JP7329563B2 - Iron powder for deoxidizer - Google Patents

Iron powder for deoxidizer Download PDF

Info

Publication number
JP7329563B2
JP7329563B2 JP2021107179A JP2021107179A JP7329563B2 JP 7329563 B2 JP7329563 B2 JP 7329563B2 JP 2021107179 A JP2021107179 A JP 2021107179A JP 2021107179 A JP2021107179 A JP 2021107179A JP 7329563 B2 JP7329563 B2 JP 7329563B2
Authority
JP
Japan
Prior art keywords
iron powder
iron
oxygen
less
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021107179A
Other languages
Japanese (ja)
Other versions
JP2023005342A (en
Inventor
優典 加藤
哲 栗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa IP Creation Co Ltd
Original Assignee
Dowa IP Creation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa IP Creation Co Ltd filed Critical Dowa IP Creation Co Ltd
Priority to JP2021107179A priority Critical patent/JP7329563B2/en
Publication of JP2023005342A publication Critical patent/JP2023005342A/en
Application granted granted Critical
Publication of JP7329563B2 publication Critical patent/JP7329563B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は脱酸素剤用鉄粉に関するものである。 TECHNICAL FIELD The present invention relates to iron powder for oxygen scavengers.

鉄の酸化反応を利用する用途に脱酸素剤が知られている。密封された包装あるいは容器内で鉄が酸素と反応し、遊離酸素および溶存酸素が取り除かれることにより、酸化や好気性微生物の生育等が抑制され、品質劣化が防がれる。脱酸素剤は、食品や薬剤の品質劣化、衣類や文化財の酸化防止等の幅広い分野で用いられている。脱酸素剤の使用形態としては、通気性のある小袋に鉄粉が充填されてパッケージ化されたものや、樹脂と脱酸素剤が混錬されてシート状とされたものなどがある。 Oxygen scavengers are known for applications that utilize the oxidation reaction of iron. Iron reacts with oxygen in a sealed package or container to remove free oxygen and dissolved oxygen, thereby suppressing oxidation and the growth of aerobic microorganisms, thereby preventing quality deterioration. Oxygen scavengers are used in a wide range of fields, such as the deterioration of foods and medicines, and the prevention of oxidation of clothing and cultural properties. The form of use of the oxygen absorber includes a package in which an air-permeable sachet is filled with iron powder, and a sheet-like form in which a resin and an oxygen absorber are kneaded.

特許文献1には、酸化速度の高い脱酸素剤用還元鉄粉として、比表面積が1.0m/g以上、見掛密度が1.0g/cm以下、かつ平均粒径が9.0μm以下である還元鉄粉が提案されている。 Patent Document 1 discloses a reduced iron powder for a deoxidizer with a high oxidation rate, which has a specific surface area of 1.0 m 2 /g or more, an apparent density of 1.0 g/cm 3 or less, and an average particle diameter of 9.0 μm. The following reduced iron powder has been proposed.

特開2002-292276号公報Japanese Patent Application Laid-Open No. 2002-292276

近年食品の小容量・個包装化が進んでおり、それに伴い脱酸素剤のパッケージにおいても小型化が求められている。 In recent years, food products have become smaller in volume and individually packaged, and along with this, there is a demand for smaller packages for oxygen absorbers.

しかしながら、パッケージの小型化に合わせてパッケージに充填する鉄粉量を単に減少させると鉄粉による酸素吸収量は減少する。前記提案の鉄粉では、高い酸素吸収能力は得られてはいるものの見掛密度を低くしておりパッケージの小型化には適していないと考えられる。 However, if the amount of iron powder to be filled in the package is simply reduced in accordance with the downsizing of the package, the amount of oxygen absorbed by the iron powder will be reduced. Although the iron powder proposed above has a high oxygen absorption capacity, it has a low apparent density and is considered unsuitable for miniaturization of packages.

本発明はこのような従来の問題に鑑みてなされたものであり、その目的は、酸素吸収能力を低下させることなく脱酸素剤のパッケージの小型化が可能な脱酸素剤用鉄粉を提供することにある。 The present invention has been made in view of such conventional problems, and its object is to provide an iron powder for a deoxidant that allows the package of the deoxidant to be miniaturized without lowering the oxygen absorption capacity. That's what it is.

前記目的を達成する本発明に係る鉄粉は、脱酸素剤に用いられる鉄粉であって、見掛密度が2.21g/cm以上2.80g/cm以下であり、BET比表面積が2.0m/g以上4.0m/g以下であることを特徴とする。 The iron powder according to the present invention that achieves the above object is an iron powder that is used as a deoxidizer, has an apparent density of 2.21 g/cm 3 or more and 2.80 g/cm 3 or less, and has a BET specific surface area of It is characterized by being 2.0 m 2 /g or more and 4.0 m 2 /g or less.

