JP4764361B2 - Indium oxide powder and method for producing the same - Google Patents

Indium oxide powder and method for producing the same Download PDF

Info

Publication number
JP4764361B2
JP4764361B2 JP2007030066A JP2007030066A JP4764361B2 JP 4764361 B2 JP4764361 B2 JP 4764361B2 JP 2007030066 A JP2007030066 A JP 2007030066A JP 2007030066 A JP2007030066 A JP 2007030066A JP 4764361 B2 JP4764361 B2 JP 4764361B2
Authority
JP
Japan
Prior art keywords
indium oxide
powder
oxide powder
particles
indium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007030066A
Other languages
Japanese (ja)
Other versions
JP2008195552A (en
Inventor
隆 藤原
宏之 島村
昌宏 三輪
正雄 飛鷹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2007030066A priority Critical patent/JP4764361B2/en
Publication of JP2008195552A publication Critical patent/JP2008195552A/en
Application granted granted Critical
Publication of JP4764361B2 publication Critical patent/JP4764361B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

本発明は、酸化インジウム粉末、詳しくは、ITO(;Indium Tin Oxide)ターゲットやIZO(;Indium Zinc Oxide)ターゲットの製造用原料等として好適に用いることができる酸化インジウム粉末、並びにその製造方法に関する。   The present invention relates to an indium oxide powder, and more particularly, to an indium oxide powder that can be suitably used as a raw material for producing an ITO (; Indium Tin Oxide) target or an IZO (; Indium Zinc Oxide) target, and a method for producing the same.

酸化インジウム粉末は、ITOやIZOターゲット製造用の原料等として用いられている。
ちなみに、ITOは、酸化インジウム(In23)に数%の酸化スズ(SnO2)を添加し焼成して高密度に焼結させた化合物であり、可視光の透過率が約90%に上るため、液晶パネルや有機ELなどのFPD(フラット・パネル・ディスプレイ)向けの電極として、或いは、太陽電池や抵抗膜方式のタッチパネル、青色発光ダイオードの電極等として利用されている。
Indium oxide powder is used as a raw material for manufacturing ITO and IZO targets.
Incidentally, ITO is a compound in which several percent of tin oxide (SnO 2 ) is added to indium oxide (In 2 O 3 ) and baked at a high density, and the visible light transmittance is about 90%. Therefore, it is used as an electrode for an FPD (flat panel display) such as a liquid crystal panel or an organic EL, or as an electrode of a solar cell, a resistive touch panel, a blue light emitting diode, or the like.

この種の酸化インジウム粉末の製造方法としては、従来、水酸化インジウムを特定の温度で焼成して得るのが一般的であった。例えば、特許文献1には、硝酸インジウム水溶液を70〜95℃に加熱し、該水溶液にアルカリ水溶液を添加し、水酸化インジウムスラリーを生成した後、濾過、乾燥処理して得られた針状水酸化インジウム粉末を仮焼することにより、結晶子径が200〜500オングストロームであり、且つ粒度分布から求めた平均粒径が0.5μm以下である酸化インジウム粉末を得る方法が開示されている。   As a method for producing this type of indium oxide powder, conventionally, indium hydroxide has been generally obtained by firing at a specific temperature. For example, Patent Document 1 discloses acicular water obtained by heating an indium nitrate aqueous solution to 70 to 95 ° C., adding an alkaline aqueous solution to the aqueous solution to form an indium hydroxide slurry, and then filtering and drying. A method is disclosed in which indium oxide powder is obtained by calcining indium oxide powder to have a crystallite diameter of 200 to 500 angstroms and an average particle diameter determined from a particle size distribution of 0.5 μm or less.

特許文献2には、水酸化インジウムを針状結晶とすることにより、水酸化インジウムの状態で凝集を抑制し、さらには、該針状結晶の粒子径を制御することにより、仮焼して得られる酸化インジウム粉末の凝集及び粒子径を制御して、焼結密度5.3g/cm3以上の高密度焼結体を製造可能な酸化インジウム粉末を得る方法が開示されている。 Patent Document 2 discloses that indium hydroxide is made into needle crystals to suppress aggregation in the state of indium hydroxide, and further, calcined by controlling the particle diameter of the needle crystals. There is disclosed a method for obtaining an indium oxide powder capable of producing a high-density sintered body having a sintered density of 5.3 g / cm 3 or more by controlling the aggregation and particle diameter of the indium oxide powder to be produced.

特開平4−325415号公報JP-A-4-325415 特開2002−316818号公報JP 2002-316818 A

一般的に金属やその化合物等の粉末を工業的に扱う場合、該粉末の飛散を抑えてばく露防止を十分に図る必要がある。中でも、酸化インジウムに関しては、米国安全衛生専門家会議(ACGIH)がその作業環境許容濃度を0.1mg/m3と規定していることからも分るように、特に飛散を抑えて作業環境濃度を良好に維持することが求められる。
また、酸化インジウム粉末は、酸化スズ粉末等その他原料と共に、充分に混合、分散させた後、焼成してITOターゲットを製造するのに使われるため、分散性も確保されている必要がある。
In general, when industrially handling powders of metals and their compounds, it is necessary to sufficiently prevent exposure by suppressing scattering of the powders. Above all, with regard to indium oxide, the concentration of working environment with particularly low scattering is evident, as can be seen from the fact that the American Society for Safety and Health Experts (ACGIH) stipulates that the allowable working environment concentration is 0.1 mg / m 3. Is required to be maintained well.
Moreover, since indium oxide powder is used to produce an ITO target by thoroughly mixing and dispersing together with other raw materials such as tin oxide powder and then firing, it is necessary to ensure dispersibility.

そこで本発明の目的は、ハンドリングの際の飛散を抑えることができ、作業環境濃度を良好に維持することができ、さらには分散性にも優れた新たな酸化インジウム粒子粉末を提供することにある。   Therefore, an object of the present invention is to provide a new indium oxide particle powder that can suppress scattering during handling, can maintain a favorable working environment concentration, and is excellent in dispersibility. .

