有される波長変換部材の発光ピーク波長は、500nm以上570nm以下であり、第2波長変換層51Bに含有される波長変換部材の発光ピーク波長は、610nm以上750nm以下であることが好ましい。このようにすることで、色再現性の高い発光装置とすることができる。例えば、第1波長変換層51Aに含有される波長変換部材としてβサイアロン系蛍光体が挙げられ、第2波長変換層51Bに含有される波長変換部材としてマンガン賦活フッ化珪酸カリウムの蛍光体が挙げられる。第2波長変換層51Bに含有される波長変換部材としてマンガン賦活フッ化珪酸カリウムの蛍光体を用いる場合には、特に、透光性部材50が、第1波長変換層51Aと、第2波長変換層51Bと、備えることが好ましい。マンガン賦活フッ化珪酸カリウムの蛍光体は輝度飽和を起こしやすいが、第2波長変換層51Bと第1発光素子20Aとの間に第1波長変換層51Aが位置することで第1発光素子からの光が過度にマンガン賦活フッ化珪酸カリウムの蛍光体に照射されることを抑制することができる。これにより、マンガン賦活フッ化珪酸カリウムの蛍光体の劣化を抑制することができる。 The emission peak wavelength of the wavelength conversion member contained in the first wavelength conversion layer 51A is 500 nm or more and 570 nm or less, and the emission peak wavelength of the wavelength conversion member contained in the second wavelength conversion layer 51B is 610 nm or more and 750 nm or less. It is preferable that there be. By doing so, a light emitting device with high color reproducibility can be obtained. For example, the wavelength conversion member contained in the first wavelength conversion layer 51A may be a β-sialon-based phosphor, and the wavelength conversion member contained in the second wavelength conversion layer 51B may be a manganese-activated potassium fluorosilicate phosphor. It will be done. In particular, when a manganese-activated potassium fluorosilicate phosphor is used as the wavelength conversion member contained in the second wavelength conversion layer 51B, the light-transmitting member 50 is connected to the first wavelength conversion layer 51A and the second wavelength conversion layer. It is preferable to include a layer 51B. Although the manganese-activated potassium fluorosilicate phosphor tends to cause brightness saturation, the position of the first wavelength conversion layer 51A between the second wavelength conversion layer 51B and the first light emitting element 20A reduces the amount of light emitted from the first light emitting element. It is possible to suppress excessive irradiation of the manganese-activated potassium fluorosilicate phosphor with light. Thereby, deterioration of the manganese-activated potassium fluorosilicate phosphor can be suppressed.

<実施形態2>
本発明の実施形態2に係る発光装置2000を図10に基づいて説明する。発光装置2000は、実施形態1に係る発光装置1000比較して、発光素子の数が相違する。
<Embodiment 2>
A light emitting device 2000 according to Embodiment 2 of the present invention will be described based on FIG. 10. The light emitting device 2000 differs from the light emitting device 1000 according to the first embodiment in the number of light emitting elements.

図10に示すように、発光装置2000は、第1発光素子20A、第2発光素子20B及び第3発光素子20Cを備える。第1発光素子20A、第2発光素子20B及び/又は第3発光素子の発光ピーク波長は同じでもよく、発光ピーク波長は異なっていてもよい。尚、発光装置は発光素子を4個以上備えていてもよい。 As shown in FIG. 10, the light emitting device 2000 includes a first light emitting element 20A, a second light emitting element 20B, and a third light emitting element 20C. The first light emitting element 20A, the second light emitting element 20B, and/or the third light emitting element may have the same emission peak wavelength, or may have different emission peak wavelengths. Note that the light emitting device may include four or more light emitting elements.

X方向において、第1発光素子20Aと、第2発光素子20Bと、第3発光素子20Cと、が順に並んでいる場合には、第1発光素子20Aの発光ピーク波長と第3発光素子20Cの発光ピーク波長とが同じであることが好ましい。このようにすることで、例えば、第1発光素子20Aの出力が足りない場合に第3発光素子20Cで補うことができる。また、第1発光素子20Aの発光ピーク波長及び第3発光素子20Cの発光ピーク波長と異なる発光ピーク波長を有する第2発光素子20Bが、第1発光素子20Aと第3発光素子20Cの間に位置することで、第1発光素子20Aと、第3発光素子20Cと、第2発光素子20Bと、が順に並んでいる場合よりも色ムラを低減することができる。例えば、発光装置が、発光ピーク波長が430nm以上490nm未満(青色領域の波長範囲)の範囲である第1発光素子と、発光ピーク波長が490nm以上570nm以下(緑色領域の波長範囲)の範囲である第2発光素子と、発光ピーク波長が430nm以上490nm未満(青色領域の波長範囲)の範囲である第3発光素子と、を備えていてもよい。 In the X direction, when the first light emitting element 20A, the second light emitting element 20B, and the third light emitting element 20C are lined up in this order, the emission peak wavelength of the first light emitting element 20A and the third light emitting element 20C are different. It is preferable that the emission peak wavelength is the same. By doing so, for example, when the output of the first light emitting element 20A is insufficient, it can be supplemented by the third light emitting element 20C. Further, a second light emitting element 20B having a light emission peak wavelength different from the light emission peak wavelength of the first light emitting element 20A and the light emission peak wavelength of the third light emitting element 20C is located between the first light emitting element 20A and the third light emitting element 20C. By doing so, color unevenness can be reduced more than when the first light emitting element 20A, the third light emitting element 20C, and the second light emitting element 20B are lined up in this order. For example, the light emitting device includes a first light emitting element whose emission peak wavelength is in the range of 430 nm or more and less than 490 nm (wavelength range in the blue region), and a first light emitting element whose emission peak wavelength is in the range of 490 nm or more and less than 570 nm (wavelength range in the green region). The third light emitting element may include a second light emitting element and a third light emitting element having an emission peak wavelength in a range of 430 nm or more and less than 490 nm (wavelength range of blue region).

以下、本発明の一実施形態に係る発光装置における各構成要素について説明する。 Each component in a light emitting device according to an embodiment of the present invention will be described below.

(基板10)
基板10は、発光素子を載置する部材である。基板10は、基材11と、第1配線12と、を備える。
(Substrate 10)
The substrate 10 is a member on which a light emitting element is placed. The substrate 10 includes a base material 11 and a first wiring 12.

(基材11)
基材11は、樹脂若しくは繊維強化樹脂、セラミックス、ガラスなどの絶縁性部材を用いて構成することができる。樹脂若しくは繊維強化樹脂としては、エポキシ、ガラスエポキシ、ビスマレイミドトリアジン(BT)、ポリイミドなどが挙げられる。また、基材11に酸化チタン等の白色顔料を含有させてもよい。セラミックスとしては、酸化アルミニウム、窒化アルミニウム、酸化ジルコニウム、窒化ジルコニウム、酸化チタン、窒化チタン、若しくはこれらの混合物などが挙げられる。これらの基材のうち、特に発光素子の線膨張係数に近い物性を有する基材を使用することが好ましい。
(Base material 11)
The base material 11 can be constructed using an insulating member such as resin or fiber-reinforced resin, ceramics, or glass. Examples of the resin or fiber-reinforced resin include epoxy, glass epoxy, bismaleimide triazine (BT), and polyimide. Further, the base material 11 may contain a white pigment such as titanium oxide. Examples of ceramics include aluminum oxide, aluminum nitride, zirconium oxide, zirconium nitride, titanium oxide, titanium nitride, and mixtures thereof. Among these base materials, it is particularly preferable to use a base material having physical properties close to the coefficient of linear expansion of the light emitting element.

(第1配線12)
第1配線は、基材の上面に配置され、発光素子と電気的に接続される。第1配線は、銅、鉄、ニッケル、タングステン、クロム、アルミニウム、銀、金、チタン、パラジウム、ロジウム、又はこれらの合金で形成することができる。これらの金属又は合金の単層でも多層でもよい。特に、放熱性の観点においては銅又は銅合金が好ましい。また、第1配線の表層には、導電性接着部材の濡れ性及び/若しくは光反射性などの観点から、銀、白金、アルミニウム、ロジウム、金若しくはこれらの合金などの層が設けられていてもよい。
(First wiring 12)
The first wiring is arranged on the upper surface of the base material and electrically connected to the light emitting element. The first wiring can be formed of copper, iron, nickel, tungsten, chromium, aluminum, silver, gold, titanium, palladium, rhodium, or an alloy thereof. It may be a single layer or multiple layers of these metals or alloys. In particular, copper or a copper alloy is preferable from the viewpoint of heat dissipation. Further, a layer of silver, platinum, aluminum, rhodium, gold, or an alloy thereof may be provided on the surface layer of the first wiring from the viewpoint of wettability of the conductive adhesive member and/or light reflectivity. good.

(第2配線13、第3配線14)
第2配線は基板の下面に配置される。第3配線は、窪みの内壁を被覆し、第2配線と電気的に接続される。第2配線及び第3配線は、第1配線と同様の導電性部材を用いることができる。
(Second wiring 13, third wiring 14)
The second wiring is arranged on the lower surface of the substrate. The third wiring covers the inner wall of the recess and is electrically connected to the second wiring. The second wiring and the third wiring can use the same conductive member as the first wiring.