前記構成の脱酸素剤用鉄粉において、金属鉄含有量は83質量%以上93質量%以下の範囲であるのが好ましい。 In the iron powder for oxygen scavenger having the above configuration, the metallic iron content is preferably in the range of 83% by mass or more and 93% by mass or less.

また前記構成の脱酸素剤用鉄粉において、流動度は28sec/50g以上50sec/50g以下の範囲であるのが好ましい。 Further, in the iron powder for oxygen scavenger having the above constitution, the fluidity is preferably in the range of 28 sec/50 g or more and 50 sec/50 g or less.

前記構成の脱酸素剤用鉄粉において、平均粒径は30μm以上300μm以下の範囲であるのが好ましい。 In the iron powder for oxygen scavenger having the above constitution, the average particle size is preferably in the range of 30 μm or more and 300 μm or less.

なお、本明細書における「見掛密度」、「BET比表面積」、「金属鉄含有量」、「流動度」及び「平均粒径」の測定方法は後述の実施例に示す測定方法によるものとする。また、本明細書において示す「~」は、特に断りのない限り、その前後に記載の数値を下限値及び上限値として含むものとする。 The measurement methods of "apparent density", "BET specific surface area", "metallic iron content", "fluidity" and "average particle size" in the present specification are the measurement methods shown in Examples below. do. In addition, unless otherwise specified, "-" shown in this specification includes the numerical values before and after it as lower and upper limits.

本発明に係る脱酸素剤用鉄粉によれば、酸素吸収能力を低下させることなく脱酸素剤のパッケージの小型化が可能となる。 According to the iron powder for oxygen scavenger according to the present invention, it is possible to reduce the size of the package of the oxygen scavenger without lowering the oxygen absorption capacity.

本発明に係る脱酸素剤用鉄粉(以下、単に「鉄粉」と記すことがある。)の大きな特徴の一つは、見掛密度が2.21g/cm以上2.80g/cm以下であることである。鉄粉の見掛密度が2.21g/cm未満であると、パッケージ等への充填時に嵩高くなり、単位体積当たりの酸素吸収量が少なくなる。一方、鉄粉の見掛密度が2.80g/cmを超えると鉄粉の充填密度が高くなりすぎるために、反応すべき酸素の拡散性が悪化し、酸素吸収量が著しく少なくなるおそれがある。鉄粉のより好ましい見掛密度の範囲は2.21g/cm以上2.60g/cm以下である、 One of the major characteristics of the iron powder for deoxidizing agent according to the present invention (hereinafter sometimes simply referred to as "iron powder") is that the apparent density is 2.21 g/cm 3 or more and 2.80 g/cm 3 . It is the following. If the apparent density of the iron powder is less than 2.21 g/cm 3 , it becomes bulky when packed into a package or the like, and the oxygen absorption amount per unit volume becomes small. On the other hand, when the apparent density of the iron powder exceeds 2.80 g/cm 3 , the packing density of the iron powder becomes too high, so that the diffusibility of oxygen to be reacted deteriorates, and the oxygen absorption amount may decrease significantly. be. A more preferable range of apparent density of the iron powder is 2.21 g/cm 3 or more and 2.60 g/cm 3 or less.

また本発明に係る鉄粉のもう一つの特徴は、BET比表面積が2.0m/g以上4.0m/g以下であることである。鉄粉のBET比表面積が2.0m/g未満であると、鉄粉の反応性が著しく低下し、所望の酸素吸収量が得られないおそれがある。一方、鉄粉のBET比表面積が4.0m/gを超えると、鉄粉表面の凹凸が増えることにより摩擦が大きくなるため、鉄粉の流動性が低下するおそれがあり好ましくない。鉄粉のより好ましいBET比表面積の範囲は2.1m/g以上3.7m/g以下の範囲である。 Another feature of the iron powder according to the present invention is that the BET specific surface area is 2.0 m 2 /g or more and 4.0 m 2 /g or less. When the BET specific surface area of the iron powder is less than 2.0 m 2 /g, the reactivity of the iron powder is significantly lowered, and the desired oxygen absorption may not be obtained. On the other hand, if the BET specific surface area of the iron powder exceeds 4.0 m 2 /g, the irregularities on the surface of the iron powder increase to increase the friction, which is not preferable because the fluidity of the iron powder may decrease. A more preferable range of the BET specific surface area of the iron powder is 2.1 m 2 /g or more and 3.7 m 2 /g or less.