本発明は、個数平均粒子径0.01μm〜1μmの酸化インジウム一次粒子が凝集してなる酸化インジウム凝集粒子を主成分粒子として含有する酸化インジウム粉末であって、酸化インジウム凝集粒子の個数平均粒子径(「個数平均凝集粒子径」という)が30μm〜3000μmであり、好ましくは105℃雰囲気下に3時間置いた時の加熱減量が0.03質量%〜2質量%であることを特徴とする酸化インジウム粉末を提案する。   The present invention is an indium oxide powder containing, as a main component particle, indium oxide aggregated particles obtained by aggregating indium oxide primary particles having a number average particle size of 0.01 μm to 1 μm, and the number average particle size of the indium oxide aggregated particles (Referred to as “number average agglomerated particle size”) is 30 μm to 3000 μm, and preferably the oxidation loss is 0.03% by mass to 2% by mass when placed in an atmosphere at 105 ° C. for 3 hours. Indium powder is proposed.

本発明はまた、このような酸化インジウム粉末を製造し得る好ましい製造方法として、酸化インジウム粒子粉末などのインジウム含有粒子粉末を、湿度30%RH〜90%RHの空気を用いて空気輸送することを特徴とする製造方法を提案する。
なお、上記の「インジウム含有粒子粉末」とは、酸化インジウム粒子粉末のほか、ITO粒子粉末やIZO粒子粉末など、インジウムを含有する金属化合物からなる粒子の粉末を包含する意味である。
In the present invention, as a preferable production method capable of producing such indium oxide powder, indium-containing particle powder such as indium oxide particle powder is pneumatically transported using air having a humidity of 30% RH to 90% RH. A characteristic manufacturing method is proposed.
The “indium-containing particle powder” means not only indium oxide particle powder but also powder of particles made of a metal compound containing indium, such as ITO particle powder and IZO particle powder.

本発明の酸化インジウム粉末は、酸化インジウム一次粒子が凝集してなる酸化インジウム凝集粒子を主成分粒子とし、好ましくは105℃雰囲気下に3時間置いた時の加熱減量が0.03質量%〜2質量%、つまり、バインダーとしての水分を所定量含む酸化インジウム粉末である。よって、本発明の酸化インジウム粉末の主成分粒子は、酸化インジウム一次粒子が凝集してなる凝集粒子であるから、酸化インジウム粉末を取り扱う際に、酸化インジウム凝集粒子が酸化インジウム一次粒子に解砕して飛散することを抑制でき、作業環境濃度を良好に維持することができる。さらに、加熱減量を適度に制御することにより、凝集粒子の過剰な固化を抑制でき、分散性も確保することができる。   The indium oxide powder of the present invention comprises indium oxide aggregated particles formed by agglomerating primary particles of indium oxide as main component particles, and preferably has a heat loss of 0.03 mass% to 2 when placed in a 105 ° C. atmosphere for 3 hours. It is an indium oxide powder containing a predetermined amount of mass%, that is, moisture as a binder. Therefore, the main component particles of the indium oxide powder of the present invention are agglomerated particles formed by aggregating indium oxide primary particles. Therefore, when the indium oxide powder is handled, the indium oxide agglomerated particles are crushed into indium oxide primary particles. Can be suppressed, and the working environment concentration can be maintained well. Furthermore, by appropriately controlling the weight loss by heating, excessive solidification of the aggregated particles can be suppressed and dispersibility can be ensured.

なお、本明細書において「X〜Y」(X、Yは任意の数字)と記載した場合、特にことわらない限り「X以上Y以下」の意と共に、同時に「好ましくはXより大きく、Yより小さい」の意も包含する。   In addition, when described as “X to Y” (X and Y are arbitrary numbers) in this specification, unless otherwise specified, “X or more and Y or less” means that “preferably larger than X and Y The meaning of “small” is also included.

以下、実施形態に基づいて本発明を説明するが、本発明が下記実施形態に限定されるものではない。   Hereinafter, although this invention is demonstrated based on embodiment, this invention is not limited to the following embodiment.

本実施形態の酸化インジウム粉末(以下「本酸化インジウム粉末」と称する)は、個数平均粒子径0.01μm〜1μmの酸化インジウム一次粒子が凝集してなる酸化インジウム凝集粒子を主成分粒子として含有する酸化インジウム粉末である。
ここで、「主成分粒子として含有する」とは、特に記載しない限り、当該主成分粒子の機能を妨げない限りにおいて他の「粒子」を含有することを許容する意を包含するものである。当該主成分粒子の含有割合を特定するものではないが、少なくとも50質量%以上、特に70質量%以上、中でも90質量%以上(100%含む)を占める場合を包含する。
すなわち、本酸化インジウム粉末は、個数平均粒子径0.01μm〜1μmの酸化インジウム一次粒子が凝集してなる酸化インジウム凝集粒子以外の酸化インジウム粒子を含んでいてもよいし、また、酸化インジウム以外の元素や化合物を1種又は2種以上含んでいてもよい。
The indium oxide powder of the present embodiment (hereinafter referred to as “the indium oxide powder”) contains indium oxide aggregated particles formed by aggregating indium oxide primary particles having a number average particle diameter of 0.01 μm to 1 μm as main component particles. Indium oxide powder.
Here, “containing as main component particles” includes the meaning of allowing other “particles” to be included unless the function of the main component particles is disturbed, unless otherwise specified. Although the content ratio of the main component particles is not specified, it includes a case where it occupies at least 50% by mass, particularly 70% by mass or more, especially 90% by mass or more (including 100%).
That is, the present indium oxide powder may contain indium oxide particles other than the indium oxide aggregated particles formed by aggregating indium oxide primary particles having a number average particle diameter of 0.01 μm to 1 μm. One or more elements or compounds may be included.