(ビア15)
ビア15は基材11の上面111と下面112とを貫通する孔内に設けられ、第1配線と第2配線を電気的に接続する部材である。ビア15は基材の貫通孔の表面を被覆する第4配線151と、第4配線内151に充填された充填部材152と、によって構成されてもよい。第4配線151には、第1配線、第2配線及び第3配線と同様の導電性部材を用いることができる。充填部材152には、導電性の部材を用いても絶縁性の部材を用いてもよい。
(Via 15)
The via 15 is provided in a hole penetrating the upper surface 111 and the lower surface 112 of the base material 11, and is a member that electrically connects the first wiring and the second wiring. The via 15 may include a fourth wiring 151 that covers the surface of the through hole of the base material, and a filling member 152 filled in the fourth wiring 151. For the fourth wiring 151, the same conductive member as the first wiring, the second wiring, and the third wiring can be used. The filling member 152 may be a conductive member or an insulating member.

(絶縁膜18)
絶縁膜18は、下面における絶縁性の確保及び短絡の防止を図る部材である。絶縁膜は、当該分野で使用されるもののいずれで形成されていてもよい。例えば、熱硬化性樹脂又は熱可塑性樹脂等が挙げられる。
(Insulating film 18)
The insulating film 18 is a member that ensures insulation on the lower surface and prevents short circuits. The insulating film may be formed of any material used in the field. Examples include thermosetting resins and thermoplastic resins.

(第1発光素子20A、第2発光素子20B、第3発光素子20C)
第1発光素子、第2発光素子及び第3発光素子は、電圧を印加することで自ら発光する半導体素子であり、窒化物半導体等から構成される既知の半導体素子を適用できる。第1発光素子、第2発光素子及び第3発光素子としては、例えばLEDチップが挙げられる。第1発光素子、第2発光素子及び第3発光素子は、少なくとも半導体層を備え、多くの場合に素子基板をさらに備える。第1発光素子、第2発光素子及び第3発光素子は、正負電極を有する。正負電極は、金、銀、錫、白金、ロジウム、チタン、アルミニウム、タングステン、パラジウム、ニッケル又はこれらの合金で構成することができる。半導体材料としては、窒化物半導体を用いることが好ましい。窒化物半導体は、主として一般式InAlGa1-x-yN(0≦x、0≦y、x+y≦1)で表される。このほか、InAlGaAs系半導体、InAlGaP系半導体、硫化亜鉛、セレン化亜鉛、炭化珪素などを用いることもできる。第1発光素子、第2発光素子及び第3発光素子の素子基板は、主として半導体積層体を構成する半導体の結晶を成長可能な結晶成長用基板であるが、結晶成長用基板から分離した半導体素子構造に接合させる接合用基板であってもよい。素子基板が透光性を有することで、フリップチップ実装を採用しやすく、また光の取り出し効率を高めやすい。素子基板の母材としては、サファイア、窒化ガリウム、窒化アルミニウム、シリコン、炭化珪素、ガリウム砒素、ガリウム燐、インジウム燐、硫化亜鉛、酸化亜鉛、セレン化亜鉛、ダイヤモンドなどが挙げられる。なかでも、サファイアが好ましい。素子基板の厚さは、適宜選択でき、例えば0.02mm以上1mm以下であり、素子基板の強度及び/若しくは発光装置の厚さの観点において、0.05mm以上0.3mm以下であることが好ましい。
(First light emitting element 20A, second light emitting element 20B, third light emitting element 20C)
The first light emitting element, the second light emitting element, and the third light emitting element are semiconductor elements that emit light by themselves when a voltage is applied, and known semiconductor elements made of nitride semiconductors or the like can be used. Examples of the first light emitting element, the second light emitting element, and the third light emitting element include LED chips. The first light emitting element, the second light emitting element, and the third light emitting element each include at least a semiconductor layer, and in many cases further include an element substrate. The first light emitting element, the second light emitting element, and the third light emitting element have positive and negative electrodes. The positive and negative electrodes can be made of gold, silver, tin, platinum, rhodium, titanium, aluminum, tungsten, palladium, nickel, or an alloy thereof. It is preferable to use a nitride semiconductor as the semiconductor material. Nitride semiconductors are mainly represented by the general formula In x Al y Ga 1-xy N (0≦x, 0≦y, x+y≦1). In addition, InAlGaAs-based semiconductors, InAlGaP-based semiconductors, zinc sulfide, zinc selenide, silicon carbide, etc. can also be used. The element substrates of the first light emitting element, the second light emitting element, and the third light emitting element are mainly crystal growth substrates capable of growing semiconductor crystals constituting the semiconductor stack, but the semiconductor elements separated from the crystal growth substrate It may also be a bonding substrate to be bonded to a structure. Since the element substrate has light-transmitting properties, flip-chip mounting can be easily adopted and light extraction efficiency can be easily increased. Examples of the base material of the element substrate include sapphire, gallium nitride, aluminum nitride, silicon, silicon carbide, gallium arsenide, gallium phosphorus, indium phosphorus, zinc sulfide, zinc oxide, zinc selenide, and diamond. Among them, sapphire is preferred. The thickness of the element substrate can be selected as appropriate, and is, for example, 0.02 mm or more and 1 mm or less, and preferably 0.05 mm or more and 0.3 mm or less from the viewpoint of the strength of the element substrate and/or the thickness of the light emitting device. .

(第1反射部材)
第1反射部材は、第1発光素子からの光が基板に吸収されることを抑制する部材である。第1反射部材は、基材の上面を被覆し、第1発光素子からの光を反射する。発光装置の光取り出し効率の観点から、第1発光素子の発光ピーク波長における第1反射部材の光反射率は、70%以上であることが好ましく、80%以上であることがより好ましく、90%以上であることがよりいっそう好ましい。第1反射部材は、母材中に反射粒子を含有している。
(First reflective member)
The first reflective member is a member that suppresses light from the first light emitting element from being absorbed by the substrate. The first reflective member covers the upper surface of the base material and reflects light from the first light emitting element. From the viewpoint of light extraction efficiency of the light emitting device, the light reflectance of the first reflecting member at the emission peak wavelength of the first light emitting element is preferably 70% or more, more preferably 80% or more, and 90%. It is even more preferable that the above is the case. The first reflective member contains reflective particles in the base material.

(第1反射部材の母材)
第1反射部材の母材には、樹脂を用いることができ、例えばシリコーン樹脂、エポキシ樹脂、フェノール樹脂、ポリカーボネート樹脂、アクリル樹脂、又はこれらの変性樹脂が挙げられる。なかでも、シリコーン樹脂及び変性シリコーン樹脂は、耐熱性及び耐光性に優れ、好ましい。具体的なシリコーン樹脂としては、ジメチルシリコーン樹脂、フェニル-メチルシリコーン樹脂、ジフェニルシリコーン樹脂が挙げられる。
(Base material of first reflective member)
A resin can be used for the base material of the first reflective member, and examples thereof include silicone resin, epoxy resin, phenol resin, polycarbonate resin, acrylic resin, or modified resins thereof. Among them, silicone resins and modified silicone resins are preferable because they have excellent heat resistance and light resistance. Specific silicone resins include dimethyl silicone resin, phenyl-methyl silicone resin, and diphenyl silicone resin.

(反射粒子)
反射粒子は、酸化チタン、酸化亜鉛、酸化マグネシウム、炭酸マグネシウム、水酸化マグネシウム、炭酸カルシウム、水酸化カルシウム、珪酸カルシウム、珪酸マグネシウム、チタン酸バリウム、硫酸バリウム、水酸化アルミニウム、酸化アルミニウム、酸化ジルコニウム、酸化ケイ素のうちの1種を単独で、又はこれらのうちの2種以上を組み合わせて用いることができる。例えば、反射粒子として、酸化チタンの表面がジルコニア等公知の部材に被覆されているものを使用してもよい。反射粒子の形状は、適宜選択でき、不定形若しくは破砕状でもよいが、流動性の観点では球状が好ましい。また、反射粒子の粒径は、例えば0.1μm以上0.5μm以下程度が挙げられるが、光反射や被覆の効果を高めるためには小さい程好ましい。光反射性の反射部材中の反射粒子の含有量は、適宜選択できるが、光反射性及び液状時における粘度などの観点から、例えば10wt%以上80wt%以下が好ましく、20wt%以上70wt%以下がより好ましく、30wt%以上60wt%以下がよりいっそう好ましい。
(reflective particles)
The reflective particles include titanium oxide, zinc oxide, magnesium oxide, magnesium carbonate, magnesium hydroxide, calcium carbonate, calcium hydroxide, calcium silicate, magnesium silicate, barium titanate, barium sulfate, aluminum hydroxide, aluminum oxide, zirconium oxide, One kind of silicon oxide can be used alone, or two or more kinds of these can be used in combination. For example, as the reflective particles, titanium oxide whose surface is coated with a known member such as zirconia may be used. The shape of the reflective particles can be selected as appropriate and may be amorphous or crushed, but spherical is preferred from the viewpoint of fluidity. Further, the particle size of the reflective particles is, for example, about 0.1 μm or more and 0.5 μm or less, but the smaller the particle size, the more preferable it is in order to enhance the light reflection and coating effects. The content of reflective particles in the light reflective member can be selected as appropriate, but from the viewpoint of light reflectivity and viscosity in liquid state, it is preferably 10 wt% or more and 80 wt% or less, and 20 wt% or more and 70 wt% or less. More preferably, 30 wt% or more and 60 wt% or less is even more preferable.