また、別の態様として、鉄粉の{BET比表面積(m/g)/見掛密度(g/cm)}の値が0.7以上1.9以下の範囲であると、単位体積当たりの酸素吸収量が多くなるので好ましい。この理由は今のところ明確ではないが、BET比表面積と相関する粉体間の接触面積と、見掛密度と相関する嵩高さとの比によって酸化凝集に伴う体積変化が適宜となり、それに応じて通気する酸素の鉄粉への拡散性が適宜となるからではないかと推測される。鉄粉の{BET比表面積(m/g)/見掛密度(g/cm)}の値のより好ましい範囲は0.8以上1.6以下の範囲である。 Further, as another aspect, when the value of {BET specific surface area (m 2 /g)/apparent density (g/cm 3 )} of the iron powder is in the range of 0.7 or more and 1.9 or less, the unit volume It is preferable because the amount of oxygen absorbed per unit increases. The reason for this is not clear at the moment, but depending on the ratio of the contact area between the powders, which correlates with the BET specific surface area, and the bulkiness, which correlates with the apparent density, the volume change accompanying oxidation aggregation becomes appropriate, and ventilation accordingly. It is presumed that this is because the diffusibility of oxygen to the iron powder becomes appropriate. A more preferable range of {BET specific surface area (m 2 /g)/apparent density (g/cm 3 )} of the iron powder is 0.8 or more and 1.6 or less.

本発明に係る鉄粉の金属鉄含有量は83質量%以上93質量%以下の範囲が好ましい。鉄粉の金属鉄含有量が83質量%未満であると、本発明で規定する鉄粉の見掛密度の範囲に達しないおそれや本発明で規定する鉄粉のBET比表面積の範囲を超えるおそれがある。また所望の酸素吸収量が得られないおそれもある。一方、鉄粉の金属鉄含有量が93質量%を超えると、本発明で規定する鉄粉の見掛密度の範囲を超えるおそれや本発明で規定する鉄粉のBET比表面積の範囲に達しないおそれがある。金属鉄含有量のより好ましい範囲は85質量%以上92質量%以下である。 The metallic iron content of the iron powder according to the present invention is preferably in the range of 83% by mass or more and 93% by mass or less. If the metal iron content of the iron powder is less than 83% by mass, there is a risk that the apparent density of the iron powder will not reach the range specified in the present invention, or that the BET specific surface area of the iron powder will exceed the range specified in the present invention. There is In addition, there is a possibility that the desired oxygen absorption amount cannot be obtained. On the other hand, if the metal iron content of the iron powder exceeds 93% by mass, the apparent density of the iron powder may exceed the range specified in the present invention, or the BET specific surface area of the iron powder does not reach the range specified in the present invention. There is a risk. A more preferable range of metallic iron content is 85% by mass or more and 92% by mass or less.

本発明に係る鉄粉の流動度は28sec/50g以上50sec/50g以下の範囲が好ましい。鉄粉の流動度が上記範囲であることで単位体積当たり高い酸素吸収量が達成される。鉄粉の流動度のより好ましい範囲は32sec/50g以上40sec/50g以下である。 The fluidity of the iron powder according to the present invention is preferably in the range of 28 sec/50 g or more and 50 sec/50 g or less. When the fluidity of the iron powder is within the above range, a high oxygen absorption amount per unit volume is achieved. A more preferable range of the fluidity of the iron powder is 32 sec/50 g or more and 40 sec/50 g or less.

本発明に係る鉄粉の平均粒径は30μm以上300μm以下の範囲が好ましい。より好ましい鉄粉の平均粒径は50μm以上200μm以下の範囲である。鉄粉の平均粒径が上記範囲であることで単位体積当たり高い酸素吸収量が達成される。 The average particle size of the iron powder according to the present invention is preferably in the range of 30 µm or more and 300 µm or less. A more preferable average particle size of the iron powder is in the range of 50 µm or more and 200 µm or less. When the average particle size of the iron powder is within the above range, a high oxygen absorption amount per unit volume is achieved.

(鉄粉の製造方法)
本発明に係る鉄粉の製造方法に特に限定はないが以下に説明する製造方法が好ましい。
(Manufacturing method of iron powder)
The method for producing the iron powder according to the present invention is not particularly limited, but the production method described below is preferable.

本発明に係る鉄粉は、鉄鉱石をはじめとする鉄原料と還元剤とをロータリーキルン中で740℃~1000℃、好ましくは760℃~980℃の環境下で転動させながら還元することで得るのが好ましい。還元温度を高くすれば還元反応は促進されるが鉄粒子の焼結も進行し、本発明で規定するBET比表面積が得られないおそれがある。また、還元温度が低すぎると、所望の金属鉄含有量を得るために著しく長い還元時間が必要となり生産性が低下するおそれがある。ロータリーキルン中で転動させながら鉄原料を還元する時間(あるいは炉体内の滞留時間)は、1時間以上、好ましくは2時間以上、より好ましくは3時間以上である。ただし、還元対象の鉄鉱石などの鉄原料が物理的に少ない時にはこの限りではない。 The iron powder according to the present invention is obtained by reducing an iron raw material such as iron ore and a reducing agent in a rotary kiln at 740° C. to 1000° C., preferably 760° C. to 980° C. while rolling. is preferred. If the reduction temperature is increased, the reduction reaction is accelerated, but the iron particles are also sintered, and there is a possibility that the BET specific surface area specified in the present invention cannot be obtained. On the other hand, if the reduction temperature is too low, a significantly long reduction time is required to obtain the desired metallic iron content, which may reduce productivity. The time for reducing the iron raw material while rolling in the rotary kiln (or the residence time in the furnace) is 1 hour or longer, preferably 2 hours or longer, and more preferably 3 hours or longer. However, this is not the case when iron raw materials such as iron ore to be reduced are physically scarce.