本酸化インジウム粉末を構成する「酸化インジウム一次粒子」は、個数平均粒子径が0.01μm〜1μmであることが重要である。個数平均粒子径が0.01μm以上であれば、一部の粒子が凝集粒子から剥離して作業環境中に浮遊して作業環境濃度を損なうことを抑制できる。また、逆に、1μm以下であれば、例えばITOターゲットを製造する材料として好適な粒度であることから、均一な組成のITOターゲットを生成することができる。
飛散の抑制と均一な組成のインジウム化合物の製造の両方を考慮すると、酸化インジウム一次粒子の個数平均粒子径は0.02μm〜0.5μmであるのが好ましく、中でも特に0.03μm〜0.3μmであるのがより一層好ましい。
なお、酸化インジウム一次粒子の個数平均粒子径は、例えば透過型電子顕微鏡(倍率30,000倍)により写真撮影し、写真上の複数個の粒径(フェレ径)を計測してその個数平均粒子径として求めることができる。
It is important that the “indium oxide primary particles” constituting the present indium oxide powder have a number average particle diameter of 0.01 μm to 1 μm. If the number average particle diameter is 0.01 μm or more, it is possible to prevent a part of the particles from separating from the aggregated particles and floating in the working environment to impair the working environment concentration. On the contrary, if it is 1 micrometer or less, since it is a particle size suitable, for example as a material which manufactures an ITO target, the ITO target of a uniform composition can be produced | generated.
Considering both the suppression of scattering and the production of an indium compound having a uniform composition, the number average particle size of the indium oxide primary particles is preferably 0.02 μm to 0.5 μm, particularly 0.03 μm to 0.3 μm. Is even more preferred.
The number average particle diameter of the indium oxide primary particles is measured by, for example, taking a photograph with a transmission electron microscope (magnification 30,000 times), measuring a plurality of particle diameters (Ferre diameter) on the photograph, and the number average particles. It can be obtained as a diameter.

酸化インジウム一次粒子は、その粒子形状を限定するものではなく、粒状、針状、多面体状、不定形状など、いずれの粒子形状でもかまわない。   The particle shape of the indium oxide primary particles is not limited, and any particle shape such as a granular shape, a needle shape, a polyhedral shape, and an indefinite shape may be used.

酸化インジウム一次粒子を製造する方法としては、例えば、金属インジウムを硝酸等の酸で溶解し、得られた3価のインジウムイオンをアンモニア等のアルカリで中和し、生成した水酸化インジウムを固液分離し、固形分を加熱等の手段により乾燥させた後、500℃以上で焼成して得る方法を挙げることができるが、このような製造方法に限定されるものではなく、種々の製造方法が知られており、そのいずれの方法を採用してもよい。   As a method for producing indium oxide primary particles, for example, metallic indium is dissolved with an acid such as nitric acid, the obtained trivalent indium ions are neutralized with an alkali such as ammonia, and the produced indium hydroxide is solid-liquid. A method of separating and drying the solid content by means such as heating and then baking at 500 ° C. or higher is not limited to such a production method, and various production methods are available. Any of these methods may be adopted.

本酸化インジウム粉末は、上記のような酸化インジウム一次粒子が凝集してなる酸化インジウム凝集粒子を主成分粒子とするものであり、当該酸化インジウム凝集粒子の個数平均粒子径(「個数平均凝集粒子径」という)が30μm〜3000μmであることが重要である。
個数平均凝集粒子径が30μm以上であれば、本酸化インジウム粉末をハンドリングした際に発塵して作業環境濃度が悪化することを抑制できる。また、逆に、3000μm以下であれば、例えば酸化スズ粉末などと簡単な操作で十分に混合でき、また、分散状態を得るために強い分散操作が必要でないなどの点で好ましい。
発塵の抑制と混合の容易性や分散性などとのバランスを考慮すると、個数平均凝集粒子径は40μm〜2000μmが好ましく、中でも特に50μm〜1000μmであるのがより一層好ましい。
This indium oxide powder is composed mainly of indium oxide aggregated particles obtained by agglomerating primary indium oxide particles as described above, and the number average particle size of the indium oxide aggregated particles (“number average aggregated particle size”). It is important that it is 30 μm to 3000 μm.
If the number average agglomerated particle diameter is 30 μm or more, it is possible to suppress the generation of dust when the present indium oxide powder is handled and the deterioration of the working environment concentration. On the contrary, if it is 3000 micrometers or less, it is preferable at the point that it can fully mix with tin oxide powder etc. by simple operation, for example, and strong dispersion | distribution operation is not required in order to obtain a dispersion state.
Considering the balance between the suppression of dust generation and the ease of mixing and dispersibility, the number average aggregate particle diameter is preferably 40 μm to 2000 μm, and more preferably 50 μm to 1000 μm.

また、本酸化インジウム粉末は、105℃雰囲気下に3時間置いた時の加熱減量が0.03質量%〜2質量%である、言い換えれば、105℃で放出される性質の水分を0.03質量%〜2質量%含有することが好ましい。
当該加熱減量が0.03質量%以上であれば、十分な凝集強度を得ることができ、本酸化インジウム粉末のハンドリング時に凝集粒子が解砕されて飛散することを抑制することができ、微細な粒子が発塵の原因となって作業環境が悪化するのを防止することができる。逆に、2質量%以下であれば、凝集粒子の過剰な成長を抑制できると同時に、水分が多過ぎて凝集粒子が硬くなって分散不良を起すようなことがなく、好ましい。
発塵の抑制、凝集粒子の成長及び分散性を考慮すると、より好ましくは0.04質量%〜1.5質量%であり、特に0.05質量%〜1.0質量%であるのが一層好ましい。
Further, the present indium oxide powder has a loss on heating of 0.03% by mass to 2% by mass when placed in an atmosphere at 105 ° C. for 3 hours, in other words, 0.03% of moisture released at 105 ° C. It is preferable to contain 2 mass%-2 mass%.
If the loss on heating is 0.03% by mass or more, sufficient agglomeration strength can be obtained, and it is possible to prevent the agglomerated particles from being crushed and scattered during the handling of the present indium oxide powder. It is possible to prevent the working environment from deteriorating due to the generation of particles. On the other hand, if it is 2% by mass or less, excessive growth of the aggregated particles can be suppressed, and at the same time, there is no excessive moisture and the aggregated particles become hard and poor dispersion is preferable.
In consideration of the suppression of dust generation, the growth and dispersibility of aggregated particles, the amount is more preferably 0.04% by mass to 1.5% by mass, and particularly 0.05% by mass to 1.0% by mass. preferable.

