JP7334752B2 - 電圧変換器 - Google Patents

電圧変換器 Download PDF

Info

Publication number
JP7334752B2
JP7334752B2 JP2021030843A JP2021030843A JP7334752B2 JP 7334752 B2 JP7334752 B2 JP 7334752B2 JP 2021030843 A JP2021030843 A JP 2021030843A JP 2021030843 A JP2021030843 A JP 2021030843A JP 7334752 B2 JP7334752 B2 JP 7334752B2
Authority
JP
Japan
Prior art keywords
current
voltage
inductor
capacitor
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021030843A
Other languages
English (en)
Other versions
JP2022131739A (ja
Inventor
翔平 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2021030843A priority Critical patent/JP7334752B2/ja
Priority to CN202111417162.1A priority patent/CN115051555A/zh
Priority to US17/573,687 priority patent/US11705809B2/en
Publication of JP2022131739A publication Critical patent/JP2022131739A/ja
Application granted granted Critical
Publication of JP7334752B2 publication Critical patent/JP7334752B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0043Converters switched with a phase shift, i.e. interleaved
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0095Hybrid converter topologies, e.g. NPC mixed with flying capacitor, thyristor converter mixed with MMC or charge pump mixed with buck
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • H02M3/015Resonant DC/DC converters with means for adaptation of resonance frequency, e.g. by modification of capacitance or inductance of resonance circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • H02M3/1586Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel switched with a phase shift, i.e. interleaved