(第1被覆部材)
第1被覆部材は、第1光取り出し面を露出し、第1反射部材及び第1側面の少なくとも一部を被覆する透光性の部材である。第1被覆部材としては、透光性の部材を用いることができ、例えば、樹脂を用いることができる。第1被覆部材に用いることができる樹脂としては、シリコーン樹脂、エポキシ樹脂、フェノール樹脂、ポリカーボネート樹脂、アクリル樹脂、又はこれらの変性樹脂が挙げられる。なかでも、シリコーン樹脂及び変性シリコーン樹脂は、耐熱性及び耐光性に優れ、好ましい。
(First covering member)
The first covering member is a translucent member that exposes the first light extraction surface and covers at least a portion of the first reflective member and the first side surface. As the first covering member, a translucent member can be used, and for example, resin can be used. Examples of resins that can be used for the first covering member include silicone resins, epoxy resins, phenol resins, polycarbonate resins, acrylic resins, and modified resins thereof. Among them, silicone resins and modified silicone resins are preferable because they have excellent heat resistance and light resistance.

第1被覆部材は、各種の拡散粒子を含有していてもよい。拡散粒子としては、酸化珪素、酸化アルミニウム、酸化ジルコニウム、酸化亜鉛などが挙げられる。拡散粒子は、これらのうちの1種を単独で、又はこれらのうちの2種以上を組み合わせて用いることができる。特に、熱膨張係数の小さい酸化珪素が好ましい。また、拡散粒子として、ナノ粒子を用いることで、発光素子が発する光の散乱を増大させ、波長変換部材の使用量を低減することもできる。なお、ナノ粒子とは、粒径が1nm以上100nm以下の粒子とする。また、本明細書における「粒径」は、例えば、D50で定義される。 The first covering member may contain various types of diffusion particles. Examples of the diffusion particles include silicon oxide, aluminum oxide, zirconium oxide, and zinc oxide. As the diffusion particles, one of these types can be used alone, or two or more of these types can be used in combination. Particularly preferred is silicon oxide, which has a small coefficient of thermal expansion. Further, by using nanoparticles as the diffusion particles, scattering of light emitted by the light emitting element can be increased, and the amount of wavelength conversion member used can also be reduced. Note that nanoparticles are particles with a particle size of 1 nm or more and 100 nm or less. Moreover, the "particle size" in this specification is defined, for example, by D50 .

(反射粒子含有部材)
反射粒子含有部材は、透光性の部材中に反射粒子を含有する部材である。反射粒子含有部材において反射粒子が偏在する反射部と、反射部の上に位置し反射粒子が偏在していない透光部と、を備えていてもよい。
(Reflective particle containing member)
The reflective particle-containing member is a member that contains reflective particles in a translucent member. The reflective particle-containing member may include a reflective part in which reflective particles are unevenly distributed, and a transparent part located above the reflective part and in which reflective particles are not unevenly distributed.

反射粒子含有部材の母材としては、第1被覆部材と同様の材料を用いることができる。また、反射粒子含有部材の反射粒子としては、第1反射部材の反射粒子と同様の材料を用いることができる。 As the base material of the reflective particle-containing member, the same material as the first covering member can be used. Further, as the reflective particles of the reflective particle-containing member, the same material as the reflective particles of the first reflective member can be used.

(第2被覆部材)
第2被覆部材は、第1側面の少なくとも一部を被覆する部材である。第2被覆部材の母材としては、第1被覆部材と同様の材料を用いることができる。
(Second covering member)
The second covering member is a member that covers at least a portion of the first side surface. As the base material of the second covering member, the same material as the first covering member can be used.

(第2反射部材)
第2反射部材は、上面視において第2被覆部材を囲む部材である。第2反射部材は、第1反射部材と同様の材料を用いることができる。
(Second reflective member)
The second reflective member is a member surrounding the second covering member in a top view. The second reflective member can be made of the same material as the first reflective member.

(透光性部材50)
透光性部材は第1光取り出し面を被覆し、第1発光素子を保護する部材である。透光性部材の母材としては、第1被覆部材と同様の材料を用いることができる。
(Translucent member 50)
The light-transmitting member is a member that covers the first light extraction surface and protects the first light emitting element. As the base material of the translucent member, the same material as the first covering member can be used.

(接着層34)
接着層は、透光性部材と第1発光素子の第1光取り出し面とを接着する部材のことである。第1光取り出し面が第2被覆部材で被覆されている場合には、接着層は透光性部材と第2被覆部材とを接着する部材のことである。接着層は、透光性を有する。接着層には、第1被覆部材と同様の材料を用いることができる。
(Adhesive layer 34)
The adhesive layer is a member that adheres the light-transmitting member and the first light extraction surface of the first light emitting element. When the first light extraction surface is covered with the second covering member, the adhesive layer is a member that adheres the light-transmitting member and the second covering member. The adhesive layer has translucency. The same material as the first covering member can be used for the adhesive layer.

(波長変換部材)
波長変換部材は、発光素子が発する一次光の少なくとも一部を吸収して、一次光とは異なる波長の二次光を発する。波長変換部材は、以下に示す具体例のうちの1種を単独で、又は2種以上を組み合わせて用いることができる。透光性部材が複数の波長変換層を備える場合には、各波長変換層に含有される波長変換部材は同じでもよく、異なっていてもよい。
(Wavelength conversion member)
The wavelength conversion member absorbs at least a portion of the primary light emitted by the light emitting element and emits secondary light having a wavelength different from that of the primary light. As the wavelength conversion member, one type of the specific examples shown below can be used alone or two or more types can be used in combination. When the translucent member includes a plurality of wavelength conversion layers, the wavelength conversion members contained in each wavelength conversion layer may be the same or different.

緑色発光する波長変換部材としては、イットリウム・アルミニウム・ガーネット系蛍光体(例えばY(Al,Ga)12:Ce)、ルテチウム・アルミニウム・ガーネット系蛍光体(例えばLu(Al,Ga)12:Ce)、テルビウム・アルミニウム・ガーネット系蛍光体(例えばTb(Al,Ga)12:Ce)系蛍光体、シリケート系蛍光体(例えば(Ba,Sr)SiO:Eu)、クロロシリケート系蛍光体(例えばCaMg(SiOCl:Eu)、βサイアロン系蛍光体(例えばSi6-zAl8-z:Eu(0<z<4.2))、SGS系蛍光体(例えばSrGa:Eu)、アルカリ土類アルミネート系蛍光体(Ba,Sr,Ca)MgAl1017-x:Eu,Mnなどが挙げられる。黄色発光の波長変換部材としては、αサイアロン系蛍光体(例えばM(Si,Al)12(O,N)16(但し、0<z≦2であり、MはLi、Mg、Ca、Y、及びLaとCeを除くランタニド元素)などが挙げられる。このほか、上記緑色発光する波長変換部材の中には黄色発光の波長変換部材もある。また例えば、イットリウム・アルミニウム・ガーネット系蛍光体は、Yの一部をGdで置換することで発光ピーク波長を長波長側にシフトさせることができ、黄色発光が可能である。また、これらの中には、橙色発光が可能な波長変換部材もある。赤色発光する波長変換部材としては、窒素含有アルミノ珪酸カルシウム(CASN又はSCASN)系蛍光体(例えば(Sr,Ca)AlSiN:Eu)などが挙げられる。このほか、マンガン賦活フッ化物系蛍光体(一般式(I)A[M1-aMn]で表される蛍光体である(但し、上記一般式(I)中、Aは、K、Li、Na、Rb、Cs及びNHからなる群から選ばれる少なくとも1種であり、Mは、第4族元素及び第14族元素からなる群から選ばれる少なくとも1種の元素であり、aは0<a<0.2を満たす))が挙げられる。このマンガン賦活フッ化物系蛍光体の代表例としては、マンガン賦活フッ化珪酸カリウムの蛍光体(例えばKSiF:Mn)がある。 As wavelength conversion members that emit green light, yttrium-aluminum-garnet-based phosphors (e.g., Y 3 (Al, Ga) 5 O 12 :Ce), lutetium-aluminum-garnet-based phosphors (e.g., Lu 3 (Al, Ga)) are used. 5 O 12 :Ce), terbium-aluminum-garnet-based phosphor (e.g. Tb 3 (Al, Ga) 5 O 12 :Ce)-based phosphor, silicate-based phosphor (e.g. (Ba, Sr) 2 SiO 4 :Eu) ), chlorosilicate phosphors (e.g. Ca 8 Mg(SiO 4 ) 4 Cl 2 :Eu), β-sialon phosphors (e.g. Si 6-z Al z O z N 8-z :Eu (0<z<4 .2)), SGS-based phosphors (for example, SrGa 2 S 4 :Eu), alkaline earth aluminate-based phosphors (Ba,Sr,Ca)Mg x Al 10 O 17-x :Eu,Mn, etc. . As a wavelength conversion member for yellow light emission, an α-sialon-based phosphor (for example, M z (Si, Al) 12 (O, N) 16 (0<z≦2, and M is Li, Mg, Ca, Y , and lanthanide elements excluding La and Ce).In addition, among the wavelength conversion members that emit green light, there are also wavelength conversion members that emit yellow light.For example, yttrium-aluminum-garnet-based phosphors include By substituting a part of Y with Gd, the emission peak wavelength can be shifted to the longer wavelength side, making it possible to emit yellow light.Also, among these, there are also wavelength conversion members capable of emitting orange light. Examples of wavelength conversion members that emit red light include nitrogen-containing calcium aluminosilicate (CASN or SCASN)-based phosphors (e.g. (Sr,Ca)AlSiN 3 :Eu).In addition, manganese-activated fluoride-based phosphors It is a phosphor represented by the general formula (I) A 2 [M 1-a Mn a F 6 ] (However, in the above general formula (I), A is K, Li, Na, Rb, Cs and NH4 , M is at least one element selected from the group consisting of Group 4 elements and Group 14 elements, and a is 0<a<0.2 A representative example of this manganese-activated fluoride-based phosphor is a manganese-activated potassium fluorosilicate phosphor (for example, K 2 SiF 6 :Mn).