さらに、本酸化インジウム粉末は、圧縮度(;compressibility rate、疎充填と密充填の嵩密度の差から得られるかさべり度)が20〜40%であるのが好ましい。圧縮度が20%未満となることは粉末の性質上難しい。他方、圧縮度が40%を超えると、粉末が締まり易くなり、例えばホッパーなどに本酸化インジウム粉末を充填した際に衝撃を与えると粉が容易に締まって排出性が悪くなるなど、ハンドリング性の点で課題が生じるため、好ましくない。
そこでハンドリング性などを考慮すると、酸化インジウム凝集粒子の圧縮度は38%以下であるのが一層好ましく、35%以下であるのがより一層好ましい。
Further, the indium oxide powder preferably has a compressibility rate (a degree of bulk obtained from a difference in bulk density between loose packing and dense packing) of 20 to 40%. It is difficult for the compressibility to be less than 20% due to the properties of the powder. On the other hand, when the degree of compression exceeds 40%, the powder is easily tightened. For example, when the indium oxide powder is filled in a hopper or the like, an impact is applied. Since a problem arises at a point, it is not preferable.
Therefore, in consideration of handling properties, the degree of compression of the indium oxide aggregated particles is more preferably 38% or less, and even more preferably 35% or less.

本酸化インジウム粉末は、安息角が20°〜40°であるのが好ましい。安息角が20°未満となることは粉末の性質上難しい。他方、安息角が40°を超えると、本酸化インジウム粉末の動的な流動性、すなわち粉末を流した際の流れ易さが悪くなり、例えばホッパーなどから本酸化インジウム粉末を定量的に排出させることが難しくなるなどの課題を生じるため、好ましくない。
そこで動的な流動性などを考慮すると、本酸化インジウム粉末の安息角は38°以下であるのが一層好ましく、35°以下であればなお一層好ましい。
The indium oxide powder preferably has an angle of repose of 20 ° to 40 °. It is difficult because of the nature of the powder that the angle of repose is less than 20 °. On the other hand, when the angle of repose exceeds 40 °, the dynamic flowability of the indium oxide powder, that is, the ease of flow when the powder is flowed, is deteriorated, and the indium oxide powder is quantitatively discharged from, for example, a hopper. This is not preferable because it causes problems such as difficulty.
Therefore, in consideration of dynamic fluidity, the repose angle of the present indium oxide powder is more preferably 38 ° or less, and even more preferably 35 ° or less.

本酸化インジウム粉末は、見掛け密度が0.7g/cm3 〜2.0g/cm3であるのが好ましい。見掛け密度が0.7g/cm3以上であれば、微粉が多過ぎることがなく、その結果、作業環境の悪化を抑制できるため好ましい。他方、2.0g/cm3よりも大きくなると、凝集粒子が強く凝集し、分散不良を起こす可能性がある。
そこで、作業環境濃度と分散性との両方を考慮すると、0.7g/cm3〜2g/cm3であるのが一層好ましく、特に0.7g/cm3〜1.2g/cm3、中でも特に0.7g/cm3〜0.9g/cm3であるのがより一層好ましい。
This indium oxide powder has an apparent density of preferably from 0.7g / cm 3 ~2.0g / cm 3 . An apparent density of 0.7 g / cm 3 or more is preferable because there is no excessive fine powder, and as a result, deterioration of the working environment can be suppressed. On the other hand, when it is larger than 2.0 g / cm 3 , the aggregated particles are strongly aggregated, which may cause poor dispersion.
Therefore, considering both the working environment concentration and dispersion, 0.7 g / cm 3 more preferably in the range of to 2 g / cm 3, especially 0.7g / cm 3 ~1.2g / cm 3 , among others 0.7 g / cm 3 and even more preferably 0.9 g / cm 3.

また、本酸化インジウム粉末は、衝撃を加えた後のスパチュラ角が20°〜45°であるのが好ましい。衝撃を加えた後のスパチュラ角が20°未満となることは粉末の性質上難しい。他方、衝撃を加えた後のスパチュラ角が45°を超えると、本酸化インジウム粉末の静的な流動性、すなわち静置している粉末を取り扱う際の流動性が悪くなり、例えば本酸化インジウム粉末がホッパー内に溜まって排出し難くくなるなどの課題を生じるため、好ましくない。
静的な流動性などを考慮すると、衝撃を加えた後のスパチュラ角は43°以下であるのが一層好ましく、40°以下であればなお一層好ましい。
The indium oxide powder preferably has a spatula angle of 20 ° to 45 ° after impact. It is difficult because of the nature of the powder that the spatula angle after impact is less than 20 °. On the other hand, when the spatula angle after impact exceeds 45 °, the static flowability of the indium oxide powder, that is, the flowability when handling the standing powder is deteriorated. For example, the indium oxide powder This is not preferable because it causes problems such as accumulation in the hopper and difficulty in discharging.
Considering static fluidity and the like, the spatula angle after applying an impact is more preferably 43 ° or less, and even more preferably 40 ° or less.

本酸化インジウム粉末は、粒径30μm〜3000μmの凝集粒子の比率が80質量%以上であるのが好ましい。この際、「粒径30μm〜3000μmの凝集粒子」は風力分級により回収することができる。
粒径30μm〜3000μmの凝集粒子の比率が80質量%以上であれば、個数平均凝集粒子径が30μm〜3000μmの範囲にある場合において、作業環境濃度をより好ましく維持できるから好ましい。作業環境濃度を更に良くするためには、粒径30μm〜3000μmの凝集粒子の比率を83質量%とするのが一層好ましく、85質量%以上であればなお一層好ましい。
The indium oxide powder preferably has a ratio of aggregated particles having a particle size of 30 μm to 3000 μm of 80% by mass or more. At this time, “aggregated particles having a particle size of 30 μm to 3000 μm” can be recovered by air classification.
If the ratio of aggregated particles having a particle size of 30 μm to 3000 μm is 80% by mass or more, it is preferable because the working environment concentration can be more preferably maintained when the number average aggregated particle size is in the range of 30 μm to 3000 μm. In order to further improve the working environment concentration, the ratio of aggregated particles having a particle size of 30 μm to 3000 μm is more preferably 83% by mass, and even more preferably 85% by mass or more.

次に、本酸化インジウム粉末の好ましい製造方法を説明する。
ただし、以下に説明する製造方法は、本酸化インジウム粉末の製造方法としてばかりでなく、ITO粒子粉末やIZO粒子粉末など、インジウムを含有する粒子粉末の製造方法として適用可能である。
Next, the preferable manufacturing method of this indium oxide powder is demonstrated.
However, the production method described below is applicable not only as a production method of the present indium oxide powder but also as a production method of particle powder containing indium such as ITO particle powder and IZO particle powder.

