JP7347128B2 - 直流電源装置及び電動工具システム - Google Patents

直流電源装置及び電動工具システム Download PDF

Info

Publication number
JP7347128B2
JP7347128B2 JP2019199187A JP2019199187A JP7347128B2 JP 7347128 B2 JP7347128 B2 JP 7347128B2 JP 2019199187 A JP2019199187 A JP 2019199187A JP 2019199187 A JP2019199187 A JP 2019199187A JP 7347128 B2 JP7347128 B2 JP 7347128B2
Authority
JP
Japan
Prior art keywords
conversion unit
voltage
output voltage
power supply
power tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019199187A
Other languages
English (en)
Other versions
JP2021072729A (ja
Inventor
悟史 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koki Holdings Co Ltd
Original Assignee
Koki Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koki Holdings Co Ltd filed Critical Koki Holdings Co Ltd
Priority to JP2019199187A priority Critical patent/JP7347128B2/ja
Publication of JP2021072729A publication Critical patent/JP2021072729A/ja
Application granted granted Critical
Publication of JP7347128B2 publication Critical patent/JP7347128B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、交流電源から入力される交流電圧を直流電圧に変換して電動工具に供給する直流電源装置、並びに直流電源装置及び電動工具を備える電動工具システムに関する。
下記特許文献1に示されるような直流電源装置は、商用電源等から入力される100Vの交流電圧を100Vよりも低い所望の電圧値の直流電圧に変換して出力するコンバータユニットと、コードレス電動工具のバッテリパック接続部に接続可能なアダプタと、コンバータユニット及びアダプタを互いに接続するケーブルと、を備える。
特開2005-278375号公報
作業環境によっては、一口のコンセントを電源タップで複数口に分配し、直流電源装置やコンプレッサ、電動工具で一口のコンセントを共用することがある。コンプレッサや電動工具の使用で負荷が大きくなると、直流電源装置の入力電圧が低下する。その後、負荷が小さくなると直流電源装置の入力電圧は元に戻る。直流電源装置は、入力電圧が変動しても、出力電圧を一定に維持する。しかし、低下した入力電圧に対して出力電圧を一定に維持しているときに、入力電圧が急激に上昇して元に戻ると、出力電圧に一時的な上昇、すなわちオーバーシュートが発生することがある。オーバーシュートの大きさ次第では、直流電源装置の出力先の電動工具の素子、例えばインバータやコントローラの耐圧を超え、故障の要因となる。
本発明の目的は、入力電圧が変動しても出力電圧を適切に制御可能な直流電源装置及びそれを備える電動工具システムを提供することである。
本発明のある態様は、直流電源装置である。この直流電源装置は、
外部の交流電源に接続され、入力される交流を直流に変換して出力する第1変換ユニットと、
前記第1変換ユニット及び外部の電動工具に接続され、前記第1変換ユニットから入力される直流を変圧して前記電動工具に出力する第2変換ユニットと、を有し、
前記第2変換ユニットは、自身への入力電圧が所定値以下に低下すると、その後の自身の出力電圧を低下させる制御を行う。
前記第2変換ユニットは、出力電圧値が目標となる第2目標値と一致するように変圧量を変更する第2調整部を有し、
前記第2変換ユニットは、出力電圧を低下させる制御として、前記第2目標値を低下させてもよい。
前記第1変換ユニットは、出力電圧値が目標となる第1目標値と一致するように変圧量を変更する第1調整部を有し、
前記第1調整部が変圧量を変更する速さは、前記第2調整部が変圧量を変更する速さよりも速くてもよい。
前記第2変換ユニットは、前記入力電圧が前記所定値以下に低下したことにより自身の出力電圧を低下させる制御を開始して当該制御を所定時間継続してから、自身の出力電圧を元に戻す制御を行ってもよい。
前記第2変換ユニットは、前記入力電圧が前記所定値以下に低下すると、自身の出力電圧を、前記電動工具が駆動を停止する閾値電圧よりも低い値まで低下させる制御を行ってもよい。
前記第1変換ユニットが力率改善回路を含んでもよい。
前記第1変換ユニットは、前記第1変換ユニットへの入力電圧を昇圧して出力し、
前記第2変換ユニットは、前記第1変換ユニットへの入力電圧を降圧して出力してもよい。
前記第2変換ユニットは、着脱可能に接続したバッテリパックの電力で駆動する外部の電動工具のバッテリパック接続部に、バッテリパックに替えて接続可能であってもよい。
本発明の別の態様は、電動工具システムである。この電動工具システムは、
直流電源装置から電力を供給可能に構成され、トリガが操作された状態で駆動可能であり、前記直流電源装置の出力電圧が停止閾値以下に低下するとトリガが操作された状態であっても駆動を停止する電動工具と、