(発光装置1000の製造方法)
次に、実施形態に係る発光装置の製造方法の一例を図11から図18に基づいて説明する。
(Method for manufacturing light emitting device 1000)
Next, an example of a method for manufacturing the light emitting device according to the embodiment will be described based on FIGS. 11 to 18.

[基板及び第1発光素子を準備する工程]
まず、基板及び第1発光素子を準備する。基板は、上面を有する基材と、上面に配置される第1配線と、を備える。第1発光素子は、第1光取り出し面と、第1光取り出し面の反対側にある第1電極形成面と、第1光取り出し面と第1電極形成面との間にある第1側面と、第1電極形成面に一対の第1電極と、を有する。発光装置が複数の発光素子を備える場合には、複数の発光素子を準備する。基板を準備する工程と、発光素子を準備する工程はどちらを先に行ってもよい。また、基板は発光装置毎に個片化されていてもよく、個片化前の集合基板の状態のものでもよい。
[Step of preparing the substrate and first light emitting element]
First, a substrate and a first light emitting element are prepared. The substrate includes a base material having an upper surface and a first wiring arranged on the upper surface. The first light emitting element includes a first light extraction surface, a first electrode formation surface opposite to the first light extraction surface, and a first side surface between the first light extraction surface and the first electrode formation surface. , a pair of first electrodes on the first electrode forming surface. When the light emitting device includes a plurality of light emitting elements, the plurality of light emitting elements are prepared. Either the step of preparing the substrate or the step of preparing the light emitting element may be performed first. Further, the substrate may be separated into individual pieces for each light emitting device, or may be in the state of a collective substrate before being separated into pieces.

[第1発光素子を載置する工程]
図11に示すように、第1発光素子20Aの第1電極形成面203Aと基板10の第1配線12とを対向させて、第1配線12上に第1発光素子20Aを載置する。第1配線12と、第1電極21A、22Aと、を導電性接着部材60により接着させることができる。発光装置が第2発光素子20Bを備える場合には、第2発光素子20Bの第2電極形成面203Bと基板10の第1配線12とを対向させて、第1配線12上に第2発光素子20Bを載置する。
[Step of placing the first light emitting element]
As shown in FIG. 11, the first light emitting element 20A is placed on the first wiring 12 with the first electrode forming surface 203A of the first light emitting element 20A and the first wiring 12 of the substrate 10 facing each other. The first wiring 12 and the first electrodes 21A and 22A can be bonded together using the conductive adhesive member 60. When the light emitting device includes the second light emitting element 20B, the second electrode forming surface 203B of the second light emitting element 20B and the first wiring 12 of the substrate 10 are made to face each other, and the second light emitting element is placed on the first wiring 12. Place 20B.

[反射粒子含有部材を配置する工程]
図12に示すように、上面視において、第1発光素子20Aと重なる基材11の上面111の少なくとも一部が露出するように反射粒子含有部材30を基材11の上面111に配置する。上面視において、第1発光素子と重なる基材の上面の少なくとも一部が露出する反射粒子含有部材を形成することで、第1発光素子と重なる基材の上面が露出しない反射粒子含有部材を形成する場合よりも反射粒子含有部材の量を少なくしやすくなる。これにより、後述する反射粒子含有部材を遠心力により広げる工程の後でも反射粒子含有部材が第1発光素子の第1光取り出し面に形成されることを抑制することができる。これにより、第1発光素子からの光を取り出し出しやすくなるので発光装置の光取り出し効率が向上する。
[Step of arranging reflective particle-containing member]
As shown in FIG. 12, the reflective particle-containing member 30 is arranged on the upper surface 111 of the base material 11 so that at least a part of the upper surface 111 of the base material 11 overlapping with the first light emitting element 20A is exposed when viewed from above. By forming a reflective particle-containing member in which at least a portion of the upper surface of the base material that overlaps with the first light-emitting element is exposed when viewed from above, a reflective particle-containing member that does not expose the upper surface of the base material that overlaps with the first light-emitting element is formed. It becomes easier to reduce the amount of the reflective particle-containing member than in the case where the reflective particle-containing member is used. Thereby, it is possible to prevent the reflective particle-containing member from being formed on the first light extraction surface of the first light emitting element even after the step of spreading the reflective particle-containing member using centrifugal force, which will be described later. This makes it easier to extract light from the first light emitting element, thereby improving the light extraction efficiency of the light emitting device.

反射粒子含有部材30は第1発光素子20Aの第1側面202Aと接して配置してもよく、第1発光素子20Aの第1側面202Aと離間して配置してもよい。第1側面202Aの少なくとも一部と離間するように反射粒子含有部材30を配置することが好ましい。このようにすることで、後述する反射粒子含有部材を遠心力により広げる工程の後でも反射粒子含有部材が第1発光素子の第1光取り出し面に形成されることを抑制することができる。また、第1側面の全面が反射粒子含有部材と離間するように配置してもよい。 The reflective particle-containing member 30 may be placed in contact with the first side surface 202A of the first light emitting element 20A, or may be placed apart from the first side surface 202A of the first light emitting element 20A. It is preferable that the reflective particle-containing member 30 is arranged so as to be spaced apart from at least a portion of the first side surface 202A. By doing so, it is possible to prevent the reflective particle-containing member from being formed on the first light extraction surface of the first light emitting element even after the step of spreading the reflective particle-containing member by centrifugal force, which will be described later. Further, the entire surface of the first side surface may be arranged so as to be spaced apart from the reflective particle-containing member.

反射粒子含有部材30として、1液硬化性樹脂を使用してもよく、2液硬化性樹脂を使用してもよい。2液硬化性樹脂を使用する場合には、2液硬化性の樹脂材料の主剤と反射粒子とを混合し、一定時間以上経過後に硬化剤を混合することが好ましい。このようすることで、反射粒子と主剤との間にある空気を抜くことができる。これにより、後述する遠心力を加えた時に反射粒子を沈降させやくなる。2液硬化性の樹脂材料としては、例えば、シリコーン樹脂、変性シリコーン樹脂、エポキシ樹脂、変性エポキシ樹脂等が挙げられる。2液硬化性の樹脂材料の主剤と反射粒子とを混合して経過させる時間は、反射粒子をより沈降させ易くする観点から、好ましくは2時間以上である。また、経過させる時間は、製造時間を短縮させる観点から、好ましくは8時間以下である。なお、硬化剤を混合した後は、反射粒子含有部材が硬化する前に反射粒子含有部材を遠心力により広げる工程に移る。 As the reflective particle-containing member 30, a one-component curable resin or a two-component curable resin may be used. When using a two-component curable resin, it is preferable to mix the main ingredient of the two-component curable resin material and reflective particles, and then mix the curing agent after a certain period of time has passed. By doing so, air between the reflective particles and the main material can be removed. This makes it easier for the reflective particles to settle when a centrifugal force, which will be described later, is applied. Examples of the two-component curable resin material include silicone resin, modified silicone resin, epoxy resin, and modified epoxy resin. The time elapsed after mixing the main ingredient of the two-component curable resin material and the reflective particles is preferably 2 hours or more, from the viewpoint of making it easier for the reflective particles to settle. Further, the elapsed time is preferably 8 hours or less from the viewpoint of shortening the manufacturing time. Note that after mixing the curing agent, the process moves to a step of spreading the reflective particle-containing member using centrifugal force before the reflective particle-containing member is cured.