本酸化インジウム粉末は、例えば、湿度30%RH〜90%RHの空気を用いて酸化インジウム粒子粉末を空気輸送することにより、前記空気中の水分をバインダーとして酸化インジウム粒子を凝集させ、粉末中の、目的とする酸化インジウム凝集粒子の割合を高めることにより得ることができる。   The present indium oxide powder, for example, agglomerates indium oxide particles by using air in a humidity of 30% RH to 90% RH to air transport the indium oxide particle powder using the moisture in the air as a binder. It can be obtained by increasing the ratio of the target indium oxide aggregated particles.

原料となる酸化インジウム粒子粉末は、上記の酸化インジウム一次粒子を主成分粒子として含有する酸化インジウム粒子粉末、すなわち一次粒子の個数平均粒子径が0.01μm〜1μmの酸化インジウム粒子粉末を用いるのが好ましい。
この際、一次粒子の個数平均粒子径が0.01μm未満の酸化インジウム粒子粉末を用いると、如何に凝集操作を加えても、一次粒子径が小さ過ぎることに起因して、作業環境濃度の改善を図ることが難しくなる。逆に、一次粒子径の個数平均粒子径が1μmを超える場合、作業環境濃度は十分に改善されるものの、例えばITOターゲットなどの各種用途の材料としては粒径が大き過ぎることになる。
作業環境濃度と各種用途の材料適正とを考慮すると、一次粒子径の個数平均粒子径は0.02μm〜0.5μmであるのが好ましく、0.03μm〜0.3μmであるのがより一層好ましい。
As the indium oxide particle powder used as a raw material, indium oxide particle powder containing the above-described primary particles of indium oxide as the main component particles, that is, indium oxide particle powder having a primary particle number average particle diameter of 0.01 μm to 1 μm is used. preferable.
At this time, when using indium oxide particle powder having a primary particle number average particle size of less than 0.01 μm, the primary particle size is too small to improve the working environment concentration, no matter how the agglomeration operation is applied. It becomes difficult to plan. On the contrary, when the number average particle size of the primary particle size exceeds 1 μm, the working environment concentration is sufficiently improved, but the particle size is too large as a material for various uses such as an ITO target.
Considering the working environment concentration and material suitability for various applications, the number average particle size of the primary particle size is preferably 0.02 μm to 0.5 μm, and more preferably 0.03 μm to 0.3 μm. .

空気輸送は、空気の流れを利用して、輸送管の中を通して粉粒体を輸送する方法である。   Pneumatic transport is a method of transporting powder particles through a transport pipe using air flow.

この際、使用する空気は、湿度30%RH〜90%RHの空気を用いる。このような空気を用いて酸化インジウム粒子粉末を空気輸送することにより、空気中の水分をバインダーとして酸化インジウム粒子を凝集させて凝集粒子を生成させることができる。使用する空気の湿度が30%RH未満の場合、十分に凝集粒子が成長せず、作業環境の向上が不十分であり好ましくない。また、逆に、使用する空気の湿度が90%RHを超える場合、凝集粒子が必要以上に成長するばかりでなく、空気輸送の配管内に付着し、場合によっては閉塞を起すなどの不具合を生じるため好ましくない。
凝集粒子径のコントロールと配管の閉塞等の防止とを考慮すると、35%RH〜85%RHであることが一層好ましく、40%RH〜80%RHであることがなお一層好ましい。
At this time, air having a humidity of 30% RH to 90% RH is used. By carrying the air transport of the indium oxide particle powder using such air, the indium oxide particles can be aggregated using moisture in the air as a binder to produce aggregated particles. When the humidity of the air used is less than 30% RH, the aggregated particles do not grow sufficiently, which is not preferable because the working environment is not sufficiently improved. Conversely, when the humidity of the air used exceeds 90% RH, not only does the aggregated particles grow more than necessary, but also adheres to the piping of the air transport, causing problems such as blocking in some cases. Therefore, it is not preferable.
Considering control of the aggregated particle diameter and prevention of blockage of piping, etc., it is more preferably 35% RH to 85% RH, still more preferably 40% RH to 80% RH.

空気輸送は、速度1m/s〜20msで行なうのが好ましい。相対湿度30%RH〜90%RHの空気を用いて、このような条件で空気輸送することにより、前記空気中の水分をバインダーとして酸化インジウム粒子を凝集させて凝集粒子を生成させることができる。
この際、空気輸送の速度が1m/s未満の場合、粒子同士が適度に接触するのに必要な運動エネルギーが得られないため、粒子同士の接触が不十分となり、十分に凝集粒子が成長せず、その結果、飛散し易くなるため好ましくない。また逆に、空気輸送の速度が20m/sを超える場合には、必要以上の運動エネルギーを得ることになり、凝集した粒子の一部が破壊され、かえって微粉が多く発生するために飛散し易くなるため好ましくない。凝集粒子の成長と破壊のバランスを考慮すると、2m/s〜18m/sが一層好ましく、3m/s〜15m/sがなお一層好ましい。
Pneumatic transportation is preferably performed at a speed of 1 m / s to 20 ms. By using air having a relative humidity of 30% RH to 90% RH and pneumatically transporting under such conditions, indium oxide particles can be aggregated using moisture in the air as a binder to produce aggregated particles.
At this time, if the speed of pneumatic transportation is less than 1 m / s, the kinetic energy necessary for proper contact between the particles cannot be obtained. Therefore, the contact between the particles becomes insufficient, and the aggregated particles grow sufficiently. As a result, it becomes undesirably easy to scatter. On the contrary, when the speed of pneumatic transportation exceeds 20 m / s, kinetic energy more than necessary is obtained, and a part of the aggregated particles is destroyed, and on the contrary, a lot of fine powder is generated, so that it is easily scattered. Therefore, it is not preferable. Considering the balance between the growth and breakage of the aggregated particles, 2 m / s to 18 m / s is more preferable, and 3 m / s to 15 m / s is even more preferable.