自身への入力電圧が所定値以下に低下すると、その後の出力電圧を前記停止閾値以下に低下させる制御を行う直流電源装置と、を備え、
前記電動工具は、前記トリガが操作された状態において前記直流電源装置の出力電圧が前記停止閾値以下に低下したことにより駆動を停止した後、前記トリガが操作された状態が継続されている間は、前記直流電源装置が前記制御を解除することで出力電圧が前記停止閾値を超えて上昇しても駆動を停止し続け、前記トリガの操作が解除されて再操作されると駆動を開始する。
前記直流電源装置は、前記入力電圧が所定値以下に低下すると、前記出力電圧の目標値を前記停止閾値以下に低下させてもよい。
なお、以上の構成要素の任意の組合せ、本発明の表現を方法などの間で変換したものもまた、本発明の態様として有効である。
本発明によれば、入力電圧が変動しても出力電圧を適切に制御可能な直流電源装置及びそれを備える電動工具システムを提供することができる。
本発明の実施の形態1に係る直流電源装置1及びその第2変換ユニット30を接続した電動工具70の側面図。 バッテリパック80を装着した電動工具70の側面図。 直流電源装置1の、第1変換ユニット10及び第2変換ユニット30の上ケースをそれぞれ展開した状態の平面図。 第1変換ユニット10の内部構成を示す平面図。 第2変換ユニット30の内部構成を示す平面図。 直流電源装置1及び電動工具70を互いに接続した電動工具システムの回路ブロック図。 図6の出力電圧検出回路34、フィードバック回路42、及びソフトスタート制御回路43の具体構成例を示す回路図。 図6の電動工具システムの動作を示すフローチャート。 比較例の電動工具システムの動作を示すタイムチャート。 図6の電動工具システムの動作を示すタイムチャート。
以下において、各図面に示される同一または同等の構成要素、部材等には同一の符号を付し、適宜重複した説明は省略する。実施の形態は、発明を限定するものではなく例示である。実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。
本実施の形態は、直流電源装置1、並びに直流電源装置1に電動工具70を接続した電動工具システムに関する。図3により、直流電源装置1における前後方向を定義する。直流電源装置1は、第1変換ユニット10と、第2変換ユニット30と、ケーブル5と、を備える。第1変換ユニット10は、電源コード11により外部の交流電源に接続される。第2変換ユニット30は、電動工具70のバッテリパック接続部75に着脱可能に接続される。電動工具70のバッテリパック接続部75には、図2に示すようにバッテリパック80を着脱可能に接続することもできる。作業者が電動工具70のトリガスイッチ71をオンにすることで、直流電源装置1又はバッテリパック80から電動工具70に駆動電力が供給される。トリガスイッチ71について、オンすることは操作することであり、オフすることは操作を解除することである。電動工具70は、図示の例ではハンマドリルであるが、バッテリパック80を着脱可能に接続する電動工具であれば種類は限定されない。ケーブル5は、第1変換ユニット10と、第2変換ユニット30と、を互いに接続する。ケーブル5は、電源コード11よりも長いことが望ましい。ケーブル5を十分に長くすることで、電動工具70による作業時に、第1変換ユニット10を床面等から浮かせる必要がなく、作業者は第1変換ユニット10の重さを支える必要がなく、作業性が良好となる。
図3に示すように、第1変換ユニット10内の後端部には、第1冷却ファン17が設けられる。第2変換ユニット30内の後端部には、第2冷却ファン37が設けられる。第1冷却ファン17及び第2冷却ファン37の発生する冷却風の流れを、図3に矢印で示している。第1冷却ファン17の発生する冷却風は、第1変換ユニット10のハウジングの前部に設けられた吸気口26から吸い込まれ、第1変換ユニット10を構成する各部品を冷却しながら前方に流れ、前記ハウジングの後部に設けられた排気口27から排気される。第2冷却ファン37の発生する冷却風は、第2変換ユニット30のハウジングの両側面の吸気口から吸い込まれ、フィン41、42によって前方に導風されながら第2変換ユニット30内の両側部の各部品を冷却し、前記ハウジングの中央部において前方から後方に、第2変換ユニット30の幅方向中央部の各部品を冷却しながら流れ、前記ハウジングの後部に設けられた排気口から排気される。
図4に示すように、第1変換ユニット10には、電解コンデンサC1、ダイオードD1、スイッチング素子Q1、ダイオードブリッジ14、スイッチング素子としてのトライアック13、インダクタL1等の部品が設けられる。図5に示すように、第2変換ユニット30には、ダイオードD2、D3、フィン41、42、電解コンデンサC2、C3、絶縁トランス31、スイッチング素子32等の部品が設けられる。
図6は、直流電源装置1及び電動工具70の回路ブロック図である。第1変換ユニット10において、外部の交流電源3に接続される2つの端子は、第1入力部である。ケーブル5との接続端子のうち力率改善回路(PFC回路)25の出力端子に接続される2つの端子(+端子10bと-端子10c)は、第1出力部である。第1変換ユニット10は、ラインフィルタ回路12と、トライアック13と、整流回路としてのダイオードブリッジ14と、力率改善回路25と、を含む。ラインフィルタ回路12の入力端子は、交流電源3に接続される。交流電源3から入力される交流電圧のピーク値は、例えば80V以上260V未満であり、本実施形態では一例として100Vである。電圧検出回路24は、交流電源3から入力される交流電圧Vacの実効値を検出し、演算部20(第1調整部)に送信する。
