JP7343304B2 - 正極前駆体 - Google Patents

正極前駆体 Download PDF

Info

Publication number
JP7343304B2
JP7343304B2 JP2019098544A JP2019098544A JP7343304B2 JP 7343304 B2 JP7343304 B2 JP 7343304B2 JP 2019098544 A JP2019098544 A JP 2019098544A JP 2019098544 A JP2019098544 A JP 2019098544A JP 7343304 B2 JP7343304 B2 JP 7343304B2
Authority
JP
Japan
Prior art keywords
positive electrode
less
mass
active material
alkali metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019098544A
Other languages
English (en)
Other versions
JP2020194845A (ja
Inventor
祐介 山端
隆志 中島
裕之 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2019098544A priority Critical patent/JP7343304B2/ja
Publication of JP2020194845A publication Critical patent/JP2020194845A/ja
Application granted granted Critical
Publication of JP7343304B2 publication Critical patent/JP7343304B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は正極前駆体に関する。
近年、地球環境の保全又は省資源を目指すエネルギーの有効利用の観点から、風力発電の電力平滑化システム又は深夜電力貯蔵システム、太陽光発電技術に基づく家庭用分散型蓄電システム、電気自動車用の蓄電システム等が注目を集めている。
これらの蓄電システムに用いられる電池の第一の要求事項は、エネルギー密度が高いことである。このような要求に対応可能な高エネルギー密度電池の有力候補として、リチウムイオン電池の開発が精力的に進められている。
第二の要求事項は、出力特性が高いことである。例えば、高効率エンジンと蓄電システムとの組み合わせ(例えば、ハイブリッド電気自動車)又は燃料電池と蓄電システムとの組み合わせ(例えば、燃料電池電気自動車)において、加速時には蓄電システムにおける高出力放電特性が要求される。
現在、高出力蓄電デバイスとしては、電気二重層キャパシタ、ニッケル水素電池等が開発されている。
電気二重層キャパシタのうち、電極に活性炭を用いたものは、約0.5~約1kW/Lの出力特性を有する。この電気二重層キャパシタは、耐久性(サイクル特性及び高温保存特性)も高く、高出力が要求される分野で最適のデバイスと考えられてきた。しかしながら、そのエネルギー密度は約1~約5Wh/Lに過ぎない。そのため、更なるエネルギー密度の向上が必要である。
一方、現在ハイブリッド電気自動車で採用されているニッケル水素電池は、電気二重層キャパシタと同等の高出力を有し、かつ約160Wh/Lのエネルギー密度を有している。そのエネルギー密度及び出力をより一層高めるとともに、耐久性(特に、高温における安定性)を高めるための研究が精力的に進められている。
リチウムイオン電池においても、高出力化に向けての研究が進められている。例えば、放電深度(蓄電素子の放電容量の何%を放電した状態かを示す値)50%において3kW/Lを超える高出力が得られるリチウムイオン電池が開発されている。しかしながら、そのエネルギー密度は100Wh/L以下であり、リチウムイオン電池の最大の特徴である高エネルギー密度を敢えて抑制した設計となっている。リチウムイオン電池の耐久性(サイクル特性及び高温保存特性)については、電気二重層キャパシタに比べ劣る。そのため、耐久性をより一層向上させるための研究が精力的に進められている。実用的な耐久性を持たせるためには、放電深度が0~100%の範囲よりも狭い範囲での使用となる。実際に使用できる容量は更に小さくなる。
高エネルギー密度、高出力特性、及び耐久性を兼ね備えた蓄電素子の実用化が強く求められている。しかしながら、上述した既存の蓄電素子には、それぞれ一長一短がある。そのため、これらの技術的要求を充足する新たな蓄電素子が求められている。その有力な候補として、リチウムイオンキャパシタと呼ばれる蓄電素子が注目され、開発が盛んに行われている。
リチウムイオンキャパシタは、リチウム塩を含む非水系電解液を使用する蓄電素子(非水系アルカリ金属蓄電素子)の一種であって、正極においては約3V以上で電気二重層キャパシタと同様の陰イオンの吸着・脱着による非ファラデー反応、負極においてはリチウムイオン電池と同様のリチウムイオンの吸蔵・放出によるファラデー反応によって、充放電を行う蓄電素子である。
上述の電極材料とその特徴をまとめると、電極に活性炭等の材料を用い、活性炭表面のイオンの吸着・脱離(非ファラデー反応)により充放電を行う場合は、高出力かつ高耐久性を実現するが、エネルギー密度が低くなる。一方、電極に酸化物又は炭素材料を用い、ファラデー反応により充放電を行う場合は、エネルギー密度が高くなる。例えば活性炭を用いた非ファラデー反応のエネルギー密度を「1倍」とすると、上記ファラデー反応によるエネルギー密度は「10倍」であることができる。しかし、上記ファラデー反応による充放電では耐久性及び出力特性に課題が生じる。
これらの電極材料の組合せとして、電気二重層キャパシタは、正極及び負極に活性炭(上記エネルギー密度1倍)を用い、正負極共に非ファラデー反応により充放電を行うことを特徴とし、高出力かつ高耐久性を有するがエネルギー密度が低い(正極1倍×負極1倍=1)という特徴がある。
リチウムイオン二次電池は、正極にリチウム遷移金属酸化物(エネルギー密度10倍)、負極に炭素材料(エネルギー密度10倍)を用い、正負極共にファラデー反応により充放電を行うことを特徴とし、高エネルギー密度(正極10倍×負極10倍=100)であるが、出力特性及び耐久性に課題がある。更に、ハイブリッド電気自動車等で要求される高耐久性を満足させるためには放電深度を制限しなければならず、リチウムイオン二次電池では、そのエネルギーの10~50%しか使用できない。
リチウムイオンキャパシタは、正極に活性炭(エネルギー密度1倍)、負極に炭素材料(エネルギー密度10倍)を用い、正極では非ファラデー反応、負極ではファラデー反応により充放電を行うことを特徴とし、電気二重層キャパシタ及びリチウムイオン二次電池の特徴を兼ね備えた新規の非対称キャパシタである。そして、高出力かつ高耐久性でありながら、高エネルギー密度(正極1倍×負極10倍=10)を有し、リチウムイオン二次電池の様に放電深度を制限する必要がないことが特徴である。
リチウムイオンキャパシタの用途としては、例えば鉄道、建機、自動車用蓄電等が挙げられる。
リチウムイオンキャパシタにおいては、高出力と高エネルギー密度とを両立させる目的で、負極に予めアルカリ金属をドープ(すなわちプレドープ)することがある。負極のプレドープは、通常、アルカリ金属化合物を含む正極前駆体と、負極と、セパレータと、外装体と、非水系電解液とを備える蓄電素子(蓄電素子前駆体として)を形成した後、正極前駆体と負極との間に電圧を印加することで上記アルカリ金属化合物を分解し、これにより発生したアルカリ金属イオンを負極に供給することによって行う。特許文献1には、正極前駆体中のアルカリ金属化合物の分解を促進することで負極へのプレドープを短時間で行うことができ、かつ高温耐久性の良好な非水系ハイブリッドキャパシタを製造する方法が記載されている。
国際公開第2017/126687号
しかしながら、本発明者らは、炭素材料を含む正極活物質層と、正極集電体とを有し、かつアルカリ金属化合物を含んでいる正極前駆体においては、当該正極前駆体の保管中に正極活物質層と正極集電体との剥離強度が低下するという問題があること、更に、このような剥離強度の低下が、非水系アルカリ金属蓄電素子の微短絡を招来することに着目した。特許文献1に記載される技術は、負極への短時間でのプレドープを実現し得るものであるが、正極前駆体の保管中の剥離強度の低下に十分対処するものではない。
本発明が解決しようとする課題は、炭素材料とアルカリ金属化合物とを含みながら、保管後にも良好な剥離強度を有する正極前駆体を提供すること、及び、当該正極前駆体を用いて得られ、微短絡が回避された非水系蓄電素子を提供することである。
上記課題は、以下の技術的手段により解決され得る。すなわち、本発明は、以下の態様を包含する。
[1] 正極集電体と前記正極集電体上に配置された正極活物質層とを有する正極前駆体であって、
前記正極活物質層は、炭素材料を含む正極活物質と、アルカリ金属化合物とを含み、
前記正極活物質層中に占める前記アルカリ金属化合物の質量割合が10質量%以上50質量%以下であり、
前記正極活物質層の水分量が100質量ppm以上2質量%以下である、正極前駆体。
[2] 正極活物質層の正極集電体片面当たりの目付が20g/m2以上200g/m2以下である、上記態様1に記載の正極前駆体。
[3] 正極活物質層の正極集電体片面当たりの厚みが10μm以上200μm以下である、上記態様1又は2に記載の正極前駆体。
[4] 前記正極前駆体のリール長さが1500m以下である、上記態様1~3のいずれかに記載の正極前駆体。
[5] 電極積層体又は電極捲回体、非水系電解液、及び、前記電極積層体又は電極捲回体と前記非水系電解液とを収容する外装体、を含む非水系アルカリ金属蓄電素子であって、
前記電極積層体又は電極捲回体が、上記態様1~4のいずれかに記載の正極前駆体と、負極と、セパレータとを有する、非水系アルカリ金属蓄電素子。
本発明の一態様によれば、炭素材料とアルカリ金属化合物とを含みながら、保管後にも良好な剥離強度を有する正極前駆体が提供され得る。また、本発明の一態様によれば、当該正極前駆体を用いて得られ、微短絡が回避された非水系アルカリ金属蓄電素子が提供され得る。
以下、本発明の実施形態(以下、「本実施形態」という。)を詳細に説明するが、本発明は本実施形態に限定されるものではない。本実施形態の各数値範囲における上限値及び下限値は任意に組み合わせて任意の数値範囲を構成することができる。本開示において、含有量、特性値等の各種数値範囲は、仕込み量(含有量について)、及び、本開示で例示する測定方法のうち少なくとも1つに従って得られる値、のうちいずれか1つが当該数値範囲に包含されればよいことを意図する。一態様において、各種数値範囲は、本開示の[実施例]に記載される方法に従って得られる値である。
本発明の一態様は、正極活物質層と正極集電体とを含む正極前駆体を提供する。一態様において正極前駆体は炭素材料及びアルカリ金属化合物を含む。また、本発明の一態様は、当該正極前駆体を備える非水系アルカリ金属蓄電素子(当該正極前駆体から負極にアルカリ金属がドープされる前の状態である蓄電素子前駆体、及び、当該正極前駆体から負極にアルカリ金属がドープされた後の状態である蓄電素子、の両者を包含する。)を提供する。非水系アルカリ金属蓄電素子は、一般に、正極と、負極と、セパレータと、電解液とを主な構成要素とする。電解液としては、アルカリ金属イオンを含む有機溶媒(以下、「非水系電解液」ともいう。)を用いる。一態様において、非水系アルカリ金属蓄電素子の負極には、プレドープによって導入された、正極前駆体中のアルカリ金属化合物由来のアルカリ金属イオンが存在する。プレドープは、アルカリ金属化合物を含む正極前駆体と、負極と、セパレータと、外装体と、非水系電解液とを備える蓄電素子前駆体を形成した後、正極前駆体と負極との間に電圧を印加することによって実現できる。本実施形態の正極前駆体は、正極前駆体中、特に正極活物質層中にアルカリ金属化合物を含んでいることによって、負極へのドープを経て蓄電素子の正極を構成することになる。以下、本実施形態の正極前駆体、及びこれを用いて得られる非水系アルカリ金属蓄電素子の例示の態様について説明する。
《正極前駆体》
本発明の一態様は、正極集電体と該正極集電体上に配置された正極活物質層とを有する正極前駆体を提供する。正極活物質層は、集電体の片面又は両面に存在してよい。
〈正極活物質層〉
一態様において、正極活物質層は、炭素材料及びアルカリ金属化合物を含む。一態様において、正極活物質層は、炭素材料を含む正極活物質と、アルカリ金属化合物と、結着剤とを含む。
[正極活物質]
正極活物質は、炭素材料を含む。この炭素材料としては、カーボンナノチューブ、グラフェン、酸化グラフェン、導電性高分子、又は多孔性の炭素材料(例えば活性炭)が好ましく、さらに好ましくは活性炭である。正極活物質は2種類以上の材料の混合物であってもよく、炭素材料以外の材料、例えばリチウム(Li)と遷移金属との複合酸化物(リチウム遷移金属酸化物)等を含んでもよい。
正極活物質の総量に対する炭素材料の含有率は、好ましくは50質量%以上であり、より好ましくは60質量%以上である。炭素材料の含有率は100質量%であることができるが、他の材料の併用による効果を良好に得る観点から、例えば、95質量%以下であることが好ましく、90質量%以下であってもよい。
活性炭を炭素材料として用いる場合、活性炭の種類及びその原料には特に制限はない。高い入出力特性と、高いエネルギー密度とを両立させるために、活性炭の細孔を制御することが好ましい。具体的には、BJH法により算出した直径20Å以上500Å以下(2.0nm以上50nm以下)の細孔に由来するメソ孔量をV1(cm3/g)、MP法により算出した直径20Å未満(2.0nm未満)の細孔に由来するマイクロ孔量をV2(cm3/g)とするとき、
(1)高い入出力特性を得るためには、0.3<V1≦0.8、及び0.5≦V2≦1.0を満たし、かつ、BET法により測定される比表面積が1,500m2/g以上3,000m2/g以下である活性炭(以下、活性炭1ともいう。)が好ましい。
(2)高いエネルギー密度を得るためには、0.8<V1≦2.5、及び0.8<V2≦3.0を満たし、かつ、BET法により測定される比表面積が2,300m2/g以上4,000m2/g以下である活性炭(以下、活性炭2ともいう。)が好ましい。
以下、(1)活性炭1及び(2)活性炭2について、個別に順次説明していく。
(1)活性炭1
活性炭1のメソ孔量V1は、正極材料を蓄電素子に組み込んだときの入出力特性を大きくする観点から、0.3cm3/gより大きいことが好ましい。一方で、正極の嵩密度の低下を抑える観点から、0.8cm3/g以下であることが好ましい。V1は、より好ましくは0.35cm3/g以上0.7cm3/g以下、更に好ましくは0.4cm3/g以上0.6cm3/g以下である。
活性炭1のマイクロ孔量V2は、活性炭の比表面積を大きくし、容量を増加させるために、0.5cm3/g以上であることが好ましい。一方で、活性炭の嵩を抑え、電極としての密度を増加させ、単位体積当たりの容量を増加させるという観点から、1.0cm3/g以下であることが好ましい。V2は、より好ましくは0.6cm3/g以上1.0cm3/g以下、更に好ましくは0.8cm3/g以上1.0cm3/g以下である。
活性炭1において、マイクロ孔量V2に対するメソ孔量V1の比(V1/V2)は、0.3≦V1/V2≦0.9の範囲であることが好ましい。すなわち、高容量を維持しながら出力特性の低下を抑えることができる程度に、マイクロ孔量に対するメソ孔量の割合を大きくするという観点から、V1/V2が0.3以上であることが好ましい。一方で、高出力特性を維持しながら容量の低下を抑えることができる程度に、メソ孔量に対するマイクロ孔量の割合を大きくするという点から、V1/V2は0.9以下であることが好ましい。より好ましいV1/V2の範囲は0.4≦V1/V2≦0.7、更に好ましいV1/V2の範囲は0.55≦V1/V2≦0.7である。
活性炭1の平均細孔径は、得られる蓄電素子の出力を大きくする観点から、17Å以上(1.7nm以上)であることが好ましく、18Å以上(1.8nm以上)であることがより好ましく、20Å以上(2.0nm以上)であることが最も好ましい。容量を大きくする点から、活性炭1の平均細孔径は25Å以下(2.5nm以下)であることが好ましい。
活性炭1のBET比表面積は、1,500m2/g以上3,000m2/g以下であることが好ましく、1,500m2/g以上2,500m2/g以下であることがより好ましい。BET比表面積が1,500m2/g以上の場合には、良好なエネルギー密度が得られ易い。一方、BET比表面積が3,000m2/g以下の場合には、電極の強度を保つために結着剤を多量に入れる必要がないので、電極体積当たりの性能が高くなる。
活性炭1は、例えば、以下に説明する原料及び処理方法を用いて得ることができる。
本実施形態では、活性炭1の原料として用いられる炭素源は、例えば、木材、木粉、ヤシ殻、パルプ製造時の副産物、バガス、廃糖蜜等の植物系原料;泥炭、亜炭、褐炭、瀝青炭、無煙炭、石油蒸留残渣成分、石油ピッチ、コークス、コールタール等の化石系原料;フェノール樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、メラミン樹脂、尿素樹脂、レゾルシノール樹脂、セルロイド、エポキシ樹脂、ポリウレタン樹脂、ポリエステル樹脂、ポリアミド樹脂等の各種合成樹脂;ポリブチレン、ポリブタジエン、ポリクロロプレン等の合成ゴム;その他の合成木材、合成パルプ等、及びこれらの炭化物が挙げられる。これらの原料の中でも、量産対応及びコストの観点から、ヤシ殻、木粉等の植物系原料、及びそれらの炭化物が好ましく、ヤシ殻炭化物が特に好ましい。
これらの原料を用いて活性炭1を得るための炭化及び賦活の方式としては、例えば、固定床方式、移動床方式、流動床方式、スラリー方式、ロータリーキルン方式等の既知の方式を採用できる。
これらの原料の炭化方法としては、窒素、二酸化炭素、ヘリウム、アルゴン、キセノン、ネオン、一酸化炭素、燃焼排ガス等の不活性ガス、又はこれらの不活性ガスを主成分とした他のガスとの混合ガスを使用して、約400~700℃(好ましくは450~600℃)で、約30分~約10時間に亘って、これらの原料を焼成する方法が挙げられる。
このような炭化方法により得られた炭化物の賦活方法としては、水蒸気、二酸化炭素、酸素等の賦活ガスを用いて炭化物を焼成するガス賦活法が好ましく用いられる。このうち、賦活ガスとして、水蒸気又は二酸化炭素を使用する方法が好ましい。
この賦活方法では、賦活ガスを0.5~3.0kg/h(好ましくは0.7~2.0kg/h)の割合で供給しながら、3~12時間(好ましくは5~11時間、より好ましくは6~10時間)掛けて800~1,000℃まで炭化物を昇温して賦活するのが好ましい。
更に、炭化物の賦活処理に先立ち、予め炭化物を1次賦活してもよい。この1次賦活では、通常、水蒸気、二酸化炭素、酸素等の賦活ガスを用いて、900℃未満の温度で炭素材料を焼成してガス賦活する方法が、好ましく採用できる。
炭化方法における焼成温度及び焼成時間と、賦活方法における賦活ガス供給量、昇温速度及び最高賦活温度とを適宜組み合わせることにより、活性炭1を製造するための条件を整えることができる。
活性炭1の平均粒子径は、2~20μmであることが好ましい。平均粒子径が2μm以上であると、得られる正極活物質層の密度が高くなり易いために電極体積当たりの容量が高くなる傾向がある。ここで、平均粒子径が小さ過ぎると、得られる正極活物質層の耐久性が低くなるという欠点を招来する場合があるが、平均粒子径が2μm以上であればそのような欠点が生じ難い。一方で、平均粒子径が20μm以下であると、高速充放電に適合し易くなる傾向がある。平均粒子径は、より好ましくは2~15μmであり、更に好ましくは3~10μmである。
なお本開示において、平均粒子径は、粒度分布測定装置を用いて粒度分布を測定した際、全体積を100%として累積カーブを求めたとき、その累積カーブが50%となる点の粒子径(すなわち、50%径(Median径))を指す。この平均粒子径は市販のレーザー回折式粒度分布測定装置を用いて測定することができる。
(2)活性炭2
活性炭2のメソ孔量V1は、正極材料を蓄電素子に組み込んだときの出力特性を大きくする観点から、0.8cm3/gより大きいことが好ましい。一方、蓄電素子の容量の低下を抑える観点から、2.5cm3/g以下であることが好ましい。V1は、より好ましくは1.0cm3/g以上2.0cm3/g以下、さらに好ましくは、1.2cm3/g以上1.8cm3/g以下である。
活性炭2のマイクロ孔量V2は、活性炭の比表面積を大きくし、容量を増加させるために、0.8cm3/gより大きいことが好ましい。一方、活性炭の電極としての密度を増加させ、単位体積当たりの容量を増加させるという観点から、3.0cm3/g以下であることが好ましい。V2は、より好ましくは1.0cm3/gより大きく2.5cm3/g以下、更に好ましくは1.5cm3/g以上2.5cm3/g以下である。
上述したメソ孔量及びマイクロ孔量を有する活性炭2は、従来の電気二重層キャパシタ又はリチウムイオンキャパシタに使用されていた活性炭よりもBET比表面積が高い。活性炭2のBET比表面積は、3,000m2/g以上4,000m2/g以下であることが好ましく、3,200m2/g以上3,800m2/g以下であることがより好ましい。BET比表面積が3,000m2/g以上の場合には、良好なエネルギー密度が得られ易い。一方、BET比表面積が4,000m2/g以下の場合には、電極の強度を保つために結着剤を多量に入れる必要がないので、電極体積当たりの性能が高くなる。
活性炭2は、例えば以下に説明するような原料及び処理方法を用いて得ることができる。
活性炭2の原料として用いられる炭素源としては、例えば、木材、木粉、ヤシ殻等の植物系原料;石油ピッチ、コークス等の化石系原料;フェノール樹脂、フラン樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、メラミン樹脂、尿素樹脂、レゾルシノール樹脂等の各種合成樹脂等が挙げられる。これらの原料の中でも、フェノール樹脂、及びフラン樹脂は、高比表面積の活性炭を作製するのに適しており特に好ましい。
これらの原料を用いて活性炭2を得るための炭化及び賦活の方法としては、例えば、固定床方式、移動床方式、流動床方式、スラリー方式、ロータリーキルン方式等の既知の方式が挙げられる。
これらの原料の炭化方法としては、窒素、二酸化炭素、ヘリウム、アルゴン等の不活性ガス、又はこれらの不活性ガスを主成分として、他のガスとの混合したガスが用いられる。そして、炭化温度は、約400~700℃で、約0.5~約10時間に亘って、これらの原料を焼成する方法が一般的である。
このような炭化方法により得られた炭化物の賦活方法としては、水蒸気、二酸化炭素、酸素等の賦活ガスを用いて炭化物を焼成するガス賦活法、又はアルカリ金属化合物と炭化物を混合した後にこれらの加熱処理を行うアルカリ金属賦活法があるが、高比表面積の活性炭を作製するためにはアルカリ金属賦活法が好ましい。
このアルカリ金属賦活方法では、炭化物とKOH、NaOH等のアルカリ金属化合物との質量比が1:1以上(アルカリ金属化合物の量が、炭化物の量と同じかこれよりも多い量)となるように混合した後に、不活性ガスの雰囲気下で600~900℃で、0.5~5時間に亘って加熱を行う。その後、アルカリ金属化合物を酸及び水により洗浄除去し、得られる炭化物の乾燥を行う。
マイクロ孔量を大きくし、かつメソ孔量を大きくしないためには、賦活する際に炭化物の量を多めにしてKOHと混合するとよい。マイクロ孔量及びメソ孔量の双方を大きくするためには、賦活する際にKOHの量を多めに使用するとよい。主としてメソ孔量を大きくするためには、アルカリ賦活処理を行った後に水蒸気賦活を行うことが好ましい。
