JP4575203B2 - Iron powder for oxygen scavenger and method for producing the same - Google Patents

Iron powder for oxygen scavenger and method for producing the same Download PDF

Info

Publication number
JP4575203B2
JP4575203B2 JP2005087448A JP2005087448A JP4575203B2 JP 4575203 B2 JP4575203 B2 JP 4575203B2 JP 2005087448 A JP2005087448 A JP 2005087448A JP 2005087448 A JP2005087448 A JP 2005087448A JP 4575203 B2 JP4575203 B2 JP 4575203B2
Authority
JP
Japan
Prior art keywords
particles
oxygen
iron
iron powder
surface area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005087448A
Other languages
Japanese (ja)
Other versions
JP2006263630A (en
Inventor
孝宏 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Chemical Corp
Original Assignee
JFE Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Chemical Corp filed Critical JFE Chemical Corp
Priority to JP2005087448A priority Critical patent/JP4575203B2/en
Publication of JP2006263630A publication Critical patent/JP2006263630A/en
Application granted granted Critical
Publication of JP4575203B2 publication Critical patent/JP4575203B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Gas Separation By Absorption (AREA)

Description

本発明は、食品や薬剤などの品質を保持するために使用される、酸素との反応性に優れた脱酸素剤用鉄粉及びその製造方法に関するものである。   The present invention relates to an oxygen scavenger iron powder having excellent reactivity with oxygen, which is used for maintaining the quality of foods and drugs, and a method for producing the same.

鉄粉の酸素との反応を利用する用途としては、食品などの酸化による品質劣化を防ぐための脱酸素剤用、或いは、使い捨てカイロなどの発熱剤用などが知られている。脱酸素剤用の鉄粉は、鉄が酸素と反応して雰囲気内の酸素を奪うことで無酸素状態(非酸化性雰囲気)を作り出し、細菌やカビなどの活動を抑制する或いは酸化を防ぐことによって、食品や薬剤などの品質劣化を抑制するものである。鉄粉は比較的安価であり、また人体に対して害がないので、脱酸素剤として多く使用されている。脱酸素剤としての他の使用方法としては、鉄粉を樹脂と混合した、脱酸素機能を有する無菌化包装容器とする使い方や、不活性ガス中の微量の酸素を除去する材料としても使用されている。   Known uses for utilizing the reaction of iron powder with oxygen include oxygen scavengers for preventing quality deterioration due to oxidation of foods, etc., or heat generating agents such as disposable warmers. Iron powder for oxygen scavengers creates oxygen-free conditions (non-oxidizing atmosphere) by iron reacting with oxygen and depriving the atmosphere of oxygen, thereby suppressing activities such as bacteria and mold or preventing oxidation. This suppresses the deterioration of quality of foods and drugs. Since iron powder is relatively inexpensive and has no harm to the human body, it is often used as an oxygen scavenger. Other uses as oxygen scavengers include sterilized packaging containers with a deoxygenation function, in which iron powder is mixed with resin, and materials used to remove trace amounts of oxygen in inert gases. ing.

このような用途の鉄粉としては、従来、粉末冶金用に製造される噴霧鉄粉、或いは使い捨てカイロ用に製造される還元鉄粉が主として使用されており、平均粒径は45〜150μm、見掛け密度は2.0〜3.0g/cm3 程度であった。しかし、これらの鉄粉は、酸素との反応性が低いという問題があった。反応性が低い鉄粉を脱酸素剤として用いると、酸素吸収初期段階の酸素吸収速度が十分ではないために無酸素状態になるまでに時間を要し、この間に食品などの品質が劣化してしまう、或いは、脱酸素剤の酸素吸収速度に合わせて適用する商品を制限する必要がある、などの問題が生じていた。 Conventionally, spray iron powder produced for powder metallurgy or reduced iron powder produced for disposable body warmers is mainly used as iron powder for such applications, and the average particle size is 45 to 150 μm, apparent. The density was about 2.0 to 3.0 g / cm 3 . However, these iron powders have a problem of low reactivity with oxygen. If iron powder with low reactivity is used as an oxygen scavenger, the oxygen absorption rate at the initial stage of oxygen absorption is not sufficient, so it takes time to become oxygen-free. Or there is a problem that it is necessary to limit the products to be applied according to the oxygen absorption rate of the oxygen scavenger.

そのため、より多くの分野の商品に適用することができるとともに、商品の劣化を従来以上に抑えて新鮮な状態を維持することのできる、初期段階の酸素吸収速度が大きい、より反応性に優れる鉄粉が求められていた。また、従来の鉄粉は、表面のみが酸化して粒子内部は有効に使われていないという問題もあり、粒子内部まで有効に活用できる鉄粉が求められていた。   Therefore, it can be applied to products in more fields, and can maintain a fresh state by suppressing deterioration of products more than before, with a high initial oxygen absorption rate and more reactive iron Powder was sought. In addition, the conventional iron powder has a problem that only the surface is oxidized and the inside of the particle is not effectively used, and an iron powder that can be effectively used to the inside of the particle has been demanded.

この要望に応えるべく、特許文献1には、比表面積が1.0m2 /g以上、見掛け密度が1.0g/cm3 以下、平均粒径が9.0μm以下の還元鉄粉からなる脱酸素剤が提案されている。また、特許文献2には、酸素含有量が0.7〜7質量%であり且つ比表面積が200〜2000m2/kg(比表面積0.2〜2m2 /gに相当)である、表面を部分酸化した鉄粉が提案されている。しかしながら、これらの鉄粉は何れも十分な反応性を有していないという問題点がある。 In order to meet this demand, Patent Document 1 describes deoxygenation comprising reduced iron powder having a specific surface area of 1.0 m 2 / g or more, an apparent density of 1.0 g / cm 3 or less, and an average particle size of 9.0 μm or less. Agents have been proposed. Patent Document 2 discloses a surface having an oxygen content of 0.7 to 7% by mass and a specific surface area of 200 to 2000 m 2 / kg (corresponding to a specific surface area of 0.2 to 2 m 2 / g). Partially oxidized iron powder has been proposed. However, there is a problem that none of these iron powders have sufficient reactivity.

更に、特許文献3には、鉄粉の表面に0.1〜2質量%のCl(塩素)を含有する塩化鉄からなる被覆層を有する鉄粉が提案されている。しかしながら、Clを含有する被覆層を有することで、酸素との反応性は若干改善されるものの、元の鉄粉自体の反応性が十分ではないという問題がある。   Further, Patent Document 3 proposes an iron powder having a coating layer made of iron chloride containing 0.1 to 2% by mass of Cl (chlorine) on the surface of the iron powder. However, although having a coating layer containing Cl slightly improves the reactivity with oxygen, there is a problem that the reactivity of the original iron powder itself is not sufficient.