鉄原料としては、3価の酸化鉄を主成分とした鉄鉱石が好適に用いられる。3価の酸化鉄は還元反応によって酸素が抜けた部分が海綿状となるため、より高い比表面積の鉄粉が得られやすくなる。鉄鉱石の粒子径は、取り扱いの容易性から、直径が50mm以下、好ましくは30mm以下であるのが好ましい。 Iron ore containing trivalent iron oxide as a main component is preferably used as the iron raw material. Since trivalent iron oxide becomes spongy in the portion where oxygen has been removed by the reduction reaction, iron powder with a higher specific surface area can be easily obtained. The particle size of the iron ore is preferably 50 mm or less, preferably 30 mm or less, for ease of handling.

本発明で使用する還元剤としては、石炭、石炭チャー、コークス、無煙炭、半無煙炭、瀝青炭、亜瀝青炭、褐炭などが挙げられる。これらの中でも石炭、石炭チャー、コークス、瀝青炭、亜瀝青炭、褐炭などが好適に用いられる。 The reducing agent used in the present invention includes coal, coal char, coke, anthracite, semi-anthracite, bituminous coal, sub-bituminous coal, lignite and the like. Among these, coal, coal char, coke, bituminous coal, sub-bituminous coal, lignite and the like are preferably used.

還元剤の添加量は、鉄原料に対してモル比で等倍以上であることが好ましい。より好ましくは1.5倍以上、さらに好ましくは2倍量以上である。本発明者らの検討によれば、鉄原料に対する還元剤の添加量がモル比で等倍未満であると、鉄粉への還元反応そのものが進行しにくく、所望の還元された鉄粉を得ることができないおそれがある。一方、還元剤の添加量が多すぎると還元反応が進行せず、また得られた鉄粉と残存炭の分離が行いにくくなる。このため還元剤の添加量の好ましい上限値としては、鉄原料に対するモル比で10倍量、好ましくは7.5倍量である。なお、還元剤が石炭であれば、全量を炭素とみなして換算し、鉄原料は全量を酸化鉄とみなして換算するものとする。 The amount of the reducing agent to be added is preferably equal to or more than the molar ratio of the iron raw material. More preferably 1.5 times or more, still more preferably 2 times or more. According to the studies of the present inventors, if the amount of the reducing agent added to the iron raw material is less than 1:1 in molar ratio, the reduction reaction itself to the iron powder is difficult to proceed, and the desired reduced iron powder can be obtained. may not be possible. On the other hand, if the amount of the reducing agent added is too large, the reduction reaction does not proceed, and separation of the obtained iron powder and residual coal becomes difficult. Therefore, the upper limit of the amount of the reducing agent to be added is preferably 10 times, preferably 7.5 times the molar ratio of the iron raw material. If the reducing agent is coal, the total amount is considered as carbon for conversion, and the total amount of the iron raw material is considered as iron oxide for conversion.

次いで、還元処理された鉄粉(還元鉄)は冷却処理される。その後、反応せずに残存した還元剤と還元鉄とに分離されて、不純物成分を除去した還元鉄が得られる。分離の方法は公知の方法を用いることができるが、磁選による分離が最も効率的である。 The reduced iron powder (reduced iron) is then cooled. After that, the reducing agent remaining without reacting is separated from the reduced iron to obtain the reduced iron from which the impurity components have been removed. A known method can be used for separation, but separation by magnetic separation is the most efficient.

次に、得られた還元鉄は粉砕されて海綿鉄粉とされる。粉砕処理は公知の装置ならびに方法を用いて行うことができる。粉砕装置としては、例えば振動ミル、ボールミル、ロッドミル、ロールクラッシャーなどが挙げられる。 Next, the obtained reduced iron is pulverized into sponge iron powder. The pulverization treatment can be performed using known devices and methods. Examples of pulverizing devices include vibration mills, ball mills, rod mills, roll crushers and the like.