[反射粒子含有部材を遠心力により広げる工程]
第1発光素子20Aと重なる基材11の上面111に反射粒子含有部材30を遠心力により広げる。図13に示すように、基材11の上面111に遠心力がかかる方向に基板10及び反射粒子含有部材30を含む中間体100を遠心回転させる。尚、図13に示す中間体100は簡易図面であり、中間体100が複数の第1発光素子及び/又は第2発光素子を備えていてもよい。遠心回転させる場合には、基材の上面111が基材の下面112よりも内側に位置する回転軸80を中心に中間体100を遠心回転させる。換言すると、中間体100の上面側に回転軸80が位置し、回転軸80を軸として公転するA方向に中間体100を移動させる。なお、図13におけるB方向は、基材の上面111に平行な方向である。反射粒子含有部材30に遠心力がかかることで、反射粒子含有部材30が広げられ、図14に示すように、反射粒子含有部材から露出していた基材の上面111を反射粒子含有部材30で被覆することができる。これにより、第1発光素子からの光が基板に吸収されることを抑制できるので発光装置の光取り出し効率が向上する。反射粒子含有部材から露出していた基材の上面111の少なくとも一部が反射粒子含有部材30で被覆されてもよく、第1発光素子と重なる基材の上面の全面が反射粒子含有部材30で被覆されてもよい。第1発光素子と重なる基材の上面の全面が反射粒子含有部材30で被覆されることにより、更に、第1発光素子からの光が基板に吸収されることを抑制することができる。
[Step of spreading reflective particle-containing member by centrifugal force]
The reflective particle-containing member 30 is spread by centrifugal force on the upper surface 111 of the base material 11 overlapping with the first light emitting element 20A. As shown in FIG. 13, the intermediate body 100 including the substrate 10 and the reflective particle-containing member 30 is centrifugally rotated in a direction in which centrifugal force is applied to the upper surface 111 of the base material 11. Note that the intermediate body 100 shown in FIG. 13 is a simplified drawing, and the intermediate body 100 may include a plurality of first light emitting elements and/or second light emitting elements. In the case of centrifugal rotation, the intermediate body 100 is centrifugally rotated about the rotation axis 80 in which the upper surface 111 of the base material is located inside the lower surface 112 of the base material. In other words, the rotating shaft 80 is located on the upper surface side of the intermediate body 100, and the intermediate body 100 is moved in the direction A in which it revolves around the rotating shaft 80. Note that the B direction in FIG. 13 is a direction parallel to the upper surface 111 of the base material. By applying centrifugal force to the reflective particle-containing member 30, the reflective particle-containing member 30 is expanded, and as shown in FIG. Can be coated. This makes it possible to suppress light from the first light emitting element from being absorbed by the substrate, thereby improving the light extraction efficiency of the light emitting device. At least a portion of the upper surface 111 of the base that was exposed from the reflective particle-containing member may be covered with the reflective particle-containing member 30, and the entire upper surface of the base that overlaps with the first light emitting element may be covered with the reflective particle-containing member 30. May be coated. By covering the entire upper surface of the base material that overlaps with the first light emitting element with the reflective particle-containing member 30, it is possible to further suppress light from the first light emitting element from being absorbed by the substrate.

また、遠心力を利用して、反射粒子含有部材30の反射粒子をZ-方向に強制的に沈降させることにより、図14に示すように、反射粒子が偏在する第1反射部材31と、第1反射部材31上に位置し第1反射部材よりも反射粒子の濃度が低い第1被覆部材32を形成することができる。第1発光素子20Aの第1側面202Aが第1被覆部材32に被覆されることで発光装置の光取り出し効率が向上する。Z軸上におけるZ+方向は、基材11の下面112から基材11の上面111に向かう方向とし、Z+方向の反対方向はZ-方向とする。中間体100を遠心回転させる際の回転速度や回転数は、反射粒子の含有量や粒径等にもよるが、例えば200xg以上の遠心力がかかるように、回転数や回転半径を調整すればよい。 Furthermore, by forcibly settling the reflective particles of the reflective particle-containing member 30 in the Z-direction using centrifugal force, as shown in FIG. It is possible to form a first coating member 32 that is located on the first reflective member 31 and has a lower concentration of reflective particles than the first reflective member. The first side surface 202A of the first light emitting element 20A is covered with the first covering member 32, thereby improving the light extraction efficiency of the light emitting device. The Z+ direction on the Z axis is the direction from the lower surface 112 of the base material 11 toward the upper surface 111 of the base material 11, and the opposite direction to the Z+ direction is the Z- direction. The rotation speed and number of rotations when centrifugally rotating the intermediate body 100 depend on the content and particle size of reflective particles, but if the number of rotations and rotation radius are adjusted so that a centrifugal force of 200 x g or more is applied, for example. good.

なお、中間体100は、発光装置毎に個片化されていてもよく、個片化前の集合基板の状態のものでもよい。中間体が集合基板である場合には、中間体の平面積が大きくなる。中間体の平面積が大きい場合には、中間体100の中心と、中間体100の中心から離れた位置と、で遠心力のかかり方の違いが大きくなる傾向にある。このために、中間体100の中心と、中間体100の中心から離れた位置と、に位置する各発光装置の反射粒子含有部材の形状にバラツキが生じるおそれがある。この反射粒子含有部材の形状にバラツキは、回転半径を大きくすることで抑制することができる。具体的には、回転方向に配置される中間体100の長さの70倍以上の回転半径とすることで、反射粒子含有部材の形状にバラツキを抑制することができる。なお、遠心力により、中間体が回転半径の円周に沿って撓むような可撓性を有する場合には、回転軸80からの距離の差が低減できる。 Note that the intermediate body 100 may be singulated for each light emitting device, or may be in the state of a collective substrate before being singulated. When the intermediate body is a collective substrate, the planar area of the intermediate body becomes large. When the planar area of the intermediate body is large, the difference in the way centrifugal force is applied between the center of the intermediate body 100 and a position away from the center of the intermediate body 100 tends to be large. For this reason, there is a possibility that the shape of the reflective particle-containing member of each light emitting device located at the center of the intermediate body 100 and at a position away from the center of the intermediate body 100 will vary in shape. This variation in the shape of the reflective particle-containing member can be suppressed by increasing the radius of rotation. Specifically, by setting the radius of rotation to be 70 times or more the length of the intermediate body 100 arranged in the rotation direction, it is possible to suppress variations in the shape of the reflective particle-containing member. Note that if the intermediate body has flexibility to bend along the circumference of the rotation radius due to centrifugal force, the difference in distance from the rotation axis 80 can be reduced.

反射粒子含有部材30を硬化する時には、反射粒子含有部材に遠心力をかけながら反射粒子含有部材を硬化することが好ましい。反射粒子は、光反射の観点から粒径の小さいものを使用することが好ましいが、粒径が小さくなるほど沈降しにくくなる。遠心力を利用することで、反射粒子をZ-方向に沈降させることができる。反射粒子を沈降させた状態で硬化させるためには、遠心力をかけたまま、つまり中間体100を回転させながら反射粒子含有部材の硬化工程を行うことが好ましい。このようにすることで、反射粒子含有部材内において反射粒子がZ+方向に移動することを抑制できる。 When curing the reflective particle-containing member 30, it is preferable to harden the reflective particle-containing member while applying centrifugal force to the reflective particle-containing member. It is preferable to use reflective particles with a small particle size from the viewpoint of light reflection, but the smaller the particle size, the more difficult it is to settle. By using centrifugal force, reflective particles can be caused to settle in the Z-direction. In order to cure the reflective particles in a precipitated state, it is preferable to perform the curing process of the reflective particle-containing member while applying centrifugal force, that is, while rotating the intermediate body 100. By doing so, it is possible to suppress the reflective particles from moving in the Z+ direction within the reflective particle-containing member.

反射粒子含有部材を硬化させる温度は、40℃以上200℃以下が挙げられる。硬化させる温度を高くすることで、反射粒子含有部材を硬化させる時間を短縮でき効率的である。また、遠心沈降させる装置の金属が熱により膨張することで回転軸80の位置が移動することを考慮すると、硬化させる温度はなるべく低いことが好ましい。つまり、反射粒子含有部材を硬化させる温度は、効率性の観点から、好ましくは50℃以上である。また、反射粒子含有部材を硬化させる温度は、回転軸80が移動することを考慮し、好ましくは60℃以下である。80℃以上で硬化する際には、少なくとも遠心回転装置の金属部分が80℃以上とならないように、装置を調整することが好ましい。なお、反射粒子含有部材を構成する樹脂材料としては、回転する中間体を40℃以上の温度に保つことで少なくとも仮硬化状態が得られる樹脂材料を選択することが好ましい。反射粒子を沈降させながら反射粒子含有部材を硬化させる方法としては、例えば、熱風をかけたり、パネルヒータ等を用いたりすることが挙げられる。 The temperature at which the reflective particle-containing member is cured is 40°C or higher and 200°C or lower. By increasing the curing temperature, the time for curing the reflective particle-containing member can be shortened and it is efficient. Furthermore, considering that the metal of the centrifugal sedimentation device expands due to heat and the position of the rotating shaft 80 moves, it is preferable that the curing temperature be as low as possible. That is, the temperature at which the reflective particle-containing member is cured is preferably 50° C. or higher from the viewpoint of efficiency. Further, the temperature at which the reflective particle-containing member is cured is preferably 60° C. or lower, taking into consideration the movement of the rotating shaft 80. When curing at 80° C. or higher, it is preferable to adjust the device so that at least the metal part of the centrifugal rotation device does not reach 80° C. or higher. As the resin material constituting the reflective particle-containing member, it is preferable to select a resin material that can be at least temporarily cured by keeping the rotating intermediate body at a temperature of 40° C. or higher. Examples of methods for curing the reflective particle-containing member while causing the reflective particles to settle include applying hot air, using a panel heater, and the like.