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Description

本発明は、容量性電圧変換回路を備えた電圧変換器に関する。
スイッチトキャパシタ回路やチャージポンプ回路と称される容量性電圧変換回路を備えた電圧変換器は、トランスなどの誘導性素子が不要となることから、小型化が比較的容易である。そのため、小型・小電力用途の電源装置に適している。
容量性電圧変換回路の構成には様々なものがある。代表的なものとして、ディクソン型、シリーズパラレル型が挙げられる。他にもラダー型やフィボナッチ型など様々なものが存在する。複数のキャパシタ及び複数のスイッチにより構成されるキャパシタネットワーク回路は、少なくとも二つの接続状態を往来するよう制御されることで、入力電圧が降圧又は昇圧されて出力される。
特許文献1には、容量性電圧変換器を備えたDC-ACコンバータ(インバータ)が記載されている。このDC-ACコンバータは、インダクタとキャパシタとの共振を利用して、入力された直流電圧を正弦波状の交流電圧に変換して出力する。
特開平8-116679号公報
動作周波数に依存する損失は、大きく分けてキャパシタの電荷の移動に伴う損失と、各スイッチを駆動するために発生する損失である。前者の損失は、負荷の大きさと周波数とに依存した損失であり、負荷の大きさに比例して増加する。後者の損失は、負荷電流の依存性がなく、周波数のみに比例する損失である。そのため、無負荷又は軽負荷において、キャパシタ間の電荷の移動に伴う損失より、スイッチの駆動で発生する損失が大きい条件では、スイッチング周波数を低下させることで電圧変換効率の改善が期待できる。
また、一般的なチャージポンプはインダクタを備えず、キャパシタとスイッチもしくはダイオードで構成される。そのため、回路に流れる電流は、キャパシタ、配線の寄生抵抗及びスイッチの抵抗によって決定されるため、出力電流は、キャパシタの充電電流又は放電電流のような急峻でピーク値の高い電流になる。
このようなピーク値の非常に高い電流が流れる場合、その電流検出が困難である。また、電流のピーク値や充放電時間のばらつきを抑えることが困難である。そのため、この電流を検出してチャージポンプのスイッチング制御を行うことは非常に困難である。
そこで本発明の目的は、電流のピーク値を抑えることで電流検出を容易にし、また、電流のピーク値や充放電時間のばらつきを抑え、電流の検出結果に基づいてチャージポンプのスイッチング制御を行えるようにした電圧変換器を提供することにある。
本発明の電圧変換器は、入力電圧を入力し、前記入力電圧を出力電圧に変換して出力する容量性電圧変換回路部と、出力キャパシタと、前記容量性電圧変換回路部と前記出力キャパシタとの間に直列に接続されたインダクタと、電流検出部と、制御部と、を備える。そして、前記容量性電圧変換回路部は、複数のスイッチと、少なくとも一つのフライングキャパシタと、出力部に設けられた中間キャパシタと、を含み、前記電流検出部は、前記インダクタに流れる電流を検出し、前記制御部は、前記インダクタに流れる電流としきい値電流との比較に応じ、前記スイッチが少なくとも2つの状態を往来するように前記スイッチを制御する。
本発明によれば、電流のピーク値を抑えることで電流検出が容易になり、また、電流のピーク値や充放電時間のばらつきが抑えられ、電流の検出結果に基づいてチャージポンプのスイッチング制御を行える。
図1は、第1の実施形態に係る電圧変換器1のブロック図である。 図2は電圧変換器1の回路図の一例である。 図3(A)は図2に示す回路が第1接続状態Φ1のときの回路図である。図3(B)は、図3(A)に示す回路において、電源のインピーダンスが高く、C10>>C11ではない場合の回路図である。図3(C)は、図3(A)に示す回路において、電源のインピーダンスが十分に低い場合の回路図である。 図4は、図3(B)または図3(C)に示す回路をさらに合成した回路図である。 図5は、電圧変換器1における、共振周波数Fhとスイッチング周期Tとスイッチング電流Isとの関係を示す波形図である。 図6は、電圧変換器における、共振周波数とスイッチング周期とスイッチング電流との関係を示す波形図である。 図7(A)、図7(B)、図7(C)、図7(D)、図7(E)は、電圧変換器1における、第1接続状態Φ1の期間と第2接続状態Φ2の期間との関係の例を示すタイムチャートである。 図8は、電圧変換器1におけるインダクタLxの電流ILの波形図と、比較対象の、インダクタLxが無い場合での総出力電流の波形図である。 図9は、セラミックコンデンサにおけるDCバイアスと静電容量率との関係を示す図である。 図10(A)、図10(B)、図10(C)、図10(D)は、2通りのスイッチング周波数での、インダクタLxに流れる電流ILの波形図である。 図11(A)、図11(B)、図11(C)、図11(D)は、2通りのスイッチング周波数での、インダクタLxに流れる電流ILの波形図である。 図12は、インダクタLxに流れる電流ILが0.1Aであるときの、スイッチング周波数Fsと共振周波数Fhとの関係に対する損失の大小を示す図である。 図13は、インダクタLxに流れる電流ILが1Aであるときの、スイッチング周波数Fsと共振周波数Fhとの関係に対する損失の大小を示す図である。 図14は、インダクタLxに流れる電流ILが5Aであるときの、スイッチング周波数Fsと共振周波数Fhとの関係に対する損失の大小を示す図である。 図15は、インダクタLxに流れる電流ILが10Aであるときの、スイッチング周波数Fsと共振周波数Fhとの関係に対する損失の大小を示す図である。 図16は第2の実施形態に係る電圧変換器2の回路図である。 図17は第3の実施形態に係る電圧変換器3のブロック図である。 図18は第4の実施形態に係る電圧変換器のブロック図である。 図19は第4の実施形態に係る別の電圧変換器のブロック図である。 図20は第5の実施形態に係る電圧変換器5のブロック図である。
以降、図を参照して幾つかの具体的な例を挙げて、本発明を実施するための複数の形態を示す。各図中には同一箇所に同一符号を付している。要点の説明又は理解の容易性を考慮して、実施形態を説明の便宜上、複数の実施形態に分けて示すが、異なる実施形態で示した構成の部分的な置換又は組み合わせは可能である。第2の実施形態以降では第1の実施形態と共通の事柄についての記述を省略し、異なる点についてのみ説明する。特に、同様の構成による同様の作用効果については実施形態毎には逐次言及しない。
《第1の実施形態》
図1は、第1の実施形態に係る電圧変換器1のブロック図である。電圧変換器1は、入力電圧Vinを入力し、入力電圧Vinを出力電圧Voutに変換して出力する容量性電圧変換回路部10と、出力キャパシタCoutと、容量性電圧変換回路部10と出力キャパシタCoutとの間に直列に接続されたインダクタLxと、容量性電圧変換回路部10の出力部に設けられた中間キャパシタCxと、電流検出部21と、電圧検出部13と、制御部17と、を備える。
電流検出部21は抵抗素子Rxと差動増幅回路14とで構成されている。電流検出部21はインダクタLxに流れる電流を検出する。出力キャパシタCoutは本発明における「出力キャパシタ」に相当する。また、インダクタLxは本発明における「インダクタ」に相当する。
電圧変換器1は、入力端子101に接続される入力電源の入力電圧Vinを出力電圧Voutに降圧して負荷RLに供給する。電圧変換器1には入力電流Iinが入力され、負荷RLへ出力電流Ioutが出力される。
電圧検出部13は差動増幅回路14の出力電圧を増幅する。制御部17は電圧検出部13の出力電圧としきい値とを比較して、しきい値を超えるとき、容量性電圧変換回路部10内のスイッチの状態を切り替える。つまり、制御部17は、インダクタLxに流れる電流としきい値電流との比較に応じ、スイッチが少なくとも2つの状態を往来するようにスイッチを制御する。