その他、鉄粉を粉砕して微粒化する方法もあるが、粉砕に要するコストが高くなるという問題があり、好ましくない。また、粒径が1μm程度の微粒子の鉄粉も存在するが、酸素との反応性には優れるものの、嵩密度が小さくて嵩張ったり、ハンドリング性が悪かったり、微粉のために粉自体が食品などを汚染してしまったりするなどの問題があった。
特開2002−292276号公報 特開平11−47585号公報 特開平11−302706号公報
In addition, there is a method in which iron powder is pulverized to be atomized, but there is a problem that the cost required for pulverization increases, which is not preferable. There are also fine iron powders with a particle size of about 1 μm, but they are excellent in reactivity with oxygen, but the bulk density is small and bulky, the handling property is poor, or the powder itself is food because of the fine powders. There was a problem such as contaminating.
JP 2002-292276 A Japanese Patent Laid-Open No. 11-47585 Japanese Patent Laid-Open No. 11-302706

酸素との反応性に優れ、初期の酸素吸収速度が大きく、更に嵩密度が高く、単位容積当たりの酸素吸収に優れ、粒子内部まで有効に反応に利用できる鉄粉が求められているにも拘わらず、上記のように、従来有効な手段はなく、従前どおり粉末冶金用に製造される噴霧鉄粉、或いは使い捨てカイロ用に製造される還元鉄粉が主として使用されているのが実情であった。   Despite the demand for iron powder that has excellent reactivity with oxygen, high initial oxygen absorption rate, high bulk density, excellent oxygen absorption per unit volume, and can be used effectively for the reaction inside the particles. As described above, there is no conventional effective means, and the actual situation is that sprayed iron powder produced for powder metallurgy as usual or reduced iron powder produced for disposable body warmers is mainly used. .

本発明は上記事情に鑑みてなされたもので、その目的とするところは、酸素との反応性に優れ、初期の酸素吸収速度が従来に比べて極めて大きく、しかも嵩密度が高く、単位容積当たりの酸素吸収に優れ、更に粒子内部まで有効に反応に利用できる脱酸素剤用鉄粉並びにその製造方法を提供することである。   The present invention has been made in view of the above circumstances, and the object thereof is excellent in reactivity with oxygen, the initial oxygen absorption rate is extremely higher than before, and the bulk density is high. It is an object to provide iron powder for oxygen scavengers that is excellent in oxygen absorption and that can be effectively used for reaction even inside the particles, and a method for producing the same.

上記課題を解決するための第1の発明に係る脱酸素剤用鉄粉は、流動焙焼法により製造した酸化鉄粒子を、300℃以上900℃以下の温度範囲で還元用ガスを用いて還元してなる脱酸素剤用鉄粉であり、且つ、球状粒子の内部に外部とつながる細孔を有した、スポンジ状の構造であって、水銀圧入法で測定される前記細孔の直径が2μm以下であり、前記粒子の比表面積が、前記粒子の平均粒径から算出した外部比表面積の100倍以上であることを特徴とするものである。 The iron powder for oxygen scavenger according to the first invention for solving the above-mentioned problem is obtained by reducing iron oxide particles produced by a fluid roasting method using a reducing gas in a temperature range of 300 ° C. or more and 900 ° C. or less. The iron powder for oxygen scavengers and having a spongy structure with pores connected to the outside inside the spherical particles , and the diameter of the pores measured by mercury porosimetry is 2 μm The specific surface area of the particles is 100 times or more the external specific surface area calculated from the average particle diameter of the particles.

第2の発明に係る脱酸素剤用鉄粉は、第1の発明において、前記粒子の嵩密度が3g/cm3 以上であることを特徴とするものである。 The oxygen scavenger iron powder according to the second invention is characterized in that, in the first invention, the bulk density of the particles is 3 g / cm 3 or more.

第3の発明に係る脱酸素剤用鉄粉は、第1または第2の発明において、前記粒子の平均粒径が2mm以下であることを特徴とするものである。   The oxygen scavenger iron powder according to the third invention is characterized in that, in the first or second invention, the average particle diameter of the particles is 2 mm or less.

第4の発明に係る脱酸素剤用鉄粉の製造方法は、球状粒子の内部に外部とつながる細孔を有した、スポンジ状の構造であって、水銀圧入法で測定される前記細孔の直径が2μm以下であり、前記粒子の比表面積が、前記粒子の平均粒径から算出した外部比表面積の100倍以上である脱酸素剤用鉄粉の製造方法であって、流動焙焼法により製造した酸化鉄粒子を、300℃以上900℃以下の温度範囲で還元用ガスを用いて還元することを特徴とするものである。
第5の発明に係る脱酸素剤用鉄粉の製造方法は、第4の発明において、前記粒子の嵩密度が3g/cm 3 以上であることを特徴とするものである。
第6の発明に係る脱酸素剤用鉄粉の製造方法は、第4または第5の発明において、前記粒子の平均粒径が2mm以下であることを特徴とするものである。
A method for producing iron powder for oxygen scavengers according to a fourth aspect of the present invention is a sponge-like structure having pores connected to the outside inside spherical particles, wherein the pores measured by mercury porosimetry are used. A method for producing iron powder for oxygen scavengers having a diameter of 2 μm or less and the specific surface area of the particles being 100 times or more the external specific surface area calculated from the average particle diameter of the particles, by a fluid roasting method The manufactured iron oxide particles are reduced using a reducing gas in a temperature range of 300 ° C. or more and 900 ° C. or less.
According to a fifth aspect of the present invention, there is provided a method for producing an oxygen scavenger iron powder according to the fourth aspect, wherein the particle has a bulk density of 3 g / cm 3 or more.
According to a sixth aspect of the present invention, there is provided the method for producing an oxygen scavenger iron powder according to the fourth or fifth aspect, wherein the average particle diameter of the particles is 2 mm or less.