[第2被覆部材を形成する工程]
図15に示すように、反射粒子含有部材30を被覆する第2被覆部材33を形成する。第2被覆部材33は、第1発光素子20Aの第1側面202Aの少なくとも一部を被覆する。第2被覆部材33は、第1発光素子20Aの第1光取り出し面201を被覆してもよく、第1光取り出し面201を露出してもよい。本工程において、第2被覆部材33は、例えば、母材と波長変換部材とを含む液状樹脂材料を、反射粒子含有部材30上に滴下することによって、形成される。他の形成方法としては、例えば、第2被覆部材33は、波長変換部材を、噴霧(スプレー)法、電着法、などによって、反射粒子含有部材30上に付着させた後、母材を滴下して蛍光体に含浸させ、固化させることで、形成される。波長変換部材は、第2被覆部材の一部分に偏在していてもよいし、第2被覆部材内に均一に分散されていてもよい。
[Step of forming second covering member]
As shown in FIG. 15, a second covering member 33 that covers the reflective particle-containing member 30 is formed. The second covering member 33 covers at least a portion of the first side surface 202A of the first light emitting element 20A. The second covering member 33 may cover the first light extraction surface 201 of the first light emitting element 20A, or may expose the first light extraction surface 201. In this step, the second coating member 33 is formed, for example, by dropping a liquid resin material containing a base material and a wavelength conversion member onto the reflective particle-containing member 30. As another method of forming, for example, the second coating member 33 may be formed by depositing the wavelength conversion member on the reflective particle-containing member 30 by a spray method, an electrodeposition method, etc., and then dropping the base material. It is formed by impregnating it with phosphor and solidifying it. The wavelength conversion member may be unevenly distributed in a portion of the second covering member, or may be uniformly dispersed within the second covering member.

[透光性部材を形成する工程]
図16に示すように、第1発光素子20Aの第1光取り出し面201Aを被覆する透光性部材50を形成する。透光性部材は、予め透光性部材を準備しておき第1光取り出し面201A上に配置して第1光取り出し面201Aを被覆する透光性部材を形成してもよく、第1光取り出し面201Aを被覆するようにポッティング等公知の方法によって透光性部材を形成してもよい。第1光取り出し面201A上に透光性部材を配置する場合には、透光性の接着層34を介して第1光取り出し面201Aを被覆してもよい。
[Step of forming a translucent member]
As shown in FIG. 16, a translucent member 50 is formed to cover the first light extraction surface 201A of the first light emitting element 20A. The light-transmitting member may be prepared in advance and placed on the first light-extracting surface 201A to form a light-transmitting member covering the first light-extracting surface 201A. A translucent member may be formed by a known method such as potting so as to cover the extraction surface 201A. When a translucent member is disposed on the first light extraction surface 201A, the first light extraction surface 201A may be covered with a translucent adhesive layer 34.

[切り欠きを形成する工程]
図17に示すように、第2被覆部材33を貫通し、少なくとも反射粒子含有部材30と接する切り欠き70を形成する。切り欠き70は、上面視において第1発光素子20Aを囲むように形成される。発光装置が第2発光素子20Bを備える場合には、切り欠き70は、上面視において第1発光素子20A及び第2発光素子20Bを囲むように形成される。反射粒子含有部材30が、反射粒子が偏在する第1反射部材31と、第1反射部材31上に位置し第1反射部材よりも反射粒子の濃度が低い第1被覆部材32と、を備える場合には、切り欠き70が第1反射部材及32及び第2被覆部材33を貫通し、少なくとも第1反射部材31と接する切り欠き70を形成する。切り欠き70は、第1反射部材31を貫通してもよく、貫通していなくてもよい。また、切り欠き70が第1反射部材31を貫通する場合には、切り欠き70と基材の上面111とが接していてもよい。基材11の上面111の切り欠きを凹部118とも呼ぶ。発光装置が透光性部材50を備える場合には、切り欠き70は透光性部材50を貫通するように形成される。例えば、切り欠きは、ブレードダイシング法やレーザダイシング法など公知の方法によって形成することができる。尚、本明細書において、エッチングで形成されたものも切り欠きと呼ぶ。また、切り欠きは幅狭部と幅広部を有しており、Z-方向の側に幅狭部が位置し、Z+方向の側に幅広部が位置する。幅狭部と幅広部はブレードの形状等により形成することができる。
[Process of forming a notch]
As shown in FIG. 17, a notch 70 is formed that penetrates the second covering member 33 and contacts at least the reflective particle-containing member 30. As shown in FIG. The cutout 70 is formed to surround the first light emitting element 20A when viewed from above. When the light emitting device includes the second light emitting element 20B, the cutout 70 is formed to surround the first light emitting element 20A and the second light emitting element 20B when viewed from above. When the reflective particle-containing member 30 includes a first reflective member 31 in which reflective particles are unevenly distributed, and a first covering member 32 that is located on the first reflective member 31 and has a lower concentration of reflective particles than the first reflective member. , the notch 70 penetrates through the first reflective member 32 and the second covering member 33 and is in contact with at least the first reflective member 31 . The cutout 70 may or may not penetrate the first reflective member 31. Moreover, when the notch 70 penetrates the first reflective member 31, the notch 70 and the upper surface 111 of the base material may be in contact with each other. The notch in the upper surface 111 of the base material 11 is also called a recess 118. When the light emitting device includes the translucent member 50, the cutout 70 is formed to penetrate the translucent member 50. For example, the notch can be formed by a known method such as a blade dicing method or a laser dicing method. Note that in this specification, a notch formed by etching is also referred to as a notch. Further, the notch has a narrow part and a wide part, with the narrow part located on the Z- direction side and the wide part located on the Z+ direction side. The narrow part and the wide part can be formed by the shape of the blade, etc.

[第2反射部材を形成する工程]
図18に示すように、第2被覆部材33及び反射粒子含有部材30と接する第2反射部材40を形成する。第2反射部材40は、上面視において第1発光素子20Aを囲む。発光装置が第2発光素子20Bを備える場合に、第2反射部材40は、上面視において第1発光素子20A及び第2発光素子20Bを囲む。第2反射部材40は、硬化前の第2反射部材を切り欠き70に充填し、硬化前の第2反射部材を硬化することで第2反射部材40を形成することができる。切り欠き70に硬化前の第2反射部材を充填する方法としては、トランスファ成形、射出成形、圧縮成形、ポッティング等の公知の方法を用いることができる。第2反射部材40は、所望の厚みに調整するために研削等の公知の方法を用いて第2反射部材の一部を除去してもよい。発光装置が透光性部材を備える場合には、透光性部材の上面及び/又は側面を被覆するように第2反射部材を形成してもよい。透光性部材の上面の全てを被覆する第2反射部材を形成した場合には、透光性部材の少なくとも一部が第2反射部材から露出するように第2反射部材の一部を除去する。また、第2反射部材40を所望の厚みに調整するために第2反射部材の一部を除去する時に、透光性部材の一部も除去してもよい。第2反射部材の一部及び透光性部材の一部を除去する場合には、第2反射部材の上面及び透光性部材の上面が面一になるようにしてもよい。
[Step of forming the second reflective member]
As shown in FIG. 18, a second reflective member 40 that is in contact with the second covering member 33 and the reflective particle-containing member 30 is formed. The second reflective member 40 surrounds the first light emitting element 20A when viewed from above. When the light emitting device includes the second light emitting element 20B, the second reflecting member 40 surrounds the first light emitting element 20A and the second light emitting element 20B when viewed from above. The second reflecting member 40 can be formed by filling the notch 70 with a second reflecting member before being cured and curing the second reflecting member before being cured. As a method for filling the notch 70 with the uncured second reflective member, known methods such as transfer molding, injection molding, compression molding, potting, etc. can be used. In order to adjust the thickness of the second reflective member 40 to a desired thickness, a part of the second reflective member 40 may be removed using a known method such as grinding. When the light emitting device includes a light-transmitting member, the second reflecting member may be formed to cover the upper surface and/or side surface of the light-transmitting member. When the second reflective member is formed to cover the entire upper surface of the translucent member, a portion of the second reflective member is removed so that at least a portion of the translucent member is exposed from the second reflective member. . Further, when a part of the second reflective member is removed in order to adjust the thickness of the second reflective member 40 to a desired thickness, a part of the light-transmitting member may also be removed. When removing a portion of the second reflective member and a portion of the translucent member, the upper surface of the second reflective member and the upper surface of the translucent member may be flush with each other.

[個片化する工程]
中間体100が、集合基板の状態の場合には、図18に示すように、破線S、破線Sに沿って、第2反射部材40及び基板10の一部を除去し各発光装置を個片化する。例えば、ブレードダイシング法やレーザダイシング法などによって、第2反射部材40及び基板10を切断することで各発光装置を個片化することができる。
[Individualization process]
When the intermediate body 100 is in the state of a collective substrate, as shown in FIG. 18, the second reflective member 40 and a part of the substrate 10 are removed along the broken line S3 and the broken line S4 , and each light emitting device is removed. Individualize. For example, each light emitting device can be separated into pieces by cutting the second reflective member 40 and the substrate 10 using a blade dicing method, a laser dicing method, or the like.