図2は電圧変換器1の回路図の一例である。容量性電圧変換回路部10は、並列接続された第1容量性電圧変換回路11と、第2容量性電圧変換回路12とを備える。第1容量性電圧変換回路11と第2容量性電圧変換回路12の構成は同じである。第1容量性電圧変換回路11には、複数のフライングキャパシタC10,C11,C12、中間キャパシタCx及び複数のスイッチS111,S112,S113,S114,S115,S116,S117が配されている。第2容量性電圧変換回路12には、複数のフライングキャパシタC10,C11,C12、中間キャパシタCx及び複数のスイッチS121,S122,S123,S124,S125,S126,S127が配されている。
容量性電圧変換回路部10は、集積回路やチップ部品などのデバイスが回路基板などに実装されてなる。インダクタLxと出力キャパシタCoutは、例えばそれぞれ回路基板に実装された個別のチップ部品である。フライングキャパシタC10,C11,C12、中間キャパシタCx及び出力キャパシタCoutは、例えば回路基板に実装されたセラミックコンデンサである。この構成では、大容量のセラミックコンデンサによって実装面積を抑えることが容易となる。
制御部17は、第1容量性電圧変換回路11及び第2容量性電圧変換回路12をインターリーブ制御する。図2に示す例で、スイッチS111,S114,S115,S116,S122,S123,S127がON状態であり、且つ、スイッチS112,S113,S117,S121,S124,S125,S126がOFF状態のときを第1接続状態Φ1とする。また、スイッチS111,S114,S115,S116,S122,S123,S127がOFF状態であり、且つ、スイッチS112,S113,S117,S121,S124,S125,S126がON状態のときを第2接続状態Φ2とする。
また、スイッチ全てをOFF状態とし、貫通電流などの不要電流による好ましくない電力消費を回避するための第3の接続状態を設け、この第3状態を、第1接続状態から第2接続状態へ遷移する際の、または第2接続状態から第1接続状態へ遷移する際の、中間状態として利用してもよい。本実施形態では説明の簡略化のために第3の接続状態は省略して説明する。
図3(A)は図2に示す回路が第1接続状態Φ1のときの回路図である。
図3(B)は、図3(A)に示す回路において、電源のインピーダンスが高く(無視できない或る値を有していて)、キャパシタC10,C11のキャパシタンスをそれぞれC10,C11で表すとき、C10>>C11ではない場合の回路図である。
図3(C)は、図3(A)に示す回路において、電源のインピーダンスが十分に低い場合の回路図である。また、図3(C)は、キャパシタC10のキャパシタンスがキャパシタC11のキャパシタンスより充分に大きい場合(C10>>C11である場合)の回路図でもある。つまり、電源のインピーダンスが無視できない或る値であっても、C10>>C11であれば、キャパシタC10が電源のインピーダンスを実質的に見えなくするので、この状態は、等価的に図3(C)に示す回路で表される。
なお、図3(B)、図3(C)においては、各スイッチのオン抵抗RONは無視できるほど小さい値であるものとしている。
図4は、図3(B)または図3(C)に示す回路をさらに合成した回路図である。この図4に表すように、図1に示した容量性電圧変換回路部10とLC回路20とによって、インダクタLxの入力端に合成キャパシタCINが配され、インダクタLxの出力端に主にキャパシタCoutによるキャパシタCOUTが配されたLC共振回路が構成される。このLC共振回路に共振電流Ihが流れる。
電源のインピーダンスが高く、且つキャパシタC10のキャパシタンスが小さい(C10>>C11でない)場合、すなわち等価的に図3(B)で表せる場合の合成キャパシタCINのキャパシタンスCinは次式で表される。
Figure 0007334752000001
また、電源のインピーダンスが十分に低い理想的な電源である場合、または、電源のインピーダンスが無視できない或る値であっても、C10>>C11である場合、すなわち等価回路が図3(C)で表せる場合の合成キャパシタCINのキャパシタンスCinは次式で表される。
Figure 0007334752000002
また、図4に示す共振回路の共振周波数Fhは次式で求められる。
Figure 0007334752000003
インダクタLxに流れる電流としきい値電流との比較に応じ、スイッチが少なくとも2つの状態を往来することで生じるスイッチのスイッチング周波数は、最低周波数と最高周波数との範囲内に収まるように、電流検出部21による検出値又はしきい値電流が設定されている。したがって、制御部17は、最高周波数と最低周波数とを含む条件により設定される周波数でスイッチを制御する。
最低周波数は、少なくとも一つのフライングキャパシタと、中間キャパシタCxと、インダクタLxと、出力キャパシタCoutとにより決定される共振周波数より低い周波数に設定されている。
最高周波数は、少なくとも一つのフライングキャパシタと、中間キャパシタCxと、インダクタLxと、出力キャパシタCoutとにより決定される共振周波数より高い周波数に設定されている。
上記最低周波数及び最高周波数の規定は、インダクタLxに流れる電流の検出値に対する制御又はしきい値電流の制御によって行う。例えば、インダクタLxに流れる電流がしきい値電流を超えるまでに要する時間は、しきい値電流を下げるほど早まるので、しきい値電流を下げるほど、スイッチング周波数が高まる。逆に、しきい値電流を上げるほど、スイッチング周波数が低下する。このように、しきい値電流の設定によってスイッチング周波数が変化し、しきい値電流の制御によって、スイッチング周波数の最低周波数及び最高周波数を規定することができる。同様に、インダクタLxに流れる電流がしきい値電流を超えるまでに要する時間は、インダクタLxに流れる電流の検出値に加算するDCバイアス値を高めるほど早まるので、DCバイアス値を高めるほど、スイッチング周波数が高まる。逆に、インダクタLxに流れる電流の検出値に加算するDCバイアス値を下げるほど、スイッチング周波数は低下する。
本実施形態では、しきい値電流は0未満に設定している。このことにより、スイッチング周波数は共振周波数より低くなる。その結果、無負荷時又は軽負荷時においては、スイッチの駆動で発生する損失が軽減され、電圧変換効率が高まる。
なお、理解の容易性を考慮して、第1容量性電圧変換回路11と第2容量性電圧変換回路12とを独立した回路で表したが、並列接続されるキャパシタ(二重に接続されるキャパシタ)は単一のキャパシタで構成することができる。例えば、キャパシタC10,C10やキャパシタCx,Cxはそれぞれ単一化できる。また、スイッチについても同様に、二重関係にあるスイッチは共用化できる。これらのことで部品点数を削減できる。
図5は、電圧変換器1における、共振周波数Fhとスイッチング周期Tとスイッチング電流Isとの関係を示す波形図である。ここでは、第1接続状態Φ1の期間T1と、第2接続状態Φ2の期間T2の合計値をスイッチング周期Tとしている。
スイッチング周波数Fsはスイッチング周期Tの逆数である。全てのスイッチをオフさせるブランクタイムなどを考慮しない場合、T=T1+T2となり、Fs=1/Tが成立する。説明を簡略化するために、この条件にて説明を行う。図5中のスイッチング電流Isの波形は、スイッチS111を流れる電流波形を模擬している。ここでは出力に向かう方向を正としている。
容量性電圧変換回路部10から容量性または抵抗性の負荷RLに電力伝送を行う場合、共振周波数Fhはスイッチング周波数Fsよりも非常に高くなり(Fh>>Fs)、図5に示すように、非常に大きなピーク電流が発生するため、損失が大きくなる。一方、出力端子201側にインダクタLxを接続すると、誘導性の性質が現れて、共振周波数Fhはスイッチング周波数Fsよりもやや高い状態(Fh>Fs)となり、図5に示すように、スイッチング電流Isが負に振れる期間が生じる。また、インダクタLxのインダクタンスを大きくすると、共振周波数Fhはスイッチング周波数Fsよりも低くなり(Fh<Fs)、図5に示すように、スイッチング電流Isに負電流期間が生じず、非常に小さな値で推移する。