本発明の脱酸素剤用鉄粉によれば、その構造が比表面積の大きいスポンジ構造であるので、酸素との反応性に優れ、初期の酸素吸収速度が従来に比べて極めて大きくなり、また、粒子内部まで酸素と反応する箇所として有効に活用することができる。更に、鉄粒子の形状が球状であるので、嵩密度が高く、極めて大きな単位容積当たりの酸素吸収能を得ることができる。そのため、本発明の脱酸素剤用鉄粉を脱酸素剤として使用した場合には、食品及び薬剤などの酸化による品質劣化を長期間に亘って安定して防ぐことが可能となり、工業上有益な効果がもたらされる。   According to the iron powder for oxygen scavenger of the present invention, since the structure is a sponge structure with a large specific surface area, the reactivity with oxygen is excellent, and the initial oxygen absorption rate is extremely large as compared with the conventional one, It can be effectively used as a site that reacts with oxygen up to the inside of the particle. Furthermore, since the shape of the iron particles is spherical, the bulk density is high, and an extremely large oxygen absorption capacity per unit volume can be obtained. Therefore, when the oxygen powder for oxygen absorber of the present invention is used as an oxygen absorber, it is possible to stably prevent quality deterioration due to oxidation of foods and drugs over a long period of time, which is industrially beneficial. The effect is brought about.

以下、本発明を具体的に説明する。本発明に係る脱酸素剤用鉄粉は、鉄粒子から構成されており、この鉄粒子の形状が球状であることを特徴の1つとしている。球状であることにより、ハンドリング性に優れ、密に充填することができるため、嵩密度が大きく、単位容積当たりの酸素吸収に優れたものとなる。   Hereinafter, the present invention will be specifically described. The oxygen powder for oxygen scavenger according to the present invention is composed of iron particles, and the iron particles have a spherical shape. Since it is spherical, it has excellent handling properties and can be densely packed, so that it has a large bulk density and excellent oxygen absorption per unit volume.

また、本発明に係る脱酸素剤用鉄粉は、球状の粒子の内部に、外部とつながる細孔が存在し、この細孔によってスポンジ状の構造を有することを他の特徴の1つとしている。このようなスポンジ状構造を有しているため、微細な鉄粒子が多く集まったことと同じような効果を呈し、粒径の割に比表面積が大きく、高い反応性を示す。このため、初期の酸素吸収速度が大きく、また、粒子内部も酸素との反応に利用され、脱酸素剤用の鉄粉として適したものとなる。   In addition, the iron powder for oxygen scavenger according to the present invention has one of the other features that a pore connected to the outside exists inside the spherical particle and has a sponge-like structure by the pore. . Since it has such a sponge-like structure, it exhibits the same effect as a collection of many fine iron particles, and has a large specific surface area with respect to the particle size and high reactivity. For this reason, the initial oxygen absorption rate is large, and the inside of the particles is also used for the reaction with oxygen, making it suitable as iron powder for an oxygen scavenger.

本発明に係る脱酸素剤用鉄粉では、鉄粒子内部のスポンジ構造を形成する細孔の直径は2μm以下であることを必須とする。細孔が小さいほど、粒子内部のスポンジ構造によりもたらされる比表面積が大きくなり、酸素との反応性に優れ、粒子内部も酸素との反応に有効に使われるためである。細孔が大きい場合には、粒子の平均粒径から算出される外部比表面積に対する、粒子の比表面積の倍率が低下して反応性が低くなる。それゆえ、細孔の直径は2μm以下を必須とし、好ましくは1μm以下、より一層好ましくは0.7μm以下であることが望ましい。   In the iron powder for oxygen scavenger according to the present invention, it is essential that the diameter of the pores forming the sponge structure inside the iron particles is 2 μm or less. This is because the smaller the pore, the larger the specific surface area provided by the sponge structure inside the particle, the better the reactivity with oxygen, and the more effective the inside of the particle is used for the reaction with oxygen. When the pores are large, the ratio of the specific surface area of the particles with respect to the external specific surface area calculated from the average particle diameter of the particles decreases, and the reactivity decreases. Therefore, it is essential that the diameter of the pore is 2 μm or less, preferably 1 μm or less, and more preferably 0.7 μm or less.

本発明に係る脱酸素剤用鉄粉では、鉄粒子の比表面積は、粒子の平均直径から算出される外部比表面積の100倍以上であることを必須とする。外部比表面積に対して比表面積が大きくなるのは、粒子内部のスポンジ状構造によるもので、スポンジ状構造が発達しているほど倍率が大きくなり、活性の高い鉄粒子となる。この観点から、鉄粒子の比表面積は、粒子の平均粒径から算出される外部比表面積に対して100倍以上であることを必須とし、好ましくは300倍以上、より好ましくは500倍以上、より一層好ましくは1000倍以上であることが望ましい。   In the oxygen powder for oxygen scavenger according to the present invention, it is essential that the specific surface area of the iron particles is at least 100 times the external specific surface area calculated from the average diameter of the particles. The specific surface area is larger than the external specific surface area due to the sponge-like structure inside the particle. The more the sponge-like structure is developed, the larger the magnification becomes, and the more active iron particles are obtained. From this viewpoint, the specific surface area of the iron particles must be 100 times or more with respect to the external specific surface area calculated from the average particle diameter of the particles, preferably 300 times or more, more preferably 500 times or more, more More preferably, it is desirable that it is 1000 times or more.

比表面積の測定方法としては、BET法が一般的に知られており、本発明の脱酸素剤用鉄粉の測定にもBET法を使用することができる。勿論、BET法以外の測定方法でも問題はない。また、平均粒径の測定は、図1に、本発明の脱酸素剤用鉄粉の走査電子顕微鏡写真を示しているように、電子顕微鏡を用いて100個以上の粒子の粒径を測定し、これらを平均した値を用いることが好ましい。   The BET method is generally known as a method for measuring the specific surface area, and the BET method can also be used for measuring the iron powder for oxygen scavenger of the present invention. Of course, there is no problem even with a measurement method other than the BET method. The average particle size is measured by measuring the particle size of 100 or more particles using an electron microscope, as shown in FIG. 1, which is a scanning electron micrograph of the iron powder for oxygen scavenger of the present invention. It is preferable to use a value obtained by averaging these.

粒子の平均粒径から算出される外部比表面積、即ち試料1g当たりの全表面積S(m2 /g)は、下記の(1)式から求めることができる。 The external specific surface area calculated from the average particle diameter of the particles, that is, the total surface area S (m 2 / g) per 1 g of the sample can be obtained from the following equation (1).

但し、(1)式において、Nは試料1g中の粒子の個数(個/g)であり、sは粒子1個当たりの外表面積(m2 /個)である。Nは下記の(2)式から、またsは下記の(3)式から求めることができる。(2)式におけるWは粒子1個当たりの質量(g/個)であり、Wは下記の(4)式によって求めることができる。(3)式及び(4)式におけるdは粒子の平均直径(μm)である。ここでは、純鉄の真密度を7.85g/cm3としている。 However, in the formula (1), N is the number (particles / g) of particles in 1 g of the sample, and s is the outer surface area (m 2 / particle) per particle. N can be obtained from the following equation (2), and s can be obtained from the following equation (3). W in the formula (2) is a mass (g / piece) per particle, and W can be obtained by the following formula (4). In the formulas (3) and (4), d is the average diameter (μm) of the particles. Here, the true density of pure iron is 7.85 g / cm 3 .