以上、説明したように上述の各工程を行うことにより、発光装置1000が製造される。 As described above, the light emitting device 1000 is manufactured by performing each of the above steps.

本発明の一実施形態に係る発光装置は、液晶ディスプレイのバックライト装置、各種照明器具、大型ディスプレイ、広告や行き先案内等の各種表示装置、プロジェクタ装置、さらには、デジタルビデオカメラ、ファクシミリ、コピー機、スキャナ等における画像読取装置などに利用することができる。 The light emitting device according to an embodiment of the present invention is a backlight device for a liquid crystal display, various lighting equipment, large displays, various display devices such as advertisements and destination guides, projector devices, digital video cameras, facsimiles, and copy machines. It can be used in image reading devices such as , scanners, etc.

1000A、1000B、1000C、2000 発光装置
10 基板
11 基材
118 凹部
12 第1配線
13 第2配線
14 第3配線
15 ビア
151 第4配線
152 充填部材
16 窪み
18 絶縁膜
20A 第1発光素子
20B 第2発光素子
20C 第3発光素子
30 反射粒子含有部材
31 第1反射部材
32 第1被覆部材
33 第2被覆部材
34 接着層
40 第2反射部材
50 透光性部材
60 導電性接着部材
70 切り欠き
80 回転軸
1000A, 1000B, 1000C, 2000 Light emitting device 10 Substrate 11 Base material
118 recess 12 first wiring 13 second wiring 14 third wiring 15 via
151 4th wiring
152 Filling member 16 Hollow 18 Insulating film 20A First light emitting element 20B Second light emitting element 20C Third light emitting element 30 Reflective particle containing member 31 First reflecting member 32 First covering member 33 Second covering member 34 Adhesive layer 40 Second reflection Member 50 Transparent member 60 Conductive adhesive member 70 Notch 80 Rotating shaft

Claims (11)

上面を有する基材と、前記上面に配置される第1配線と、を有する基板と、
第1光取り出し面と、前記第1光取り出し面の反対側にある第1電極形成面と、前記第1光取り出し面と前記第1電極形成面との間にある第1側面と、前記第1電極形成面に一対の第1電極と、を有し、前記第1電極形成面と前記第1配線とが対向して前記第1配線上に載置される第1発光素子と、
前記一対の第1電極と前記第1配線とを接着し電気的に接続する導電性接着部材と、
前記第1光取り出し面を露出し、前記基材の上面を被覆し、反射粒子を含有する第1反射部材と、
前記第1光取り出し面を露出し、前記第1反射部材及び前記第1側面の少なくとも一部を被覆し、前記第1反射部材よりも前記反射粒子の濃度が低い第1被覆部材と、
前記第1側面の少なくとも一部を被覆する第2被覆部材と、
上面視において前記第2被覆部材を囲み、前記第2被覆部材及び前記第1反射部材と接する第2反射部材と、を備え、
前記第2反射部材は、断面視において、前記第1反射部材と接する幅狭部と、前記幅狭部よりも上に配置される幅広部と、を有する発光装置。
a substrate having a base material having an upper surface and a first wiring arranged on the upper surface;
a first light extraction surface, a first electrode formation surface opposite to the first light extraction surface, a first side surface between the first light extraction surface and the first electrode formation surface; a first light emitting element having a pair of first electrodes on one electrode formation surface, and placed on the first wiring with the first electrode formation surface and the first wiring facing each other;
a conductive adhesive member that adheres and electrically connects the pair of first electrodes and the first wiring;
a first reflective member that exposes the first light extraction surface, covers the upper surface of the base material, and contains reflective particles;
a first covering member that exposes the first light extraction surface, covers at least a portion of the first reflective member and the first side surface, and has a lower concentration of the reflective particles than the first reflective member;
a second covering member that covers at least a portion of the first side surface;
a second reflective member that surrounds the second covering member and is in contact with the second covering member and the first reflective member in a top view;
The second reflecting member is a light-emitting device having, in a cross-sectional view, a narrow portion in contact with the first reflecting member, and a wide portion disposed above the narrow portion.
上面を有する基材と、前記上面に配置される第1配線と、を有する基板と、
第1光取り出し面と、前記第1光取り出し面の反対側にある第1電極形成面と、前記第1光取り出し面と前記第1電極形成面との間にある第1側面と、前記第1電極形成面に一対の第1電極と、を有し、前記第1電極形成面と前記第1配線とが対向して前記第1配線上に載置される第1発光素子と、
前記第1光取り出し面を露出し、前記基材の上面を被覆し、反射粒子を含有する第1反射部材と、
前記第1光取り出し面を露出し、前記第1反射部材及び前記第1側面の少なくとも一部を被覆し、前記第1反射部材よりも前記反射粒子の濃度が低い第1被覆部材と、
前記第1側面の少なくとも一部を被覆する第2被覆部材と、
上面視において前記第2被覆部材を囲み、前記第2被覆部材及び前記第1反射部材と接する第2反射部材と、を備え、
前記第2反射部材は、断面視において、前記第1反射部材と接する幅狭部と、前記幅狭部よりも上に配置される幅広部と、を有し、
前記第1発光素子は第1半導体層を備え、前記第1半導体層の側面が前記第1反射部材に被覆される、発光装置。
a substrate having a base material having an upper surface and a first wiring arranged on the upper surface;
a first light extraction surface, a first electrode formation surface opposite to the first light extraction surface, a first side surface between the first light extraction surface and the first electrode formation surface; a first light emitting element having a pair of first electrodes on one electrode formation surface, and placed on the first wiring with the first electrode formation surface and the first wiring facing each other;
a first reflective member that exposes the first light extraction surface, covers the upper surface of the base material, and contains reflective particles;
a first covering member that exposes the first light extraction surface, covers at least a portion of the first reflective member and the first side surface, and has a lower concentration of the reflective particles than the first reflective member;
a second covering member that covers at least a portion of the first side surface;
a second reflective member that surrounds the second covering member and is in contact with the second covering member and the first reflective member in a top view;
The second reflecting member has a narrow portion in contact with the first reflecting member and a wide portion disposed above the narrow portion in a cross-sectional view,
The first light emitting element includes a first semiconductor layer, and a side surface of the first semiconductor layer is covered with the first reflective member.
上面を有する基材と、前記上面に配置される第1配線と、を有する基板と、
第1光取り出し面と、前記第1光取り出し面の反対側にある第1電極形成面と、前記第1光取り出し面と前記第1電極形成面との間にある第1側面と、前記第1電極形成面に一対の第1電極と、を有し、前記第1電極形成面と前記第1配線とが対向して前記第1配線上に載置される第1発光素子と、
前記第1光取り出し面を露出し、前記基材の上面を被覆し、反射粒子を含有する第1反射部材と、
前記第1光取り出し面を露出し、前記第1反射部材及び前記第1側面の少なくとも一部を被覆し、前記第1反射部材よりも前記反射粒子の濃度が低い第1被覆部材と、
前記第1側面の少なくとも一部を被覆する第2被覆部材と、
上面視において前記第2被覆部材を囲み、前記第2被覆部材及び前記第1反射部材と接する第2反射部材と、を備え、
前記第2反射部材は、断面視において、前記第1反射部材と接する幅狭部と、前記幅狭部よりも上に配置される幅広部と、を有し、
前記第1被覆部材が前記第2反射部材と接する、発光装置。
a substrate having a base material having an upper surface and a first wiring arranged on the upper surface;
a first light extraction surface, a first electrode formation surface opposite to the first light extraction surface, a first side surface between the first light extraction surface and the first electrode formation surface; a first light emitting element having a pair of first electrodes on one electrode formation surface, and placed on the first wiring with the first electrode formation surface and the first wiring facing each other;
a first reflective member that exposes the first light extraction surface, covers the upper surface of the base material, and contains reflective particles;
a first covering member that exposes the first light extraction surface, covers at least a portion of the first reflective member and the first side surface, and has a lower concentration of the reflective particles than the first reflective member;
a second covering member that covers at least a portion of the first side surface;
a second reflective member that surrounds the second covering member and is in contact with the second covering member and the first reflective member in a top view;
The second reflecting member has a narrow portion in contact with the first reflecting member and a wide portion disposed above the narrow portion in a cross-sectional view,
A light emitting device, wherein the first covering member is in contact with the second reflecting member.
前記第1発光素子と接する部分の前記第1被覆部材の厚みが、前記第2反射部材と接する部分の前記第1被覆部材の厚みよりも厚い請求項3に記載の発光装置。 The light emitting device according to claim 3, wherein the thickness of the first covering member in a portion in contact with the first light emitting element is thicker than the thickness of the first covering member in a portion in contact with the second reflective member. 前記第1発光素子と異なる発光ピーク波長を有する第2発光素子を備える請求項1から4のいずれか1項に記載の発光装置。 The light emitting device according to any one of claims 1 to 4, comprising a second light emitting element having a different emission peak wavelength from the first light emitting element. 前記基材の上面は外周を囲む凹部を有し、前記第2反射部材の一部は前記凹部内に配置される請求項1から5のいずれか1項に記載の発光装置。 The light emitting device according to any one of claims 1 to 5, wherein the upper surface of the base material has a recess surrounding the outer periphery, and a portion of the second reflective member is disposed within the recess. 前記基材の外縁と、前記第2反射部材の外側面と、が面一である、請求項1から6のいずれか1項に記載の発光装置。 The light emitting device according to any one of claims 1 to 6, wherein an outer edge of the base material and an outer surface of the second reflective member are flush with each other. 前記第1光取り出し面を被覆する透光性部材を備える、請求項1から7のいずれか1項に記載の発光装置。 The light emitting device according to any one of claims 1 to 7, further comprising a translucent member that covers the first light extraction surface. 上面を有する基材と、前記上面に配置される第1配線と、を備える基板を準備する工程と、
1光取り出し面と、前記第1光取り出し面の反対側にある第1電極形成面と、前記第1光取り出し面と前記第1電極形成面との間にある第1側面と、前記第1電極形成面に一対の第1電極と、を有する第1発光素子を準備する工程と、
前記第1電極形成面と前記第1配線とを対向させて、前記第1配線上に第1発光素子を載置する工程と、
上面視において、前記第1発光素子と重なる前記基材の上面の少なくとも一部が露出するように反射粒子含有部材を前記基材の上面に配置する工程と、
前記第1発光素子と重なる前記基材の上面に前記反射粒子含有部材を遠心力により広げる工程と、
を含み、
前記反射粒子含有部材を遠心力により広げる工程の後に、前記反射粒子含有部材を被覆する第2被覆部材を形成する工程を有し、
前記第2被覆部材を形成する工程の後に、上面視において前記第1発光素子を囲み、前記第2被覆部材及び前記反射粒子含有部材と接する第2反射部材を形成する工程を有する、発光装置の製造方法。
preparing a substrate including a base material having an upper surface and a first wiring disposed on the upper surface;
a first light extraction surface, a first electrode formation surface opposite to the first light extraction surface, a first side surface between the first light extraction surface and the first electrode formation surface; a step of preparing a first light emitting element having a pair of first electrodes on one electrode formation surface;
placing a first light emitting element on the first wiring with the first electrode forming surface and the first wiring facing each other;
arranging a reflective particle-containing member on the upper surface of the base material so that at least a part of the upper surface of the base material that overlaps with the first light emitting element is exposed when viewed from above;
Spreading the reflective particle-containing member on the upper surface of the base material overlapping with the first light emitting element by centrifugal force;
including;
After the step of spreading the reflective particle-containing member by centrifugal force, forming a second covering member that covers the reflective particle-containing member;
After the step of forming the second covering member, the light emitting device includes the step of forming a second reflective member that surrounds the first light emitting element in a top view and is in contact with the second covering member and the reflective particle-containing member. Production method.
前記反射粒子含有部材を遠心力により広げる工程において、前記第1発光素子と重なる前記基材の上面の全面を前記反射粒子含有部材で被覆する、請求項9に記載の発光装置の製造方法。 The method for manufacturing a light-emitting device according to claim 9, wherein in the step of spreading the reflective particle-containing member by centrifugal force, the entire upper surface of the base material that overlaps with the first light-emitting element is covered with the reflective particle-containing member. 前記第2反射部材及び前記基板の一部を除去し個片化する工程と、を含む、請求項9または10に記載の発光装置の製造方法。 The method for manufacturing a light emitting device according to claim 9 or 10, comprising the step of removing a part of the second reflective member and the substrate to separate them into pieces.
JP2019105851A 2018-07-09 2019-06-06 Light emitting device and its manufacturing method Active JP7348478B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020190082412A KR20200006017A (en) 2018-07-09 2019-07-09 Light emitting device and method for manufacturing the same
US16/506,125 US11043621B2 (en) 2018-07-09 2019-07-09 Light emitting device and method of manufacturing light emitting device
CN201910613626.2A CN110707202A (en) 2018-07-09 2019-07-09 Light emitting device and method for manufacturing the same
TW108124052A TW202013769A (en) 2018-07-09 2019-07-09 Light emitting device and method of manufacturing light emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018129631 2018-07-09
JP2018129631 2018-07-09