空気輸送は、少なくとも0.5秒間以上の間行なうのが好ましい。空気輸送を行う時間が0.5秒未満の場合、凝集粒子が十分に成長せず、その結果、飛散し易くなるため好ましくない。
さらに、空気輸送の時間が30秒を超えると、凝集が強過ぎて分散不良を起こす可能性があるため、凝集粒子の成長と分散性とを考慮すると、0.5秒〜30秒間処理することが一層好ましく、特に0.7秒〜20秒間処理することがより一層好ましく、中でも特に1秒〜10秒間であればなお一層好ましい。なお、ここで言う、空気輸送の処理時間は、配管の長さを変えることで処理時間を調整できる。即ち、空気輸送の速度と処理したい時間とを決定すると、それに必要な配管経路長が計算される。
Pneumatic transport is preferably performed for at least 0.5 seconds. When the time for pneumatic transportation is less than 0.5 seconds, the aggregated particles do not grow sufficiently, and as a result, they are likely to be scattered, which is not preferable.
Furthermore, if the air transportation time exceeds 30 seconds, the aggregation is too strong and may cause dispersion failure. Therefore, in consideration of the growth and dispersibility of the aggregated particles, the treatment is performed for 0.5 seconds to 30 seconds. Is more preferable, and in particular, it is more preferable that the treatment is performed for 0.7 second to 20 seconds. In addition, the processing time of pneumatic transportation said here can adjust processing time by changing the length of piping. That is, once the speed of pneumatic transportation and the time to be processed are determined, the required piping path length is calculated.

空気輸送の装置としては、空気と酸化インジウム粒子粉末とが流動する輸送路(輸送管)と、空気に水蒸気を一定の比率で混合する調湿機能とを備えている装置が好ましく、輸送方式(例えばプラグ輸送、浮遊など)、輸送形態(例えば分散流、プラグ流など)、空気源(例えばブロワ、コンプレッサ、ファンなど)を特に限定するものではない。
また、空気の流動様式には、主にプラグ流、摺動流動化流、浮遊流の3種類があるが、流動様式を特に限定するものではなく、空気と酸化インジウム粒子粉末とを分散状態で流動させ得る流動方式が好ましい。
As an apparatus for pneumatic transportation, an apparatus having a transportation path (transport pipe) through which air and indium oxide particle powder flow and a humidity control function for mixing water vapor with air at a certain ratio is preferable. For example, plug transportation, floating, etc.), transportation mode (for example, dispersed flow, plug flow, etc.), and air source (for example, blower, compressor, fan, etc.) are not particularly limited.
In addition, there are mainly three types of air flow modes: plug flow, sliding fluidization flow, and floating flow. However, the flow mode is not particularly limited, and air and indium oxide particle powder are dispersed. A fluid system that can be fluidized is preferred.

なお、酸化インジウム粒子を凝集させる際のバインダーとして、水を粉末に直接添加したり、水分以外に有機物等を用いたりすることも考えられるが、好ましくない。有機バインダーなどはITOターゲット製造の際に不純物として残留したり、また、残留はしなくてもITOターゲットの特性を損ねたりする可能性があるため好ましくない。よって、水分をバインダーとして凝集させることが、品質面、作業環境面で優れた酸化インジウム凝集粒子を得る点で好ましい。   In addition, as a binder at the time of agglomerating indium oxide particles, it may be possible to add water directly to the powder or use an organic substance or the like in addition to moisture, but this is not preferable. An organic binder or the like is not preferable because it may remain as an impurity during the production of the ITO target, or even if it does not remain, the properties of the ITO target may be impaired. Therefore, agglomeration using moisture as a binder is preferable in terms of obtaining indium oxide aggregated particles that are excellent in terms of quality and work environment.

以下、実施例により本発明を具体的に説明するが、本発明の範囲が下記実施例に制限されるものではない。
先ず、本実施例で行なった各種測定評価方法について説明する。
EXAMPLES The present invention will be specifically described below with reference to examples, but the scope of the present invention is not limited to the following examples.
First, various measurement evaluation methods performed in this example will be described.

(一次粒子の個数平均粒子径)
透過型電子顕微鏡(倍率30,000倍)により写真撮影し、写真上の100個の一次粒子の粒径(フェレ径)をそれぞれ計測し、その個数平均粒子径を求めた。
(Number average particle diameter of primary particles)
Photographs were taken with a transmission electron microscope (magnification of 30,000 times), and the particle diameters (Ferret diameter) of 100 primary particles on the photograph were measured, and the number average particle diameter was determined.

(凝集粒子の個数平均粒子径)
光学顕微鏡(倍率80倍)により写真撮影し、写真上の100個の凝集粒子の粒径(フェレ径)をそれぞれ計測し、その個数平均粒子径を求めた。
(Number average particle diameter of aggregated particles)
Photographs were taken with an optical microscope (magnification 80 times), the particle diameters (Ferret diameter) of 100 aggregated particles on the photograph were measured, and the number average particle diameter was determined.

(比表面積)
ユアサアイオニクス株式会社製Monosorbを使用して測定した。
(Specific surface area)
Measurement was performed using Monosorb manufactured by Yuasa Ionics Co., Ltd.

(安息角)
ホソカワミクロン社製パウダーテスターを用い、本体付属のマニュアルに従って測定した。すなわち、試料をパウダーテスター付属のロートより投入し、受け皿に十分な山を形成するまで試料の供給を行い、形成した山の角度を測定した。
(Angle of repose)
Using a powder tester manufactured by Hosokawa Micron, measurement was performed according to the manual attached to the main body. That is, the sample was put in from the funnel attached to the powder tester, the sample was supplied until a sufficient mountain was formed on the tray, and the angle of the mountain formed was measured.

(見掛け密度)
JIS K−5101に準拠して蔵持科学器械製作所製カサ比重測定器を使用して、試料を篩い等を使用せず、そのまま内容量100cm3の容器に投入して、質量を測定し、単位堆積あたりの質量を求めた。
(Apparent density)
In accordance with JIS K-5101, using a Kasa Denki Seisakusho Kasa specific gravity measuring instrument, the sample is put into a container with an internal volume of 100 cm 3 without using a sieve, and the mass is measured. The mass per hit was determined.

(タップ嵩密度)
ホソカワミクロン社製パウダーテスターを用い、本体付属のマニュアルに従ってタップ嵩密度を測定した。
(Tap bulk density)
Using a powder tester manufactured by Hosokawa Micron, tap bulk density was measured according to the manual attached to the main body.