活性炭2の平均粒子径は2μm以上20μm以下であることが好ましいく、より好ましくは3μm以上10μm以下である。
活性炭の使用形態
活性炭1及び2は、それぞれ、1種の活性炭であってもよいし、2種以上の活性炭の混合物であって、かつ各々の上記の特性値を混合物全体として示すものであってもよい。
活性炭1及び2のいずれか一方を正極活物質として使用してもよいし、両者を混合したものを正極活物質として使用してもよい。
正極活物質は、活性炭1及び2以外の材料(例えば、上記の好ましい範囲内のV1及び/若しくはV2を有さない活性炭、又は活性炭以外の材料(例えば、リチウムと遷移金属との複合酸化物等))を含んでもよい。活性炭1の含有量、活性炭2の含有量、又は活性炭1及び2の合計含有量が、それぞれ、全正極活物質の50質量%より多いことが好ましく、70質量%以上がより好ましく、90質量%以上が更に好ましく、100質量%であることが最も好ましい。
リチウム遷移金属酸化物
正極活物質は、リチウム遷移金属酸化物(すなわち、リチウムを吸蔵及び放出可能な遷移金属酸化物)を更に含んでもよい。リチウム遷移金属酸化物としては、例えば、コバルト(Co)、ニッケル(Ni)、マンガン(Mn)、鉄(Fe)、バナジウム(V)、及びクロム(Cr)から成る群から選ばれる少なくとも1種の元素を含む酸化物が挙げられる。
リチウム遷移金属酸化物として具体的には、下記式:
LixCoO2{式中、xは0≦x≦1を満たす。}、
LixNiO2{式中、xは0≦x≦1を満たす。}、
LixNiy(1-y)2
{式中、Mは、Co、Mn、アルミニウム(Al)、Fe、Mg、及びチタン(Ti)からなる群より選ばれる少なくとも1種の元素であり、xは0≦x≦1を満たし、かつyは0.02<y<0.97を満たす。}、
LixNi1/3Co1/3Mn1/32{式中、xは0≦x≦1を満たす。}、
LixMnO2{式中、xは0≦x≦1を満たす。}、
α-LixFeO2{式中、xは0≦x≦1を満たす。}、
LixVO2{式中、xは0≦x≦1を満たす。}、
LixCrO2{式中、xは0≦x≦1を満たす。}、
LixFePO4{式中、xは0≦x≦1を満たす。}、
LixMnPO4{式中、xは0≦x≦1を満たす。}、
Lix2(PO43{式中、xは0≦x≦3を満たす。}、
LixMn24{式中、xは0≦x≦1を満たす。}、
LixyMn(2-y)4
{式中、Mは、Co、Mn、Al、Fe、Mg、及びTiからなる群より選ばれる少なくとも1種の元素であり、xは0≦x≦1を満たし、かつyは0.02<y<0.97を満たす。}、
LixNiaCobAl(1-a-b)2
{式中、xは0≦x≦1を満たし、かつa及びbは0.02<a<0.97と0.02<b<0.97を満たす。}、
LixNicCodMn(1-c-d)2
{式中、xは0≦x≦1を満たし、かつc及びdは0.02<c<0.97と0.02<d<0.97を満たす。}
で表される化合物等が挙げられる。これらの中でも、高容量、低抵抗、サイクル特性、アルカリ金属化合物の分解の促進、及びプレドープ時の正極活物質の欠落の抑制の観点から、上記式LixNiaCobAl(1-a-b)2、LixNicCodMn(1-c-d)2、LixCoO2、LixMn24、LixFePO4、LixMnPO4、又はLiz2(PO43で表される化合物が好ましい。
本実施形態の正極前駆体は、アルカリ金属化合物を含んでいるため、ドープ工程において当該アルカリ金属化合物がアルカリ金属のドーパント源となり負極にプレドープができる。したがって、遷移金属化合物にあらかじめリチウムイオンが含まれていなくても(すなわち、上記式中、x=0であっても)、非水系アルカリ金属蓄電素子としての電気化学的な充放電が可能である。
リチウム遷移金属酸化物の平均粒子径は、好ましくは0.1~20μm、より好ましくは0.5~15μm、更に好ましくは1~10μmである。リチウム遷移金属酸化物の平均粒子径が0.1μm以上であると、得られる正極活物質層の密度が高くなり易いために電極体積当たりの容量が高くなる傾向がある。ここで、平均粒子径が小さ過ぎると、得られる正極活物質層の耐久性が低くなるという欠点を招来する場合があるが、平均粒子径が0.1μm以上であればそのような欠点が生じ難い。一方で、リチウム遷移金属酸化物の平均粒子径が20μm以下であると、高速充放電に適合し易くなる傾向がある。
リチウム遷移金属酸化物の平均粒子径は、炭素材料の平均粒子径より小さいことが好ましい。リチウム遷移金属酸化物の平均粒子径が小さければ、相対的に平均粒子径の大きな炭素材料により形成される空隙にリチウム遷移金属酸化物が配置され、低抵抗化できる。
リチウム遷移金属酸化物は、1種を単独で用いてもよく、2種以上の材料の混合物であって、かつ各々の上記の特性値を混合物全体として示すものであってもよい。
正極活物質は、上記リチウム遷移金属酸化物以外の材料、例えば、導電性高分子等を含んでもよい。
正極前駆体中の全固形分に占めるリチウム遷移金属酸化物の含有量A2は5質量%以上35質量%以下であることが好ましく、更に好ましくは10質量%以上30質量%以下である。
上記リチウム遷移金属酸化物の含有量A2と、上記炭素材料の含有量A1との比(A2/A1)は0.1以上10.0以下であることが好ましく、更に好ましくは0.2以上5.0以下である。A2/A1が0.1以上であれば、得られる正極活物質層の嵩密度を高めることができ、高容量化できる。A2/A1が10.0以下であれば、活性炭間の電子伝導が高まるために低抵抗化でき、かつ活性炭とアルカリ金属化合物の接触面積が増えるためにアルカリ金属化合物の分解を促進できる。
[アルカリ金属化合物]
本実施形態において、正極前駆体は、正極活物質としての炭素材料に加えて、アルカリ金属化合物を含む。一態様において、アルカリ金属化合物は陽イオン源としてアルカリ金属のみを含む化合物である。アルカリ金属化合物は、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸ルビジウム、炭酸セシウム、酸化リチウム、及び水酸化リチウムから成る群から選択される少なくとも一つの化合物であってよい。正極前駆体中で分解されて陽イオンを放出し、負極で還元されることで負極にアルカリ金属イオンをプレドープすることが可能であることから、アルカリ金属化合物としては、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸ルビジウム、及び炭酸セシウムから成る群から選択される少なくとも一つが好ましく、炭酸リチウム、炭酸ナトリウム、及び炭酸カリウムから成る群から選択される少なくとも一つがより好ましい。中でも、単位質量当たりの容量が高いという観点から、炭酸リチウムが好適に用いられる。正極前駆体中に含まれるアルカリ金属化合物は1種でも2種以上でもよい。
本実施形態において、正極活物質層は、少なくとも1種のアルカリ金属化合物を含んでいればよく、MをLi、ナトリウム(Na)、カリウム(K)、ルビジウム(Rb)、及びセシウム(Cs)から成る群から選ばれる1種以上として、M2O等の酸化物、MOH等の水酸化物、MF又はMCl等のハロゲン化物、M2(CO22等のシュウ酸塩、及びRCOOM(式中、RはH、アルキル基、又はアリール基を表す。)等のカルボン酸塩から成る群から選択される1種以上を含んでいてもよい。
一態様において、正極前駆体の正極活物質層に占めるアルカリ金属化合物の質量比A3は、10質量%以上50質量%以下である。A3が10質量%以上であれば負極に十分な量のアルカリ金属イオンをプレドープすることができ、非水系アルカリ金属蓄電素子の容量が高まる。A3が50質量%以下であれば、正極前駆体中の電子伝導を高めることができるので、アルカリ金属化合物の分解を効率よく行うことができる。質量比A3は、好ましくは10質量%以上であり、好ましくは50質量%以下である。
[正極活物質層の任意成分]
正極前駆体の正極活物質層は、正極活物質及びアルカリ金属化合物に加えて、必要に応じて任意成分を更に含んでよい。任意成分としては、アルカリ土類金属化合物、結着剤、導電性フィラー、分散安定剤、pH調整剤等を例示できる。
<アルカリ土類金属化合物>
アルカリ土類金属化合物としては、アルカリ土類金属の酸化物、水酸化物、ハロゲン化物、炭酸塩、及びカルボン酸塩を例示できる。好ましい態様において、アルカリ土類金属化合物は、BeCO3、MgCO3、CaCO3、SrCO3、及びBaCO3から成る群から選択される少なくとも一つのアルカリ土類金属炭酸塩である。正極前駆体がアルカリ金属化合物に加えてアルカリ土類金属化合物を含む場合、アルカリ金属化合物及びアルカリ土類金属化合物の総量は、正極前駆体の正極活物質層に対し、好ましくは10質量%以上50質量%以下である。
<結着剤>
典型的な態様において、結着剤は、水溶性高分子を含み、又は水溶性高分子である。水溶性高分子としては、カルボキシメチルセルロース(CMC)、メチルセルロース、エチルセルロース、ヒドロキシメチルセルロース、ヒドロキシプロピルメチルセルロース、及びヒドロキシエチルメチルセルロースなどのセルロース類;ポリアクリル酸、及びポリアクリル酸ナトリウム等のポリカルボン酸系化合物;ポリビニルピロリドン等のビニルピロリドン構造を有する化合物;ポリアクリルアマイド、ポリエチレンオキシド、ポリビニルアルコール、アルギン酸ナトリウム、キサンタンガム、カラギーナン、グアーガム、カンテン、及びデンプン等が挙げられる。結着剤の量は、正極活物質100質量部に対して、好ましくは1質量部以上30質量部以下であり、より好ましくは3質量部以上27質量部以下、さらに好ましくは5質量部以上25質量部以下である。結着剤の量が1質量部以上であれば、電極強度が高まる。一方で結着剤の量が30質量部以下であれば、正極活物質へのイオンの出入り及び拡散を阻害せず、入出力特性が高まる。結着剤は、好ましくは、カルボキシメチルセルロース(CMC)である。
導電性フィラーとしては、正極活物質よりも導電性の高い導電性炭素質材料を挙げることができる。このような導電性フィラーとしては、例えば、ケッチェンブラック、アセチレンブラック、気相成長炭素繊維、黒鉛、鱗片状黒鉛、カーボンナノチューブ、グラフェン、酸化グラフェン、及びこれらの混合物等が好ましい。正極前駆体の正極活物質層中の導電性フィラーの量は、正極活物質100質量部に対して、0~20質量部が好ましく、1~15質量部がより好ましい。導電性フィラーは、高入力の観点からは、正極活物質層中に存在させる方が好ましい。正極活物質層中の導電性フィラーの量が20質量部以下であれば、正極活物質層における正極活物質の含有割合が適切であるために、正極活物質層体積当たりのエネルギー密度が確保されるので好ましい。
分散安定剤としては、例えばPVP(ポリビニルピロリドン)、PVA(ポリビニルアルコール)、セルロース誘導体等を用いることができる。分散安定剤の使用量は、正極活物質100質量部に対して、好ましくは0質量部以上10質量部以下である。分散安定剤の量が10質量部以下であれば、正極活物質へのイオンの出入り及び拡散を阻害せず、高い入出力特性が発現される。
<pH調整剤>
塗工によって正極前駆体を形成するための正極塗工液の溶媒として水を使用する場合、アルカリ金属化合物の存在によって塗工液の液性がアルカリ性になることがあるため、正極前駆体は、必要に応じて、正極塗工液由来のpH調整剤を含んでもよい。pH調整剤としては、例えばフッ化水素、塩化水素、臭化水素等のハロゲン化水素、次亜塩素酸、亜塩素酸、塩素酸等のハロゲンオキソ酸、蟻酸、酢酸、クエン酸、シュウ酸、乳酸、マレイン酸、フマル酸等のカルボン酸、メタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸等のスルホン酸、硝酸、硫酸、リン酸、ホウ酸、二酸化炭素等の酸を用いることができる。
<正極活物質層の水分量>
一態様において、正極活物質層の水分量は、100質量ppm以上2質量%以下である。本発明者らは、従来の正極前駆体においては保管時に正極活物質層と正極集電体との剥離強度が低下すること、この剥離強度の低下の原因が正極集電体の腐食であることに着目し、更に、正極前駆体に含まれるアルカリ金属化合物と正極前駆体に含まれる炭素材料に吸着されている水分との反応が正極集電体の腐食を招来していることを見出した。本実施形態に係る正極前駆体においては、正極活物質層の水分量が特定範囲内に制御されているため、アルカリ金属化合物と水分との反応による正極集電体の腐食が抑制されている。これにより、本実施形態に係る正極前駆体は、保管後にも正極活物質層と正極集電体との良好な剥離強度を維持する。正極活物質層の水分量は、好ましくは、100質量ppm以上、又は500質量ppm以上、又は3000質量ppm以上であり、好ましくは、2質量%以下、又は1.3質量%以下、又は1質量%以下である。上記水分量は、カールフィッシャー滴定法(JIS 0068(2001)「化学製品の水分測定方法」)に準拠して測定される値である。より具体的には、正極前駆体及び集電体を40mm×20mmに切り出し、電子天秤を用いて重量測定を実施し、得られた測定値をそれぞれ正極前駆体の重量W1[g]、集電体の重量W2[g]とする。次いで、正極前駆体を、カールフィッシャー滴定装置に供する。200℃で加熱して検出された水分量[g]を滴定で定量する。正極集電体の水分量はほぼゼロと考えられることから、正極活物質層中の水分量は、下記の(式2)によって算出される。
(式2) 水分量={検出された水分量/(W1-W2)}×100 (%)
正極活物質層の水分量を制御する手段としては、正極前駆体の製造時の乾燥条件等を例えば後述のように制御すること、及び製造された正極前駆体を適切に保管することが挙げられる。一態様において、正極前駆体は、正極活物質層内のアルカリ金属化合物と炭素材料が吸着した水分とによる集電体の腐食を抑制するため、包装袋で密閉することが好ましい。包装袋の材質としては、ポリエチレン袋、ナイロン袋、アルミラミネート袋などが挙げられ、水蒸気透過度性能の高いアルミラミネート袋が最も好ましい。また包装袋内を真空脱気、又はドライエアー置換するとより好ましい。さらに包装袋内にシリカゲルなどの乾燥剤を入れることも好ましい。
<各成分の含有量>
なお、正極活物質層中に含まれる、炭素材料の含有量A1、リチウム遷移金属酸化物(存在する場合)の含有量A2、及びアルカリ金属化合物の質量比A3は、下記の方法により定量できる。
まず、正極前駆体を5cm2以上200cm2以下、又は25cm2以上150cm2以下に切断し、減圧乾燥する。面積が5cm2以上あれば測定の再現性が確保され、面積が200cm2以下であれば測定用サンプルの取扱い性に優れる。減圧乾燥の条件は、温度:100~200℃、圧力:0~10kPa、時間:5~20時間の範囲とする。正極前駆体中の残存水分量を1質量%以下まで低下させる。水分の残存量は、カールフィッシャー法により定量する。
減圧乾燥後に得られた正極前駆体について、質量(M0)を測定する。続いて、正極前駆体の質量の100~150倍の蒸留水に、正極前駆体を3日間以上浸漬させ、アルカリ金属化合物を水中に溶出させる。浸漬の間、蒸留水が揮発しないよう容器に蓋をすることが好ましい。3日間以上浸漬させた後、蒸留水から正極前駆体を取り出し、上記と同様に減圧乾燥する。得られた正極前駆体の質量(M1)を測定する。続いて、スパチュラ、ブラシ、刷毛等を用いて正極集電体の片面又は両面に塗布された正極活物質層を取り除く。残った正極集電体の質量(M2)を測定し、下記式でアルカリ金属化合物の質量比A3を算出する。
3=(M0-M1)/(M0-M2)×100
続いて、A1、A2を算出するため、上記アルカリ金属化合物を取り除いて得られた正極活物質層について、以下の条件にてTG曲線を測定する。
・試料パン:白金
・ガス:大気雰囲気下
・昇温速度:0.5℃/min以下
・温度範囲:25℃~500℃以上、リチウム遷移金属酸化物の融点マイナス50℃(融点-50℃)の温度以下
得られるTG曲線の25℃の質量をM3とし、500℃以上の温度にて質量減少速度がM3×0.01/min以下となった最初の温度における質量をM4として得る。
炭素材料は、酸素含有雰囲気(例えば、大気雰囲気)下では500℃以下の温度で加熱することですべて酸化・燃焼する。一方、リチウム遷移金属酸化物は酸素含有雰囲気下でもリチウム遷移金属酸化物の融点マイナス50℃の温度までは質量減少することがない。
そのため、正極活物質層におけるリチウム遷移金属酸化物の含有量A2は下記式で算出できる。
2=(M4/M3)×{1-(M0-M1)/(M0-M2)}×100
正極活物質層における、炭素材料の含有量A1は下記式で算出できる。
1={(M3-M4)/M3}×{1-(M0-M1)/(M0-M2)}×100
なお、正極前駆体が、炭素材料と、他の炭素含有材料(例えば、導電剤、結着剤、増粘剤等)を含む場合、炭素材料とこれらの材料の合計量をAとして算出する。
また、正極前駆体がアルカリ金属化合物とアルカリ土類金属化合物との両者を含む場合、上記含有量A3は、アルカリ金属化合物とアルカリ土類金属化合物との合計量となるため、アルカリ金属化合物単独の含有量は、他の解析手法、例えば、7Li-固体NMR、XRD(X線回折)、TOF-SIMS(飛行時間型二次イオン質量分析)、AES(オージェ電子分光)、TPD/MS(加熱発生ガス質量分析)、DSC(示差走査熱量分析)等で測定する。
又は、正極活物質層が正極活物質としてリチウム遷移金属酸化物を含まない場合、アルカリ金属化合物及び正極活物質は、観察倍率を1000倍~4000倍にして測定した正極表面のSEM-EDX画像による酸素マッピングにより判別できる。測定条件は、例えば、加速電圧を10kV、エミッション電流を10μA、測定画素数を256×256ピクセル、積算回数を50回であってよい。試料の帯電を防止するために、金、白金、オスミウム等を真空蒸着又はスパッタリング等の方法により表面処理してよい。輝度及びコントラストは、マッピング像において最大輝度値に達する画素がなく、輝度値の平均値が最大輝度値の40%~60%の範囲に入るように調整することが好ましい。得られた酸素マッピングに対し、輝度値の平均値を基準に二値化した明部を面積50%以上含む粒子をアルカリ金属化合物と判別できる。
又は、アルカリ金属化合物及び正極活物質は、観察倍率を1000倍~4000倍にして測定した正極表面の炭酸イオンのラマンイメージングにより判別できる。測定条件は、例えば、励起光を532nm、励起光強度を1%、対物レンズの長作動を50倍、回折格子を1800gr/mm、マッピング方式を点走査(スリット65mm、ビニング5pix)、1mmステップ、1点当たりの露光時間を3秒、積算回数を1回、ノイズフィルター有りとしてよい。得られたラマンスペクトルについて、1071~1104cm-1の範囲で直線のベースラインを設定し、ベースラインより正の値を炭酸イオンのピークとして面積を算出し、頻度を積算する。この時にノイズ成分をガウス型関数で近似した炭酸イオンピーク面積に対する頻度を、炭酸イオンの頻度分布から差し引く。
又は、正極前駆体の電子状態をX線光電分光法(XPS)により解析することにより、正極前駆体中に含まれる化合物の結合状態を判別できる。測定条件としては、例えば、X線源を単色化AlKα、X線ビーム径を100μmφ(25W、15kV)、パスエネルギーをナロースキャン:58.70eV、帯電中和を有り、スイープ数をナロースキャン:10回(炭素、酸素)20回(フッ素)30回(リン)40回(アルカリ金属)50回(ケイ素)、エネルギーステップをナロースキャン:0.25eVとしてよい。XPSの測定前に正極の表面をスパッタリングによりクリーニングしてよい。スパッタリングの条件として例えば、加速電圧1.0kV、2mm×2mmの範囲を1分間(SiO2換算で1.25nm/min)の条件にて正極の表面をクリーニングすることができる。得られたXPSスペクトルについて、Li1sの結合エネルギー50~54eVのピークをLiO2またはLi-C結合、55~60eVのピークをLiF、Li2CO3、LixPOyz(式中、x、y、zは1~6の整数)、C1sの結合エネルギー285eVのピークをC-C結合、286eVのピークをC-O結合、288eVのピークをCOO、290~292eVのピークをCO3 2-、C-F結合、O1sの結合エネルギー527~530eVのピークをO2-(Li2O)、531~532eVのピークをCO、CO3、OH、POx(式中、xは1~4の整数)、SiOx(式中、xは1~4の整数)、533eVのピークをC-O、SiOx(式中、xは1~4の整数)、F1sの結合エネルギー685eVのピークをLiF、687eVのピークをC-F結合、LixPOyz(x、y、zは1~6の整数)、PF6 -、P2pの結合エネルギーについて、133eVのピークをPOx(式中、xは1~4の整数)、134~136eVのピークをPFx(xは1~6の整数)、Si2pの結合エネルギー99eVのピークをSi、シリサイド、101~107eVのピークをSixy(式中、x、yは任意の整数)として帰属することができる。得られたスペクトルについて、ピークが重なる場合には、ガウス関数又はローレンツ関数を仮定してピーク分離し、スペクトルを帰属することが好ましい。上記の手法で得られた電子状態の測定結果及び存在元素比の結果から、存在するアルカリ金属化合物を同定することができる。
又は、正極前駆体の蒸留水洗浄液をイオンクロマトグラフィーで解析することにより、水中に溶出したアニオン種を同定することができる。カラムとしては、イオン交換型、イオン排除型、逆相イオン対型を使用することができる。検出器としては、電気伝導度検出器、紫外可視吸光光度検出器、電気化学検出器等を使用でき、検出器の前にサプレッサーを設置するサプレッサー方式、またはサプレッサーを配置せずに電気伝導度の低い溶液を溶離液に用いるノンサプレッサー方式を用いることができる。質量分析計又は荷電化粒子検出器を組み合わせて測定することもできる。サンプルの保持時間は、使用するカラム又は溶離液等の条件が決まれば、イオン種成分毎に一定である。ピークのレスポンスの大きさはイオン種毎に異なるが濃度に比例する。トレーサビリティーが確保された既知濃度の標準液を予め測定しておくことでイオン種成分の定性と定量が可能となる。
又は、正極前駆体中のアルカリ金属元素を、ICP-MSで定量してもよい。濃硝酸、濃塩酸、王水等の強酸を用いて酸分解し、得られた溶液を2質量%~3質量%の酸濃度になるように純水で希釈する。酸分解については、適宜加熱、加圧し分解することもできる。得られた希釈液をICP-MSにより解析する。この際に内部標準として既知量の元素を加えておくことが好ましい。測定対象のアルカリ金属元素が測定上限濃度以上になる場合には、酸濃度を維持したまま希釈液を更に希釈することが好ましい。得られた測定結果に対し、化学分析用の標準液を用いて予め作成した検量線を基に、各元素を定量することができる。
〈正極集電体〉
正極集電体を構成する材料としては、電子伝導性が高く、非水系電解液への溶出及び電解質又はイオンとの反応等による劣化が起こりにくい材料を使用する。正極集電体としては、金属箔が好ましく、アルミニウム箔がより好ましい。金属箔は、凹凸又は貫通孔を持たない通常の金属箔でもよいし、エンボス加工、ケミカルエッチング、電解析出法、ブラスト加工等を施した凹凸を有する金属箔でもよいし、エキスパンドメタル、パンチングメタル、エッチング箔等の貫通孔を有する金属箔でもよい。後述されるドープ処理の観点からは、無孔状のアルミニウム箔が更に好ましく、アルミニウム箔の表面が粗面化されていることが特に好ましい。
正極集電体の厚みは、正極の形状及び強度を十分に保持できる厚み、例えば、1~100μmが好ましい。
金属箔の表面(例えば両面)に、例えば黒鉛、鱗片状黒鉛、カーボンナノチューブ、グラフェン、ケッチェンブラック、アセチレンブラック、気相成長炭素繊維等の導電性材料を含むアンカー層を設けることが好ましい。アンカー層を設けることで正極集電体と正極活物質層との間の電気伝導が向上し、低抵抗化できる。アンカー層の厚みは、正極集電体の片面当たり0.1μm以上5μm以下であることが好ましい。
《正極前駆体の製造方法》