得られた海綿鉄粉は目開き180μm~350μmの篩で篩分けされる。このとき篩を通過しなかった鉄粉は再度粉砕処理が行われ、前記篩を通過するまで繰り返し粉砕処理される。前記篩を通過した全ての鉄粉が混ぜ合わせられて本発明の鉄粉とされる。この処理における篩の目開きによって、作製される鉄粉の見掛密度およびBET比表面積は調整することができる。 The sponge iron powder thus obtained is sieved through a sieve with an opening of 180 μm to 350 μm. At this time, the iron powder that does not pass through the sieve is subjected to a pulverization process again, and is repeatedly pulverized until it passes through the sieve. All of the iron powder that has passed through the sieve is mixed to obtain the iron powder of the present invention. The apparent density and BET specific surface area of the produced iron powder can be adjusted by the sieve opening in this treatment.

(脱酸素剤)
前記作製された鉄粉は、酸化促進剤であるハロゲン化金属などと混合されて本発明に係る脱酸素剤とされる。ハロゲン化金属としては、例えば、塩化ナトリウム、臭化ナトリウム、ヨウ化ナトリウム、塩化カリウム、臭化カリウム、ヨウ化カリウム、塩化カルシウム、塩化マグネシウム、塩化バリウムなどのアルカリ金属またはアルカリ土類金属のハロゲン化物の1種または2種以上が好ましく使用される。
(Oxygen absorber)
The iron powder thus produced is mixed with an oxidation accelerator such as a metal halide to form the oxygen scavenger according to the present invention. Examples of metal halides include alkali metal or alkaline earth metal halides such as sodium chloride, sodium bromide, sodium iodide, potassium chloride, potassium bromide, potassium iodide, calcium chloride, magnesium chloride, and barium chloride. 1 or 2 or more are preferably used.

ハロゲン化金属の鉄粉に対する配合量は鉄粉100質量部に対して0.05質量部~50質量部の範囲が好ましく、より好ましくは0.1質量部~20質量部の範囲である。 The amount of the metal halide compounded with respect to the iron powder is preferably in the range of 0.05 to 50 parts by mass, more preferably in the range of 0.1 to 20 parts by mass, per 100 parts by mass of the iron powder.

鉄粉とハロゲン化金属とは,鉄粉とハロゲン化金属粉末の両者を単に混合する方法,或いは鉄粉の表面に各種の手段でハロゲン化金属粉末を被覆する方法によって行うことができる。 The iron powder and the metal halide can be formed by simply mixing the iron powder and the metal halide powder, or by coating the surface of the iron powder with the metal halide powder by various means.

脱酸素剤は、包装袋内に封入されて、あるいは樹脂と混錬されシート状又はフィルム状に成形されて用いられる。 The oxygen scavenger is used by enclosing it in a packaging bag, or by kneading it with a resin and molding it into a sheet or film.

実施例1
粒径が10mm程度の鉄鉱石と粒径が10mm程度の石炭チャーとを重量比で7:3となるようにスクリューコンベアで搬送しながら混合した。この混合物を、雰囲気調整を行わずに加熱調整した内燃式ロータリーキルン内に、混合物の総給鉱量が400kg/h~450kg/hとなるように投入した。炉内温度が1000℃以下になるように加熱調整したところ、炉内の最低温度は740℃、最高温度は980℃であった。この炉内温度を維持しながら、ロータリーキルンの回転数を0.35rpm程度とし、8時間還元処理を行った。還元処理後の混合物を磁選し、反応されずに残存した石炭チャーと還元鉄とに分離し不純物成分を除去した。得られた還元鉄は振動ミルによって粉砕処理された後、目開き263μmの篩によって263μm超の鉄粉と263μm以下の鉄粉とに分級処理され、263μm超の鉄粉は目開き263μmの篩を通過する粒径になるまで粉砕処理と分級処理とが連続して繰り返しなされた。このようにして実施例1に係る鉄粉が得られた。得られた鉄粉の組成、粉体特性及び酸素吸収特性を後述の方法によって測定した。測定結果を表1に示す。
Example 1
Iron ore with a particle size of about 10 mm and coal char with a particle size of about 10 mm were mixed while being transported by a screw conveyor so that the weight ratio was 7:3. This mixture was put into an internal combustion rotary kiln which had been heated and adjusted without adjusting the atmosphere so that the total feed amount of the mixture was 400 kg/h to 450 kg/h. When heating was adjusted so that the temperature in the furnace was 1000°C or less, the minimum temperature in the furnace was 740°C and the maximum temperature was 980°C. While maintaining this furnace temperature, the rotation speed of the rotary kiln was set to about 0.35 rpm, and reduction treatment was performed for 8 hours. The mixture after the reduction treatment was subjected to magnetic separation to separate the remaining unreacted coal char and reduced iron to remove impurities. The obtained reduced iron is pulverized by a vibration mill, and then classified into iron powder of more than 263 μm and iron powder of 263 μm or less by a sieve with an opening of 263 μm. The pulverization process and the classification process were continuously repeated until a passing particle size was achieved. Thus, the iron powder according to Example 1 was obtained. The composition, powder characteristics and oxygen absorption characteristics of the obtained iron powder were measured by the methods described later. Table 1 shows the measurement results.