ところで、スポンジ状の構造を有する鉄粉として、海綿鉄の存在が従来から知られている。海綿鉄は脱酸素剤としても用いられている還元鉄の原料でもある。この海綿鉄は、鉄鉱石やミルスケールなどの酸化鉄をCO還元する際に、酸化鉄の一次粒子の表面からウィスカー状の粒子が成長し、それが絡み合うことによってスポンジ状構造になったものである。   By the way, the presence of sponge iron is conventionally known as an iron powder having a sponge-like structure. Sponge iron is also a raw material for reduced iron, which is also used as an oxygen scavenger. This sponge iron has a sponge-like structure because whisker-like particles grow from the surface of the primary particles of iron oxide when iron oxide such as iron ore and mill scale is CO-reduced. is there.

これに対し、本発明の脱酸素剤用鉄粉は、粒子の内部に2μm以下の微細な細孔を有したスポンジ構造であり、この細孔は海綿鉄の細孔よりもはるかに小さいものであり、生成機構も全く異なるものである。図2及び図3に、本発明に係る脱酸素剤用鉄粉の断面の走査電子顕微鏡写真を示す。図3は、図2を更に拡大した写真である。図2及び図3からも明らかなように、本発明の脱酸素剤用鉄粉のスポンジ構造は、球状に成型した酸化鉄を還元する際に酸化鉄中の酸素が還元されて抜けることによりできる構造であり、海綿鉄のスポンジ構造とは本質的に異なるものである。つまり、海綿鉄では、粒子の外周部に柱状粒子が成長するのみであるので、粒子の比表面積は粒子の平均直径から算出される外部比表面積の100倍以上になり得ず、本発明に係る脱酸素剤用鉄粉のような著しい活性は望めない。   On the other hand, the iron powder for oxygen scavenger of the present invention has a sponge structure with fine pores of 2 μm or less inside the particles, and these pores are much smaller than the pores of sponge iron. Yes, the generation mechanism is quite different. 2 and 3 show scanning electron micrographs of the cross section of the oxygen scavenger iron powder according to the present invention. FIG. 3 is an enlarged photograph of FIG. As apparent from FIGS. 2 and 3, the sponge structure of the iron powder for oxygen scavenger according to the present invention can be obtained by reducing and removing oxygen in iron oxide when reducing spherically shaped iron oxide. The structure is essentially different from the sponge structure of sponge iron. That is, in sponge iron, columnar particles only grow on the outer peripheral portion of the particles, so the specific surface area of the particles cannot be more than 100 times the external specific surface area calculated from the average diameter of the particles, and according to the present invention. The remarkable activity like iron powder for oxygen scavengers cannot be expected.

また、本発明に係る脱酸素剤用鉄粉は、その嵩密度を3g/cm3 以上とすることが好ましい。本発明の脱酸素剤用鉄粉である鉄粒子は、その形状が球状であるので、密に充填することが可能であり、高い嵩密度を得ることができる。また、通常の脱酸素剤として用いられるスポンジ構造を有する還元鉄粉に比べて微細な細孔を有することも、高い嵩密度を得られる理由である。高い嵩密度が得られるので、脱酸素剤自体もコンパクトにすることが可能である。このようなことから、本発明の脱酸素剤用鉄粉の嵩密度は3g/cm3以上が好ましく、更に好ましくは3.5g/cm3 以上であることが望ましい。 Moreover, the oxygen powder for oxygen scavenger according to the present invention preferably has a bulk density of 3 g / cm 3 or more. Since the iron particles that are the iron powder for oxygen scavenger of the present invention have a spherical shape, they can be packed densely and a high bulk density can be obtained. Moreover, having a fine pore compared with the reduced iron powder which has a sponge structure used as a normal oxygen scavenger is also a reason why a high bulk density can be obtained. Since a high bulk density is obtained, the oxygen scavenger itself can be made compact. For this reason, the bulk density of the oxygen scavenger iron powder for the present invention is preferably from 3 g / cm 3 or more, further preferably at 3.5 g / cm 3 or more.

また、本発明に係る脱酸素剤用鉄粉の平均粒径は2mm以下であることが好ましい。平均粒径が2mmを越えると、粒子同士の間の隙間が大きくなり、嵩密度が低下し、単位容積当たりの酸素吸収能力が低下するためである。また、粒子内部まで完全に還元するのに時間を要したり、粒径が大きいと小さい粒子に比べて内部まで酸素が入り込みにくくなったりするなどの問題があるため、好ましくない。逆に、平均粒径が小さ過ぎるのもハンドリング性が悪くなるなどの問題が生ずるため、好ましくない。従って、本発明に係る脱酸素剤用鉄粉の平均粒径は2mm以下が好ましく、より好ましくは30μm以上2mm以下、更に好ましくは50μm以上1.5mm以下、一層好ましくは100μm以上1mm以下であることが望ましい。必要に応じて分級し、平均粒径を調整してもよい。   Moreover, it is preferable that the average particle diameter of the iron powder for oxygen scavengers according to the present invention is 2 mm or less. This is because if the average particle diameter exceeds 2 mm, the gap between the particles increases, the bulk density decreases, and the oxygen absorption capacity per unit volume decreases. Further, it is not preferable because it takes time to completely reduce the inside of the particles, and when the particle size is large, oxygen is less likely to enter the inside as compared with the small particles. On the contrary, if the average particle diameter is too small, problems such as poor handling properties occur, which is not preferable. Therefore, the average particle size of the oxygen powder for oxygen scavenger according to the present invention is preferably 2 mm or less, more preferably 30 μm to 2 mm, further preferably 50 μm to 1.5 mm, and still more preferably 100 μm to 1 mm. Is desirable. Classification may be performed as necessary to adjust the average particle size.