正極前駆体は、正極集電体の片面又は両面上に正極活物質層を配置することにより製造することが可能である。例えば、炭素材料を含む正極活物質と、アルカリ金属化合物と、必要に応じて任意成分(例えば結着剤)とを、溶媒中に分散又は溶解してスラリー状の塗工液(正極塗工液)を調製し、この塗工液を正極集電体上の片面又は両面に塗工して塗膜を形成することにより、正極活物質層を配置することができる。代替的には、溶媒を使用せずに、正極活物質、アルカリ金属化合物、及び必要に応じて任意成分をドライブレンドし、得られた混合物をプレス成型した後、導電性接着剤を用いて正極集電体に貼り付ける方法、又は得られた上記混合物を正極集電体上に加熱プレスして正極活物質層を形成する方法も可能である。
正極塗工液は、正極活物質を含む各種材料粉末の一部若しくは全部をドライブレンドし、次いで、溶媒を追加し、又は溶媒に結着剤等が溶解又は分散した液状又はスラリー状の物質を追加して、調製してもよい。あるいは、正極塗工液は、溶媒に結着剤等が溶解又は分散した液状又はスラリー状の物質の中に、正極活物質を含む各種材料粉末を追加して調製してもよい。この際、任意に、分散安定剤又はpH調製剤を更に使用してもよい。ドライブレンド法としては、例えばボールミル等を使用して、正極活物質等の材料粉末を混合する方法が挙げられる。必要に応じて、導電性フィラーを予備混合して、導電性の低いアルカリ金属化合物で導電性フィラーをコーティングする予備混合をしてもよい。これにより、後述のドープ工程において、正極前駆体中でアルカリ金属化合物が分解し易くなる。
正極塗工液に用いられる溶媒は、水又は有機溶媒であってよい。有機溶媒としては、N-メチルピロリドン、ジメチルホルムアミド、及びジメチルアセトアミド等の含窒素系有機溶媒;アセトン、メチルエチルケトン、シクロヘキサノン、及びメチルイソブチルケトン等のケトン系溶媒;酢酸エチル、及び酢酸ブチルなどのエステル系溶媒;テトラヒドロフラン、及びジオキサンなどのエーテル系溶媒;並びにこれらの混合溶媒が挙げられる。溶媒は、好ましくは水を含み、更に好ましくは水である。
正極塗工液を調製するとき、好適にはホモディスパー、多軸分散機、プラネタリーミキサー、薄膜旋回型高速ミキサー等の分散機等を用いることができる。良好な分散状態の塗工液を得るためには、塗工液を周速1m/s以上50m/s以下で分散することが好ましい。周速1m/s以上であれば、各種材料が良好に溶解又は分散するため好ましい。周速50m/s以下であれば、分散による熱又はせん断力により各種材料が破壊されることなく、再凝集が生じることがないため好ましい。
正極塗工液の分散度は、粒ゲージで測定した粒度が0.1μm以上100μm以下であることが好ましい。分散度の上限としては、より好ましくは粒度が80μm以下、さらに好ましくは粒度が50μm以下である。粒度が0.1μm以上では、正極活物質を含む各種材料粉末の粒径以上のサイズとなり、塗工液作製時に材料の破砕を抑制できるため好ましい。粒度が100μm以下であれば、塗工液吐出時の詰まり又は塗膜のスジ発生等が生じず安定に塗工ができる。
本開示における分散度は、JIS K5600に規定された粒ゲージによる分散度評価試験により求められる値である。すなわち、粒のサイズに応じた所望の深さの溝を有する粒ゲージに対して、溝の深い方の先端に十分な量の試料を流し込み,溝から僅かに溢れさせる。次いで、スクレーパーの長辺がゲージの幅方向と平行になり、粒ゲージの溝の深い先端に刃先が接触するように置き、スクレーパーをゲージの表面になるように保持しながら、溝の長辺方向に対して直角に、ゲージの表面を均等な速度で、溝の深さ0まで1~2秒間かけて引き、引き終わってから3秒以内に20°以上30°以下の角度で光を当てて観察し、粒ゲージの溝に粒が現れる深さを読み取る。
正極塗工液の粘度(ηb)は、100mPa・s以上10,000mPa・s以下が好ましく、より好ましくは500mPa・s以上7,000mPa・s以下、さらに好ましくは1,000mPa・s以上4,000mPa・s以下である。粘度(ηb)が100mPa・s以上であれば、塗膜形成時の液ダレが抑制され、塗膜の幅及び厚みが良好に制御できる。粘度が10,000mPa・s以下であれば、塗工機を用いた際の塗工液の流路における圧力損失が少なく安定に塗工でき、所望の塗膜厚み以下に制御できる。
正極塗工液のTI値(チクソトロピーインデックス値)は、1.1以上が好ましく、より好ましくは1.2以上、さらに好ましくは1.5以上である。TI値が1.1以上であれば、塗膜の幅及び厚みが良好に制御できる。
本開示における粘度(ηb)及びTI値は、それぞれ以下の方法により求められる値である。まず、E型粘度計を用いて温度25℃、ずり速度2s-1の条件で2分以上測定した後の安定した粘度(ηa)を取得する。次いで、ずり速度を20s-1に変更した他は上記と同様の条件で測定した粘度(ηb)を取得する。上記で得た粘度の値を用いてTI値はTI値=ηa/ηbの式により算出される。ずり速度を2s-1から20s-1へ上昇させる際は、1段階で上昇させても良いし、上記の範囲で多段的にずり速度を上昇させ、適宜そのずり速度における粘度を取得しながら上昇させてもよい。
正極前駆体の塗膜の形成には、好適にはダイコーター、コンマコーター、ナイフコーター、グラビア塗工機等の塗工機を用いることができる。塗膜は単層塗工で形成してもよいし、多層塗工して形成してもよい。多層塗工の場合には、塗膜各層内のアルカリ金属化合物の含有量が異なるように塗工液の組成を調整してもよい。正極集電体に塗膜を塗工する際、多条塗工してもよいし、間欠塗工してもよいし、多条間欠塗工してもよい。塗工液を、正極集電体の片面に塗工、乾燥し、その後もう一方の面に塗工、乾燥する逐次塗工を行ってもよいし、正極集電体の両面に同時に塗工液を塗工、乾燥する両面同時塗工を行ってもよい。
塗工速度は0.1m/分以上100m/分以下であることが好ましく、より好ましくは0.5m/分以上70m/分以下、さらに好ましくは1m/分以上50m/分以下である。塗工速度が0.1m/分以上であれば、安定に塗工できる。一方、100m/分以下であれば、塗工精度を十分に確保できる。
正極前駆体の塗膜の乾燥方法は特に制限されるものではないが、好適には熱風乾燥や赤外線(IR)乾燥等の乾燥方法を用いることが出来る。塗膜は、単一の温度で乾燥させても良いし、多段的に温度を変えて乾燥させても良い。また、複数の乾燥方法を組み合わせてもよい。乾燥温度は、25℃以上200℃以下であることが好ましい。より好ましくは40℃以上180℃以下、さらに好ましくは50℃以上160℃以下である。乾燥温度が25℃以上であれば、塗膜中の溶媒を十分に揮発させることが出来る。他方、200℃以下であれば、急激な溶媒の揮発による塗膜のヒビ割れやマイグレーションによる結着剤の偏在、正極集電体や正極活物質層の酸化を抑制できる。
乾燥後の正極前駆体に含まれる水分は、正極活物質層の重量を100%として0.01%以上10%以下であることが好ましい。水分が0.01%以上であれば、過剰な乾燥による結着剤の劣化を抑え、低抵抗化できる。水分が10%以下であれば、非水系アルカリ金属蓄電素子におけるアルカリ金属イオンの失活を抑え、高容量化できる。正極前駆体に含まれる水分は、カールフィッシャー滴定法(JIS 0068(2001)「化学製品の水分測定方法」)により測定される。
塗工液の調製にN-メチル-2-ピロリドン(NMP)を用いた場合、乾燥後の正極前駆体におけるNMPの含有量は、正極活物質層の重量を100%として0.1%以上10%以下であることが好ましい。NMPが0.1%以上であれば、過剰な乾燥による結着剤の劣化を抑え、低抵抗化できる。NMPが10%以下であれば、非水系アルカリ金属蓄電素子の自己放電特性を改善することができる。正極前駆体に含まれるNMPは、25℃環境下、正極活物質層の50~100倍の重量のエタノールに正極前駆体を24時間含侵させてNMPを抽出し、その後GC/MSを測定し、予め作成した検量線に基づいて定量することができる。
正極前駆体のプレス手段は特に制限されるものではないが、好適には油圧プレス機、真空プレス機等のプレス機を用いることが出来る。正極活物質層の膜厚、嵩密度及び電極強度は後述するプレス圧力、プレスロール間の隙間、プレス部の表面温度により調整できる。プレス圧力は0.5kN/cm以上20kN/cm以下が好ましい。より好ましくは1kN/cm以上10kN/cm以下、さらに好ましくは2kN/cm以上7kN/cm以下である。プレス圧力が0.5kN/cm以上であれば、電極強度を十分に高くできる。他方、20kN/cm以下であれば、正極前駆体に撓みやシワが生じることがなく、所望の正極活物質層膜厚や嵩密度に調整できる。また、プレスロール同士の隙間は所望の正極活物質層の膜厚や嵩密度となるように乾燥後の正極前駆体膜厚に応じて任意の値を設定できる。さらに、プレス速度は正極前駆体に撓みやシワが生じない任意の速度に設定できる。
また、プレス部の表面温度は室温でもよいし、必要により加熱してもよい。加熱する場合のプレス部の表面温度の下限は、使用する結着剤の融点マイナス60℃以上が好ましく、より好ましくは結着剤の融点マイナス45℃以上、さらに好ましくは結着剤の融点マイナス30℃以上である。他方、加熱する場合のプレス部の表面温度の上限は、使用する結着剤の融点プラス50℃以下が好ましく、より好ましくは結着剤の融点プラス30℃以下、さらに好ましくは結着剤の融点プラス20℃以下である。
例えば、結着剤にPVdF(ポリフッ化ビニリデン:融点150℃)を用いた場合、90℃以上200℃以下に加温することが好ましい。より好ましく105℃以上180℃以下、さらに好ましくは120℃以上170℃以下に加熱することである。また、結着剤にスチレン-ブタジエン共重合体(融点100℃)を用いた場合、40℃以上150℃以下に加温することが好ましい。より好ましくは55℃以上130℃以下、さらに好ましくは70℃以上120℃以下に加温することである。また、プレス圧力、隙間、速度、プレス部の表面温度の条件を変えながら複数回プレスを実施してもよい。
正極前駆体を多条塗工した場合には、プレスの前にスリットすることが好ましい。多条塗工された正極前駆体をスリットせずにプレスした場合、正極活物質層が塗布されていない集電体部分に応力がかかり、皺ができやすい傾向があるからである。また、プレス後に再度、正極前駆体をスリットすることもできる。
《正極前駆体の特性》
正極前駆体において、正極活物質層の厚みは、正極集電体の片面当たり10μm以上200μm以下であることが好ましい。正極活物質層の厚みは、正極集電体の片面当たり、より好ましくは20μm以上100μm以下であり、更に好ましくは30μm以上80μm以下である。正極活物質層の厚みが10μm以上であれば、良好な剥離強度が発現し、正極活物質層の厚みが200μm以下であれば、保管時に水分を吸着しにくく腐食しにくい。
セル特性の観点からも、正極活物質層の厚みが10μm以上であれば、良好な充放電容量を発現することができる。他方、この厚みが200μm以下であれば、電極内のイオン拡散抵抗を低く維持することができるため、良好な出力特性が得られるとともに、セル体積を縮小することができ、従ってエネルギー密度を高めることができる。なお、集電体が貫通孔又は凹凸を有する場合における正極活物質層の厚みとは、集電体の貫通孔又は凹凸を有していない部分の片面当たりの厚みの平均値をいう。
正極集電体の片面当たりの正極活物質層の目付は20g/m2以上200g/m2以下であることが好ましい。20g/m2以上であれば、良好な剥離強度が発現し、200g/m2以下であれば塗工乾燥時に水分が残存せず正極集電体が腐食しにくい。
正極活物質層と正極集電体との剥離強度は、0.02N/cm以上3.00N/cm以下である。剥離強度が0.02N/cm以上であれば、正極活物質層の欠落を良好に抑制し、微短絡を良好に抑制することができる。一方、剥離強度が3.00N/cm以下であれば、正極活物質層内に過剰な結着剤等が存在しないことを意味するため、電解液の拡散性が向上して低抵抗化できる。
本開示の剥離強度は既知の方法で測定することができる。例えば、JIS Z0237(2009)「粘着テープ・粘着シート試験方法」に準拠した剥離試験を用いてよい。又は、後述する実施例で記載する試験方法を用いてもよい。
正極前駆体の単位面積当たりBET比表面積B(m2/cm2)は0.2以上10以下であることが好ましい。Bが0.2以上であれば正極前駆体中に非水系電解液が良好に含浸できるためにアルカリ金属化合物の反応が促進され、プレドープ工程を短時間で完了させることができる。Bが10以下であれば、正極活物質とアルカリ金属化合物との接触面積が大きくなるためにアルカリ金属化合物の反応過電圧を小さくすることができる。
正極前駆体の単位面積当たりメソ孔量D(μL/cm2)は0.1以上5.0以下であることが好ましい。Dが0.1以上であれば出力特性に優れる。Dが5.0以下であれば正極前駆体の嵩密度を高めることができる。
さらに、単位面積当たりマイクロ孔量E(μL/cm2)は0.2以上10以下であることが好ましい。Eが0.2以上であればエネルギー密度を高めることができる。Eが10以下であれば正極前駆体の嵩密度を高めることができる。
本開示において、活性炭、及び正極前駆体における孔量、マイクロ孔量、平均細孔径は、それぞれ以下の方法によって求められる値である。正極前駆体を200℃で一昼夜真空乾燥し、窒素を吸着質として吸脱着の等温線の測定を行なう。ここで得られる吸着側の等温線を用いて、BET比表面積はBET多点法又はBET1点法により、メソ孔量はBJH法により、マイクロ孔量はMP法により、それぞれ算出される。得られたBET比表面積、メソ孔量、及びマイクロ孔量をそれぞれ正極前駆体面積で除することにより、単位面積当たりBET比表面積C(m2/cm2)、単位面積当たりメソ孔量D(μL/cm2)、及び単位面積当たりマイクロ孔量E(μL/cm2)を算出することができる。
BJH法は一般的にメソ孔の解析に用いられる計算方法で、Barrett, Joyner, Halendaらにより提唱されたものである(E.P.Barrett,L.G.Joyner and P.Halenda,J.Am.Chem.Soc.,73,373(1951)を参照)。
また、MP法とは、「t-プロット法」(非特許文献2)を利用して、マイクロ孔容積、マイクロ孔面積、及びマイクロ孔の分布を求める方法を意味し、R.S.Mikhail, Brunauer, Bodorにより考案された方法である(非特許文献3)。
また、平均細孔径とは、液体窒素温度下で、各相対圧力下における窒素ガスの各平衡吸着量を測定して得られる、試料の質量あたりの全細孔容積を上記BET比表面積で除して求めたものを指す。
正極前駆体のリール長さとしては、包装して保管した際に水分を吸着しにくい観点から、1500m以下が好ましく、1m以上1500m以下がより好ましく、1m以上500m以下が最も好ましい。
《負極》
負極は、負極集電体と、その片面又は両面に存在する負極活物質層とを有する。
〈負極活物質層〉
負極活物質層は、アルカリ金属イオンを吸蔵・放出できる負極活物質を含む。負極活物質層は、必要に応じて、導電性フィラー、結着剤、分散剤等の任意成分を含んでよい。
[負極活物質]
負極活物質は、具体的には、炭素材料、チタン酸化物、ケイ素、ケイ素酸化物、ケイ素合金、ケイ素化合物、錫及び錫化合物等が例示される。好ましくは負極活物質の総量に対する炭素材料の含有率が50質量%以上であり、より好ましくは70質量%以上である。炭素材料の含有率は100質量%であることができるが、他の材料の併用による効果を良好に得る観点から、例えば、90質量%以下であることが好ましく、80質量%以下でもよい。炭素材料の含有率の範囲の上限と下限は、任意に組み合わせることができる。
炭素材料としては、例えば、難黒鉛化性炭素材料;易黒鉛化性炭素材料;カーボンブラック;カーボンナノ粒子;活性炭;人造黒鉛;天然黒鉛;黒鉛化メソフェーズカーボン小球体;黒鉛ウイスカ;ポリアセン系物質等のアモルファス炭素質材料;石油系のピッチ、石炭系のピッチ、メソカーボンマイクロビーズ、コークス、合成樹脂(例えばフェノール樹脂等)等の炭素前駆体を熱処理して得られる炭素質材料;フルフリルアルコール樹脂又はノボラック樹脂の熱分解物;フラーレン;カーボンナノフォーン;及びこれらの複合炭素材料を挙げることができる。
複合炭素材料
複合炭素材料のBET比表面積は、100m2/g以上350m2/g以下であることが好ましく、より好ましくは150m2/g以上300m2/g以下である。BET比表面積が100m2/g以上であれば、アルカリ金属イオンのプレドープ量を大きくできるため、負極活物質層を薄膜化することができる。BET比表面積が350m2/g以下であれば、負極活物質層を形成するための負極塗工液の塗工性に優れる。
複合炭素材料は、リチウム金属を対極に用いて、測定温度25℃において、電流値0.5mA/cm2で電圧値が0.01Vになるまで定電流充電を行った後、電流値が0.01mA/cm2になるまで定電圧充電を行った時の初回の充電容量が、複合炭素材料単位質量当たり300mAh/g以上1,600mAh/g以下であることが好ましく、より好ましくは、400mAh/g以上1,500mAh/g以下であり、更に好ましくは、500mAh/g以上1,450mAh/g以下である。初回の充電容量が300mAh/g以上であれば、アルカリ金属イオンのプレドープ量を十分大きくできるため、負極活物質層を薄膜化した場合であっても、高い出力特性を有することができる。初回の充電容量が1,600mAh/g以下であれば、複合炭素材料にアルカリ金属イオンをドープ・脱ドープさせる際の複合炭素材料の膨潤・収縮が小さくなり、負極の強度が保たれる。
上述した負極活物質は、良好な内部抵抗値を得る観点から、下記の条件(1)及び(2)を満たす複合多孔質材料であることが特に好ましい。
(1)前述のBJH法で算出されたメソ孔量(直径が2nm以上50nm以下である細孔の量)Vm1(cm3/g)が、0.01≦Vm1<0.10の条件を満たす。
(2)前述のMP法で算出されたマイクロ孔量(直径が2nm未満である細孔の量)Vm2(cm3/g)が、0.01≦Vm2<0.30の条件を満たす。
負極活物質は粒子状であることが好ましい。負極活物質としての、ケイ素、ケイ素酸化物、ケイ素合金及びケイ素化合物、並びに錫及び錫化合物の平均粒子径は、0.1μm以上30μm以下であることが好ましい。この平均粒子径が0.1μm以上であれば、電解液との接触面積が増えるために非水系アルカリ金属蓄電素子の抵抗を下げることができる。この平均粒子径が30μm以下であれば、充放電に伴う負極へのアルカリ金属イオンのドープ・脱ドープに起因する負極の膨潤・収縮が小さくなり、負極の強度が保たれる。
ケイ素、ケイ素酸化物、ケイ素合金及びケイ素化合物、並びに錫及び錫化合物は、分級機内蔵のジェットミル、撹拌型ボールミル等を用いて粉砕することにより、微粒子化することができる。粉砕機は遠心力分級機を備えており、窒素、アルゴン等の不活性ガス環境下で粉砕された微粒子はサイクロン又は集塵機で捕集することができる。
負極活物質層における負極活物質の含有割合は、負極活物質層の全質量を基準として、70質量%以上であることが好ましく、80質量%以上であることがより好ましい。
[負極活物質層のその他の任意成分]
本実施形態に係る負極活物質層は、必要に応じて、負極活物質の他に、結着剤、導電性フィラー、分散剤等の任意成分を含んでよい。
結着剤としては、例えば、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、ポリイミド、フッ素ゴム、ラテックス、スチレン-ブタジエン共重合体、フッ素ゴム、アクリル共重合体等を使用することができる。負極活物質層における結着剤の使用量は、負極活物質100質量部に対して、1~30質量部が好ましく、2~25質量部がより好ましい。結着剤の使用量が負極活物質100質量部に対して1質量部以上の場合、負極(前駆体)における集電体と負極活物質層との間の密着性が良好であり、集電体と活物質層との間の界面抵抗が上昇することを防止できる。一方、結着剤の使用量が負極活物質100質量部に対して30質量部以下の場合には、負極(前駆体)の活物質表面を結着剤が過剰に覆ってしまう事態を回避でき、活物質細孔内のイオンの拡散抵抗が上昇することを防止できる。
導電性フィラーは、負極活物質よりも導電性の高い導電性炭素質材料から成ることが好ましい。このような導電性フィラーとしては、例えば、ケッチェンブラック、アセチレンブラック、気相成長炭素繊維、黒鉛、鱗片状黒鉛、カーボンナノチューブ、グラフェン、酸化グラフェン、これらの混合物等が好ましい。負極活物質層における導電性フィラーの混合量は、負極活物質100質量部に対して、20質量部以下が好ましく、1~15質量部がより好ましい。導電性フィラーは、高入力の観点からは負極活物質層に混合した方が好ましい。混合量が20質量部以下の場合、負極活物質層における負極活物質の含有量を確保でき、体積当たりのエネルギー密度が低下することを防止できるので好ましい。
分散安定剤としては、例えばPVP(ポリビニルピロリドン)、PVA(ポリビニルアルコール)、セルロース誘導体等を用いることができる。分散安定剤の使用量は、負極活物質100質量部に対して、好ましくは0質量部以上10質量部以下である。分散安定剤の量が10質量部以下であれば、負極活物質へのイオンの出入り及び拡散を阻害せず、高い入出力特性が発現される。
〈負極集電体〉
本実施形態に係る負極集電体を構成する材料としては、電子伝導性が高く、電解液への溶出及び電解質又はイオンとの反応等による劣化が起こらない金属箔が好ましい。このような金属箔としては、例えば、アルミニウム箔、銅箔、ニッケル箔、ステンレス鋼箔等が挙げられる。非水系アルカリ金属蓄電素子における負極集電体としては、銅箔が好ましい。金属箔は凹凸又は貫通孔を持たない通常の金属箔でもよいし、エンボス加工、ケミカルエッチング、電解析出法、ブラスト加工等を施した凹凸を有する金属箔でもよいし、エキスパンドメタル、パンチングメタル、エッチング箔等の貫通孔を有する金属箔でもよい。
負極集電体の厚みは、負極の形状及び強度を十分に保持できればよく、例えば、1~100μmである。
負極集電体が孔を有する場合、固形分(質量%)/材料真密度(g/cm3)で表される真密度(cm3/g)と、1/電極嵩密度(g/cm3)で表される実体積(cm3/g)とから算出される空孔率(%)(空孔率=(1-真密度/実体積)×100)が、50%以上であることが好ましい。
《負極の製造方法》
負極は、負極集電体の片面上又は両面上に配置された負極活物質層を有する。典型的な態様において負極活物質層は負極集電体に固着している。
〈負極活物質層の形成〉
負極は、既知のアルカリ金属電池、例えばリチウムイオン電池、電気二重層キャパシタ等における電極の製造技術によって製造することが可能である。例えば、負極活物質を含む各種材料を溶媒(水又は有機溶媒)中に分散又は溶解してスラリー状の塗工液(負極塗工液)を調製し、この塗工液を負極集電体上の片面又は両面に塗工して塗膜を形成し、これを乾燥することにより負極を得ることができる。得られた負極にプレスを施して、負極活物質層の膜厚又は嵩密度を調整してもよい。
塗工液は、負極活物質を含む各種材料粉末の一部若しくは全部をドライブレンドし、次いで水若しくは有機溶媒、及び/又はそれらに結着剤若しくは分散安定剤が溶解又は分散した液状又はスラリー状の物質を追加して調整してもよい。水又は有機溶媒に結着剤若しくは分散安定剤が溶解又は分散した液状又はスラリー状の物質の中に、負極活物質を含む各種材料粉末を追加して調製してもよい。塗工液を調製するとき、好適にはホモディスパー、多軸分散機、プラネタリーミキサー、薄膜旋回型高速ミキサー等の分散機等を用いることができる。良好な分散状態の塗工液を得るためには、周速1m/s以上50m/s以下で分散することが好ましい。周速1m/s以上であれば、各種材料が良好に溶解又は分散するため好ましい。50m/s以下であれば、分散による熱やせん断力により各種材料が破壊されることなく、再凝集が生じることがないため好ましい。