Publications (2)

Publication Number Publication Date
JP2020013986A JP2020013986A (en) 2020-01-23
JP7348478B2 true JP7348478B2 (en) 2023-09-21

Family

ID=69170033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019105851A Active JP7348478B2 (en) 2018-07-09 2019-06-06 Light emitting device and its manufacturing method

Country Status (4)

Country Link
JP (1) JP7348478B2 (en)
KR (1) KR20200006017A (en)
CN (1) CN110707202A (en)
TW (1) TW202013769A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114242875B (en) * 2021-12-06 2023-09-01 华引芯(武汉)科技有限公司 Light emitting device, manufacturing method thereof, lighting device and display device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009066430A1 (en) 2007-11-19 2009-05-28 Panasonic Corporation Semiconductor light emitting device and method for manufacturing semiconductor light emitting device
JP2013004802A (en) 2011-06-17 2013-01-07 Citizen Electronics Co Ltd Led luminescent apparatus and method for manufacturing the same
CN103824848A (en) 2014-01-16 2014-05-28 大连德豪光电科技有限公司 LED (Light Emitting Diode) display screen and manufacturing method thereof
JP2015207737A (en) 2014-04-23 2015-11-19 日亜化学工業株式会社 Light-emitting device and method of manufacturing the same
JP2016072412A (en) 2014-09-30 2016-05-09 日亜化学工業株式会社 Light-emitting device and method of manufacturing light-emitting device
JP2017033967A (en) 2015-07-28 2017-02-09 日亜化学工業株式会社 Light-emitting device and manufacturing method therefor
JP2017120911A (en) 2015-12-31 2017-07-06 晶元光電股▲ふん▼有限公司 Light-emitting device
JP2018022758A (en) 2016-08-03 2018-02-08 シチズン電子株式会社 Light-emitting device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014241341A (en) * 2013-06-11 2014-12-25 株式会社東芝 Semiconductor light-emitting device
JP2015153981A (en) * 2014-02-18 2015-08-24 日亜化学工業株式会社 light-emitting device
JP6299423B2 (en) * 2014-05-21 2018-03-28 日亜化学工業株式会社 Light emitting device manufacturing method and light emitting device
JP6554914B2 (en) * 2015-06-01 2019-08-07 日亜化学工業株式会社 Light emitting device and manufacturing method thereof
JP2017188592A (en) * 2016-04-06 2017-10-12 日亜化学工業株式会社 Light-emitting device
JP2017224867A (en) * 2017-09-28 2017-12-21 日亜化学工業株式会社 Light-emitting device and manufacturing method therefor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009066430A1 (en) 2007-11-19 2009-05-28 Panasonic Corporation Semiconductor light emitting device and method for manufacturing semiconductor light emitting device
JP2013004802A (en) 2011-06-17 2013-01-07 Citizen Electronics Co Ltd Led luminescent apparatus and method for manufacturing the same
CN103824848A (en) 2014-01-16 2014-05-28 大连德豪光电科技有限公司 LED (Light Emitting Diode) display screen and manufacturing method thereof
JP2015207737A (en) 2014-04-23 2015-11-19 日亜化学工業株式会社 Light-emitting device and method of manufacturing the same
JP2016072412A (en) 2014-09-30 2016-05-09 日亜化学工業株式会社 Light-emitting device and method of manufacturing light-emitting device
JP2017033967A (en) 2015-07-28 2017-02-09 日亜化学工業株式会社 Light-emitting device and manufacturing method therefor
JP2017120911A (en) 2015-12-31 2017-07-06 晶元光電股▲ふん▼有限公司 Light-emitting device
JP2018022758A (en) 2016-08-03 2018-02-08 シチズン電子株式会社 Light-emitting device

Also Published As

Publication number Publication date
CN110707202A (en) 2020-01-17
KR20200006017A (en) 2020-01-17
TW202013769A (en) 2020-04-01
JP2020013986A (en) 2020-01-23

Similar Documents

Publication Publication Date Title
US10825968B2 (en) Method for manufacturing light-emitting device
US11652192B2 (en) Light-emitting device
US10727387B2 (en) Light emitting device
US11201266B2 (en) Light-emitting device
TW202040840A (en) Method of producing light source device
JP6729525B2 (en) Method for manufacturing light emitting device
JP7348478B2 (en) Light emitting device and its manufacturing method
US11189758B2 (en) Light-emitting device
JP6897640B2 (en) Manufacturing method of light emitting device
JP7189413B2 (en) light emitting device
US11605617B2 (en) Light emitting device
JP7144693B2 (en) light emitting device
TWI793234B (en) Light emitting device
US11043621B2 (en) Light emitting device and method of manufacturing light emitting device
JP7421056B2 (en) Light-emitting device and method for manufacturing the light-emitting device
CN109980071B (en) Light emitting device
KR102657856B1 (en) Light emitting device
JP2020072144A (en) Light-emitting device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190628

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230821

R151 Written notification of patent or utility model registration

Ref document number: 7348478

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151