ダイオードブリッジ14の入力端子は、ラインフィルタ回路12の出力端子に接続される。トライアック13は、ラインフィルタ回路12とダイオードブリッジ14との間の電流経路、すなわち直流電源装置1の入力部(交流電源3に接続される2つの端子)と出力部(電動工具70との接続端子のうち電解コンデンサC3の両端に接続される2つの端子)とを接続して当該入力部と当該出力部との間を流れる電流の経路となる電源経路に設けられる。トライアック13は、電流を遮断可能な半導体素子の一例である。トライアック13は、第1変換ユニット10の出力/遮断を切り換えるために設けられる。ダイオードブリッジ14は、ラインフィルタ回路12の出力電流を整流する。力率改善回路25は、入力電圧、すなわちダイオードブリッジ14の出力電圧を昇圧する昇圧型である。力率改善回路25の出力する直流電圧の電圧値、すなわち第1変換ユニット10の出力電圧V1の電圧値は、例えば200V以上500V未満であり、本実施形態では一例として380Vである。第1変換ユニット10の出力電圧V1は、交流電源3から入力される交流電圧Vacのピーク値よりも高い。
本実施形態では出力電圧V1の目標値(第1目標値)は380Vとされるが、交流電圧Vacの変動により、出力電圧V1の実測値も変動してしまう。このため、演算部20は、電圧検出回路24から送信された交流電圧Vacの値を用いて、出力電圧V1が目標値と一致するように、トライアック13及びスイッチング素子Q1を制御して、力率改善回路25の昇圧量を変更する。具体的には、交流電圧Vacの値が低下すると昇圧量を増加させ、交流電圧Vacの値が増加すると昇圧量を低下させることで、交流電圧Vacの値が変動しても、出力電圧V1の値が380Vに維持されるようにする。演算部20の処理速度などの要因により、交流電圧Vacの値の変動が発生してから昇圧量が変更されるまでには時間T1を要する。
第1変換ユニット10において、検出抵抗R1は、力率改善回路25の出力電流(第1変換ユニット10の出力電流)の経路に設けられる。補助電源15は、ダイオードブリッジ14の出力電圧を、演算部20等の動作電圧(例えばDC5V)に変換する。補助電源15は、入力側と出力側が絶縁された絶縁型であるとよい。電流検出回路16は、検出抵抗R1の両端の電圧を基に力率改善回路25の出力電流を検出し、制御回路としての演算部20にフィードバックする。温度検出回路19は、サーミスタ等の温度検出素子を含み、第1変換ユニット10内の温度を検出し、演算部20にフィードバックする。演算部20は、第1制御部の例示であり、マイクロコントローラを含む。演算部20は、温度検出回路19による温度検出値に応じて第1冷却ファン17を駆動する。また、演算部20は、温度検出回路19による異常温度検出時、電流検出回路16による異常電流検出時、又はケーブル5の断線が検出された時に、トライアック13をオフし、第1変換ユニット10の出力を遮断する。抵抗R2の一端は、補助電源15の出力電圧が供給される電源ラインに接続される。抵抗R2の他端は、演算部20に接続されると共に、異常検出端子10aを介してケーブル5の通電信号送出線5aに接続される。すなわち、演算部20は、異常検出端子10aを介してケーブル5の通電信号送出線5aに接続される。リセット端子18は、ケーブル5の断線時に演算部20がトライアック13をオフとした後、ケーブル5の交換が完了した場合に、演算部20を初期状態に戻すために設けられる。リセット端子18にリセット操作を行うことで、演算部20は、初期状態に戻って再びトライアック13をオンする(非遮断状態とする)。演算部20は、交流電源3から入力される交流電圧Vacの実効値が第1閾値以下、例えば80V以下の場合、力率改善回路25の動作を停止する。
第2変換ユニット30において、ケーブル5との接続端子のうち絶縁トランス31の入力側に接続される2つの端子(+端子30bと-端子30c)は、第2入力部である。電動工具70との接続端子のうち電解コンデンサC3の両端に接続される2つの端子は、第2出力部である。電解コンデンサC2は、第2入力部を構成する2つの端子間に設けられる。絶縁トランス31、スイッチング素子32、ダイオードD2、D3、及び電解コンデンサC3は、変圧回路を構成する。スイッチング素子32は、絶縁トランス31の一次側に設けられる。絶縁トランス31の二次側に、ダイオードD2、D3が設けられる。絶縁トランス31の二次側の電圧は、電解コンデンサC3により平滑される。絶縁トランス31の二次側の直流電圧、すなわち第2変換ユニット30の出力電圧V2は、例えば0V以上400V未満であり、本実施形態では一例として36Vであるが、特に0V以上70V未満の範囲で、接続する電動工具70の定格電圧に合わせた第1電圧とすることが望ましい。第2変換ユニット30の出力電圧V2は、第1変換ユニット10の出力電圧V1よりも低い。検出抵抗R3は、絶縁トランス31及び電解コンデンサC3の出力電流(第2変換ユニット30の出力電流)の経路に設けられる。電流検出回路35は、検出抵抗R3の両端の電圧を基に、絶縁トランス31及び電解コンデンサC3の出力電流を検出する。断線検出回路39は、ケーブル5の断線を検出するための回路である。入力電圧検出回路44は、第1変換ユニット10から第2変換ユニット30への入力電圧Vdを検出し、演算部40に送信するための回路である。入力電圧Vdは、ケーブル5に異常がなければ、第1変換ユニット10の出力電圧V1と略一致する。
スイッチング制御回路33は、フィードバック回路42(第2調整部)からのフィードバック信号及び演算部40からの制御信号に応じて、スイッチング素子32のオンオフを制御する。フィードバック回路42は、出力電圧検出回路34からの電圧検出信号に応じたフィードバック信号をスイッチング制御回路33に送信する。出力電圧検出回路34は、絶縁トランス31の両端の電圧及び電流検出回路35の検出値に応じた電圧検出信号をフィードバック回路42に送信する。第2変換ユニット30の入力電圧V1の値が変動すると、出力電圧V2の実測値も変動してしまうが、このフィードバック回路42がフィードバック信号によりスイッチング制御回路35を制御することで降圧量を変更し、出力電圧V2の実測値が目標値(第2目標値)と一致させる。尚、フィードバック回路42の処理速度などの要因により、第2変換ユニット30の入力電圧V1の値の変動が発生してから降圧量が変更されるまでには時間T2が生じる。フィードバック回路42は、ソフトスタート制御回路43からソフトスタート制御開始信号を受信すると、出力電圧検出回路34の検出値によらない所定のフィードバック信号をスイッチング制御回路33に送信する。所定のフィードバック信号は、第2変換ユニット30の出力電圧V2を通常時よりも低い第2電圧、例えば10V程度とするフィードバック信号である。より詳細には、所定のフィートバック信号は、第2変換ユニット30の出力電圧V2の目標値(第2目標値)を、通常時の目標値である36Vから、10Vに低下させる。演算部40は、第1変換ユニット10からの入力電圧Vdが第2閾値以下、例えば300V以下に低下すると、ソフトスタート制御回路43をアクティブ化し、ソフトスタート制御回路43からフィードバック回路42にソフトスタート制御開始信号を送信させる。演算部40、出力電圧検出回路34、フィードバック回路42、ソフトスタート制御回路43、及びスイッチング制御回路33を、合わせて第2変換ユニット30の制御部としてもよい。
図7に示すように、出力電圧検出回路34は、誤差増幅器として機能する演算増幅器34aを含む。出力電圧検出回路34は、第2変換ユニット30の出力電圧V2と基準電圧との差に応じた電圧を演算増幅器34aの出力端子に発生する回路である。基準電圧は、電流検出回路35の検出値であり、第2変換ユニット30の出力電流に比例する電圧である。基準電圧を第2変換ユニット30の出力電流に比例する電圧としているのは、第2変換ユニット30の出力電圧と出力電流との関係を、バッテリパックの出力電圧と出力電流との関係、すなわち出力電流が大きくなるほど出力電圧が所定の傾きで低下する関係に近づけるためである。そのような必要が無い場合、基準電圧は、一定の電圧としてもよい。
ソフトスタート制御回路43は、スイッチング素子Q2を含む。スイッチング素子Q2は、自身の制御端子としてのベースで演算部40からのソフトスタート制御開始信号FB_STARTを受信すると、すなわちソフトスタート制御開始信号FB_STARTがローレベルからハイレベルに遷移するとターンオンする。スイッチング素子Q2は、ソフトスタート制御開始信号FB_STARTを受信している間、すなわちソフトスタート制御開始信号FB_STARTがハイレベルである間はオンである。スイッチング素子Q2は、ソフトスタート制御開始信号FB_STARTを受信していない間、すなわちソフトスタート制御開始信号FB_STARTがローレベルである間はオフである。
フィードバック回路42は、スイッチング素子Q2がオフのときは、演算増幅器34aの出力電圧に応じたアナログ電圧値を有するフィードバック信号FBをスイッチング制御回路33に送信する。フィードバック回路42は、スイッチング素子Q2がオンの時は、演算増幅器34aの出力電圧によらない所定のアナログ電圧値を有するフィードバック信号FBをスイッチング制御回路33に送信する。フィードバック回路42は、フォトカプラ42aを有し、入力側と出力側との絶縁を確保している。
図6に示す補助電源36は、ケーブル5からの入力電圧を、スイッチング制御回路33及び演算部40等の動作電圧に変換する。温度検出回路38は、サーミスタ等の温度検出素子を含み、第2変換ユニット30内の温度を検出し、演算部40にフィードバックする。演算部40は、第2制御部の例示であり、マイクロコントローラを含む。演算部40は、温度検出回路38による温度検出値に応じて第2冷却ファン37を駆動する。また、演算部40は、温度検出回路38による異常温度検出時には、LD端子を介して電動工具70の演算部73にオフ信号(異常検出信号)を送信し、電動工具70の駆動を停止させる。
ケーブル5は、通電信号送出線5aに加え、第1変換ユニット10の出力側に設けられる+端子10bと第2変換ユニット30の入力側に設けられる+端子30bとを接続する+側電源線5bと、第1変換ユニット10の出力側に設けられる-端子10cと第2変換ユニット30の入力側に設けられる-端子30cとを接続する-側電源線5cと、を有する三線構造である。
電動工具70は、トリガスイッチ71と、インバータ回路72と、制御部としての演算部73と、モータ74と、ショートバー76と、電圧検出部78と、電解コンデンサC4と、を含む。電解コンデンサC4は、インバータ回路72の入力端子間に設けられる。トリガスイッチ71は、インバータ回路72への電流経路に設けられ、当該電流経路の導通、遮断を切り替える。これとは別に、トリガスイッチ71のオンオフは、演算部73に伝達される。インバータ回路72は、三相ブリッジ接続されたFETやIGBT等のスイッチング素子を有する。
演算部73は、インバータ回路72を制御することで、モータ74の駆動を制御する。演算部73は、LD端子を介して第2変換ユニット30の演算部40からオフ信号(異常検出信号)を受信すると、トリガスイッチ71の状態に関わらずインバータ回路72をオフし、モータ74の駆動を停止する。演算部73は、インバータ回路72への入力電圧Vinが所定値以下になると、トリガスイッチ71の状態に関わらずインバータ回路72をオフし、モータ74の駆動を停止する。
ショートバー76は、下プラス端子と上マイナス端子との間を短絡する金属体である。第2変換ユニット30が電動工具70に接続されると、ショートバー76によって下プラス端子と上マイナス端子との間が短絡され、第2変換ユニット30の下プラス端子はグランド電位となる。第2変換ユニット30が電動工具70に接続されていない場合、第2変換ユニット30の下プラス端子の電圧は、抵抗R9によってプルアップされ、5Vとなる。このように、第2変換ユニット30の演算部40は、下プラス端子の電圧により、第2変換ユニット30が電動工具70に接続されているか否かを検出できる。
図8を参照し、本実施の形態の電動工具システムの動作を説明する。第1変換ユニット10は、電源コード11により外部の交流電源3に接続される(S1)。演算部20は、交流電圧Vacが第1閾値(例えば80V)以上でない場合(S3のNo)、力率改善回路25を停止する(S5)。演算部20は、交流電圧Vacが第1閾値以上の場合(S3のYes)、力率改善回路25を駆動する(S7)。これにより第1変換ユニット10から第2変換ユニット30に電圧が供給される。
第2変換ユニット30は、第1変換ユニット10からの入力電圧Vdが第2閾値(例えば300V)より大きい場合(S11のYes)、かつ第2変換ユニット30に電動工具70が接続されている場合(S13のYes)、第1電圧を出力する(S15)。第1電圧は、例えば、接続する電動工具70の定格電圧に合わせた電圧であって、出力電流に対する特性がバッテリパックと同等の電圧である。もっとも、第1電圧は、出力電流によらず略一定の電圧であってもよい。
第1電圧が入力された電動工具70において、演算部73は、トリガスイッチ71がオンになると(S17のYes)、モータ74を駆動する(S19)。演算部73は、トリガスイッチ71がオフになると(S21)、モータ74を停止する(S23)。トリガスイッチ71が継続してオンされている場合(S21のYes)において、第2変換ユニット30の演算部40は、第1変換ユニット10からの入力電圧Vdが第2閾値以下に低下すると(S25のYes)、ソフトスタート制御(電圧低下制御)をオンにする(S27)。具体的には、演算部40は、ソフトスタート制御開始信号をソフトスタート制御回路43に送信する。これにより、演算部40は、第2変換ユニット30の出力電圧を、第1電圧から第2電圧に低下させる(S29)。第2電圧は、第1電圧よりも低い。第2電圧は、電動工具70が停止する後述の第3閾値(停止閾値)よりも低い。第2電圧は、例えば10Vである。
演算部73は、第2変換ユニット30からの入力電圧が第3閾値以下に低下すると(S31のYes)、トリガスイッチ71がオンであってもモータ74を停止する(S33)。第3閾値は、例えば15Vである。演算部40は、第2変換ユニット30の出力電圧を第1電圧から第2電圧に低下させてからの所定時間t_soft(例えば1.5秒)が経過すると(S35のYes)、ソフトスタート制御をオフにする(S37)。具体的には、演算部40は、ソフトスタート制御開始信号の送信を止める。これにより、演算部40は、第2変換ユニット30の出力電圧を、第2電圧から第1電圧に戻す(S39)。
演算部73は、第2変換ユニット30から電動工具70への入力電圧が第2電圧から第1電圧に戻った場合において、トリガスイッチ71が継続的にオンである場合(S41のYes)、モータ74を停止したまま待機する。演算部73は、トリガスイッチ71がオフになり(S41のNo)、再度トリガスイッチ71がオンになると(S43のYes)、モータ74を駆動する(S45)。
図9は、比較例の電動工具システムの動作を示すタイムチャートである。本比較例は、第2変換ユニット30から前述のソフトスタート制御の機能を除いたものである。図9において、第2変換ユニット30の出力電流の変化による第2変換ユニット30の出力電圧V2の変化は無視している。後述の図10においても同様である。第2変換ユニット30の出力電圧の目標値は第1電圧(例えば40V)で一定である。時刻t1以前は、交流電圧Vacが一定であり、第1変換ユニット10の出力電圧V1は一例として380V、第2変換ユニット30の出力電圧V2は一例として40Vとなっている。時刻t1において、交流電圧Vacの実効値が一時的に低下する。すると、第1変換ユニット10の出力電圧V1も一時的に一例として200まで低下する。第1変換ユニット10の出力電圧V1が第2閾値(例えば300V)以下まで低下するため、第2変換ユニット30は電圧出力を止める。その後、交流電圧Vacが元の値まで急上昇すると、第1変換ユニット10の出力電圧V1も元の値まで戻る。このとき、第1変換ユニット10の出力電圧V1にオーバーシュートが発生するが、オーバーシュートの幅は小さい。第1変換ユニット10の出力電圧V1が元の値に元に戻ると、第2変換ユニット30の出力電圧V2も元の値まで戻る。このとき、第2変換ユニット30の出力電圧V2に大きなオーバーシュートが発生する。オーバーシュートは、例えば70Vまで達する。
図10は、図6の電動工具システムの動作を示すタイムチャートである。図10において、時刻t1以前の状態は、比較例と同じである。図9では図示を省略したが、時刻t1以前において、電動工具70のトリガスイッチ71はオンであり、モータ74は駆動している。時刻t1において、比較例の場合と同様に交流電圧Vacの実効値が一時的に低下する。すると、第1変換ユニット10の出力電圧V1も一時的に低下する。第1変換ユニット10の出力電圧V1の低下は、第2閾値(例えば300V)になった付近で止まる。第1変換ユニット10の出力電圧V1が第2閾値以下になると、第2変換ユニット30のソフトスタート制御を開始する。具体的には、第2変換ユニット30は、自身の出力電圧の目標値を第1電圧(例えば40V)から第2電圧(例えば10V)まで低下させる。これにより第2変換ユニット30の出力電圧V2が第1電圧から第2電圧まで低下する。すると、電動工具70への入力電圧が第3閾値(例えば15V)以下になり、電動工具70のモータ74は、トリガスイッチ71がオンであるが停止する。モータ74が停止すると、第2変換ユニット30の出力電流が大幅に小さくなり、第1変換ユニット10の出力電流も大幅に小さくなる。すなわち第1変換ユニット10の負荷が大幅に低下する。これが、第1変換ユニット10の出力電圧V1の低下が第2閾値付近で止まる理由である。
その後、交流電圧Vacが元の値まで急上昇すると、第1変換ユニット10の出力電圧V1も元の値まで戻る。このとき、第1変換ユニット10の出力電圧V1にオーバーシュートが発生するが、オーバーシュートの幅は小さい。第1変換ユニット10の出力電圧V1が元の値に元に戻ると、第2変換ユニット30の出力電圧V2も元の値まで戻る。このとき、第2変換ユニット30の出力電圧V2にオーバーシュートが発生する。しかし、第2変換ユニット30の出力電圧の目標値が10Vであるため、第2変換ユニット30の出力電圧V2はオーバーシュートしても例えば12V程度以内に収まる。第2変換ユニット30の出力電圧の目標値が第2電圧に低下してから所定時間t_softが経過した時刻t2において、第2変換ユニット30はソフトスタート制御を停止する。具体的には、第2変換ユニット30は、自身の出力電圧の目標値を第1電圧(例えば40V)に戻す。これにより第2変換ユニット30の出力電圧V2が第1電圧まで上昇する。時刻t2において電動工具70への入力電圧は第3閾値(例えば15V)を超えて上昇するが、トリガスイッチ71が継続してオンのため、モータ74は駆動しない。時刻t3においてトリガスイッチ71がオフになり、時刻t4においてトリガスイッチ71が再度オンになると、モータ74が駆動する。
時刻t1において交流電圧Vacの実効値が低下し、その後に急上昇する過程で、第1変換ユニット10の出力電圧V1と第2変換ユニット30の出力電圧V2との間にオーバーシュートの幅で差が出るのは、以下の理由による。ここで、オーバーシュートの幅は、目標値に対する比率をいう。第2変換ユニット30は、制御を安定させる目的で、第1変換ユニット10よりも出力電圧のフィードバックの速度、すなわちフィードバックループを回す速度(周波数)を遅く設定している。換言すると、第1変換ユニット10の演算部20が昇圧量を変更する速さT1は、第2変換ユニット30のフィードバック回路42が降圧量を変更する速さT2よりも速い。このため、第2変換ユニット30への入力電圧が急激に上昇すると、フィードバックの遅れによりオーバーシュートが大きな幅で発生する。上記のソフトスタート制御は、フィードバックの速度を遅くして制御を安定させながら、オーバーシュートの影響を抑制可能とするものである。
本実施の形態によれば、下記の作用効果を奏することができる。
(1) 第2変換ユニット30は、自身への入力電圧が第2閾値以下に低下すると、自身の出力電圧を低下させるソフトスタート制御を行う。これにより、第2変換ユニット30への入力電圧が低下後に急上昇しても、第2変換ユニット30の出力電圧V2のオーバーシュートによる到達値を抑制できる。よって、第2変換ユニット30の出力電圧V2のオーバーシュートによる電動工具70の素子の破損や故障を抑制できる。
(2) 第2変換ユニット30は、ソフトスタート制御において自身の出力電圧を、電動工具70が停止する第3閾値以下まで低下させる。このため、トリガスイッチ71をオンにしていた作業者は、モータ74が停止することにより、電源環境が良くないことを知ることができる。すなわち、第2変換ユニット30は、ソフトスタート制御により、電源環境が良くないことを作業者に報知できる。また、モータ74が停止することで、不安定な入力電圧により電動工具70の動作が不安定になることを抑制できる。電動工具70の不安定な状態が持続しなくなることで、直流電源装置1や電動工具70の制御系の故障を抑制できる。
(3) 第2変換ユニット30は、ソフトスタート制御を開始してから所定時間t_softが経過するとソフトスタート制御を停止して通常制御に戻る。すなわち、自身の出力電圧を元に戻す制御を行う。このため、ソフトスタート制御の停止のために第2変換ユニット30に対する作業者の操作を要さないため、使い勝手が良い。
(4) 電動工具70は、トリガスイッチ71がオンされているときに直流電源装置1の出力電圧が第3閾値以下に低下するとモータ74の駆動を停止する。その後、トリガスイッチ71が継続的にオンされている間は、直流電源装置1の出力電圧が第3閾値を超えて上昇しても、モータ74を駆動しない。トリガスイッチ71がオフされて再度オンされると、モータ74を駆動する。このため、直流電源装置1の出力電圧が一時的に第3閾値以下に低下して元に戻った場合に、不意に電動工具70が再駆動することを抑制でき、使い勝手が良い。
以上、実施の形態を例に本発明を説明したが、実施の形態の各構成要素や各処理プロセスには請求項に記載の範囲で種々の変形が可能であることは当業者に理解されるところである。以下、変形例について触れる。
電動工具70の接続検出は、電動工具70のショートバー76を利用する構成に限定されず、例えば電動工具70がバッテリパック80の種類を識別するための識別端子を有する場合は当該識別端子を利用してもよく、直流電源装置1及び電動工具70が通信機能を有する場合は当該通信機能を利用してもよい。実施の形態で示した具体的な電圧値は、一例であり、要求される仕様によって適宜変更可能である。
1 直流電源装置、3 交流電源、5 ケーブル、
10 第1変換ユニット、11 電源コード、12 ラインフィルタ回路、13 トライアック、14 ダイオードブリッジ、15 補助電源、16 電流検出回路、17 第1冷却ファン、18 リセット端子、19 温度検出回路、20 演算部(第1制御部)、25 力率改善回路(PFC回路)、26 吸気口、27 排気口、
30 第2変換ユニット、31 絶縁トランス、32 スイッチング素子、33 スイッチング制御回路、34 出力電圧検出回路、34a 演算増幅器(誤差増幅器)、35 電流検出回路、36 補助電源、37 第2冷却ファン、38 温度検出回路、40 演算部(第2制御部)、42 フィードバック回路、42a フォトカプラ、43 ソフトスタート制御回路、44 入力電圧検出回路
70 電動工具、71 トリガスイッチ、72 インバータ回路、73 演算部、74 モータ、75 バッテリパック接続部、76 ショートバー、78 電圧検出部、
80 バッテリパック

Claims (10)

  1. 外部の交流電源に接続され、入力される交流を直流に変換して出力する第1変換ユニットと、
    前記第1変換ユニット及び外部の電動工具に接続され、前記第1変換ユニットから入力される直流を変圧して前記電動工具に出力する第2変換ユニットと、を有し、
    前記第2変換ユニットは、自身への入力電圧が所定値以下に低下すると、その後の自身の出力電圧を低下させる制御を行う、直流電源装置。
  2. 前記第2変換ユニットは、出力電圧値が目標となる第2目標値と一致するように変圧量を変更する第2調整部を有し、
    前記第2変換ユニットは、出力電圧を低下させる制御として、前記第2目標値を低下させる、請求項1に記載の直流電源装置。
  3. 前記第1変換ユニットは、出力電圧値が目標となる第1目標値と一致するように変圧量を変更する第1調整部を有し、
    前記第1調整部が変圧量を変更する速さは、前記第2調整部が変圧量を変更する速さよりも速い、請求項に記載の直流電源装置。
  4. 前記第2変換ユニットは、前記入力電圧が前記所定値以下に低下したことにより自身の出力電圧を低下させる制御を開始して当該制御を所定時間継続してから、自身の出力電圧を元に戻す制御を行う、請求項1から3のいずれか一項に記載の直流電源装置。
  5. 前記第2変換ユニットは、前記入力電圧が前記所定値以下に低下すると、自身の出力電圧を、前記電動工具が駆動を停止する閾値電圧よりも低い値まで低下させる制御を行う、請求項1から4のいずれか一項に記載の直流電源装置。
  6. 前記第1変換ユニットが力率改善回路を含む、請求項1から5のいずれか一項に記載の直流電源装置。
  7. 前記第1変換ユニットは、前記第1変換ユニットへの入力電圧を昇圧して出力し、
    前記第2変換ユニットは、前記第1変換ユニットへの入力電圧を降圧して出力する、請求項1から6のいずれか一項に記載の直流電源装置。
  8. 前記第2変換ユニットは、着脱可能に接続したバッテリパックの電力で駆動する外部の電動工具のバッテリパック接続部に、バッテリパックに替えて接続可能である、請求項1から7のいずれか一項に記載の直流電源装置。
  9. 直流電源装置から電力を供給可能に構成され、トリガが操作された状態で駆動可能であり、前記直流電源装置の出力電圧が停止閾値以下に低下するとトリガが操作された状態であっても駆動を停止する電動工具と、
    自身への入力電圧が所定値以下に低下すると、その後の出力電圧を前記停止閾値以下に低下させる制御を行う直流電源装置と、を備え、
    前記電動工具は、前記トリガが操作された状態において前記直流電源装置の出力電圧が前記停止閾値以下に低下したことにより駆動を停止した後、前記トリガが操作された状態が継続されている間は、前記直流電源装置が前記制御を解除することで出力電圧が前記停止閾値を超えて上昇しても駆動を停止し続け、前記トリガの操作が解除されて再操作されると駆動を開始する、電動工具システム。
  10. 前記直流電源装置は、前記入力電圧が所定値以下に低下すると、前記出力電圧の目標値を前記停止閾値以下に低下させる、請求項9に記載の電動工具システム。
JP2019199187A 2019-10-31 2019-10-31 直流電源装置及び電動工具システム Active JP7347128B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019199187A JP7347128B2 (ja) 2019-10-31 2019-10-31 直流電源装置及び電動工具システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019199187A JP7347128B2 (ja) 2019-10-31 2019-10-31 直流電源装置及び電動工具システム

Publications (2)

Publication Number Publication Date
JP2021072729A JP2021072729A (ja) 2021-05-06
JP7347128B2 true JP7347128B2 (ja) 2023-09-20

Family

ID=75713878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019199187A Active JP7347128B2 (ja) 2019-10-31 2019-10-31 直流電源装置及び電動工具システム

Country Status (1)

Country Link
JP (1) JP7347128B2 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006129544A (ja) 2004-10-26 2006-05-18 Matsushita Electric Works Ltd 充電式電気機器
JP2010011533A (ja) 2008-06-24 2010-01-14 Fujitsu General Ltd 電源装置、及びこれを備えた機器
JP2015082931A (ja) 2013-10-23 2015-04-27 日立工機株式会社 充電アダプタ及びそれを備えた電源システム
JP2015118734A (ja) 2013-12-16 2015-06-25 パナソニックIpマネジメント株式会社 Led点灯装置
JP2017045504A (ja) 2015-08-24 2017-03-02 岩崎電気株式会社 Led電源装置及びled照明装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006129544A (ja) 2004-10-26 2006-05-18 Matsushita Electric Works Ltd 充電式電気機器
JP2010011533A (ja) 2008-06-24 2010-01-14 Fujitsu General Ltd 電源装置、及びこれを備えた機器
JP2015082931A (ja) 2013-10-23 2015-04-27 日立工機株式会社 充電アダプタ及びそれを備えた電源システム
JP2015118734A (ja) 2013-12-16 2015-06-25 パナソニックIpマネジメント株式会社 Led点灯装置
JP2017045504A (ja) 2015-08-24 2017-03-02 岩崎電気株式会社 Led電源装置及びled照明装置

Also Published As

Publication number Publication date
JP2021072729A (ja) 2021-05-06

Similar Documents

Publication Publication Date Title
JP4333519B2 (ja) スイッチング電源装置
JP6366820B2 (ja) 電源装置及び空気調和装置
JP2005045853A (ja) 直流安定化電源装置
WO2020026665A1 (ja) 直流電源装置
JP6496371B2 (ja) Pwmコンバータの昇圧率が制御されるモータ駆動装置
KR101562136B1 (ko) 진공 청소기
US10126033B2 (en) Power conversion device and air conditioner
JP5709736B2 (ja) 光源点灯装置及び照明器具
JP7347128B2 (ja) 直流電源装置及び電動工具システム
US20230170831A1 (en) Work machine
JP2009195073A (ja) スイッチング電源装置
US11146174B2 (en) Dynamic mult-functional power controller
JP5447093B2 (ja) 電源回路
CN114001439B (zh) 空调器及其控制装置和方法
JP2009278780A (ja) 全波整流回路
JP2020048372A (ja) 直流電源装置
JP7156020B2 (ja) 直流電源装置及び電動工具システム
WO2023032708A1 (ja) 作業機
CN217741577U (zh) 双端反激式开关电源及其保护电路
JP2002125367A (ja) 電源装置
CN218041203U (zh) 一种对电源端口柔性充电启动的电路及开关电源系统
JP5967411B2 (ja) 自立運転可能電源装置
CN216929914U (zh) 一种交流驱动器保护系统
KR102079527B1 (ko) 인버터 제어장치
JP2020178521A (ja) 直流電源装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230821

R150 Certificate of patent or registration of utility model

Ref document number: 7347128

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150