塗工液の粘度(ηb)は、500mPa・s以上20,000mPa・s以下が好ましい。より好ましくは1,000mPa・s以上10,000mPa・s以下、さらに好ましくは1,500mPa・s以上5,000mPa・s以下である。粘度(ηb)が500mPa・s以上であれば、塗膜形成時の液ダレが抑制され、塗膜の幅及び膜厚が良好に制御できる。20,000mPa・s以下であれば、塗工機を用いた際の塗工液の流路における圧力損失が少なく安定に塗工でき、所望の塗膜厚み以下に制御できる。
塗工液のTI値(チクソトロピーインデックス値)は、1.1以上が好ましく、より好ましくは1.2以上、さらに好ましくは1.5以上である。TI値が1.1以上であれば、塗膜の幅及び膜厚が良好に制御できる。
塗膜の形成には、好適にはダイコーター、コンマコーター、ナイフコーター、グラビア塗工機等の塗工機を用いることができる。塗膜は単層塗工で形成してもよいし、多層塗工して形成してもよい。塗工速度は0.1m/分以上100m/分以下であることが好ましく、より好ましくは0.5m/分以上70m/分以下、さらに好ましくは1m/分以上50m/分以下である。塗工速度が0.1m/分以上であれば、安定に塗工できる。一方、100m/分以下であれば、塗工精度が良好である。
負極の塗膜の乾燥には、好適には熱風乾燥又は赤外線(IR)乾燥等の乾燥方法を用いることができる。塗膜は、単一の温度で乾燥させてもよいし、多段的に温度を変えて乾燥させてもよい。複数の乾燥方法を組み合わせて乾燥させてもよい。乾燥温度は、25℃以上200℃以下であることが好ましく、より好ましくは40℃以上180℃以下、さらに好ましくは50℃以上160℃以下である。乾燥温度が25℃以上であれば、塗膜中の溶媒を良好に揮発させることができる。一方、200℃以下であれば、急激な溶媒の揮発による塗膜のヒビ割れやマイグレーションによる結着剤の偏在、負極集電体又は負極活物質層の酸化を抑制できる。
乾燥後の負極中の残存溶媒量は、溶媒が水の場合は0.0010質量%以上7.0質量%以下であることが好ましく、0.0050質量%以上3.0質量%以下であればより好ましい。0.0010質量%以上であれば負極活物質層が剥がれることなく適度な強度を保つことができる。一方、7.0質量%以下であれば、良好なエネルギー密度が得られる。溶媒が有機溶媒を含む場合は、残存溶媒量は、0.1質量%以上10質量%以下であることが好ましく、0.5質量%以上6質量%以下であればさらに好ましい。0.1質量%以上であれば負極活物質層が剥がれることなく適度な強度を保つことができる。一方、10質量%以下であれば、良好なエネルギー密度が得られる。
負極のプレスには、好適には油圧プレス機、真空プレス機等のプレス機を用いることができる。負極活物質層の膜厚、嵩密度及び電極強度は後述するプレス圧力、隙間、プレス部の表面温度により調整できる。プレス圧力は0.5kN/cm以上20kN/cm以下が好ましく、より好ましくは1kN/cm以上10kN/cm以下、さらに好ましくは2kN/cm以上7kN/cm以下である。プレス圧力が0.5kN/cm以上であれば、電極強度を十分に高くできる。一方、20kN/cm以下であれば、負極に撓みやシワが生じることがなく、負極活物質層を所望の膜厚又は嵩密度に調整できる。プレスロール同士の隙間は、所望の負極活物質層の膜厚又は嵩密度となるように、乾燥後の負極膜厚に応じて任意の値に設定できる。さらに、プレス速度は、負極に撓み又はシワが生じない、任意の速度に設定できる。プレス部の表面温度は室温でもよいし、必要により加熱してもよい。加熱する場合のプレス部の表面温度の下限は、使用する結着剤の融点マイナス60℃(融点-60℃)以上が好ましく、より好ましくは結着剤の融点マイナス45℃以上、さらに好ましくは結着剤の融点マイナス30℃以上である。一方、加熱する場合のプレス部の表面温度の上限は、使用する結着剤の融点プラス50℃(融点+50℃)以下が好ましく、より好ましくは結着剤の融点プラス30℃以下、さらに好ましくは結着剤の融点プラス20℃以下である。例えば、結着剤にPVdF(ポリフッ化ビニリデン:融点150℃)を用いた場合、90℃以上200℃以下に加温することが好ましく、より好ましく105℃以上180℃以下、さらに好ましくは120℃以上170℃以下に加熱することができる。結着剤にスチレン-ブタジエン共重合体(融点100℃)を用いた場合、40℃以上150℃以下に加温することが好ましく、より好ましくは55℃以上130℃以下、さらに好ましくは70℃以上120℃以下に加熱することができる。
負極活物質層の厚みは、好ましくは負極集電体の片面当たり5μm以上100μm以下であり、より好ましくは10μm以上60μm以下である。この厚みが5μm以上であれば、良好な充放電容量を発現することができる。一方、この厚みが100μm以下であれば、セル体積を縮小することができるから、エネルギー密度を高めることができる。集電体に孔がある場合、負極活物質層の厚みとは、負極集電体の孔を有していない部分の片面当たりの厚みの平均値をいう。
《非水系電解液》
本実施形態の蓄電素子においては、電解液として非水系電解液を用いる。典型的な態様において、非水系電解液は、後述する非水溶媒を含む。非水系電解液は、該非水系電解液の総量を基準として、0.5mol/L以上のアルカリ金属塩を含有することが好ましい。すなわち、非水系電解液は、アルカリ金属イオン源としてのアルカリ金属塩を電解質として含むことが好ましい。アルカリ金属塩は、好ましくはリチウム塩である。
〈リチウム塩〉
本実施形態の非水系電解液においては、リチウム塩として、例えば、(LiN(SO2F)2)、LiN(SO2CF32、LiN(SO2252、LiN(SO2CF3)(SO225)、LiN(SO2CF3)(SO224H)、LiC(SO2F)3、LiC(SO2CF33、LiC(SO2253、LiCF3SO3、LiC49SO3、LiPF6、LiBF4等を単独で用いることができ、2種以上を混合して用いてもよい。高い伝導度を発現できることから、非水系電解液は、LiPF6、LiN(SO2F)2及びLiBF4から成る群から選択される少なくとも1つを含むことが好ましく、LiPF6及び/又はLiBF4とLiN(SO2F)2とを含むことがより好ましい。
非水系電解液中のアルカリ金属塩濃度は、非水系電解液の総量を基準として、0.5mol/L以上であることが好ましく、0.5mol/L以上2.0mol/L以下の範囲がより好ましい。アルカリ金属塩濃度が0.5mol/L以上であれば、陰イオンが十分に存在するので蓄電素子の容量を十分高くできる。アルカリ金属塩濃度が2.0mol/L以下である場合、未溶解のアルカリ金属塩が非水系電解液中に析出すること、及び非水系電解液の粘度が高くなり過ぎることを防止でき、伝導度が低下せず、出力特性も低下しないため好ましい。
本実施形態の非水系電解液は、非水系電解液の総量を基準として、0.1mol/L以上1.5mol/L以下の濃度のLiN(SO2F)2を含むことが好ましく、LiN(SO2F)2の濃度は、より好ましくは0.4mol/L以上1.2mol/L以下である。LiN(SO2F)2濃度が0.1mol/L以上であれば、非水系電解液のイオン伝導度を高めるとともに、負極界面に電解質被膜が適量堆積し、これにより非水系電解液が分解することによるガス発生を抑えることができる。一方、この濃度が1.5mol/L以下であれば、充放電の時に電解質塩の析出が起きず、かつ長期間経過後であっても非水系電解液の粘度の増加を引き起こすことがない。
〈非水溶媒〉
本実施形態の非水系電解液は、非水溶媒として、好ましくは、環状カーボネートを含有する。非水系電解液が環状カーボネートを含有することは、所望の濃度のアルカリ金属塩を溶解させる観点、及び正極活物質層にアルカリ金属化合物を適量堆積させる観点で有利である。環状カーボネートとしては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、フルオロエチレンカーボネート等が挙げられる。
環状カーボネートの合計含有量は、非水系電解液の総量基準で、好ましくは15質量%以上、より好ましくは20質量%以上である。合計含有量が15質量%以上であれば、所望の濃度のアルカリ金属塩を溶解させることが可能となり、高いアルカリ金属イオン伝導度を発現することができる。さらに、正極活物質層にアルカリ金属化合物を適量堆積させることが可能となり、非水系電解液の酸化分解を抑制することができる。
本実施形態の非水系電解液は、非水溶媒として、鎖状カーボネートであるジメチルカーボネート(DMC)及びエチルメチルカーボネート(EMC)を含有することが好ましい。エチルメチルカーボネートに対するジメチルカーボネートの体積比率(DMC/EMC)が0.5以上8.0以下であることが好ましく、0.8以上6.0以下であることがより好ましく、1.0以上4.0以下であることがさらに好ましい。DMC/EMCが0.5以上であれば、非水系電解液の低粘度化が可能であり、高いアルカリ金属イオン伝導度を発現することができる。DMC/EMCが8.0以下であれば、混合溶媒の融点を低く保つことが可能となり、低温環境下でも高い入出力特性を発揮することができる。
本実施形態の非水系電解液は、非水溶媒として、その他の鎖状カーボネートを含んでいてもよい。その他の鎖状カーボネートとしては、ジエチルカーボネート、ジプロピルカーボネート、ジブチルカーボネート等に代表されるジアルキルカーボネート化合物が挙げられる。ジアルキルカーボネート化合物は典型的には非置換である。
鎖状カーボネートの合計含有量は、非水系電解液の総量基準で、好ましくは30質量%以上、より好ましくは35質量%以上であり、好ましくは95質量%以下、より好ましくは90質量%以下である。鎖状カーボネートの含有量が30質量%以上であれば、非水系電解液の低粘度化が可能であり、高いアルカリ金属イオン伝導度を発現することができる。その合計量が95質量%以下であれば、非水系電解液が、後述する添加剤をさらに含有することができる。
〈添加剤〉
本実施形態の非水系電解液は、更に添加剤を含有していてもよい。添加剤としては、例えば、含硫黄化合物、リン酸エステル化合物、非環状含フッ素エーテル、環状ホスファゼン、含フッ素環状カーボネート、環状炭酸エステル、環状カルボン酸エステル、及び環状酸無水物等を単独で用いることができ、2種以上を混合して用いてもよい。
この中でも、下記化学式(1-1)~(1-5)で表される化合物から選択される含硫黄化合物、下記化学式(2)で表される化合物から選択されるリン酸エステル化合物、下記一般式(3)で表される非環状含フッ素エーテルの中から選択される化合物を、添加剤として含有することが好ましい。
一態様においては、下記一般式(1-1)~(1-5):
Figure 0007343304000001
{式中、R1~R4はそれぞれ独立に、水素原子、ハロゲン原子、ホルミル基、アセチル基、ニトリル基、アセチル基、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、及び炭素数1~6のアルキルエステル基から成る群から選ばれるいずれかを表す。}
Figure 0007343304000002
{式中、R9~R14はそれぞれ独立に、水素原子、ハロゲン原子、炭素数1~12のアルキル基、及び炭素数1~12のハロゲン化アルキル基から成る群から選ばれるいずれかを表し、そしてnは0~3の整数である。}
Figure 0007343304000003
{式中、R15~R20はそれぞれ独立に、水素原子、ハロゲン原子、炭素数1~12のアルキル基、及び炭素数1~12のハロゲン化アルキル基から成る群から選ばれるいずれかを表し、そしてnは0~3の整数である。}
Figure 0007343304000004
{式中、R21~R26はそれぞれ独立に、水素原子、ハロゲン原子、炭素数1~12のアルキル基、及び炭素数1~12のハロゲン化アルキル基から成る群から選ばれるいずれかを表す。}
Figure 0007343304000005
{式中、R27~R30はそれぞれ独立に、水素原子、ハロゲン原子、炭素数1~12のアルキル基、及び炭素数1~12のハロゲン化アルキル基から成る群から選ばれるいずれかを表し、そしてnは0~3の整数である}
で表される化合物の中から選択される含硫黄化合物を非水系電解液に含有させるのが好ましい。例えば、(1-1)で表される化合物が、チオフェン、2-メチルチオフェン、3-メチルチオフェン、2-シアノチオフェン、3-シアノチオフェン、2,5-ジメチルチオフェン、2-メトキシチオフェン、3-メトキシチオフェン、2-クロロチオフェン、3-クロロチオフェン、2-アセチルチオフェン又は3-アセチルチオフェンであり、(1-2)で表されるスルトン化合物が、1,3-プロパンスルトン、2,4-ブタンスルトン、1,4-ブタンスルトン、1,3-ブタンスルトン又は2,4-ペンタンスルトンであり、(1-3)で表されるスルトン化合物が、1,3-プロペンスルトン又は1,4-ブテンスルトンであり、(1-4)で表される化合物が、3-スルフォレンであり、(1-5)で表される環状亜硫酸化合物が亜硫酸エチレン、1,2-亜硫酸プロピレン又は1,3-亜硫酸プロピレンであり、これらの中から選択される化合物を1種以上非水系電解液に含有させるのが更に好ましい。
非水系アルカリ金属蓄電素子の非水系電解液中の含硫黄化合物の総含有量は、非水系電解液の総量を基準として、0.1質量%以上5質量%以下であることが好ましい。非水系電解液中の含硫黄化合物の総含有量が0.1質量%以上であれば、高温における非水系電解液の分解を抑制してガス発生を抑えることが可能となる。一方で、この総含有量が5質量%以下であれば、非水系電解液のイオン伝導度の低下を抑えることができ、高い入出力特性を保持することができる。非水系アルカリ金属蓄電素子の非水系電解液に存在する含硫黄化合物の含有量は、高い入出力特性と耐久性を両立する観点から、好ましくは0.3質量%以上4質量%以下であり、より好ましくは0.5質量%以上3質量%以下である。
〈リン酸エステル化合物〉
一態様においては、下記一般式(2):
Figure 0007343304000006
{式中、X1~X3は、それぞれ独立に、一価の有機基を表す。}
で表される化合物から成る群から選択されるリン酸エステル化合物を非水系電解液に含有させるのが好ましい。一般式(2)で表される化合物としては、例えば、トリメチルホスフェート、トリエチルホスフェート、トリブチルホスフェート、リン酸トリス(トリメチルシリル)、トリトリルホスフェート、トリフェニルホスフェート、ジオクチルホスフェート、トリオクチルホスフェート、リン酸トリス(4-ニトロフェニル)等を挙げることができ、これらのうちから選択される1種以上が好ましい。
リン酸エステル化合物の含有量は、非水系電解液の総量を基準として、0.1質量%以上3質量%以下が好ましく、0.3質量%以上2.5質量%以下であることが更に好ましい。リン酸エステル化合物の含有量が0.1質量%以上であれば、非水系電解液の酸化分解に対する安定性が高まり、高温時の容量劣化を抑制できる。一方、リン酸エステル化合物の含有量が3質量%以下であれば、正極と非水系電解液との界面の反応抵抗を低く保つことができるため、高度の入出力特性を発現することが可能となる。尚、リン酸エステル化合物は、単独で使用しても、2種以上を混合して使用してもよい。
〈非環状含フッ素エーテル〉
一態様においては、下記一般式(3):
Figure 0007343304000007
{式中、R1は、ハロゲン原子又は炭素数1~12のハロゲン化アルキル基であり、R2は、水素原子、ハロゲン原子、炭素数1~12のアルキル基、又は炭素数1~12のハロゲン化アルキル基である。}
で表される化合物から成る群から選択される非環状含フッ素エーテルを非水系電解液に含有させるのが好ましい。一般式(3)で表される化合物としては、例えば、C25OC25、C37OC37、C49OC49、C613OC613、C25OCH3、C37OCH3、C49OCH3、C613OCH3、C25OCH5、C37OCH5、C49OC25、C25CF(OCH3)C37、CF3CH2OCF2CF2H、CHF2CF2OCH2CF3、CHF2CF2CH2OCF2CF2H、CF3CF2CH2OCF2CHF2、CF3CH2OCF2CHFCF3、及びC3HF6CH(CH3)OC3HF6等を挙げることができ、これらのうちから選択される1種以上が好ましい。
非環状含フッ素エーテルの含有量は、非水系電解液の総量を基準として、0.1質量%以上3質量%以下が好ましく、0.3質量%以上2.5質量%以下であることが更に好ましい。非環状含フッ素エーテルの含有量が0.1質量%以上であれば、非水系電解液の酸化分解に対する安定性が高まり、高温時の容量劣化を抑制できる。非水系アルカリ蓄電素子の正極集電体としてアルミニウム箔を用いた場合、正極集電体表面に耐腐食性の高い含フッ素保護被膜が形成され、アルミニウムの非水系電解液中への溶出を防ぐことで非水系電解液の劣化を抑制することができる。一方、非環状含フッ素エーテルの含有量が3質量%以下であれば、電解質塩の溶解度が良好に保たれ、かつ、非水系電解液のイオン伝導度を高く維持することができるため、高度の入出力特性を発現することが可能となる。尚、非環状含フッ素エーテルは、単独で使用しても、2種以上を混合して使用してもよい。
〈環状ホスファゼン〉
環状ホスファゼンとしては、例えばエトキシペンタフルオロシクロトリホスファゼン、ジエトキシテトラフルオロシクロトリホスファゼン、フェノキシペンタフルオロシクロトリホスファゼン等を挙げることができ、これらのうちから選択される1種以上が好ましい。
非水系電解液中の環状ホスファゼンの含有率は、非水系電解液の総量を基準として、0.5質量%以上20質量%以下であることが好ましい。この値が0.5質量%以上であれば、高温における非水系電解液の分解を抑制してガス発生を抑えることが可能となる。一方、この値が20質量%以下であれば、非水系電解液のイオン伝導度の低下を抑えることができ、高い入出力特性を保持することができる。環状ホスファゼンの含有率は、より好ましくは2質量%以上15質量%以下であり、更に好ましくは4質量%以上12質量%以下である。尚、これらの環状ホスファゼンは、単独で用いてもよく、又は2種以上を混合して用いてもよい。
〈含フッ素環状カーボネート〉
含フッ素環状カーボネート(フッ素原子を含有する環状カーボネート)については、他の非水溶媒との相溶性の観点から、フルオロエチレンカーボネート(FEC)及びジフルオロエチレンカーボネート(dFEC)から選択して使用されることが好ましい。
含フッ素環状カーボネートの含有量は、非水系電解液の総量を基準として、0.5質量%以上10質量%以下が好ましく、1質量%以上5質量%以下であることがより好ましい。含フッ素環状カーボネートの含有量が0.5質量%以上であれば、負極上に良質な被膜を形成することができ、負極上における非水系電解液の還元分解を抑制することによって、高温における耐久性が高い蓄電素子が得られる。非水系アルカリ蓄電素子の正極集電体としてアルミニウム箔を用いた場合、正極集電体表面に耐腐食性の高い含フッ素保護被膜が形成され、アルミニウムの非水系電解液中への溶出を防ぐことで非水系電解液の劣化を抑制することができる。一方、含フッ素環状カーボネートの含有量が10質量%以下であれば、電解質塩の溶解度が良好に保たれ、かつ、非水系電解液のイオン伝導度を高く維持することができるため、高度の入出力特性を発現することが可能となる。尚、上記の含フッ素環状カーボネートは、単独で使用しても、2種以上を混合して使用してもよい。
〈環状炭酸エステル〉
環状炭酸エステルについては、ビニレンカーボネートが好ましい。
環状炭酸エステルの含有量は、非水系電解液の総量を基準として、0.5質量%以上10質量%以下が好ましく、1質量%以上5質量%以下であることが更に好ましい。環状炭酸エステルの含有量が0.5質量%以上であれば、負極上に良質な被膜を形成することができ、負極上での非水系電解液の還元分解を抑制することにより、高温における耐久性が高い蓄電素子が得られる。一方、環状炭酸エステルの含有量が10質量%以下であれば、電解質塩の溶解度が良好に保たれ、かつ、非水系電解液のイオン伝導度を高く維持することができるため、高度の入出力特性を発現することが可能となる。
〈環状カルボン酸エステル〉
環状カルボン酸エステルとしては、例えば、ガンマブチロラクトン、ガンマバレロラクトン、ガンマカプロラクトン、イプシロンカプロラクトン等を挙げることができ、これらのうちから選択される1種以上を使用することが好ましい。中でも、ガンマブチロラクトンが、アルカリ金属イオン解離度の向上に由来する電池特性向上の観点から、より好ましい。
環状カルボン酸エステルの含有量は、非水系電解液の総量を基準として、0.5質量%以上15質量%以下が好ましく、1質量%以上5質量%以下であることがより好ましい。環状カルボン酸エステルの含有量が0.5質量%以上であれば、負極上に良質な被膜を形成することができ、負極上での非水系電解液の還元分解を抑制することにより、高温時耐久性が高い蓄電素子が得られる。一方、環状カルボン酸エステルの含有量が15質量%以下であれば、電解質塩の溶解度が良好に保たれ、かつ、非水系電解液のイオン伝導度を高く維持することができるため、高度の入出力特性を発現することが可能となる。尚、上記の環状カルボン酸エステルは、単独で使用しても、2種以上を混合して使用してもよい。
〈環状酸無水物〉
環状酸無水物については、無水コハク酸、無水マレイン酸、無水シトラコン酸、及び無水イタコン酸から選択される1種以上が好ましい。中でも工業的な入手のし易さによって非水系電解液の製造コストが抑えられる観点、非水系電解液中に溶解し易い観点等から、無水コハク酸及び無水マレイン酸から選択することが好ましい。
環状酸無水物の含有量は、非水系電解液の総量を基準として、0.5質量%以上15質量%以下が好ましく、1質量%以上10質量%以下であることがより好ましい。環状酸無水物の含有量が0.5質量%以上であれば、負極上に良質な被膜を形成することができ、負極上における非水系電解液の還元分解を抑制することにより、高温時耐久性が高い蓄電素子が得られる。一方、環状酸無水物の含有量が15質量%以下であれば、電解質塩の溶解度が良好に保たれ、かつ非水系電解液のイオン伝導度を高く維持することができ、従って高度の入出力特性を発現することが可能となる。尚、上記の環状酸無水物は、単独で使用しても、2種以上を混合して使用してもよい。
《セパレータ》
正極前駆体及び負極は、セパレータを介して積層され、又は積層及び捲回され、正極前駆体、セパレータ、及び負極を有する電極積層体又は電極捲回体が形成される。
本実施形態におけるセパレータは、アルカリ金属電池、例えばリチウムイオン二次電池、電気二重層キャパシタ、リチウムイオンキャパシタ等に用いられるセパレータとして、好適に用いることができる。
本実施形態におけるセパレータは、好ましくは、ポリオレフィン、セルロース、及びアラミド樹脂から成る群から選択される少なくとも1種を含むセパレータである。本実施形態におけるセパレータとして、例えば、ポリオレフィン製微多孔膜を含むセパレータ、ポリオレフィン製微多孔膜の少なくとも一方の面に無機微粒子からなる膜を有する積層体であるセパレータ、ポリオレフィン製微多孔膜の少なくとも一方の面にアラミド樹脂を含むコート層を有する積層体であるセパレータ、セルロース製の不織紙を含むセパレータ等を例示できる。ポリオレフィン製微多孔膜に含まれるポリオレフィンとしては、例えば、ポリエチレン、ポリプロピレン等が挙げられる。セパレータの内部に有機又は無機の微粒子が含まれていてもよい。
《非水系アルカリ金属蓄電素子の製造方法》
一態様において、非水系アルカリ金属蓄電素子は、正極前駆体、負極及びセパレータを有する電極積層体又は電極捲回体を非水系電解液とともに外装体内に収納することで製造できる。以下、非水系アルカリ金属蓄電素子の製造方法を例示する。
〈組立工程〉
組立工程では、典型的には、枚葉の形状にカットした正極前駆体及び負極を、セパレータを介して積層して電極積層体を得て、電極積層体に正極端子及び負極端子を接続する。又は、正極前駆体及び負極を、セパレータを介して積層及び捲回して電極捲回体を得て、電極捲回体に正極端子及び負極端子を接続する。電極捲回体の形状は、例えば円筒型又は扁平型であってよい。正極端子と負極端子との接続は、抵抗溶接、超音波溶接などの方法で行う。