(圧縮度)
上記の如く測定したタップ嵩密度と見掛け密度とを用いて、次式により計算して求めた。タップ密度測定におけるタップ回数は300回とした。
圧縮度={(タップ嵩密度−見掛け密度)/(タップ嵩密度)}×100
(Compression degree)
Using the tap bulk density and the apparent density measured as described above, it was calculated by the following formula. The number of taps in the tap density measurement was 300.
Compressibility = {(tap bulk density−apparent density) / (tap bulk density)} × 100

(加熱減量)
試料3gを秤量ビンに正確に秤量し、105℃に設定した乾燥機中に3時間置いた後、再度正確に秤量し、元の試料量(3g)に対する重量減の割合(質量%)を加熱減量とした。
(Heat loss)
3 g of sample is accurately weighed in a weighing bottle, placed in a dryer set at 105 ° C. for 3 hours, then weighed again accurately, and the weight loss ratio (mass%) with respect to the original sample amount (3 g) is heated. Weight loss.

(衝撃後のスパチュラ角)
ホソカワミクロン社製パウダーテスターを用い、本体付属のマニュアルに従って測定した。すなわち、パウダーテスター付属のスパチュラ角測定用治具をセットし、スパチュラ角を形成させた後、付属のショックハンマーを1回作動させ、その後のスパチュラ角を測定した。
(Spatula angle after impact)
Using a powder tester manufactured by Hosokawa Micron, measurement was performed according to the manual attached to the main body. That is, a spatula angle measuring jig attached to the powder tester was set to form a spatula angle, the attached shock hammer was actuated once, and the subsequent spatula angle was measured.

(作業環境中のインジウム濃度)
容積50リットルのグローブボックス内で、酸化インジウム粒子粉体100gを500mlポリカップに入れ、別の500mlポリカップに移す作業を5回行った。作業終了後、直ちにグローブボックス内の空気をローボリュームサンプラーで一定量吸気し、捕捉させたろ紙中に含有されるインジウム濃度を化学分析し、空気中のインジウム濃度を算出した。
(Indium concentration in the working environment)
In a glove box with a capacity of 50 liters, 100 g of indium oxide particle powder was placed in a 500 ml polycup and transferred to another 500 ml polycup 5 times. Immediately after the work was completed, a certain amount of air in the glove box was sucked with a low volume sampler, and the indium concentration contained in the trapped filter paper was chemically analyzed to calculate the indium concentration in the air.

(30μm以上の凝集粒子の質量比率)
風力分級機(日清エンジニアリング社製、ターボクラシファイアTC−15M型)を用いて、30μm以上の粒子を分級し、その重量と分級に供した酸化インジウム粉末重量から、30μm以上の凝集粒子重量比率を求めた。
(Mass ratio of aggregated particles of 30 μm or more)
Using a wind classifier (Nisshin Engineering Co., Ltd., turbo classifier TC-15M type), particles of 30 μm or more are classified. Asked.

〔酸化インジウム粉末〕
出発原料として用いた酸化インジウム粒子粉末A〜Cの諸特性を表1に示す。
なお、酸化インジウム粒子粉末A〜Cは、70℃〜80℃の硝酸インジウム溶液にアンモニア水を添加し攪拌して水酸化インジウムスラリーを得、得られたスラリーを固液分離して固体分(ケーキ)を回収し、これを水で洗浄した後、140℃で十分に乾燥させて水酸化インジウム粉末を得た。そして、この水酸化インジウム粉末を、大気中700℃〜1100℃(A:700℃、B:900℃、C:1100℃)で焼成し、酸化インジウム粒子粉末A〜Cを得た。
[Indium oxide powder]
Table 1 shows various characteristics of the indium oxide particle powders A to C used as starting materials.
In addition, the indium oxide particle powders A to C were obtained by adding ammonia water to an indium nitrate solution at 70 ° C. to 80 ° C. and stirring to obtain an indium hydroxide slurry. ) Was collected, washed with water, and sufficiently dried at 140 ° C. to obtain indium hydroxide powder. And this indium hydroxide powder was baked at 700 to 1100 degreeC (A: 700 degreeC, B: 900 degreeC, C: 1100 degreeC) in air | atmosphere, and indium oxide particle powder AC was obtained.

Figure 0004764361
Figure 0004764361

〔実施例1〕
空気輸送装置を使用し、直径50mm×長さ10mの輸送管中に、湿度55%RHに調整した空気を、酸化インジウム粒子粉末A30kgとともに、経路流速(空気輸送速度)8m/sで流通させるように空気輸送を行った。この際、酸化インジウム粒子粉末Aが輸送管を通過するのに要した時間は1.3秒であった。
そして、排出された酸化インジウム粉末を回収して諸特性を測定評価し、結果を表3に示した。
[Example 1]
Using an air transport device, air adjusted to a humidity of 55% RH is circulated in a transport pipe having a diameter of 50 mm and a length of 10 m together with indium oxide particle powder A30 kg at a path flow rate (air transport speed) of 8 m / s. Air transportation was performed. At this time, the time required for the indium oxide particle powder A to pass through the transport pipe was 1.3 seconds.
Then, the discharged indium oxide powder was collected, and various characteristics were measured and evaluated. The results are shown in Table 3.

〔実施例2〜7〕
表2に示すように、出発原料としての酸化インジウム粒子粉末、空気の湿度、経路流速(空気輸送速度)、輸送管長(処理経路長)および通過時間を変更した以外は、実施例1と同様の操作により酸化インジウム粉末を得た。
得られた酸化インジウム粉末は実施例1と同様に諸特性を測定評価し、結果を表3に示した。
[Examples 2 to 7]
As shown in Table 2, the same as in Example 1 except that the indium oxide particle powder as the starting material, the humidity of the air, the path flow rate (air transport speed), the transport pipe length (treatment path length) and the passage time were changed. Indium oxide powder was obtained by the operation.
The obtained indium oxide powder was measured and evaluated in the same manner as in Example 1 and the results are shown in Table 3.