平均出力電流が大きくて、電流が流れることによる導体損失が、スイッチング損失+スイッチの駆動損失以上になる場合、すなわち重負荷の場合、容量性電圧変換回路部10の出力電流は、各スイッチを流れる合計電流であり、当該合計電流の平均値により求まる。図5に示した3条件に関して、電圧変換器1の総出力電流がIoutであるとき、スイッチS111の電流を示している各波形の平均電流値はIoutの3分の1となる。そのため、図5における電流波形が負に振れた場合、つまり逆方向電流が流れた場合は、第1接続状態Φ1の期間T1内において、同等の正方向電流を補う必要が生じる。そのため、スイッチを流れる電流の絶対値が増加し、スイッチの熱損失も増加することになり、結果的に効率が低下してしまう。
したがって、スイッチング周波数Fsを共振周波数Fhより高めることで重負荷の損失を軽減できる。
一方、導体損失が、スイッチング損失+スイッチの駆動損失以下になる場合、すなわち無負荷又は軽負荷の場合、スイッチング損失やスイッチの駆動損失が支配的であるため、スイッチング周波数Fsが共振周波数Fhを下回る状態とすることで、効率の改善が期待できる。
LC共振現象による電流は、本実施形態の回路構成によれば、インダクタを流れる電流を観測することで効果的に確認することができる。その波形の例を図6に示す。図6において、各波形の平均電流値は、電圧変換器の出力電流に等しい。一方、共振周波数Fhとスイッチング周波数Fsとの関係により、図5と同様に、各波形はそれぞれ異なる形状や波高値を持つ。
共振周波数Fhの逆数である共振周期Thは、特に第1接続状態Φ1の期間T1が共振周波数Fhの逆数である共振周期Thの半分(Th/2)より大きいT1>Th/2となる条件下では、電流が逆方向に流れる区間が存在する。本構成では電力伝送として2つの接続状態が備えられているため、第1接続状態Φ1の期間T1は共振周波数Fhの逆数である共振周期Thの半分(Th/2)より小さいT1<Th/2となる条件を満たす必要がある。また、第2接続状態Φ2の期間T2が共振周波数Fhの逆数である共振周期Thの半分(Th/2)より小さいT2<Th/2となる条件を満たす必要がある。なお、デッドタイムなどの非接続状態においてはその限りではない。
上述の通り、共振周波数Fhがスイッチング周波数Fsよりも高い場合、すなわち重負荷の場合、逆方向電流及び順方向電流によってスイッチを通過する電流量が増え、損失が増大する。スイッチの熱損失PLSは、スイッチのオン抵抗RONにスイッチに流れる電流Isの2乗を乗じた値を時間積分したものである。つまり、電流のピークを単純にフィルタ等で軽減すればよいというわけではない。インダクタを設けたために、または寄生インダクタンスにより、損失が増大する場合も生じ得る。本実施形態に係る共振周波数Fhの算定に基づき、スイッチのオン時間を適切に制御することによって、電圧変換効率を高めることができる。
そのため、本実施形態では、制御部17は、容量性電圧変換回路部10のキャパシタンス、出力キャパシタCoutのキャパシタンス及びインダクタLxのインダクタンスにより定まる共振周波数Fh以上のスイッチング周波数Fsでスイッチングを行う構成となっている。言い換えれば、オン周期TNが、共振周期Thの半分のTh/2以下となるスイッチング周期でスイッチングをおこなう。ここで、Nは容量性電圧変換回路の接続状態を示す整数であり、この例でTNは、T1またはT2である。
スイッチング周波数Fsが共振周波数Fhよりも低い場合、すなわち重負荷の場合、逆方向電流が流れることに伴って、それと同等の順方向電流が流れることとなり、電圧変換効率は低下する。スイッチング周波数Fsが共振周波数Fh以上である場合、逆方向電流が流れず、電圧変換効率は改善される。こちらも同様に時間軸に置き換えるならば、スイッチング周期Tが共振周期Thの半分よりも短ければ効率が最大限に改善されるといえる。
図7(A)、図7(B)、図7(C)、図7(D)、図7(E)は、電圧変換器1における、第1接続状態Φ1の期間と第2接続状態Φ2の期間との関係の例を示すタイムチャートである。図7(A)は、第1接続状態Φ1の期間と第2接続状態Φ2の期間とが等しく、且つ、スイッチング周期Tが第1接続状態Φ1の期間T1と第2接続状態Φ2の期間T2との合計値である例である。つまり、スイッチングのデューティ比は0.5である。この場合、スイッチング周波数Fsは共振周波数Fhより高い。一方、図7(B)、図7(C)、図7(D)に示すように、デッドタイムなどのブランク時間を挿入し、オンデューティを50%より少ない値にすることも可能である。この場合は、前述のとおり、スイッチング周期Tは共振周期Thの半分より短い。
平均出力電流が小さい場合(つまり負荷が比較的軽い場合)、スイッチング周波数Fsが共振周波数Fhより高くなったら(スイッチング損失+スイッチの駆動損失)≧導通損失となるおそれがある。そこで、スイッチング周波数を低減することで、スイッチの駆動に係る損失を低減させ、効率を向上させる。このような場合においても、スイッチング周期と共振周期とを上述の関係に保つことが重要である。
上記以外の方法としては、図7(E)のように、第1接続状態Φ1の期間と第2接続状態Φ2の期間をそれぞれ長くすることで、スイッチングのデューティ比を0.5に保ったまま、スイッチング周期を長くする方法がある。この制御方法は、スイッチング周波数Fsと共振周波数Fhとの関係が維持できている範囲内で実行可能である。
図8中の電流ILはインダクタLxに流れる電流の波形であり、電流IoutはインダクタLxが無いときの総出力電流の波形である。
インダクタLxを有しない場合、電流Ioutのリップルは非常に大きい。そのため、出力電流Ioutを帰還情報として用い、しきい値電流と比較することでスイッチングを行うと、安定した帰還動作ができない。
これに対して、本実施形態では、インダクタLxに流れる電流ILのリップルは小さい。そのため、電流ILを帰還情報として用い、しきい値電流と比較することでスイッチングを行うと、非常に安定した帰還動作ができる。
図9は、セラミックコンデンサにおけるDCバイアスと静電容量率との関係を示す図である。つまり、セラミックコンデンサによるフライングキャパシタのキャパシタンスは、印加電圧に応じて大幅に変化する。このように、フライングキャパシタに印加される電圧は、入力電圧に従って変化する。しかし、[数3]に示したとおり、共振周波数は共振回路のキャパシタンスによって変化する。そのため、印加電圧が変化する場合に、共振周波数付近の周波数でスイッチング周波数を固定することは非常に困難である。
なお、インダクタLxに流れる電流ILの振幅の大きさは負荷電流に比例する。帰還制御は、負荷電流が規定値下がった場合に帰還制御をかけて、電流ILを引き上げる。負荷電流が大きいときほど電流ILの垂れ下がりが早くなり、出力電圧Voutの引き上げ速度が速くなる。つまりスイッチング周波数は高まる。逆に、負荷電流が小さいときはスイッチング周波数が低下する。
図1に示した制御部17は、スイッチング周波数の最高周波数と最低周波数とを含む条件により設定される周波数で前記スイッチをスイッチングする。そして、最低周波数は、少なくとも一つのフライングキャパシタと、中間キャパシタCxと、インダクタLxと、出力キャパシタCoutとにより決定される共振周波数より低い周波数に設定している。このことにより、例えば、可聴周波数でスイッチングされることによる可聴音雑音の発生(音鳴り)を抑制する。
また、図1に示した制御部17は、スイッチング周波数の最高周波数と最低周波数とを含む条件により設定される周波数で前記スイッチをスイッチングする。そして、最高周波数は、少なくとも一つのフライングキャパシタと、中間キャパシタCxと、インダクタLxと、出力キャパシタCoutとにより決定される共振周波数より高い周波数に設定している。このことにより、スイッチング周波数がスイッチの駆動可能な周波数帯域から外れることを防止できる。すなわち、常に、スイッチの駆動可能な周波数帯内でスイッチングできるようになる。
図10(A)、図10(B)、図10(C)、図10(D)は、2通りのスイッチング周波数での、インダクタLxに流れる電流ILの波形図である。図10(A)はインダクタLxに流れる電流ILが、IL=0.1Aであるときの波形図であり、図10(B)はIL=1Aであるときの波形図であり、図10(C)はIL=5Aであるときの波形図であり、図10(D)はIL=10Aであるときの波形図である。
図10(A)、図10(B)、図10(C)、図10(D)において、電流IL1は、スイッチング周波数Fsが共振周波数Fhの2倍であるときの、インダクタLxに流れる電流ILの波形である。電流IL2は、Fs = 1 / (Fh*(100%+1%*1))であるときのインダクタLxに流れる電流ILの波形である。つまり、インダクタLxに流れる電流が0を経過してから、共振周期の1%だけ下回ったときにスイッチングした場合の、インダクタLxに流れる電流ILの波形である。
図11(A)、図11(B)、図11(C)、図11(D)は、2通りのスイッチング周波数での、インダクタLxに流れる電流ILの波形図である。図11(A)はインダクタLxに流れる電流ILが、IL=0.1Aであるときの波形図であり、図11(B)はIL=1Aであるときの波形図であり、図11(C)はIL=5Aであるときの波形図であり、図11(D)はIL=10Aであるときの波形図である。
図11(A)、図11(B)、図11(C)、図11(D)において、電流IL1は、スイッチング周波数Fsが共振周波数Fhの2倍であるときの、インダクタLxに流れる電流ILの波形である。電流IL2は、Fs = 1 / (Fh*(100%+1%*15))であるときのインダクタLxに流れる電流ILの波形である。つまり、インダクタLxに流れる電流が0を経過してから、共振周期の15%だけ下回ったときにスイッチングした場合の、インダクタLxに流れる電流ILの波形である。
図10(A)、図10(B)、図10(C)、図10(D)、図11(A)、図11(B)、図11(C)、図11(D)に表れているように、スイッチング周波数Fsが高い(共振周波数fhの2倍)では、インダクタLxに流れる電流ILの実効値は低い。
また、図10(A)、図10(B)、図10(C)、図10(D)に表れているように、インダクタLxに流れる電流ILが0を経過してから、共振周期の1%を経過したときにスイッチングすると、つまり、電流ILが0を経過してからの期間が短いと、インダクタLxに流れる電流ILの実効値は小さい。また、図11(A)、図11(B)、図11(C)、図11(D)に表れているように、インダクタLxに流れる電流ILが0を経過してから、共振周期の15%を経過したときにスイッチングすると、つまり、電流ILが0を経過してからの期間が長いと、インダクタLxに流れる電流ILの実効値は大きい。
図10(A)、図10(B)、図10(C)、図10(D)、図11(A)、図11(B)、図11(C)、図11(D)に表れているように、インダクタLxに流れる電流ILは、0.1A以上5A以下の範囲内にあることが好ましい。
図12、図13、図14、図15は、スイッチング周波数Fsと共振周波数Fhとの関係に対する、容量性電圧変換回路を備えた電圧変換器の全損失を示す図である。これらの図において、横軸はFs / Fhであり、縦軸は容量性電圧変換回路を備えた電圧変換器の全損失である。ただし、図12、図13、図14、図15において、縦軸のスケールは異なっていて、相対値な概念を示している。
図12はインダクタLxに流れる電流ILが0.1Aであるときの特性であり、図13はインダクタLxに流れる電流ILが1Aであるときの特性であり、図14はインダクタLxに流れる電流ILが5Aであるときの特性であり、図15はインダクタLxに流れる電流ILが10Aであるときの特性である。
図12に表れているように、無負荷又は軽負荷である場合、すなわちスイッチング周波数に依存するスイッチング損失及びスイッチの駆動損失が大きい場合、スイッチング周波数の低い領域で低損失となる。また、図13に表れているように、軽負荷でスイッチング周波数に依存する損失が大きい場合、導体損失の割合が大きい場合、共振周波数に近い領域で損失が低くなる。また、図14、図15、に表れているように、重負荷で導体損失の割合が大きい場合、共振周波数を外れる領域で導体損失が大きくなる。
上述のように、スイッチング周波数が共振周波数に近接することにより、インダクタLxに流れる電流が大きくなるので軽負荷時の効率を向上させ、重負荷時の損失を維持することが可能である。
また、図14、図15に表れているように、インダクタLxに流れる電流ILが5Aを超えると、全損失のうち導体損失が支配的になる。そのため、5A以下の領域においては効率改善が期待できる。なお、インダクタLxに流れる電流ILが0.1Aより低い場合、インダクタLxに流れる電流ILの絶対値が小さくなり、測定が比較的困難となる。
《第2の実施形態》
第2の実施形態では、フライングキャパシタ及びスイッチの構成を部分的に共用した電圧変換器について例示する。
図16は第2の実施形態に係る電圧変換器2の回路図である。この電圧変換器2は、全体を二重構成にせず、部分的に二重構成にして、インターリーブ動作させる回路で構成されている。図2と対比すれば明らかなように、フライングキャパシタC10は、第1容量性電圧変換回路11と第2容量性電圧変換回路12とで共用している。中間キャパシタCxも第1容量性電圧変換回路11と第2容量性電圧変換回路12とで共用している。スイッチS112,S114,S115,S117は、正負のパルスを生成しているので、それらスイッチの接続順番を見直すことで共有が可能である。
《第3の実施形態》
第3の実施形態では、誘導性コンバータを備える電圧変換器について例示する。
図17は第3の実施形態に係る電圧変換器3のブロック図である。本実施形態では、誘導性降圧コンバータ30が容量性電圧変換回路部10の後段に接続される。
誘導性降圧コンバータ30は、整流スイッチ素子Q11と、転流スイッチ素子Q12と、インダクタLxと、キャパシタCoutと、ドライバ31とを有する。整流スイッチ素子Q11はp型MOS-FETである。転流スイッチ素子Q12はn型MOS-FETである。ドライバ31は、整流スイッチ素子Q11と転流スイッチ素子Q12とを交互にスイッチングする。なお、この降圧コンバータ30を複数回路設け、それらを並列に接続してインターリーブ動作させてもよい。
《第4の実施形態》
第4の実施形態では、複数の容量性電圧変換回路部を備える電圧変換器と、複数の容量性電圧変換回路部の主要部を備える電圧変換器について例示する。
図18は第4の実施形態に係る電圧変換器のブロック図である。この電圧変換器は、3つの電圧変換器1A,1B,1Cを備える。電圧変換器1A,1B,1Cそれぞれは、容量性電圧変換回路部10、電圧検出部13、制御部17、インダクタLx及び出力キャパシタCoutを備える。
3つの容量性電圧変換回路部10の入力は並列に接続されていて、入力電圧Vinの入力端子101は共通である。また、出力キャパシタCoutは並列に接続されていて、出力電圧Voutの出力端子201は共通である。
このように、複数の電圧変換器1A,1B,1Cを並列接続する場合でも、電圧変換器1Aの電流検出部21は、インダクタLxに流れる電流ILを検出する。同様に、電圧変換器1Bの電流検出部21は、インダクタLxに流れる電流ILを検出し、電圧変換器1Cの電圧検出部13は、電圧変換器1Cの電流検出部21は、インダクタLxに流れる電流ILを検出する。
ここで、仮に、各電圧変換器が、出力電圧Voutとしきい値電圧との比較結果に応じてスイッチの状態を切り替える構成であり、かつ電圧変換器ごとに上記しきい値電圧に誤差があると、出力電圧Voutと比較するしきい値電圧の高い電圧変換器のみが動作してしまう。つまり、従来の構成では、リップルの小さな共通の出力電圧Voutを検出するので、しきい値電圧の高い電圧変換器の負荷率が高まってしまい、複数の電圧変換器のバランスがくずれてしまう。比較機構にオフセットが存在しない場合は同一周波数でスイッチング動作するものの、個別に設けられた電圧変換器を並列に並べる場合には現実的ではない。さらに、容量性電圧変換回路の各キャパシタのキャパシタンスがばらつく場合、電荷伝送能力がばらつくため、電圧変換器間の出力電流がばらついてしまう。
一方、本実施形態によれば、共通の出力電圧Voutではなく、各電圧変器のインダクタLxに流れる電流ILを検出して帰還するので(その容量性電圧変換回路部10のスイッチをスイッチング制御するので)、並列動作するそれぞれのコンバータが、バランスよく動作する。つまり、本実施形態の各電圧変換器1A,1B,1CがインダクタLxにより分離され、電圧変換器1A,1B,1Cそれぞれのフライングキャパシタ、中間キャパシタCx、及びスイッチの抵抗成分などにより決定される放電レートにより定まる速度で電流ILが低下する。そのため、並列接続された電圧変換器1A,1B,1Cそれぞれの特性に応じたリップル電圧により、それぞれが自身に対する負荷に応じた最適な動作周波数で動作することができる。その結果、並列動作において各電圧変換器の各キャパシタのキャパシタンスばらつきや、電圧変換能力差が存在しても、それぞれの動作周波数で損失や熱バランスをとることができる。
図19は本実施形態の別の電圧変換器のブロック図である。この電圧変換器は、入力電圧Vinを入力し、入力電圧Vinを電圧変換して出力する3つの容量性電圧変換回路部10と、単一の(共通の)出力キャパシタCoutと、3つの容量性電圧変換回路部10と出力キャパシタCoutとの間にそれぞれ直列に接続されたインダクタLxと、容量性電圧変換回路部10ごとに設けられた、電流検出部21、電圧検出部13及び制御部17と、を備える。
容量性電圧変換回路部10は、複数のスイッチと、少なくとも一つのフライングキャパシタと、出力部に設けられた中間キャパシタCxと、を含む。電流検出部21及び電圧検出部13は、インダクタLxに流れる電流ILをそれぞれ検出する。
容量性電圧変換回路部10ごとに設けられた制御部17は、電圧検出部13の検出結果と、しきい値電流との比較に応じ、スイッチが少なくとも2つの状態を往来するように容量性電圧変換回路部10ごとに設けられたスイッチを制御する。
図19に示した構成の電圧変換器の場合も、共通の出力電圧Voutではなく、各電圧変器のインダクタLxに流れる電流ILを検出して帰還するので(その容量性電圧変換回路部10のスイッチをスイッチング制御するので)、図18に示した電圧変換器と同様の作用効果を奏する。つまり、並列動作において各電圧変換器の各キャパシタのキャパシタンスばらつきや、電圧変換能力差が存在しても、それぞれの動作周波数で損失や熱バランスをとることができる。
図18及び図19に示した電圧変換器では3つの容量性電圧変換回路部10を備える電圧変換器について例示したが、容量性電圧変換回路部10の数はこれに限らない。また、偶数の容量性電圧変換回路部10を備える場合には、次に示す構成であれば、特有の効果を奏する。つまり、偶数の容量性電圧変換回路部10を並列に接続し、入力電圧の入力端子101を共通とし、出力電圧の出力端子201を共通とし、容量性電圧変換回路部10は、複数のスイッチの接続状態によって、少なくとも第1接続状態と第2接続状態とを有することとし、第1接続状態における、容量性電圧変換回路部10の中間キャパシタ、出力キャパシタ及びインダクタにより定まる第1共振周波数と、第2接続状態における、容量性電圧変換回路部の中間キャパシタ、出力キャパシタ及びインダクタにより定まる第2共振周波数とを等しくする。このことにより、共振周波数とスイッチング周波数との関係性の制御が容易となる。
《第5の実施形態》
第5の実施形態では、インダクタLxに流れる電流ILを検出する回路が、これまでに示した回路とは異なる構成の例について例示する。
図20は第5の実施形態に係る電圧変換器5のブロック図である。電圧変換器5は、入力電圧Vinを入力し、入力電圧Vinを出力電圧Voutに変換して出力する容量性電圧変換回路部10と、出力キャパシタCoutと、容量性電圧変換回路部10の出力部に設けられた中間キャパシタCxと、電流検出部21と、電圧検出部13と、制御部17と、を備える。
前記電流検出部21は、容量性電圧変換回路部10と出力キャパシタCoutとの間に直列に接続されたインダクタLx及びその直流抵抗成分DCRと、抵抗素子RpとキャパシタCpとの直列回路を備え、当該直列回路はインダクタLx及びその直流抵抗成分DCRの直列回路に並列接続されている。差動増幅回路14は、キャパシタCpの両端電圧を検出する。電圧検出部13及び制御部17の作用は第1~第4の実施形態で示したとおりである。
図20において、抵抗素子RpとキャパシタCpを[数4]のように設定することで、キャパシタCpの両端電圧波形は、インダクタLxに流れる電流ILの波形と相似形となる。
Figure 0007334752000004
したがって、キャパシタCpの電圧を検出することによって、インダクタLxに流れる電流を検出することができる。
本実施形態によれば、インダクタLxに直列に抵抗素子Rxを挿入しないので、抵抗素子Rxによる電力損失及び抵抗素子Rxによる電圧降下が回避できる。
《他の実施形態》
各実施形態では2つのディクソン型回路を並列接続してインターリーブ駆動する例を説明したが、単一のシリーズパラレルチャージポンプ回路を用いることができる。また、単相や二相以外に、多相(マルチフェーズ)の容量性電圧変換回路を構成することも可能である。
以上の各実施形態で示した電圧変換器では、説明の簡便さから、LC回路20を構成するインダクタ及びキャパシタがひとつずつ配されている例を説明したが、複数のインダクタ及び複数のキャパシタを用いてもよい。また、チップ部品が実装された回路基板からなる容量性電圧変換回路部10の例を説明したが、容量性電圧変換回路部10を構成するキャパシタの一部または全部が多層基板に内装されていてもよい。
最後に、本発明は上述した各実施形態に限られるものではない。当業者によって適宜変形及び変更が可能である。本発明の範囲は、上述の実施形態ではなく、特許請求の範囲によって示される。さらに、本発明の範囲には、特許請求の範囲内と均等の範囲内での実施形態からの変形及び変更が含まれる。
C10,C11,C12…フライングキャパシタ
CIN…合成キャパシタ
COUT…キャパシタ
Cout…出力キャパシタ
Cp…キャパシタ
Cx…中間キャパシタ
Ih…共振電流
Iin…入力電流
IL…電流
Iout…出力電流
Is…スイッチング電流
Lx…インダクタ
Q11…整流スイッチ素子
Q12…転流スイッチ素子
RL…負荷
Rp…抵抗素子
Rx…抵抗素子
S111,S112,S113,S114,S115,S116,S117…スイッチ
S121,S122,S123,S124,S125,S126,S127…スイッチ
Th…共振周期
TN…オン周期
Vin…入力電圧
Vout…出力電圧
1…電圧変換器
1A,1B,1C…電圧変換器
2,3,5…電圧変換器
10…容量性電圧変換回路部
11…第1容量性電圧変換回路
12…第2容量性電圧変換回路
13…電圧検出部
14…差動増幅回路
17…制御部
20…LC回路
21…電流検出部
30…誘導性降圧コンバータ
31…ドライバ
101…入力端子
201…出力端子

Claims (6)

  1. 入力電圧を入力し、前記入力電圧を出力電圧に変換して出力する容量性電圧変換回路部と、出力キャパシタと、前記容量性電圧変換回路部と前記出力キャパシタとの間に直列に接続されたインダクタと、電流検出部と、制御部と、を備え、
    前記容量性電圧変換回路部は、複数のスイッチと、少なくとも一つのフライングキャパシタと、出力部に設けられた中間キャパシタと、を含み、
    前記電流検出部は、前記インダクタに流れる電流を検出し、
    前記制御部は、前記インダクタに流れる電流としきい値電流との比較に応じ、前記スイッチが少なくとも2つの状態を往来するように前記スイッチを制御し、
    前記しきい値電流は0未満である、
    電圧変換器。
  2. 前記電流検出部は、前記インダクタに直列接続された抵抗素子と、当該抵抗素子の降下電圧を検出する電圧検出回路とを備える、
    請求項1に記載の電圧変換器。
  3. 前記電流検出部は、抵抗素子とキャパシタとの直列回路を備え、当該直列回路は前記インダクタに並列接続され、前記キャパシタの両端電圧又は前記抵抗素子の両端電圧を検出する電圧検出回路とを備える、
    請求項1に記載の電圧変換器。
  4. 前記インダクタに流れる電流と前記しきい値電流との比較に応じ、前記スイッチが少なくとも2つの状態を往来することで生じる前記スイッチのスイッチング周波数は、最低周波数と最高周波数との範囲内に収まるように、前記電流検出部による検出値又は前記しきい値電流が設定された、
    請求項1から3のいずれかに記載の電圧変換器。
  5. 前記制御部は、前記インダクタに流れる電流が0になってから所定時間の経過後、前記スイッチの状態を切り替える、
    請求項1からのいずれかに記載の電圧変換器。
  6. 前記インダクタに流れる電流は、0.1A以上5A以下の範囲内にある、
    請求項1からのいずれかに記載の電圧変換器。
JP2021030843A 2021-02-26 2021-02-26 電圧変換器 Active JP7334752B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021030843A JP7334752B2 (ja) 2021-02-26 2021-02-26 電圧変換器
CN202111417162.1A CN115051555A (zh) 2021-02-26 2021-11-25 电压变换器
US17/573,687 US11705809B2 (en) 2021-02-26 2022-01-12 Voltage converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021030843A JP7334752B2 (ja) 2021-02-26 2021-02-26 電圧変換器