実施例2
鉄鉱石と石炭チャーの比率を重量比で6:4とし、混合物の総給鉱量を700kg/h~750kg/hとした以外は実施例1と同様にして鉄粉を得た。得られた鉄粉の組成、粉体特性及び酸素吸収特性を実施例1と同様にして測定した。測定結果を表1に示す。
Example 2
Iron powder was obtained in the same manner as in Example 1, except that the weight ratio of iron ore and coal char was 6:4, and the total ore supply amount of the mixture was 700 kg/h to 750 kg/h. The composition, powder characteristics and oxygen absorption characteristics of the obtained iron powder were measured in the same manner as in Example 1. Table 1 shows the measurement results.

実施例3
還元炉を内燃式ロータリーキルンから外燃式ロータリーキルンに変更した以外は実施例1と同様にして鉄粉を得た。得られた鉄粉の組成、粉体特性及び酸素吸収特性を実施例1と同様にして測定した。測定結果を表1に示す。
Example 3
An iron powder was obtained in the same manner as in Example 1, except that the reducing furnace was changed from an internal combustion rotary kiln to an external combustion rotary kiln. The composition, powder characteristics and oxygen absorption characteristics of the obtained iron powder were measured in the same manner as in Example 1. Table 1 shows the measurement results.

実施例4
混合物の総給鉱量を500kg/h~550kg/hとした以外は実施例3と同様にして鉄粉を得た。得られた鉄粉の組成、粉体特性及び酸素吸収特性を実施例1と同様にして測定した。測定結果を表1に示す。
Example 4
An iron powder was obtained in the same manner as in Example 3, except that the total ore supply amount of the mixture was 500 kg/h to 550 kg/h. The composition, powder characteristics and oxygen absorption characteristics of the obtained iron powder were measured in the same manner as in Example 1. Table 1 shows the measurement results.

比較例1
実施例1において、1回目の振動ミルによる粉砕処理の後に目開き263μmの篩を通過して得られた鉄粉を、比較例1に係る鉄粉とした。得られた鉄粉の組成、粉体特性及び酸素吸収特性を実施例1と同様にして測定した。測定結果を表1に示す。
Comparative example 1
In Example 1, the iron powder obtained by passing through a sieve with an opening of 263 μm after the first pulverization treatment by the vibration mill was used as the iron powder according to Comparative Example 1. The composition, powder characteristics and oxygen absorption characteristics of the obtained iron powder were measured in the same manner as in Example 1. Table 1 shows the measurement results.

比較例2
比較例1で得られた鉄粉について、さらに目開き109μmの篩を通過して得られた鉄粉を、比較例3に係る鉄粉とした。得られた鉄粉の組成、粉体特性及び酸素吸収特性を実施例1と同様にして測定した。測定結果を表1に示す。
Comparative example 2
The iron powder obtained in Comparative Example 1 was passed through a sieve with an opening of 109 μm, and the iron powder obtained in Comparative Example 3 was obtained. The composition, powder characteristics and oxygen absorption characteristics of the obtained iron powder were measured in the same manner as in Example 1. Table 1 shows the measurement results.

比較例3
鉄鉱石をミルスケール、石炭チャーをコークスとし、さらに還元炉を内燃式ロータリーキルンからトンネルキルンに変更し、還元温度を1050℃~1250℃で調整し、還元時間を38時間とした以外は実施例1と同様にして鉄粉を得た。得られた鉄粉の組成、粉体特性及び酸素吸収特性を実施例1と同様にして測定した。測定結果を表1に示す。
Comparative example 3
Example 1 except that mill scale was used as iron ore and coke was used as coal char, the reduction furnace was changed from an internal combustion rotary kiln to a tunnel kiln, the reduction temperature was adjusted to 1050 ° C. to 1250 ° C., and the reduction time was 38 hours. Iron powder was obtained in the same manner as The composition, powder characteristics and oxygen absorption characteristics of the obtained iron powder were measured in the same manner as in Example 1. Table 1 shows the measurement results.

(組成分析)
(金属鉄(M.Fe))
試料中の金属鉄量(M.Fe)の測定は、JIS M8713-1977「鉄鉱石類の還元試験方法」の解説 参考 6.1金属鉄定量方法に準拠して、試料を臭素―メタノール溶液中で撹拌し、金属鉄を抽出・溶解し、電位差自動滴定装置を用いてキレートで滴定する方法で行った。
(composition analysis)
(Metallic iron (M.Fe))
The amount of metallic iron (M.Fe) in the sample is measured according to JIS M8713-1977 "Reduction test method for iron ores". to extract and dissolve metallic iron, and titrate with a chelate using a potentiometric automatic titrator.