更に、本発明の脱酸素剤用鉄粉は、つまり、本発明の脱酸素剤用鉄粉の原料となる球状酸化鉄は、シリカ(珪酸:SiO2 )を含んでいることが望ましい。シリカの存在が独特のスポンジ構造の形成に役立つためである。本発明の脱酸素剤用鉄粉は、球状酸化鉄を還元することにより得たものであり、シリカを含有しない場合には、酸素が抜けてスポンジ構造を形成するはずの鉄同士が焼結してスポンジ構造の破壊が進んでしまうからである。これは、還元によって生成した微細なスポンジ状の構造の鉄は非常に微細で反応性が高いことによる。しかし、シリカを含有させると、スポンジ構造を形成する鉄粒子の焼結を防止することができるため、スポンジ構造を有する本発明に係る脱酸素剤用鉄粉を得るのに非常に有効となる。 Furthermore, the iron powder for oxygen scavengers of the present invention, that is, the spherical iron oxide used as the raw material for the iron powder for oxygen scavengers of the present invention, preferably contains silica (silicic acid: SiO 2 ). This is because the presence of silica helps to form a unique sponge structure. The iron powder for oxygen scavenger of the present invention is obtained by reducing spherical iron oxide, and when it does not contain silica, the irons that should form a sponge structure due to the release of oxygen are sintered together. This is because the destruction of the sponge structure proceeds. This is because fine sponge-like iron produced by reduction is very fine and highly reactive. However, when silica is contained, it is possible to prevent the iron particles forming the sponge structure from being sintered, which is very effective in obtaining the iron powder for oxygen scavenger according to the present invention having a sponge structure.

本発明の脱酸素剤用鉄粉の原料となる球状酸化鉄に含まれるシリカの量は、30ppm以上5質量%以下が望ましい。シリカが30ppm未満では、スポンジ構造を形成する鉄の焼結を防止することが困難であり、一方、シリカが5質量%を越えるとスポンジ構造を形成する鉄の焼結を防止する効果はあるものの、酸素との反応が阻害されるようになるため、即ち脱酸素剤としての能力が落ちるためである。従って、球状酸化鉄中のシリカの量は、30ppm以上5質量%以下が好ましく、より好ましくは50ppm以上3質量%以下、更に好ましくは100ppm以上1質量%以下、一層好ましくは200ppm以上5000ppm以下、最も好ましくは300ppm以上3000ppm以下である。また、焼結を防止する元素として、シリカ以外にもAl、Ti、Cr、Niなどの酸化物を含んでいても構わない。   As for the quantity of the silica contained in the spherical iron oxide used as the raw material of the iron powder for oxygen scavengers of this invention, 30 ppm or more and 5 mass% or less are desirable. If the silica is less than 30 ppm, it is difficult to prevent the sintering of iron that forms a sponge structure. On the other hand, if the silica exceeds 5% by mass, there is an effect of preventing the sintering of iron that forms a sponge structure. This is because the reaction with oxygen is inhibited, that is, the ability as an oxygen scavenger is reduced. Accordingly, the amount of silica in the spherical iron oxide is preferably 30 ppm or more and 5% by mass or less, more preferably 50 ppm or more and 3% by mass or less, still more preferably 100 ppm or more and 1% by mass or less, and still more preferably 200 ppm or more and 5000 ppm or less. Preferably they are 300 ppm or more and 3000 ppm or less. In addition to silica, oxides such as Al, Ti, Cr, and Ni may be included as elements for preventing sintering.

次に、本発明に係る脱酸素剤に適した球状鉄粉の製造方法の1実施形態について説明する。   Next, an embodiment of a method for producing spherical iron powder suitable for the oxygen scavenger according to the present invention will be described.

本発明に係る脱酸素剤用球状鉄粉は、球状の酸化鉄粒子を還元することにより得られる。原料となる、この球状の酸化鉄粒子の製造方法としては、1例として流動焙焼法を用いることができる。流動焙焼法を用いた場合は、容易に球状の酸化鉄粒子を得ることができる。また、シリカを含んだ原料溶液を用いて流動焙焼法で酸化鉄粒子を製造することにより、シリカが粒子内部に均一に分散した酸化鉄粒子が得られる。シリカが粒子内部に均一に分散することにより、球状酸化鉄粒子を還元しても、焼結することなく、スポンジ状構造を得ることができる。   The spherical iron powder for oxygen scavenger according to the present invention is obtained by reducing spherical iron oxide particles. As a method for producing the spherical iron oxide particles as a raw material, a fluid roasting method can be used as an example. When the fluid roasting method is used, spherical iron oxide particles can be easily obtained. Further, by producing iron oxide particles by a fluid roasting method using a raw material solution containing silica, iron oxide particles in which silica is uniformly dispersed inside can be obtained. Since silica is uniformly dispersed inside the particles, a sponge-like structure can be obtained without sintering even when spherical iron oxide particles are reduced.

酸化鉄の原料溶液としては、鋼材の酸洗液である塩化第一鉄溶液や塩化第二鉄溶液、塩化第一鉄溶液と塩化第二鉄溶液などとの混合液などを用いることができる。また、塩化鉄溶液の中に、シリカ以外の添加物或いは不純物を含んでいても構わない。   As the raw material solution of iron oxide, ferrous chloride solution or ferric chloride solution, a mixed solution of ferrous chloride solution and ferric chloride solution, or the like, which is a pickling solution for steel materials, can be used. Further, the iron chloride solution may contain additives or impurities other than silica.

球状酸化鉄の還元方法としては、一般的な還元炉を使用することができる。還元用ガスとしては水素や一酸化炭素など、一般的な還元用ガスを用いることができる。還元温度は酸化鉄を還元することが可能な300℃以上で還元すればよい。但し、温度が高過ぎると粒子同士が焼結したり、スポンジ構造の焼結が進んだりして、細孔が消滅するため、高過ぎるのは好ましくない。この観点から、還元温度としては300℃以上900℃以下とする必要があり、好ましくは300℃以上800℃以下、更に好ましくは300℃以上700℃以下である。   As a method for reducing the spherical iron oxide, a general reduction furnace can be used. As the reducing gas, a general reducing gas such as hydrogen or carbon monoxide can be used. The reduction temperature may be reduced at 300 ° C. or higher at which iron oxide can be reduced. However, if the temperature is too high, the particles sinter or the sintering of the sponge structure proceeds and the pores disappear, so it is not preferable that the temperature is too high. From this viewpoint, the reduction temperature needs to be 300 ° C. or higher and 900 ° C. or lower, preferably 300 ° C. or higher and 800 ° C. or lower, more preferably 300 ° C. or higher and 700 ° C. or lower.