〈外装体への収納工程〉
電極積層体又は電極捲回体は、金属缶又はラミネート包材に代表される外装体の中に収納し、開口部を1方だけ残した状態で封止することが好ましい。外装体の封止方法としては、ラミネート包材を用いる場合は、ヒートシール、インパルスシール等の方法を用いることができる。
〈乾燥工程〉
外装体へ収納した電極積層体又は電極捲回体は、乾燥することで残存溶媒を除去することが好ましい。乾燥方法としては、減圧乾燥等を挙げることができる。残存溶媒量は、正極活物質層及び負極活物質層のそれぞれについて、これらの質量100質量%当たり、1.5質量%以下が好ましい。残存溶媒量が1.5質量%以下であれば、自己放電特性又はサイクル特性が低下し難いため好ましい。
〈加圧工程〉
乾燥された電極積層体又は電極捲回体が収納された外装体の外側から、電極の面に対して垂直方向に、両側から圧力を掛けることが好ましい。圧力は0.01kgf/cm2以上1000kgf/cm2以下が好ましく、0.01kgf/cm2以上100kgf/cm2以下がより好ましく、0.01kgf/cm2以上30kgf/cm2以下がさらに好ましい。圧力が0.01kgf/cm2以上であると、正極前駆体および負極の歪みが圧力により矯正され、対向した正極前駆体と負極との距離が面内で均一になるため、後述のアルカリ金属ドープ工程において面内でドープが均一に行われ、耐久性が向上するため好ましい。
乾燥された電極積層体又は電極捲回体が収納された外装体の外側から圧力を掛ける手段としては、圧力を掛けることができる冶具であればどのようなものでもよい。一例として、一対の平坦な金属製の板を準備し、電極積層体の面に合わせて電極積層体を挟持し、金属製の板の四隅をねじ止め拘束して圧力を掛けることができる。
圧力の測定には、面圧分布測定システムI-SCAN(ニッタ株式会社製)を用いる。面圧測定のためのセンサーシートは、加圧面全体を覆う面積であることが好ましい。例えば、加圧面が縦60mm×横100mmであれば、I-SCAN100センサー(測定面の寸法:112mm×112mm)を用いることができる。
センサーシートは、外装体の主面と、一対の冶具が有する加圧面との間に配置する。
センサーシートの最大測定圧力は、外装体に掛ける最大加圧力以上であり、最大加圧力の3倍以下であることが好ましい。例えば、外装体に掛ける最大加圧力が5kgf/cm2であれば、センサーシートの最大測定圧力は5kgf/cm2以上、15kgf/cm2以下が好ましいため、例えばセンサーシートとしてはI-SCAN100(R)(最大測定圧力:13kgf/cm2)を用いることが好ましい。センサーシートの最大測定圧力が、外装体に掛ける最大加圧力以上、最大加圧力の3倍以下であれば、外装体に掛ける面内の加圧力を精度よく測定することができるため、好ましい。
センサーシートのセンサー点数は、400ポイント(縦20×横20ポイント)以上であることが好ましく、900ポイント以上(縦30×横30ポイント)であることが更に好ましい。例えば、加圧面積S1が縦60mm×横100mm(60cm2)の場合、I-SCAN100センサー(測定面積Ss:112mm×112mm=125.44cm2、センサー点数1936ポイント)を適応することで、加圧面全体に用いられるセンサー点数が(S1/Ss)×1936ポイント=926ポイントとなるため、好ましい。
本明細書では、圧力の単位としてkgf/cm2を例として用いるが、単位は圧力を示すものであればどのようでもよく、例えばPa、mmHg、Bar、atmなどであってもよい。
上記で得られたI-SCANにより取得したデータは、冶具の端の辺又は隅においては、冶具のバリなどの影響で、実体の加圧力とは関係のない過剰な圧力を検出し易いため、面内の圧力斑を評価するためのデータとして活用しない。具体的には、測定した加圧面内の全圧力データについて、4辺のデータそれぞれの、最初と最後の3ポイント分については、データとして活用しない。例えば、加圧面内のデータが縦44ポイント×横30ポイントであった場合、縦44ポイントのうち、最初の3ポイント分の行および最後の3ポイント分の行を削除し、横30ポイントのうち、最初の3ポイント分の列と最後の3ポイント分の列を削除したデータを用いて、面内の圧力分布を取得する。得られた圧力分布の平均値Pavgを下記式により得て、得られた平均値を、外装体に加える圧力として記録する。
Figure 0007343304000008
式中、x、yは圧力分布の座標を意味し、m、nはx、yそれぞれの最大ポイント数を示す。
〈注液工程、含浸工程、封止工程〉
組立工程の終了後に、外装体の中に収納された電極積層体又は電極捲回体に、非水系電解液を注液する。注液の方法としては、電極積層体又は電極捲回体を大気圧下、又は減圧下において注液する方法があり、減圧下で注液することが好ましい。減圧下で注液することにより、注液工程の時間を短縮でき、生産効率が向上する。正極前駆体、負極、及びセパレータに均一に非水系電解液を浸すことができる。正極前駆体、負極、及びセパレータのうちの少なくとも一部に非水系電解液が浸っていない状態では、後述するアルカリ金属ドープ工程において、ドープが不均一に進むため、面内のドープ斑又は局所的なLiの析出が発生し、得られる非水系アルカリ金属蓄電素子の抵抗上昇、耐久性低下、歩留まり低下を引き起こすことがある。そのため、正極前駆体、負極、及びセパレータの細孔内部まで、非水系電解液を均一に浸透させることが好ましい。常圧を基準として、-10kPa~-101.33kPaに減圧した状態で注液することが好ましく、-30kPa~-101.10kPaであることがより好ましく、-50kPa~-100.00kPaで注液することがさらに好ましい。常圧を基準として-10kPa以下の環境で注液することで、正極前駆体、負極、及びセパレータに非水系電解液を均一に浸すことができる。一方、-1000kPa以上の環境であれば、注液時に非水系電解液中の非水溶媒が蒸発することを抑制し、非水系電解液の組成変化を防ぐことで、得られる非水系アルカリ金属蓄電素子の特性を安定化することができる。
注液時の非水系電解液の温度は、5℃~60℃であることが好ましく、より好ましくは15℃~45℃である。注液時の非水系電解液の温度が5℃以上であれば、非水系電解液の高粘度化を抑制し、正極前駆体、負極、及びセパレータに非水系電解液を均一に浸すことができる。一方、注液時の非水系電解液の温度が60℃以下であれば、注液時に非水系電解液中の非水溶媒が蒸発することを抑制し、非水系電解液の組成変化を防ぐことで、得られる非水系アルカリ金属蓄電素子の特性を安定化することができる。
注液工程の終了後に、更に、含浸工程を行い、正極前駆体、負極、及びセパレータを非水系電解液で十分に浸すことが望ましい。含浸の方法としては、例えば、注液後の電極積層体又は電極捲回体を、外装体が開口した状態で、減圧チャンバー内に設置し、真空ポンプを用いてチャンバー内を減圧状態にし、再度大気圧に戻す方法等を用いることができる。このような観点から、本実施形態では、注液工程の後に、さらに以下の工程:
(a1)開口した状態の外装体の内圧を、大気圧を基準として、-50kPa~-100.00kPaに調整する再減圧工程と、
(a2)開口した状態の外装体の内圧を大気圧に戻す復元工程と、
を行うことが好ましい。
注液後に、外装体の外側から掛ける圧力を強めることが好ましい(再加圧工程)。圧力は0.1kgf/cm2以上1000kgf/cm2以下が好ましく、0.5kgf/cm2以上100kgf/cm2以下がより好ましく、1kgf/cm2以上10kgf/cm2以下がさらに好ましい。圧力が0.1kgf/cm2以上であると、正極前駆体および負極の歪みが圧力により矯正され、対向した正極前駆体と負極との距離が面内で均一になるため、アルカリ金属ドープ工程にて面内でドープが均一に行われ、耐久性が向上するため好ましい。圧力が1000kgf/cm2以下であれば、電極積層体又は電極捲回体に過度な圧力が掛からず、構成材料である正極前駆体、負極及びセパレータにダメージを与えないため、好ましい。
〈ドープ工程〉
アルカリ金属ドープの好ましい操作としては、正極前駆体と負極との間に電圧を印加して、正極前駆体中のアルカリ金属化合物を分解してアルカリ金属イオンを放出し、負極でアルカリ金属イオンを還元することにより負極活物質層にアルカリ金属イオンをプレドープする方法が挙げられる。アルカリ金属ドープの好ましい操作として、具体的には、アルカリ金属ドープ初期では定電流を印加することで電圧を上昇させ、任意の電圧に到達後に定電圧を印加する方法を取ることができる。
アルカリ金属ドープで印加する定電圧時の電圧は、4.4V以上4.8V以下がより好ましく、4.4V以上4.6V以下がさらに好ましい。アルカリ金属ドープで印加する電圧が4.4V以上であれば、正極前駆体に含まれるアルカリ金属化合物が効率よく分解し、アルカリ金属イオンを非水系電解液中に放出できるため、好ましい。電圧が4.8V以下であれば、セパレータの耐電圧が正負極間の電位差に勝り、アルカリ金属ドープで微短絡を抑制できるため、好ましい。
アルカリ金属ドープで正負極に与える定電流時の電流値は、Cレートで換算して1C以上100C以下が好ましく、1C以上30C以下がより好ましい。電流値が1C以上であれば、アルカリ金属ドープを速やかに行うことができ作業性が向上するため好ましい。電流値が30C以下であれば、正極前駆体に過電圧が掛からず、正極集電体の腐食を抑制できるため、好ましい。
アルカリ金属ドープ時は、外装体の温度が30℃以上70℃以下であることが好ましく、30℃以上55℃以下であることがさらに好ましい。外装体の温度が30℃以上であれば、正極前駆体に含まれるアルカリ金属化合物が効率よく分解し、アルカリ金属イオンを非水系電解液中に放出できるため、好ましい。外装体の温度が70℃以下であれば、非水系電解液の分解が抑制でき、非水系アルカリ金属蓄電素子の抵抗を低くすることができるため、好ましい。
アルカリ金属ドープを行う時間は、0.5時間以上30時間以下が好ましく、1時間以上5時間以下がさらに好ましい。アルカリ金属ドープを行う時間が0.5時間以上であれば、アルカリ金属ドープを速やかに行うことができ作業性が向上するため好ましい。アルカリ金属ドープを行う時間が30時間以下であれば、非水系電解液の分解が抑制でき、非水系アルカリ金属蓄電素子の抵抗を低くすることができるため、好ましい。同様の観点から、上記で説明された定電圧充電は、好ましくは0.25時間以上24時間以下の期間に亘って、より好ましくは0.5時間以上4時間以下の期間に亘って行われる。
アルカリ金属ドープ工程において、正極前駆体中のアルカリ金属化合物の酸化分解に伴い、CO2等のガスが発生する。そのため、電圧を印加する際には、発生したガスを外装体の外部に放出する手段を講ずることが好ましい。この手段としては、例えば、外装体の一部を開口させた状態で電圧を印加する方法;外装体の一部に予めガス抜き弁、ガス透過フィルム等の適宜のガス放出手段を設置した状態で電圧を印加する方法;等を挙げることができる。
〈サイクル工程〉
電極積層体又は電極捲回体に、充放電を繰り返す、サイクル工程(本明細書では「充放電サイクル工程」ともいう。)を施すことが好ましい。サイクル工程の効果としては、(1)充放電を繰り返すことにより、活性炭の細孔に、非水系電解液中のカチオン、アニオン、アニオンに配位した溶媒が出入りするため、特に正極活物質である活性炭表面の不安定な官能基が安定化され、サイクル耐久性が向上する効果;(2)正極を高電位にさらすことで、ドープ工程で分解しきれなかったアルカリ金属化合物が完全に分解され、高温耐久性が向上する効果;(3)ドープ工程で生成したアルカリ金属化合物の酸化分解反応の副生成物が消費されることで、高温耐久性が向上する効果がある。必要以上の負荷でサイクル工程を実施すると、非水系アルカリ金属蓄電素子の抵抗が上昇してしまうため、適切な条件(温度、電圧、充放電回数など)で充放電サイクル工程を行う必要がある。
充放電サイクル工程の方法としては、非水系アルカリ金属蓄電素子前駆体の電圧を、定電流充電、定電流定電圧充電、パルス充電などに代表される充電方法によって、又は、定電流放電、定電流定電圧放電、パルス放電に代表される放電方法によって、目標の電圧範囲内で充放電を繰り返す方法が挙げられる。
定電流充放電、パルス充放電の際の電流レートに関しては、後述する4.2Vにおける容量を基準として、0.2C以上50C以下が好ましい。0.2C以上であれば、充放電に必要な時間を短くできるため、設備負荷を抑制でき、生産効率が向上する。50C以下であれば、電流分布が均一になるため、サイクル工程の上記効果が顕著に得られる。
定電流定電圧充放電の際の定電圧の保持時間に関しては、0.5分以上120分以下が好ましい。0.5分以上であれば、サイクル工程の上記効果が顕著に得られる。120分以下であれば、充放電に必要な時間を短くできるため、設備負荷を抑制でき、生産効率が向上する。
充放電サイクル工程では、次に述べる上限電圧と下限電圧の範囲内で充放電することが好ましい。上限電圧としては、3.8V以上4.8V以下が好ましく、4.0V以上4.7V以下がより好ましく、4.1V以上4.6V以下が特に好ましい。上限電圧が3.8V以上であれば、高温高負荷充放電サイクル試験後の抵抗上昇率を抑制できる。上限電圧が4.8V以下であれば、非水系アルカリ金属蓄電素子を低抵抗に保つことができる。下限電圧としては、1.5V以上3.5V以下が好ましく、1.6V以上3.4V以下がより好ましく、1.7V以上3.3V以下が特に好ましく、1.75V以上3.0V以下が最も好ましい。下限電圧が1.5V以上であれば、負極の集電体である銅の溶出を抑制でき、非水系アルカリ金属蓄電素子を低抵抗に保てる。下限電圧が3.5V以下であれば、高温高負荷充放電サイクル試験後の抵抗上昇率を抑制できる。
充放電サイクル工程の温度としては、30℃以上100℃以下が好ましく、35℃以上85℃以下がより好ましく、35℃以上75℃以下が特に好ましい。30℃以上であれば、高温高負荷充放電サイクル試験後の抵抗上昇率を抑制できる。100℃以下であれば、非水系アルカリ金属蓄電素子を低抵抗に保つことができ、昇温に必要な設備負荷を抑制できるため、生産効率が向上する。
充放電サイクル工程のサイクルの回数としては、1回以上10回以下が好ましく、2回以上8回以下がより好ましい。1回以上実施すれば高温高負荷充放電サイクル試験後の抵抗上昇率を抑制。10回以下であれば、非水系アルカリ金属蓄電素子を低抵抗に保つことができる。10回以下であれば、必要な充放電設備の負荷を抑制できるため、生産効率の観点からも好ましい。
充放電サイクル工程では、外装体の外側から圧力をかけることが好ましい。圧力は0.1kgf/cm2以上1000kgf/cm2以下が好ましく、0.5kgf/cm2以上100kgf/cm2以下がより好ましく、1kgf/cm2以上10kgf/cm2以下がさらに好ましい。圧力が0.1kgf/cm2以上であると、正極前駆体および負極の歪みが圧力により矯正され、対向する正極前駆体と負極との距離が面内で均一になるため、充放電サイクル工程における反応が均一に進み、高温高負荷充放電サイクルの耐久性が向上するため好ましい。圧力が1000kgf/cm2以下であれば、電極積層体又は電極捲回体に非水系電解液が浸透する空間が確保され、高温高負荷充放電サイクルの耐久性が向上するため好ましい。
〈エージング工程〉
電極積層体又は電極捲回体を加温する、高温エージング工程(本願明細書では、「エージング工程」ともいう。)を施すことが好ましい。エージング工程の効果としては、(1)非水系電解液中の溶媒又は添加剤が分解し、正極又は負極の表面に有機被膜又は無機被膜が形成されることによって耐久性が向上する効果;(2)正極活物質である活性炭表面の不安定な官能基、正極・負極・セパレータ・電解液中に含まれる不純物が、化学的に反応し、安定化されることによるサイクル耐久性の向上効果;が挙げられる。有機被膜又は無機被膜は、高温耐久性を向上させる効果を有するが、必要以上の被膜が生成すると、非水系アルカリ金属蓄電素子の抵抗が上昇してしまうため、適切な条件(温度、電圧、時間など)で高温エージング工程を行う必要がある。
高温エージング工程の方法としては、例えば、非水系アルカリ金属蓄電素子前駆体の電圧を、定電流充電、定電流定電圧充電、パルス充電などに代表される充電方法によって、又は、定電流放電、定電流定電圧放電、パルス放電に代表される放電方法によって、目標電圧に調整した後、充放電を止めて、高温環境下で一定時間、保存する方法が挙げられる。
高温エージング工程は、
(1)高電圧保管工程;非水系アルカリ金属蓄電素子前駆体の電圧を高電圧に調整したのち、非水系アルカリ金属蓄電素子前駆体を45℃以上100℃以下で、保管する工程を有する。電圧としては、4.03V以上5.0V以下が好ましく、4.05V以上4.8V以下がより好ましく、4.1V以上4.5V以下が特に好ましい。4.03V以上であれば、高温高負荷充放電サイクル試験後の抵抗上昇率を抑制できる。5.0V以下であれば、必要以上に被膜が形成されることを防げるため、非水系アルカリ金属蓄電素子を低抵抗に保つことができる。
高温エージング工程では、(1)高電圧保管工程に加えて(2)低電圧保管工程をさらに備えてもよい。
(2)低電圧保管工程;非水系アルカリ金属蓄電素子前駆体の電圧を低電圧に調整したのち、非水系アルカリ金属蓄電素子前駆体を45℃以上100℃以下で、保管する工程を有する。電圧としては、1.5V以上2.8V以下が好ましく、1.6V以上2.7V以下がより好ましく、1.7V以上2.5V以下が特に好ましい。2.8V以下であれば、高温高負荷充放電サイクル試験後の容量維持率を向上することができる。1.5V以上であれば、負極の集電体である銅の溶出を抑制でき、非水系アルカリ金属蓄電素子を低抵抗に保てる。
高電圧保管工程と、低電圧保管工程の順序は特に制限されない。
高電圧保管工程、低電圧保管工程での、非水系アルカリ金属蓄電素子前駆体の温度としては、45℃以上100℃以下が好ましく、50℃以上85℃以下がより好ましく、55℃以上75℃以下が更に好ましい。45℃以上であれば、高温高負荷充放電サイクル試験後の抵抗上昇率の抑制、及び高温高負荷充放電サイクル試験後の容量維持率の向上などの効果がある。100℃以下であれば、非水系アルカリ金属蓄電素子を低抵抗に保つことができ、昇温に必要な設備負荷を抑制できるため、生産効率が向上する。温度はエージング工程中、一定であってもよいし、段階的に被膜を生成するため、又は均一に被膜を形成するために、多段階に変動させてもかまわない。
エージング工程の時間としては、0.25時間以上340時間以下が好ましく、0.5時間以上100時間以下がより好ましく、1時間以上50時間以下がさらに好ましい。0.25時間以上であれば、高温高負荷充放電サイクル試験後の抵抗上昇率の抑制、及び高温高負荷充放電サイクル試験後の容量維持率の向上などの効果がある。340時間以下であれば、非水系アルカリ金属蓄電素子を低抵抗に保つことができ、エージングに要する時間、設備数を抑えられるため、生産効率が向上する。
エージング工程では、外装体の外側から圧力をかけることが好ましい。圧力は0.1kgf/cm2以上1000kgf/cm2以下が好ましく、0.5kgf/cm2以上100kgf/cm2以下がより好ましく、1kgf/cm2以上10kgf/cm2以下がさらに好ましい。圧力が0.1kgf/cm2以上であると、正極前駆体および負極の歪みが圧力により矯正され、対向する正極前駆体と負極との距離が面内で均一になるため、高温エージング工程における反応が均一に進み、高温高負荷充放電サイクル耐久性が向上するため好ましい。圧力が1000kgf/cm2以下であれば、電極積層体又は電極捲回体に非水系電解液が浸透する空間が確保され、高温高負荷充放電サイクル耐久性が向上するため好ましい。
〈ドープ工程、サイクル工程、エージング工程の順序〉
ドープ工程、サイクル工程、エージング工程を行う順序としては、第一にドープ工程を行うのが望ましい。そののちに、サイクル工程又はエージング工程を行う順序、回数は特に制限されない。ドープ工程を複数回行ってもよい。
〈ガス抜き及び封止工程〉
ドープ工程、サイクル工程、及びエージング工程の終了後に、ガス抜き工程を行い、非水系電解液、正極、及び負極中に残存しているガスを確実に除去してもよい。ガス抜きを行うことで、耐久性が向上する。ガス抜きの方法としては、例えば、外装体を開口させた状態で電極積層体又は電極捲回体を減圧チャンバー内に設置し、真空ポンプを用いてチャンバー内を減圧状態にする方法等を用いることができる。ガス抜き工程の後、外装体の開口部分を封止する。
以下に、本発明を実施例及び比較例によって具体的に説明するが、本発明はこれらに限定されるものではない。
《測定及び評価方法》
〈BET比表面積、平均細孔径、メソ孔量、マイクロ孔量〉
BET比表面積、平均細孔径、メソ孔量、及びマイクロ孔量は、それぞれ以下の方法によって求めた。試料を200℃で一昼夜に亘って減圧乾燥し、窒素を吸着質として吸脱着の等温線の測定を行なった。得られた吸着側の等温線を用いて、BET比表面積はBET多点法又はBET1点法により、平均細孔径は質量当たりの全細孔容積をBET比表面積で除すことにより、メソ孔量はBJH法により、マイクロ孔量はMP法により、それぞれ算出した。
BJH法は一般的にメソ孔の解析に用いられる計算方法で、Barrett, Joyner,Halendaらにより提唱された(E.P.Barrett,L.G.Joyner and P.Halenda,J.Am.Chem.Soc.,73,373(1951))。
MP法とは、「t-プロット法」(B.C.Lippens,J.H.de Boer,J.Catalysis,4319(1965))を利用して、マイクロ孔容積、マイクロ孔面積、及びマイクロ孔の分布を求める方法を意味し、M.Mikhail,Brunauer,Bodorにより考案された(R.S.Mikhail,S.Brunauer,E.E.Bodor,J.Colloid Interface Sci.,26,45 (1968))。
〈平均粒子径〉
平均粒子径は、粒度分布測定装置を用いて粒度分布を測定し、全体積を100%として累積カーブを求めたとき、その累積カーブが50%となる点の粒子径(すなわち、50%径(Median径))を指す。平均粒子径はレーザー回折式粒度分布測定装置(島津製作所社製レーザー回折式粒度分布測定装置(SALD-2000J)を用いて測定した。
〈負極におけるアルカリ金属イオンのドープ量〉
製造時(すなわち製品出荷時を想定)及び使用後の非水系アルカリ金属蓄電素子における負極活物質のアルカリ金属イオンのドープ量は、以下の手法によって求めた。
先ず、負極活物質層をジメチルカーボネートで洗浄し風乾した後、メタノール及びイソプロパノールから成る混合溶媒により抽出した抽出液と、抽出後の負極活物質層と、を得た。この抽出は、Arボックス内にて、環境温度23℃で行った。
上記のようにして得られた抽出液と、抽出後の負極活物質層と、に含まれるアルカリ金属量を、それぞれ、ICP-MS(誘導結合プラズマ質量分析計)等を用いて定量し、その合計を求めることによって、負極活物質におけるアルカリ金属イオンのドープ量を得た。そして、得られた値を抽出に供した負極活物質量で割り付けて、上記単位の数値を算出した。
一次粒子径は、粉体を電子顕微鏡で数視野撮影し、それらの視野中の粒子の粒子径を、全自動画像処理装置等を用いて約2,000~約3,000個計測し、これらを算術平均する方法により得た。
〈分散度〉
分散度は、JIS K5600に規定された粒ゲージによる分散度評価試験により求めた。すなわち、粒のサイズに応じた所望の深さの溝を有する粒ゲージに対して、溝の深い方の先端に十分な量の試料を流し込み,溝から試料を僅かに溢れさせた。次いで、スクレーパーの長辺がゲージの幅方向と平行になり、粒ゲージの溝の深い先端に刃先が接触するようにスクレーパーをゲージの表面に置き、スクレーパーがゲージの表面に接するように保持しながら、ゲージの表面を均等な速度で、溝の深さ0まで1~2秒間かけてスクレーパーを引き、引き終わってから3秒以内に20°以上30°以下の角度で光を当てて観察し、粒ゲージの溝に粒が現れる深さを読み取った。