Publications (2)

Publication Number Publication Date
JP2022131739A JP2022131739A (ja) 2022-09-07
JP7334752B2 true JP7334752B2 (ja) 2023-08-29

Family

ID=83006586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021030843A Active JP7334752B2 (ja) 2021-02-26 2021-02-26 電圧変換器

Country Status (3)

Country Link
US (1) US11705809B2 (ja)
JP (1) JP7334752B2 (ja)
CN (1) CN115051555A (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230124434A1 (en) * 2021-10-15 2023-04-20 Advanced Micro Devices, Inc. Method to reduce overshoot in a voltage regulating power supply

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000193687A (ja) 1998-12-25 2000-07-14 Toyota Autom Loom Works Ltd 電流検出回路、およびその電流検出回路を備えたdc/dcコンバ―タ
JP2002058240A (ja) 2000-06-01 2002-02-22 Auto Network Gijutsu Kenkyusho:Kk Dc−dcコンバータ回路
WO2018066444A1 (ja) 2016-10-06 2018-04-12 株式会社村田製作所 Dc-dcコンバータ
US20200119635A1 (en) 2018-10-11 2020-04-16 Amir Rahimi Resonant switched capacitor dc/dc converter

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3329956B2 (ja) 1994-10-14 2002-09-30 松下電工株式会社 電力変換回路
KR101013142B1 (ko) * 2006-03-08 2011-02-10 삼성전자주식회사 전원변환장치, 이를 포함하는 전자장치 및 전원변환방법
TWI404311B (zh) * 2010-10-28 2013-08-01 Richtek Technology Corp 電流模式控制電源轉換器的控制電路及方法
CN103872915A (zh) * 2014-02-28 2014-06-18 台达电子企业管理(上海)有限公司 直流-直流变换器及其直流-直流变换器系统
TWI553605B (zh) * 2015-06-03 2016-10-11 矽創電子股份有限公司 電源供應系統與顯示裝置
EP3276808B1 (en) * 2016-07-26 2018-12-26 NXP USA, Inc. Accurate non-isolated high voltage dc-dc feedback
US10756627B2 (en) * 2017-09-14 2020-08-25 Microchip Technology Incorporated Enhanced switching regulator topology with adaptive duty control and seamless transition of operating modes
CN114244105B (zh) * 2022-02-24 2022-04-26 伏达半导体(合肥)有限公司 功率转换结构、方法包括其的电子设备及芯片单元

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000193687A (ja) 1998-12-25 2000-07-14 Toyota Autom Loom Works Ltd 電流検出回路、およびその電流検出回路を備えたdc/dcコンバ―タ
JP2002058240A (ja) 2000-06-01 2002-02-22 Auto Network Gijutsu Kenkyusho:Kk Dc−dcコンバータ回路
WO2018066444A1 (ja) 2016-10-06 2018-04-12 株式会社村田製作所 Dc-dcコンバータ
US20200119635A1 (en) 2018-10-11 2020-04-16 Amir Rahimi Resonant switched capacitor dc/dc converter

Also Published As

Publication number Publication date
CN115051555A (zh) 2022-09-13
US20220278612A1 (en) 2022-09-01
JP2022131739A (ja) 2022-09-07
US11705809B2 (en) 2023-07-18

Similar Documents

Publication Publication Date Title
JP6521187B2 (ja) Dc−dcコンバータ
JP5049637B2 (ja) Dc/dc電力変換装置
EP3425784B1 (en) Dc-dc converter with modular stages
US6304065B1 (en) Power electronic circuits with all terminal currents non-pulsating
US7619907B2 (en) DC/DC power conversion device
EP1331723A2 (en) Low output voltage, high current, half-bridge, series-resonant, multiphase, DC-DC power supply
WO2012001828A1 (ja) Dc/dc電力変換装置
US20040114397A1 (en) Non-isolated DC-DC converters with direct primary to load current
US20220329152A1 (en) Dc-dc converter
US11296607B2 (en) DC-DC converter
JP7342900B2 (ja) 電圧変換器
EP4147339B1 (en) Electrical power converter
JP7334752B2 (ja) 電圧変換器
KR20090044137A (ko) 무변압기형 부스트 컨버터
US10084378B2 (en) Single-inductor multi-output converter
JP2020162261A (ja) 電力変換装置
He Multilevel DC-DC power conversion system with multiple bridge modular switched-capacitor converter
TWI444811B (zh) High boost ratio circuit
Sundararaman et al. A Switched Capacitor Hybrid Fibonacci Converter With Reduced Switches for LED Applications
KR101857947B1 (ko) 인터리브드 방식의 dc-dc 컨버터 장치
WO2019211284A1 (en) Bidirectional switched mode ac-dc converter and method for operating a bidirectional switched mode ac-dc converter
CN113346771B (zh) 升压转换器
CN114244101B (zh) 一种开关电容谐振式直流转换器
JP7341020B2 (ja) 双方向dc/dcコンバータ
TWI450485B (zh) High boost ratio device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230731

R150 Certificate of patent or registration of utility model

Ref document number: 7334752

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150