以上説明したように、本発明の脱酸素剤用鉄粉によれば、その構造が比表面積の大きいスポンジ構造であるので、酸素との反応性に優れ、初期の酸素吸収速度が従来に比べて極めて大きくなり、また、粒子内部まで酸素と反応する箇所として有効に活用することができる。更に、鉄粒子の形状が球状であるので、嵩密度が高く、極めて大きな単位容積当たりの酸素吸収能を得ることができる。そのため、本発明の脱酸素剤用鉄粉を脱酸素剤として使用した場合には、食品及び薬剤などの酸化による品質劣化を長期間に亘って安定して防ぐことが達成される。   As described above, according to the iron powder for oxygen scavenger of the present invention, since the structure is a sponge structure with a large specific surface area, the reactivity with oxygen is excellent, and the initial oxygen absorption rate is higher than conventional. It becomes extremely large and can be effectively used as a site that reacts with oxygen up to the inside of the particle. Furthermore, since the shape of the iron particles is spherical, the bulk density is high, and an extremely large oxygen absorption capacity per unit volume can be obtained. For this reason, when the iron powder for oxygen scavenger of the present invention is used as the oxygen scavenger, it is possible to stably prevent deterioration of quality due to oxidation of foods and drugs over a long period of time.

以下、実施例により本発明を更に詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

溶液中のシリカ(SiO2 )の含有量を、酸化鉄換算で20〜80000ppmの範囲内で18種類に変更した18種類の塩化第一鉄溶液を、ルルギ式流動焙焼炉にて焙焼し、球状の酸化鉄粒子を作製した。ここで、含有量の「酸化鉄換算」の意味は、塩化第一鉄溶液から生成された酸化鉄における含有量という意味である。 18 types of ferrous chloride solutions in which the content of silica (SiO 2 ) in the solution was changed to 18 types within the range of 20 to 80,000 ppm in terms of iron oxide were roasted in a Lurgi type fluid roasting furnace. Spherical iron oxide particles were prepared. Here, the meaning of “iron oxide conversion” of content means the content in iron oxide produced from a ferrous chloride solution.

得られた酸化鉄粒子を目開き1mm及び0.5mmの篩を用いて分級し、粒径が0.5mm〜1.0mmの範囲である酸化鉄粒子を得た。得られた酸化鉄粒子を、それぞれ290〜1000℃の還元温度範囲で、箱型炉の中で水素または一酸化炭素で還元し、形状が球状である18種類の鉄粒子を得た(本発明例1〜15、比較例1〜3)。尚、比較例1は、シリカ(SiO2 )の含有量が少ないことから細孔サイズが2.5μmとなって本発明の範囲の上限値を超えたもの、比較例2は、還元温度が本発明の範囲の下限値よりも低い290℃で還元された鉄粒子であり、未還元の酸化鉄成分が残留したもの、比較例3は、還元温度が本発明の範囲の上限値よりも高い1000℃で還元された鉄粒子であり、粒子が焼結して細孔の消滅が認められたものである。 The obtained iron oxide particles were classified using a sieve having an aperture of 1 mm and 0.5 mm to obtain iron oxide particles having a particle size in the range of 0.5 mm to 1.0 mm. The obtained iron oxide particles were reduced with hydrogen or carbon monoxide in a box furnace in a reduction temperature range of 290 to 1000 ° C., respectively, to obtain 18 types of iron particles having a spherical shape (the present invention). Examples 1 to 15 and Comparative Examples 1 to 3). In Comparative Example 1, the content of silica (SiO 2 ) is small, so that the pore size is 2.5 μm and exceeds the upper limit of the range of the present invention. In Comparative Example 2, the reduction temperature is Iron particles reduced at 290 ° C. lower than the lower limit of the range of the invention, in which the unreduced iron oxide component remains, Comparative Example 3 has a reduction temperature of 1000 higher than the upper limit of the range of the present invention. It is iron particles reduced at 0 ° C., and the particles are sintered and the disappearance of pores is observed.

また、製造した酸化鉄粒子を分級せずに還元し、還元された鉄粒子を分級して大きさのみを変えた鉄粒子も製造した(本発明例16〜28)。即ち、酸化鉄換算で800ppmのシリカを含有する塩化第一鉄溶液をルルギ式流動焙焼炉にて焙焼し、球状の酸化鉄粒子を作製した。得られた酸化鉄粒子を600℃の還元温度で、箱型炉を用いて水素で還元し、形状が球状である鉄粒子を得た。この鉄粒子を篩で分級して、粒度の異なる鉄粒子を得た。   The produced iron oxide particles were reduced without classification, and the reduced iron particles were classified to produce iron particles in which only the size was changed (Invention Examples 16 to 28). That is, a ferrous chloride solution containing 800 ppm of silica in terms of iron oxide was roasted in a Lurgi-type fluid roasting furnace to produce spherical iron oxide particles. The obtained iron oxide particles were reduced with hydrogen using a box furnace at a reduction temperature of 600 ° C. to obtain iron particles having a spherical shape. The iron particles were classified with a sieve to obtain iron particles having different particle sizes.

因みに、本発明例16は、目開き2mm及び3mmの篩を用いてこの粒度範囲の鉄粒子を集め、本発明例17は、目開き1.5mm及び2mmの篩を用いてこの粒度範囲の鉄粒子を集め、本発明例18は、目開き1mm及び1,5mmの篩を用いてこの粒度範囲の鉄粒子を集め、本発明例19は、目開き500μm及び1000μmの篩を用いてこの粒度範囲の鉄粒子を集め、本発明例20は、目開き300μm及び500μmの篩を用いてこの粒度範囲の鉄粒子を集め、本発明例21は、目開き100μm及び300μmの篩を用いてこの粒度範囲の鉄粒子を集め、本発明例22は、目開き100μm及び200μmの篩を用いてこの粒度範囲の鉄粒子を集め、本発明例23は、目開き75μm及び125μmの篩を用いてこの粒度範囲の鉄粒子を集め、本発明例24は、目開き75μm及び106μmの篩を用いてこの粒度範囲の鉄粒子を集め、本発明例25は、目開き45μm及び75μmの篩を用いてこの粒度範囲の鉄粒子を集め、本発明例26は、目開き25μm及び45μmの篩を用いてこの粒度範囲の鉄粒子を集め、本発明例27は、目開き25μmの篩を用いて25μmより小さい鉄粒子を集め、本発明例28は、分級せずに還元して得た鉄粉をそのまま使用したものである。   Incidentally, Example 16 of the present invention collects iron particles in this particle size range using sieves having a mesh size of 2 mm and 3 mm, and Example 17 of the present invention collects iron particles of this particle size range using a sieve having a mesh size of 1.5 mm and 2 mm. In Example 18 of the present invention, iron particles of this particle size range were collected using a sieve having a mesh size of 1 mm and 1,5 mm, and Example 19 of this invention was collected using a sieve having a mesh size of 500 μm and 1000 μm. The present invention example 20 collects iron particles of this particle size range using sieves with openings of 300 μm and 500 μm, and the inventive example 21 collects iron particles of this particle size range using sieves with openings of 100 μm and 300 μm. In Example 22 of the present invention, iron particles in this particle size range were collected using sieves with openings of 100 μm and 200 μm, and in Example 23 of this invention, this particle size range was collected using sieves with openings of 75 μm and 125 μm. Iron particles Thus, Example 24 of the present invention collects iron particles in this particle size range using sieves with openings of 75 μm and 106 μm, and Example 25 of the present invention collects iron particles of this particle size range using sieves with openings of 45 μm and 75 μm. In the present invention example 26, iron particles in this particle size range were collected using a sieve having an opening of 25 μm and 45 μm, and in the invention example 27, iron particles smaller than 25 μm were collected using a sieve having an opening of 25 μm. Invention Example 28 uses iron powder obtained by reduction without classification as it is.