Figure 0004764361
Figure 0004764361

Figure 0004764361
Figure 0004764361

表3から、実施例1〜7で得られた酸化インジウム粉末はいずれも、作業環境中のインジウム濃度が1ppm未満であり、飛散し難く作業環境性に優れていることが分った。
これに対して、凝集作用を加えていない表1の酸化インジウム粒子粉末A〜Cは、安息角が高く、衝撃後のスパチュラ角が高く、また、見掛け密度、タップ嵩密度が低く、また、そのバランスを示す指標である圧縮度も高かった。このように各種粉体物性が十分ではないため、取り扱い時の作業環境濃度が著しく高い値を示しており、ハンドリング性に劣るものであった。
From Table 3, it was found that all of the indium oxide powders obtained in Examples 1 to 7 had an indium concentration in the working environment of less than 1 ppm, and were hardly scattered and excellent in working environment.
On the other hand, the indium oxide particle powders A to C in Table 1 that do not have an aggregating action have a high angle of repose, a high spatula angle after impact, a low apparent density, and a low bulk density of taps. The degree of compression, which is an indicator of balance, was also high. Thus, since various powder physical properties are not sufficient, the working environment concentration at the time of handling showed a remarkably high value, and the handling property was inferior.

Claims (8)

個数平均粒子径0.01μm〜1μmの酸化インジウム一次粒子が凝集してなる酸化インジウム凝集粒子を主成分粒子として含有する酸化インジウム粉末であって、酸化インジウム凝集粒子の個数平均粒子径が30μm〜3000μmであることを特徴とする酸化インジウム粉末。   An indium oxide powder containing, as main component particles, indium oxide aggregated particles obtained by aggregating indium oxide primary particles having a number average particle size of 0.01 μm to 1 μm, and the number average particle size of the indium oxide aggregated particles is 30 μm to 3000 μm. Indium oxide powder, characterized in that 105℃雰囲気下に3時間置いた時の加熱減量が0.03質量%〜2質量%であることを特徴とする請求項1記載の酸化インジウム粉末。   2. The indium oxide powder according to claim 1, wherein a loss on heating when placed in a 105 ° C. atmosphere for 3 hours is 0.03% by mass to 2% by mass. 圧縮度が20%〜40%であることを特徴とする請求項1又は2に記載の酸化インジウム粉末。   The indium oxide powder according to claim 1 or 2, wherein the compressibility is 20% to 40%. 安息角が20°〜40°であることを特徴とする請求項1〜3の何れかに記載の酸化インジウム粉末。   The repose angle is 20 ° to 40 °, and the indium oxide powder according to any one of claims 1 to 3. 見掛け密度が0.7g/cm3 〜2.0g/cm3であることを特徴とする請求項1〜4の何れかに記載の酸化インジウム粉末。 Indium oxide powder according to claim 1, the apparent density is equal to or is 0.7g / cm 3 ~2.0g / cm 3 . 衝撃を加えた後のスパチュラ角が20°〜45°であることを特徴とする請求項1〜5の何れかに記載の酸化インジウム粉末。   6. The indium oxide powder according to claim 1, wherein a spatula angle after impact is 20 ° to 45 °. 粒径30μm〜3000μmの凝集粒子の質量比率が80質量%以上であることを特徴とする請求項1〜6の何れかに記載の酸化インジウム粉末。   The indium oxide powder according to any one of claims 1 to 6, wherein the mass ratio of aggregated particles having a particle size of 30 µm to 3000 µm is 80% by mass or more. インジウム含有粒子粉末を、湿度30%RH〜90%RHの空気を用いて空気輸送することを特徴とするインジウム含有粉末の製造方法。
A method for producing an indium-containing powder, wherein the indium-containing particle powder is pneumatically transported using air having a humidity of 30% RH to 90% RH.
JP2007030066A 2007-02-09 2007-02-09 Indium oxide powder and method for producing the same Active JP4764361B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007030066A JP4764361B2 (en) 2007-02-09 2007-02-09 Indium oxide powder and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007030066A JP4764361B2 (en) 2007-02-09 2007-02-09 Indium oxide powder and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008195552A JP2008195552A (en) 2008-08-28
JP4764361B2 true JP4764361B2 (en) 2011-08-31

Family

ID=39754847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007030066A Active JP4764361B2 (en) 2007-02-09 2007-02-09 Indium oxide powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP4764361B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010215461A (en) * 2009-03-17 2010-09-30 Mitsui Mining & Smelting Co Ltd Indium oxide powder

Also Published As

Publication number Publication date
JP2008195552A (en) 2008-08-28

Similar Documents

Publication Publication Date Title
JP7068703B2 (en) Ferrite particles, resin compositions and electromagnetic wave shielding materials
WO2012169628A1 (en) Silver powder and process for manufacturing same
JP7259846B2 (en) alumina particles
JP3711992B2 (en) Granular metal powder
TWI658989B (en) Crystalline silicon dioxide particle material, method for manufacturing the same, slurry composition containing crystalline silicon dioxide particle material, and resin composition containing crystalline silicon dioxide particle material
KR20180110034A (en) Method for producing sintered ores
Bu et al. Effect of admixed solid inertants on dispersibility of combustible dust clouds in a modified hartmann tube
JP4764361B2 (en) Indium oxide powder and method for producing the same
WO2018110563A1 (en) Iron oxide powder for brake friction material
WO2018147360A1 (en) Method for reforming coal ash, and method for producing fly ash for concrete admixture
TWI596213B (en) Sinter manufacturing method
JP6839767B2 (en) Method for manufacturing raw materials for cerium-based abrasives, and method for manufacturing cerium-based abrasives
JP6256728B2 (en) Production equipment for granulating raw materials for sintering
WO2021068126A1 (en) Composite particle and method of producing composite particle
JP6073981B2 (en) Gallium oxide powder
WO2015152109A1 (en) Device for manufacturing pelletized sinter feed
JP6976755B2 (en) Heavy metal trapping agent, its manufacturing method, and pollutant treatment method
JP7329563B2 (en) Iron powder for deoxidizer
JP2012162440A (en) Gallium oxide powder
JP5558287B2 (en) Aluminum-doped zinc oxide particles and method for producing the same
JP7388548B2 (en) Alumina particles and method for producing alumina particles
JP2010215461A (en) Indium oxide powder
CN109126413A (en) Prepare sulphur/aluminium oxide mercury removal agent method of macropore
JP7542103B1 (en) Insolubilizer
WO2024204488A1 (en) Spherical magnesium oxide particles, spherical magnesium oxide powder, method for producing same, thermally conductive filler, and resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110610

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4764361

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250