(酸素(O))
試料中の酸素量(O)は、酸素・窒素分析装置(LECO製 TCH600)を用いて算出した。
(oxygen (O))
The oxygen content (O) in the sample was calculated using an oxygen/nitrogen analyzer (TCH600 manufactured by LECO).

(炭素(C))
試料中の炭素量(C)は、炭素・硫黄分析装置(LECO製 CS-744)を用いて算出した。
(Carbon (C))
The carbon content (C) in the sample was calculated using a carbon/sulfur analyzer (LECO CS-744).

(見掛密度)
試料の見掛密度は、JIS Z 2504の金属粉の見掛密度測定方法の手順に従って測定した。
(apparent density)
The apparent density of the sample was measured according to the procedure of JIS Z 2504, Method for Measuring Apparent Density of Metal Powder.

(BET比表面積)
試料のBET比表面積は、BET一点法比表面積測定装置(株式会社マウンテック製、型式:Macsorb HM model-1208)を用いて測定した。
(BET specific surface area)
The BET specific surface area of the sample was measured using a BET one-point specific surface area measuring device (manufactured by Mountec Co., Ltd., model: Macsorb HM model-1208).

(平均粒径)
試料の粒度分布をレーザー回折式粒度分布測定装置MT(日機装社製、マイクロトラックModel9320-X100)を用いて測定し、体積基準で累積50%の粒径を平均粒径とした。
(Average particle size)
The particle size distribution of the sample was measured using a laser diffraction particle size distribution analyzer MT (manufactured by Nikkiso Co., Ltd., Microtrac Model 9320-X100), and the cumulative 50% particle size on a volume basis was taken as the average particle size.

(流動度)
試料の流動度は、JIS Z 2502の金属粉の流動性試験方法の手順に従って測定した。
(flow rate)
The fluidity of the sample was measured according to the procedure of JIS Z 2502, Metal Powder Fluidity Test Method.

(酸素吸収量)
試料100質量%に対して0.5質量%の塩を混合した組成物1gを通気性包装材に入れ、水10mLを染み込まさせた脱脂綿と共にガスバリア性袋に封入し、袋内をポンプで一度排気した。次に空気1500mLをガスバリア性袋の中に入れ、20℃で保管し、96時間後に袋の中の酸素濃度を測定し、次式により酸素吸収量を算出した。
酸素吸収量(mL/cm)={(20.9-X)/(100-X)}×1500×見掛密度
X:96時間後の酸素濃度(%)
(oxygen absorption)
1 g of a composition obtained by mixing 0.5% by mass of salt with respect to 100% by mass of a sample is placed in a breathable packaging material, sealed in a gas barrier bag together with absorbent cotton impregnated with 10 mL of water, and the inside of the bag is evacuated once with a pump. did. Next, 1500 mL of air was put into the gas barrier bag and stored at 20° C. After 96 hours, the oxygen concentration in the bag was measured and the oxygen absorption was calculated by the following equation.
Oxygen absorption (mL/cm 3 ) = {(20.9-X)/(100-X)} x 1500 x apparent density X: oxygen concentration after 96 hours (%)

表1から明らかなように、見掛密度が2.21g/cm~2.47g/cm、BET比表面積が2.14m/g~3.20m/gと本発明の規定範囲内である実施例1~4の鉄粉は、見掛密度が2.00g/cmおよび1.98g/cmと本発明の規定範囲よりも小さい比較例1および比較例2の鉄粉、およびBET比表面積が0.25m/gと本発明の規定範囲よりも小さい比較例3の鉄粉に比べて、単位体積当たりの酸素吸収量が多かった。つまり、実施例1~4の鉄粉は比較例1~3の鉄粉に比べて所望の酸素吸収量を維持しながら使用する鉄粉体積量を減らすことができた。 As is clear from Table 1, the apparent density is 2.21 g/cm 3 to 2.47 g/cm 3 and the BET specific surface area is 2.14 m 2 /g to 3.20 m 2 /g, which are within the specified ranges of the present invention. The iron powders of Examples 1 to 4 are the iron powders of Comparative Examples 1 and 2, which have apparent densities of 2.00 g/cm 3 and 1.98 g/cm 3 , which are smaller than the specified range of the present invention, and Compared to the iron powder of Comparative Example 3, which has a BET specific surface area of 0.25 m 2 /g, which is smaller than the specified range of the present invention, the oxygen absorption amount per unit volume was large. That is, the iron powders of Examples 1-4 could reduce the volume of the iron powder used while maintaining the desired oxygen absorption amount compared to the iron powders of Comparative Examples 1-3.