また、比較のための従来の鉄粒子として、アトマイズ鉄粉(従来例1)、ミルスケールを還元することにより得た海綿鉄を粉砕して得た鉄粒子(従来例2)、及び、従来例2の鉄粒子を更にアトマイザーで粉砕して得た鉄粒子(従来例3)も準備した。   Further, as conventional iron particles for comparison, atomized iron powder (conventional example 1), iron particles obtained by pulverizing sponge iron obtained by reducing the mill scale (conventional example 2), and conventional example Iron particles obtained by further pulverizing the iron particles of No. 2 with an atomizer (Conventional Example 3) were also prepared.

これらの鉄粉について、平均粒径、比表面積、外部比表面積、シリカの含有量、細孔のサイズ、嵩密度、酸素吸収能力を調査した。平均粒径は、走査電子顕微鏡により100個以上の粒子について粒径を測定し、これらの平均値を平均粒径として求めた。比表面積は、BET法により測定した。外部比表面積は、得られた平均粒径に基づき(1)式〜(4)式を用いて算出した。シリカの含有量は、ICP分析により求めた。鉄粒子内の細孔のサイズは、水銀圧入法により求めた。嵩密度は、パウダーテスターを用いて測定した。酸素吸収能力は、それぞれの鉄粉5gと塩化ナトリウム1gとを混合し、この混合物と蒸留水5gとを含ませた脱脂綿をガラスシャーレーに入れ、更にこのガラスシャーレーと空気1500mlとをKON製の袋に入れて密封し、25℃に保持しながら袋内の酸素濃度を測定し、酸素濃度の変化から酸素吸収能力を評価した。酸素濃度の測定は、測定開始から3時間後、5時間後、7時間後に実施した。表1に測定結果を示す。   For these iron powders, the average particle size, specific surface area, external specific surface area, silica content, pore size, bulk density, and oxygen absorption ability were investigated. The average particle size was determined by measuring the particle size of 100 or more particles with a scanning electron microscope, and obtaining the average value as the average particle size. The specific surface area was measured by the BET method. The external specific surface area was calculated using formulas (1) to (4) based on the obtained average particle diameter. The content of silica was determined by ICP analysis. The size of the pores in the iron particles was determined by a mercury intrusion method. The bulk density was measured using a powder tester. Oxygen absorption capacity is obtained by mixing 5 g of each iron powder and 1 g of sodium chloride, putting absorbent cotton containing this mixture and 5 g of distilled water into a glass petri dish, and further adding this glass petri dish and 1500 ml of air to a KON bag. The oxygen concentration in the bag was measured while keeping at 25 ° C., and the oxygen absorption capacity was evaluated from the change in oxygen concentration. The oxygen concentration was measured 3 hours, 5 hours, and 7 hours after the start of measurement. Table 1 shows the measurement results.

本発明例1〜28の鉄粉では、従来例1〜3及び比較例1〜3の鉄粉に比べて、初期の酸素吸収速度が大きく、脱酸素剤として適していることが分かった。また、本発明例1〜28の鉄粉では従来例1〜3に比べて嵩密度が大きく、単位容積当たりの酸素吸収に優れることが分かった。   In the iron powders of Invention Examples 1 to 28, it was found that the initial oxygen absorption rate was larger than that of the iron powders of Conventional Examples 1 to 3 and Comparative Examples 1 to 3, and was suitable as an oxygen scavenger. In addition, it was found that the iron powders of Invention Examples 1 to 28 had a larger bulk density than that of Conventional Examples 1 to 3, and were excellent in oxygen absorption per unit volume.

本発明の脱酸素剤用鉄粉の走査電子顕微鏡写真である。It is a scanning electron micrograph of iron powder for oxygen scavengers of the present invention. 本発明の脱酸素剤用鉄粉の断面の走査電子顕微鏡写真である。It is a scanning electron micrograph of the cross section of the iron powder for oxygen scavengers of this invention. 本発明の脱酸素剤用鉄粉の断面の走査電子顕微鏡写真である。It is a scanning electron micrograph of the cross section of the iron powder for oxygen scavengers of this invention.

Claims (6)