〈粘度(ηb)及びTI値〉
粘度(ηb)及びTI値は、それぞれ以下の方法により求めた。まず、E型粘度計を用いて温度25℃、ずり速度2s-1の条件で2分以上測定した後の安定した粘度(ηa)を取得した。次いで、ずり速度を20s-1に変更した他は上記と同様の条件で測定した粘度(ηb)を取得した。上記で得た粘度の値を用いて、TI値は、TI値=ηa/ηbの式により算出した。
〈正極活物質層中の、炭素材料、リチウム遷移金属酸化物、アルカリ金属化合物の定量〉
正極活物質層中に含まれる、炭素材料の含有量A1、リチウム遷移金属酸化物の含有量A2、及びアルカリ金属化合物の質量比A3は、下記の方法により定量した。
まず、正極前駆体を面積50cm2に切断し、減圧乾燥した。減圧乾燥の条件は、温度:150℃、圧力:3kPa、時間:12時間とした。正極前駆体中の残存水分量を1質量%以下まで低下させた。水分の残存量は、カールフィッシャー法により定量した。
減圧乾燥後に得られた正極前駆体について、質量(M0)を測定した。続いて、正極前駆体の質量の100倍の蒸留水に、正極前駆体を3日間以上浸漬させ、アルカリ金属化合物を水中に溶出させた。浸漬の間、蒸留水が揮発しないよう容器に蓋をした。3日間以上浸漬させた後、蒸留水から正極前駆体を取り出し、上記と同様に減圧乾燥した。得られた正極前駆体の質量(M1)を測定した。続いて、スパチュラ、ブラシ、刷毛等を用いて正極集電体の片面又は両面に塗布された正極活物質層を取り除いた。残った正極集電体の質量(M2)を測定し、下記式でアルカリ金属化合物の質量比A3を算出した。
3=(M0-M1)/(M0-M2)×100
続いて、A1、A2を算出するため、上記アルカリ金属化合物を取り除いて得られた正極活物質層について、以下の条件にてTG曲線を測定した。
・試料パン:白金
・ガス:大気雰囲気下
・昇温速度:0.5℃/分
・温度範囲:25℃~800℃
得られたTG曲線の25℃の質量をM3とし、500℃以上の温度にて質量減少速度がM3×0.01/min以下となった最初の温度における質量をM4として得た。
炭素材料は、酸素含有雰囲気(例えば、大気雰囲気)下では500℃以下の温度で加熱することですべて酸化・燃焼する。一方、リチウム遷移金属酸化物は酸素含有雰囲気下でもリチウム遷移金属酸化物の融点マイナス50℃の温度までは質量減少することがない。
そのため、正極活物質層におけるリチウム遷移金属酸化物の含有量A2は下記式で算出できる。
2=(M4/M3)×{1-(M0-M1)/(M0-M2)}×100
正極活物質層における炭素材料の含有量A1は下記式で算出した。
1={(M3-M4)/M3}×{1-(M0-M1)/(M0-M2)}×100
なお、正極活物質層に複数のアルカリ金属化合物が含まれる場合、及びアルカリ金属化合物の他にアルカリ土類金属化合物が含まれる場合には、上記A3はこれらの総量となる。また、正極活物質層中に導電剤、結着剤、増粘剤等が含まれる場合、炭素材料とこれらの材料との合計量がA1として算出される。
〈正極中のアルカリ金属の同定方法〉
正極中に含まれるアルカリ金属化合物は、下記の方法の組合せに基づいて同定した。
[走査型電子顕微鏡-エネルギー分散型X線分析(SEM-EDX)]
アルカリ金属化合物及び正極活物質は、観察倍率を2000倍にして測定した正極表面のSEM-EDX画像による酸素マッピングにより判別した。SEM-EDX画像の測定条件は、加速電圧を10kV、エミッション電流を10μA、測定画素数を256×256ピクセル、積算回数を50回とした。試料の帯電を防止するために、金をスパッタリングにより表面処理した。SEM-EDX画像の測定方法については、マッピング像において最大輝度値に達する画素がなく、輝度値の平均値が最大輝度値の40%~60%の範囲に入るように輝度及びコントラストを調整した。得られた酸素マッピングに対し、輝度値の平均値を基準に二値化した明部を面積50%以上含む粒子をアルカリ金属化合物と判別した。
[顕微ラマン分光]
アルカリ金属化合物及び正極活物質は、観察倍率を2000倍にして測定した正極表面の炭酸イオンのラマンイメージングにより判別した。測定条件は、励起光を532nm、励起光強度を1%、対物レンズの長作動を50倍、回折格子を1800gr/mm、マッピング方式を点走査(スリット65mm、ビニング5pix)、1mmステップ、1点当たりの露光時間を3秒、積算回数を1回、ノイズフィルター有りとした。測定したラマンスペクトルについて、1071~1104cm-1の範囲で直線のベースラインを設定し、ベースラインより正の値を炭酸イオンのピークとして面積を算出し、頻度を積算した。この時にノイズ成分をガウス型関数で近似した炭酸イオンピーク面積に対する頻度を、炭酸イオンの頻度分布から差し引いた。
[X線光電分光法(XPS)]
正極前駆体の電子状態をXPSにより解析することにより、正極前駆体中に含まれる化合物の結合状態を判別した。測定条件は、X線源を単色化AlKα、X線ビーム径を100μmφ(25W、15kV)、パスエネルギーをナロースキャン:58.70eV、帯電中和を有り、スイープ数をナロースキャン:10回(炭素、酸素)20回(フッ素)30回(リン)40回(アルカリ金属)50回(ケイ素)、エネルギーステップをナロースキャン:0.25eVとした。XPSの測定前に正極の表面をスパッタリングによりクリーニングした。スパッタリングの条件は、加速電圧1.0kV、2mm×2mmの範囲を1分間(SiO2換算で1.25nm/min)として、正極の表面をクリーニングした。得られたXPSスペクトルについて、Li1sの結合エネルギー50~54eVのピークをLiO2又はLi-C結合、55~60eVのピークをLiF、Li2CO3、LixPOyz(式中、x、y、zは1~6の整数)、C1sの結合エネルギー285eVのピークをC-C結合、286eVのピークをC-O結合、288eVのピークをCOO、290~292eVのピークをCO3 2-、C-F結合、O1sの結合エネルギー527~530eVのピークをO2-(Li2O)、531~532eVのピークをCO、CO3、OH、POx(式中、xは1~4の整数)、SiOx(式中、xは1~4の整数)、533eVのピークをC-O、SiOx(式中、xは1~4の整数)、F1sの結合エネルギー685eVのピークをLiF、687eVのピークをC-F結合、LixPOyz(x、y、zは1~6の整数)、PF6 -、P2pの結合エネルギーについて、133eVのピークをPOx(式中、xは1~4の整数)、134~136eVのピークをPFx(xは1~6の整数)、Si2pの結合エネルギー99eVのピークをSi、シリサイド、101~107eVのピークをSixy(式中、x、yは任意の整数)として帰属した。得られたスペクトルについて、ピークが重なる場合には、ローレンツ関数を仮定してピーク分離し、スペクトルを帰属した。上記の手法で得られた電子状態の測定結果及び存在元素比の結果から、存在するアルカリ金属化合物を同定した。
[イオンクロマトグラフィー]
正極の蒸留水洗浄液をイオンクロマトグラフィーで解析することにより、水中に溶出したアニオン種を同定した。カラムとしては、イオン交換型を使用した。検出器としては、電気伝導度検出器を使用し、検出器の前にサプレッサーを設置するサプレッサー方式、を用いた。
サンプルの保持時間は、使用するカラム又は溶離液等の条件が決まれば、イオン種成分毎に一定である。ピークのレスポンスの大きさはイオン種毎に異なるが濃度に比例する。トレーサビリティーが確保された既知濃度の標準液を予め測定しておくことでイオン種成分の定性と定量が可能となる。
[アルカリ金属元素の定量方法 ICP-MS]
正極前駆体について、濃硝酸を用いて酸分解し、得られた溶液を2質量%~3質量%の酸濃度になるように純水で希釈した。酸分解については、適宜加熱、加圧し分解した。得られた希釈液をICP-MSにより解析した。この際に内部標準として既知量のLi元素を加えた。測定対象のアルカリ金属元素が測定上限濃度以上になる場合には、酸濃度を維持したまま希釈液を更に希釈した。得られた測定結果に対し、化学分析用の標準液を用いて予め作成した検量線を基に、各元素を定量した。
[正極前駆体中の炭酸リチウムの定量方法]
正極前駆体を10cm×5cmの大きさに切断して試料1とし、重量をM0[g]とした。試料1を30.0gの蒸留水に含浸させ、25℃環境下3日間経過するまで維持することで、試料1中の炭酸リチウムを蒸留水中に溶出させた。試料1を取り出し、150℃、3kPaの条件にて12時間真空乾燥した。乾燥後の重量をM1[g]とした。その後、スパチュラ、ブラシ、刷毛を用いて正極集電体上の活物質層を取り除き、正極集電体の重量を測定し、M2[g]とした。下記(式1)に従い、正極前駆体中の炭酸リチウムの重量比X[%]と算出した。
(式1)X=100×(M0-M1)/(M0-M2
〈残存水分量の測定〉
正極前駆体中の残存水分量は、以下の方法によって求めた。正極前駆体及び正極集電体を40mm×20mmに切り出し、電子天秤を用いて重量測定を実施し、得られた測定値をそれぞれ正極前駆体の重量W1[g]、正極集電体の重量W2[g]とした。次いで、正極前駆体を、カールフィッシャー滴定装置に供した。200℃で加熱して検出された水分量[g]を滴定で定量した。残存水分量は、下記の(式2)によって算出した。
(式2) 残存水分量={検出された水分量/(W1-W2)}×100 (%)
正極集電体の水分量はほぼゼロと考えられることから、上記残存水分量は、正極活物質層中の水分量であるといえる。
[微短絡検査試験]
非水系アルカリ金属蓄電素子の微短絡の発生は以下の手法により判断した。
先ず、1Cの電流値で2.5Vまで定電流放電し、その後1Cの電流値で電圧4.0Vまで定電流充電した後に続けて4.0V定電圧充電を1時間継続する手法により、電圧を4.0Vに調整した。続いて25℃に設定した恒温槽内で、電極体を10kPaの圧力で加圧した状態で1週間静置し、電圧が3.8V以下に低下したものを微短絡と判断した。
《非水系リチウム蓄電素子の製造》
以下、非水系アルカリ金属蓄電素子の一態様である、非水系リチウム蓄電素子を作製した。
<実施例1>
〈正極前駆体の製造〉
[活性炭1の調製]
破砕されたヤシ殻炭化物を小型炭化炉内へ入れ、窒素雰囲気下、500℃で3時間炭化処理して炭化物を得た。得られた炭化物を賦活炉内へ入れ、予熱炉で加温した水蒸気を1kg/hで賦活炉内へ導入し、900℃まで8時間かけて昇温して賦活した。賦活後の炭化物を取り出し、窒素雰囲気下で冷却して、賦活された活性炭を得た。得られた賦活された活性炭を10時間通水洗浄した後に水切りし、115℃に保持された電気乾燥機内で10時間乾燥した後に、ボールミルで1時間粉砕を行うことにより、活性炭1を得た。
島津製作所社製レーザー回折式粒度分布測定装置(SALD-2000J)を用いて、活性炭1の平均粒子径を測定した結果、5.5μmであった。ユアサアイオニクス社製細孔分布測定装置(AUTOSORB-1 AS-1-MP)を用いて、活性炭1の細孔分布を測定した。その結果、BET比表面積が2360m2/g、メソ孔量(V1)が0.52cm3/g、マイクロ孔量(V2)が0.88cm3/g、V1/V2=0.59であった。
[正極前駆体1の製造]
活性炭1を正極活物質として用いて正極前駆体1を製造した。
活性炭1を58.0質量部、炭酸リチウムを32.0質量部、アセチレンブラックを4.0質量部、アクリルラテックスを3.5質量部、CMC(カルボキシメチルセルロース)を1.5質量部、PVP(ポリビニルピロリドン)を1.0質量部、並びに固形分の質量割合が43.0%になるように蒸留水を混合し、混合物を得た。得られた混合物をPRIMIX社製の薄膜旋回型高速ミキサー「フィルミックス(登録商標)」を用いて、周速10m/sの条件で2分間分散して正極塗工液1を得た。
得られた正極塗工液1の粘度(ηb)及びTI値を東機産業社のE型粘度計TVE-35Hを用いて測定した。その結果、粘度(ηb)は2,030mPa・s、TI値は4.2であった。得られた正極塗工液1の分散度をヨシミツ精機社製の粒ゲージを用いて測定した。その結果、粒度は22μmであった。
東レエンジニアリング社製の両面ダイコーターを用いて、厚み15μmのアルミニウム箔の両面に正極塗工液1を塗工速度1m/sの条件で塗工し、一次乾燥して正極前駆体1を得た。得られた正極前駆体1を、ロールプレス機を用いて圧力6kN/cm、プレス部の表面温度25℃の条件でプレスした。正極前駆体1の全厚を、小野計器社製膜厚計Linear Gauge Sensor GS-551を用いて、正極前駆体1の任意の10か所で測定した。得られた測定結果より、正極前駆体1の正極活物質層の片面あたり膜厚は61μm、片面あたり目付は48g/m2であった。
[正極前駆体1の残存水分量]
得られた正極前駆体の水分量は、5000ppmであった。
[正極前駆体1の包装]
正極前駆体1500mリールを温度25℃、露点-40℃以下のドライエアー環境下でアルミラミネート袋(水蒸気透過度0.1g/m2以下・24hr)に入れ、ヒートシーラーで密閉した。
[正極前駆体1の保管]
包装した正極前駆体を温度25℃湿度50%の環境で、30日間保管した。
[保管後正極前駆体の評価]
保管後の正極前駆体を温度25℃、露点-40℃以下のドライエアー環境下で開封し、残存水分測定、剥離強度測定を実施した。水分量は、5100ppm、剥離強度は、0.98N/cm、であった。また、腐食の有無を確認するため、キーエンス製デジタルマイクロスコープで正極前駆体の未塗工部と塗工部の境目を観察した結果、アルミ箔の腐食は認められなかった。
[保管後の正極前駆体1の炭酸リチウムの定量]
保管後の正極前駆体を10cm×5cmの大きさに切断して、重量M0を測定したところ0.3076gであった。これを31.0gの蒸留水に含浸させ、25℃環境下3日間経過するまで維持することで、炭酸リチウムを蒸留水中に溶出させた。試料を取り出し、150℃、3kPaの条件にて12時間真空乾燥した。この時の重量M1は0.2411gであった。その後、スパチュラ、ブラシ、刷毛を用いて正極集電体上の活物質層を取り除き、正極集電体の重量M2を測定したところ0.0990gであった。上記(式2)に従いX=32質量%と算出した。
〈負極の製造〉
[負極1の製造]
平均粒子径4.5μmの人造黒鉛を83質量部、複合炭素材料を4質量部、アセチレンブラックを9質量部、粉末状態でプラネタリーミキサーにてドライブレンドし、そこに、スチレン-ブタジエン共重合体を2質量部、CMC(カルボキシメチルセルロース)水溶液を添加し、固形分を徐々に下げながら分散させた。最終的にはCMCが2質量部になるように添加し、固形分の質量割合が39%になるように水を混合溶液へ添加し、負極塗工液を得た。
得られた負極塗工液の粘度(ηb)及びTI値を東機産業社のE型粘度計TVE-35Hを用いて測定した。その結果、粘度(ηb)は3,221mPa・s、TI値は2.1であった。
東レエンジニアリング社製のダイコーターを用いて厚み10μmの電解銅箔の両面に負極塗工液を塗工速度1m/sの条件で塗工し、乾燥温度60℃で乾燥して負極1を得た。ロールプレス機を用いて圧力5kN/cm、プレス部の表面温度25℃の条件でプレスした。プレスされた負極1の全厚を、小野計器社製膜厚計Linear Gauge Sensor GS-551を用いて、負極1の任意の10か所で測定した。得られた測定結果より、負極1の負極活物質層の膜厚は片面当たり30μmであった。
〈電解液の調製〉
有機溶媒として、エチレンカーボネート(EC):ジメチルカーボネート(DMC):メチルエチルカーボネート(EMC)=34:44:22(体積比)の混合溶媒を用い、全非水系電解液に対してLiN(SO2F)2及びLiPF6の濃度比が25:75(モル比)であり、かつLiN(SO2F)2及びLiPF6の濃度の和が1.2mol/Lとなるようにそれぞれの電解質塩を溶解した。
ここで調製した非水系電解液におけるLiN(SO2F)2及びLiPF6の濃度は、それぞれ、0.3mol/L及び0.9mol/Lであった。
[非水系リチウム蓄電素子の製造]
[組立工程]
上記保管後の正極前駆体を、正極活物質層が10.0cm×10.0cm(100cm2)の大きさになるよう、正極前駆体(両面)を20枚切り出した。続いて負極1を、負極活物質層が10.1cm×10.1cm(約102cm2)の大きさに21枚切り出し、10.3cm×10.3cm(約106cm2)のポリエチレン製のセパレータ(旭化成製、厚み10μm)40枚を用意した。これらを、最外層が負極1になるように、正極前駆体、セパレータ、負極の順にセパレータを挟んで正極活物質層と負極活物質層が対向するように積層し、電極積層体を得た。得られた電極積層体に正極端子及び負極端子を超音波溶接し、アルミラミネート包材で形成された容器に入れ、電極端子部を含む3辺をヒートシールによりシールした。
[加圧工程]
アルミラミネート包材の外側から、一対の金属製の板(高さ150mm×幅150mm×厚み5mm)で挟み、金属製の板の四隅をねじ止めすることで、圧力を加えた。面圧分布測定システムI-SCAN(ニッタ株式会社製)及びI-SCAN100センサー(測定面の寸法:112mm×112mm)を用い、圧力を測定したところ、拘束圧力は0.08kgf/cm2であった。
[注液・含浸・封止工程]
温度25℃、露点-40℃以下のドライエアー環境下にて、アルミラミネート包材の中に収納された電極積層体を減圧チャンバーの中に入れ、常圧から-100kPaまで減圧した後、液温25℃の上記非水系電解液を約80g注入した。その後、常圧に戻して、60分間静置した。続いて、非水系リチウム蓄電素子を減圧シール機に入れ、-95kPaに減圧した状態で、180℃で10秒間、0.1MPaの圧力でシールすることによりアルミラミネート包材を封止した。
[再加圧工程]
注液後の非水系リチウム蓄電素子を拘束した金属製の板のネジをさらに締め付けることで、圧力を1.2kgf/cm2にした。
[リチウムドープ工程]
得られた非水系リチウム型蓄電素子に対して、アスカ電子株式会社製の充放電試験装置(ACD-10APS(01))を用いて、45℃環境下、電流値6Aで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を1時間継続する手法により初期充電を行い、負極にリチウムドープを行った。リチウムドープでかかったトータルの時間は、2時間であった。
[充放電サイクル工程]
加圧力を1.2kgf/cm2のまま、ドープ後の非水系リチウム蓄電素子を、50℃環境下に置いた。
(1)10.0Aで電圧4.3Vに到達するまで定電流充電を行った後、4.3V定電圧充電を5分間行った。
(2)10.0Aで電圧2.0Vに到達するまで定電流放電を行った後、2.0V定電圧放電を5分間行った。
(1)、(2)を1サイクルとして、合計5サイクルを実施した。
[高温エージング工程]
(1)高電圧保管工程;加圧力を1.2kgf/cm2のまま、充放電サイクル工程後の非水系リチウム蓄電素子を、25℃環境下、10.0Aで電圧4.2Vに到達するまで定電流放電を行った後、4.2V定電流充電を30分間行うことにより電圧を4.2Vに調整した。その後、非水系リチウム型蓄電素子を60℃の恒温槽に10時間保管した。
(2)低電圧保管工程;加圧力を1.2kgf/cm2のまま、高電圧保管工程後の非水系リチウム蓄電素子を、25℃環境下、10.0Aで電圧2.0Vに到達するまで定電流放電を行った後、2.0V定電流充電を30分間行うことにより電圧を2.0Vに調整した。その後、非水系リチウム型蓄電素子を60℃の恒温槽に10時間保管した。
[ガス抜き・封止工程]
エージング後の非水系リチウム蓄電素子を、温度25℃、露点-40℃のドライエアー環境下でアルミラミネート包材の一部を開封した。次いで、減圧チャンバーの中に非水系リチウム型蓄電素子を入れ、KNF社製のダイヤフラムポンプ(N816.3KT.45.18)を用いて大気圧から-80kPaまで3分間かけて減圧した後、3分間かけて大気圧に戻す工程を合計3回繰り返した。その後、減圧シール機に非水系リチウム型蓄電素子を入れ、-90kPaに減圧した後、200℃で10秒間、0.1MPaの圧力でシールすることによりアルミラミネート包材を封止した。
以上の工程により、非水系リチウム蓄電素子を製造した。
[微短絡検査工程]
非水系リチウム蓄電素子を100個作製し、上述の微短絡検査試験を行ったところ、実施例1において微短絡数は1個であった。よって、実施例1の微短絡率は1%であった。
<実施例2>
保管日数を90日とした以外は実施例1と同様に評価を行った。
<実施例3>
保管日数を180日とした以外は実施例1と同様に評価を行った。
<実施例4>
包装材をポリエチレン袋(水蒸気透過度15.2g/m2・24hr)とした以外は実施例1と同様に評価を行った。
<実施例5>
保管日数を90日とした以外は実施例4と同様に評価を行った。
<実施例6>
保管日数を180日とした以外は実施例5と同様に評価を行った。
<実施例7>
保管湿度を90%とした以外は実施例4と同様に評価を行った。
<実施例8>
保管温度を60℃とした以外は実施例7と同様に評価を行った。
<実施例9>
包装袋内に乾燥剤(シリカゲル20g)を入れる以外は、実施例4と同様に評価を行った。
<実施例10>
保管日数を90日とした以外は実施例9と同様に評価を行った。
<実施例11>
包装した環境を温度25℃湿度50%とした以外は実施例1と同様に評価を行った。
<実施例12>
保管日数を180日とした以外は実施例11と同様に評価を行った。
<実施例13>
保管温度60℃、保管湿度90%とした以外は実施例12と同様に評価を行った。
<実施例14>
包装材をポリエチレン袋(水蒸気透過度15.2g/m2・24hr)とした以外は実施例11と同様に評価を行った。
<実施例15>
保管日数を180日とした以外は実施例14と同様に評価を行った。
<実施例16>
活性炭化合物比率を80%、炭酸リチウム比率を10%とした以外は実施例1と同様に評価を行った。
<実施例17>
活性炭化合物比率を40%、炭酸リチウム比率を50%とした以外は実施例1と同様に評価を行った。
<実施例18(参考例)
正極前駆体1を170℃、24hで真空加熱乾燥してから保管を開始した以外は実施例1と同様に評価を行った。
<実施例19(参考例)
目付を20g/m2にした以外は実施例1と同様に評価を行った。
<実施例20>
目付を200g/m2にした以外は実施例1と同様に評価を行った。
<実施例21>
リール長を1500mにした以外は実施例1と同様に評価を行った。
<比較例1>
包装材をポリエチレン袋(水蒸気透過度15.2g/m2・24hr)とした以外は実施例13と同様に評価を行った。
<比較例2>
活性炭化合物比率を85%、炭酸リチウム比率を5%とした以外は実施例1と同様に評価を行った。
<比較例3>
活性炭化合物比率を30%、炭酸リチウム比率を60%とした以外は実施例1と同様に評価を行った。
<比較例4>
包装袋内に乾燥剤(シリカゲル20g)を入れる以外は、実施例18と同様に評価を行った。
<比較例5>
目付を15g/m2にした以外は実施例1と同様に評価を行った。
<比較例6>
目付を250g/m2にした以外は実施例1と同様に評価を行った。
<比較例7>
リール長を2500mにした以外は実施例1と同様に評価を行った。
Figure 0007343304000009
以上の実施例により、炭酸リチウムを含む正極前駆体において、包装袋及び保管環境を管理して正極前駆体(特に正極活物質層)の残存水分量を制御することによって、正極集電体の腐食が抑制され、正極活物質層と正極集電体との剥離強度の低下が抑制されること、及び、このような正極前駆体を備える非水系アルカリ金属蓄電素子において微短絡の発生を回避できることが検証された。
本発明に係る正極前駆体及びこれを用いた非水系アルカリ金属蓄電素子は、微短絡率を改善し、高温高負荷充放電サイクル特性に優れるため、例えば、自動車の内燃機関、燃料電池、モーター等、蓄電素子を備えるハイブリット駆動システム、更には瞬間電力ピークのアシスト用途等で好適に利用できる。

Claims (2)

  1. 正極集電体と前記正極集電体上に配置された正極活物質層とを有する正極前駆体の保管方法であって、
    前記正極活物質層は、活性炭を含む正極活物質と、アルカリ金属化合物とを含み、
    保管前の前記正極活物質層中に占める前記アルカリ金属化合物の質量割合が10質量%以上50質量%以下、前記活性炭の質量割合が40質量%以上80質量%以下であり、
    保管前の前記正極活物質層の正極集電体片面当たりの目付が20g/m 2 以上200g/m 2 以下であり、
    保管前の前記正極前駆体のリール長さが1500m以下であり、
    保管前の前記正極活物質層の水分量が3000質量ppm以上18000質量ppm以下であり、
    保管後の前記正極活物質層の水分量が3200質量ppm以上2質量%以下であ
    前記保管は、水蒸気透過度0.1g/m 2 ・24hr以上、15.2g/m 2 ・24hr以下の包材に封入された正極前駆体を、温度25℃以上60℃以下、湿度50%以上90%以下にて、30日以上180日以下保管することによって行う、正極前駆体の保管方法
  2. 保管前の前記正極活物質層の正極集電体片面当たりの厚みが10μm以上200μm以下である、請求項1に記載の正極前駆体の保管方法
JP2019098544A 2019-05-27 2019-05-27 正極前駆体 Active JP7343304B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019098544A JP7343304B2 (ja) 2019-05-27 2019-05-27 正極前駆体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019098544A JP7343304B2 (ja) 2019-05-27 2019-05-27 正極前駆体

Publications (2)

Publication Number Publication Date
JP2020194845A JP2020194845A (ja) 2020-12-03
JP7343304B2 true JP7343304B2 (ja) 2023-09-12

Family

ID=73547659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019098544A Active JP7343304B2 (ja) 2019-05-27 2019-05-27 正極前駆体

Country Status (1)

Country Link
JP (1) JP7343304B2 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016158245A1 (ja) 2015-03-31 2016-10-06 富士フイルム株式会社 アルミニウム板および蓄電デバイス用集電体
JP2018056410A (ja) 2016-09-30 2018-04-05 旭化成株式会社 非水系リチウム蓄電素子

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018098051A (ja) * 2016-12-14 2018-06-21 住友金属鉱山株式会社 リチウムイオン二次電池用正極活物質の評価方法
US20200176816A1 (en) * 2017-08-04 2020-06-04 Sekisui Chemical Co., Ltd. Carbon material, positive electrode for all-solid-state batteries, negative electrode for all-solid-state batteries, and all-solid-state battery
KR20220132024A (ko) * 2017-09-14 2022-09-29 후지필름 가부시키가이샤 고체 전해질 조성물, 그 제조 방법, 보존 방법과 키트, 고체 전해질 함유 시트, 그 보존 방법과 키트, 및 전고체 이차 전지

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016158245A1 (ja) 2015-03-31 2016-10-06 富士フイルム株式会社 アルミニウム板および蓄電デバイス用集電体
JP2018056410A (ja) 2016-09-30 2018-04-05 旭化成株式会社 非水系リチウム蓄電素子

Also Published As

Publication number Publication date
JP2020194845A (ja) 2020-12-03

Similar Documents

Publication Publication Date Title
JP6227837B1 (ja) 非水系リチウム型蓄電素子
KR101984452B1 (ko) 비수계 리튬 축전 소자
KR101935214B1 (ko) 비수계 리튬형 축전 소자
KR102576896B1 (ko) 비수계 알칼리 금속 축전 소자의 제조 방법
JP6262402B2 (ja) 非水系リチウム蓄電素子
JP6786335B2 (ja) 非水系リチウム蓄電素子
JP6997208B2 (ja) 非水系リチウム型蓄電素子
JP2020167350A (ja) 非水系アルカリ金属蓄電素子の製造方法
JP6815168B2 (ja) リチウムイオンキャパシタ用の負極
JP6669915B1 (ja) 非水系アルカリ金属蓄電素子の製造方法
JP7343304B2 (ja) 正極前駆体
JP2018056428A (ja) 非水系リチウム型蓄電素子用の負極
JP2020167353A (ja) 非水系アルカリ金属蓄電素子の製造方法
JP6698493B2 (ja) 非水系リチウム蓄電素子
JP6815148B2 (ja) 非水系リチウム型蓄電素子
JP6829572B2 (ja) 捲回式非水系リチウム型蓄電素子
JP6669914B1 (ja) 非水系アルカリ金属蓄電素子の製造方法
JP6675508B1 (ja) 非水系アルカリ金属蓄電素子の正極前駆体の製造方法
JP6675507B1 (ja) 非水系アルカリ金属蓄電素子の正極前駆体の製造方法
JP2018056409A (ja) 非水系リチウム型蓄電素子
JP2018056429A (ja) 非水系リチウム型蓄電素子
JP2018056404A (ja) 非水系リチウム型蓄電素子
JP2018056413A (ja) 非水系リチウム型蓄電素子
JP6815151B2 (ja) 非水系リチウム型蓄電素子
JP2018056434A (ja) 非水系リチウム型蓄電素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230831

R150 Certificate of patent or registration of utility model

Ref document number: 7343304

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150