本発明に係る鉄粉によれば、酸素吸収能力を低下させることなく脱酸素剤のパッケージの小型化が可能となる。 According to the iron powder according to the present invention, it is possible to reduce the size of the package of the oxygen scavenger without lowering the oxygen absorption capacity.

Claims (2)

脱酸素剤に用いられる鉄粉であって、
見掛密度が2.21g/cm以上2.80g/cm以下であり、
BET比表面積が2.0m/g以上4.0m/g以下であり、
金属鉄含有量が83質量%以上93質量%以下の範囲であり、
流動度が28sec/50g以上50sec/50g以下の範囲であり、
平均粒径が30μm以上300μm以下の範囲であ
ことを特徴とする脱酸素剤用鉄粉。
An iron powder used as an oxygen absorber,
An apparent density of 2.21 g/cm 3 or more and 2.80 g/cm 3 or less,
BET specific surface area is 2.0 m 2 /g or more and 4.0 m 2 /g or less ,
The metallic iron content is in the range of 83% by mass or more and 93% by mass or less,
The fluidity is in the range of 28 sec/50 g or more and 50 sec/50 g or less,
An iron powder for a deoxidizer, characterized by having an average particle size in the range of 30 µm to 300 µm .
請求項1記載の脱酸素剤用鉄粉と、
ハロゲン化金属と、
を含むことを特徴とする脱酸素剤。
The iron powder for oxygen scavenger according to claim 1;
a metal halide;
An oxygen scavenger comprising:
JP2021107179A 2021-06-29 2021-06-29 Iron powder for deoxidizer Active JP7329563B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021107179A JP7329563B2 (en) 2021-06-29 2021-06-29 Iron powder for deoxidizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021107179A JP7329563B2 (en) 2021-06-29 2021-06-29 Iron powder for deoxidizer

Publications (2)

Publication Number Publication Date
JP2023005342A JP2023005342A (en) 2023-01-18
JP7329563B2 true JP7329563B2 (en) 2023-08-18

Family

ID=85107143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021107179A Active JP7329563B2 (en) 2021-06-29 2021-06-29 Iron powder for deoxidizer

Country Status (1)

Country Link
JP (1) JP7329563B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002241821A (en) 2001-02-14 2002-08-28 Kawasaki Steel Corp Method for manufacturing sponge iron and method for manufacturing reduced iron powder
JP2007229669A (en) 2006-03-02 2007-09-13 Dowa Holdings Co Ltd Method for treating water containing halogenated organic compound and decomposing agent to be used therein, and manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002241821A (en) 2001-02-14 2002-08-28 Kawasaki Steel Corp Method for manufacturing sponge iron and method for manufacturing reduced iron powder
JP2007229669A (en) 2006-03-02 2007-09-13 Dowa Holdings Co Ltd Method for treating water containing halogenated organic compound and decomposing agent to be used therein, and manufacturing method

Also Published As

Publication number Publication date
JP2023005342A (en) 2023-01-18

Similar Documents

Publication Publication Date Title
KR20140108659A (en) Iron and molybdenum containing pellets
JP7329563B2 (en) Iron powder for deoxidizer
JP4885728B2 (en) Iron powder, usage as food additive, food additive, and iron powder manufacturing method
US4039325A (en) Vacuum smelting process for producing ferromolybdenum
CN105829551A (en) Method for producing manganese ore pellets
CA1079095A (en) Vacuum smelting process for producing ferromolybdenum
JP2020147777A (en) Sponge iron and manufacturing method of reduced iron powder
CN110546284B (en) Method for producing sintered ore
US3966459A (en) Process for thermal dissociation of molybdenum disulfide
JP3561724B2 (en) Reduced iron powder for oxygen scavenger and method for producing the same
JP4575203B2 (en) Iron powder for oxygen scavenger and method for producing the same
US20060107792A1 (en) Method for producing fine, low bulk density, metallic nickel powder
JPH0285324A (en) Operating method for sintering low in nox
EP2597165B1 (en) Iron and molybdenum containing pellets
PL85621B1 (en) Preparation of feed material for a blast furnace[US3946098A]
JP3521057B2 (en) Iron powder for oxygen scavenger and method for producing the same
US3682621A (en) Method of producing sponge-iron pellets from hematitic alumina-containing iron ore
JP4764361B2 (en) Indium oxide powder and method for producing the same
EP1812611A1 (en) Method for producing fine, low bulk density, metallic nickel powder
JPS63274722A (en) Reduced-iron composition and its production
JPH0380849B2 (en)
JP2022120882A (en) Method for producing spongy iron powder
JPH0558606A (en) Silicon nitride powder having highly filling property and its production
JPH09117660A (en) Oxygen absorbing material and its manufacture
JPH022810B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230502

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230807

R150 Certificate of patent or registration of utility model

Ref document number: 7329563

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150