流動焙焼法により製造した酸化鉄粒子を、300℃以上900℃以下の温度範囲で還元用ガスを用いて還元してなる脱酸素剤用鉄粉であり、且つ、球状粒子の内部に外部とつながる細孔を有した、スポンジ状の構造であって、水銀圧入法で測定される前記細孔の直径が2μm以下であり、前記粒子の比表面積が、前記粒子の平均粒径から算出した外部比表面積の100倍以上であることを特徴とする脱酸素剤用鉄粉。 An iron powder for oxygen scavenger formed by reducing iron oxide particles produced by a fluid roasting method using a reducing gas in a temperature range of 300 ° C. or more and 900 ° C. or less, and inside the spherical particles, Sponge-like structure with connecting pores, the pore diameter measured by mercury porosimetry is 2 μm or less, and the specific surface area of the particles is calculated from the average particle diameter of the particles. Iron powder for oxygen scavengers, characterized by having a specific surface area of 100 times or more. 前記粒子の嵩密度が3g/cm3 以上であることを特徴とする、請求項1に記載の脱酸素剤用鉄粉。 2. The iron powder for oxygen scavenger according to claim 1, wherein a bulk density of the particles is 3 g / cm 3 or more. 前記粒子の平均粒径が2mm以下であることを特徴とする、請求項1または請求項2に記載の脱酸素剤用鉄粉。   The iron powder for oxygen scavenger according to claim 1 or 2, wherein an average particle diameter of the particles is 2 mm or less. 球状粒子の内部に外部とつながる細孔を有した、スポンジ状の構造であって、水銀圧入法で測定される前記細孔の直径が2μm以下であり、前記粒子の比表面積が、前記粒子の平均粒径から算出した外部比表面積の100倍以上である脱酸素剤用鉄粉の製造方法であって、流動焙焼法により製造した酸化鉄粒子を、300℃以上900℃以下の温度範囲で還元用ガスを用いて還元することを特徴とする、脱酸素剤用鉄粉の製造方法。 Sponge-like structure having pores connected to the outside inside the spherical particles, the diameter of the pores measured by mercury intrusion method is 2 μm or less, and the specific surface area of the particles is A method for producing oxygen powder for oxygen scavengers that is 100 times or more of the external specific surface area calculated from the average particle diameter , wherein the iron oxide particles produced by fluid roasting method are in a temperature range of 300 ° C. or higher and 900 ° C. or lower. A method for producing iron powder for oxygen scavengers, characterized by performing reduction using a reducing gas. 前記粒子の嵩密度が3g/cmThe bulk density of the particles is 3 g / cm 3Three 以上であることを特徴とする、請求項4に記載の脱酸素剤用鉄粉の製造方法。 It is the above, The manufacturing method of the iron powder for oxygen absorbers of Claim 4 characterized by the above-mentioned. 前記粒子の平均粒径が2mm以下であることを特徴とする、請求項4または請求項5に記載の脱酸素剤用鉄粉の製造方法。6. The method for producing iron powder for oxygen scavenger according to claim 4 or 5, wherein the average particle diameter of the particles is 2 mm or less.
JP2005087448A 2005-03-25 2005-03-25 Iron powder for oxygen scavenger and method for producing the same Expired - Fee Related JP4575203B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005087448A JP4575203B2 (en) 2005-03-25 2005-03-25 Iron powder for oxygen scavenger and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005087448A JP4575203B2 (en) 2005-03-25 2005-03-25 Iron powder for oxygen scavenger and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006263630A JP2006263630A (en) 2006-10-05
JP4575203B2 true JP4575203B2 (en) 2010-11-04

Family

ID=37200151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005087448A Expired - Fee Related JP4575203B2 (en) 2005-03-25 2005-03-25 Iron powder for oxygen scavenger and method for producing the same

Country Status (1)

Country Link
JP (1) JP4575203B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9387973B2 (en) 2012-08-08 2016-07-12 Mitsubishi Gas Chemical Company, Inc. Oxygen absorbing agent
WO2023002732A1 (en) * 2021-07-20 2023-01-26 Jfeスチール株式会社 Iron-based powder for oxygen reaction agents, and oxygen reaction agent using same
JPWO2023002731A1 (en) * 2021-07-20 2023-01-26

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0490848A (en) * 1990-08-03 1992-03-24 Toyo Seikan Kaisha Ltd Oxygen absorbing agent and resin composition using the same, and film, sheet, or wrapping container consisting of said resin composition
JPH0726304A (en) * 1993-07-08 1995-01-27 Dowa Iron Powder Co Ltd Production of metal powder injection-molding iron powder
JP2000277317A (en) * 1999-03-23 2000-10-06 Irox N K K:Kk HIGH-PERMEABILITY Mn/Zn FERRITE MATERIAL IRON OXIDE AND HIGH-PERMEABILITY Mn-Zn FERRITE
JP2002292276A (en) * 2001-03-30 2002-10-08 Powdertech Co Ltd Reduced iron powder for deoxidizer and method for manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0490848A (en) * 1990-08-03 1992-03-24 Toyo Seikan Kaisha Ltd Oxygen absorbing agent and resin composition using the same, and film, sheet, or wrapping container consisting of said resin composition
JPH0726304A (en) * 1993-07-08 1995-01-27 Dowa Iron Powder Co Ltd Production of metal powder injection-molding iron powder
JP2000277317A (en) * 1999-03-23 2000-10-06 Irox N K K:Kk HIGH-PERMEABILITY Mn/Zn FERRITE MATERIAL IRON OXIDE AND HIGH-PERMEABILITY Mn-Zn FERRITE
JP2002292276A (en) * 2001-03-30 2002-10-08 Powdertech Co Ltd Reduced iron powder for deoxidizer and method for manufacturing the same

Also Published As

Publication number Publication date
JP2006263630A (en) 2006-10-05

Similar Documents

Publication Publication Date Title
US20200229441A1 (en) Fungicide, photo catalytic composite material, adsorbent, and depurative
JP3452940B2 (en) Method for producing non-evaporable getter and getter produced by this method
EP3409356B1 (en) Fluid bed ammoxidation reaction catalyst, and acrylonitrile production method
JP4931011B2 (en) Fine particle low-order zirconium oxide / zirconium nitride composite and method for producing the same
TWI463510B (en) Valve metal and valve metal oxide agglomerate powder and process for production thereof, capacitor anode body, capacitor anode, capacitor and use thereof
CN105562113B (en) The method of catalyst carrier and loaded catalyst and its preparation method and application and methane dry reforming preparing synthetic gas
CN101439409B (en) Technique for preparing low-oxygen high-purity titanium powder by novel HDH method
EP3409357B1 (en) Fluid bed ammoxidation reaction catalyst, and acrylonitrile production method
JP4575203B2 (en) Iron powder for oxygen scavenger and method for producing the same
JPS6171840A (en) Oxide catalyst precursor composition and its production
WO2023002731A1 (en) Iron-based powder for oxygen reaction agents, and oxygen reaction agent using same
JP2014058712A (en) Method of producing tantalum particles
CN106424716B (en) Improve the method for copper-manganese damping sintered alloy performance with ferrous oxalate
JP6984628B2 (en) Manufacturing method of reduced iron powder
JP7233046B2 (en) baked shell
JP4667937B2 (en) Hydrogen generating medium and method for producing the same
JP2004315273A (en) Nickel oxide powder with high specific surface area and excellent sintering property and its manufacturing method
JP3561724B2 (en) Reduced iron powder for oxygen scavenger and method for producing the same
WO2024014177A1 (en) Iron-based powder for oxygen reactant and oxygen reactant
WO2024142493A1 (en) Mixed powder for oxygen reaction agent, and oxygen reaction agent using same
WO2024014022A1 (en) Iron-based powder for oxygen reaction agent, and oxygen reaction agent
JP2022120882A (en) Method for producing spongy iron powder
JP2004292838A (en) Hydrogen storage alloy and manufacturing method
JPS59232249A (en) Manufacture of porous sintered body of stainless steel powder
JP3317593B2 (en) Flat reduced iron powder for oxygen scavenger and production method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100819

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees