WO2012169628A1 - Silver powder and process for manufacturing same - Google Patents

Silver powder and process for manufacturing same Download PDF

Info

Publication number
WO2012169628A1
WO2012169628A1 PCT/JP2012/064832 JP2012064832W WO2012169628A1 WO 2012169628 A1 WO2012169628 A1 WO 2012169628A1 JP 2012064832 W JP2012064832 W JP 2012064832W WO 2012169628 A1 WO2012169628 A1 WO 2012169628A1
Authority
WO
WIPO (PCT)
Prior art keywords
silver
silver powder
paste
particles
kneading
Prior art date
Application number
PCT/JP2012/064832
Other languages
French (fr)
Japanese (ja)
Inventor
剛 川島
美香 岡田
栄治 石田
知倫 二瓶
俊昭 寺尾
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to JP2012548247A priority Critical patent/JP5288063B2/en
Priority to CN201280002696.0A priority patent/CN103079728B/en
Priority to KR1020137005224A priority patent/KR101885391B1/en
Publication of WO2012169628A1 publication Critical patent/WO2012169628A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/24Features related to electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/12Metallic powder containing non-metallic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form

Definitions

  • the present invention relates to a silver powder and a method for producing the same, and more particularly to a silver powder that is a main component of a silver paste used for forming a wiring layer, an electrode, and the like of an electronic device and a method for producing the same.
  • This application claims priority on the basis of Japanese Patent Application No. 2011-128015 filed in Japan on June 8, 2011. By reference to these applications, the present application Incorporated.
  • silver pastes such as resin-type silver paste and fired-type silver paste are widely used.
  • Conductive films such as wiring layers and electrodes are formed by applying or printing a silver paste, followed by heat curing or heat baking.
  • the resin-type silver paste is composed of silver powder, resin, curing agent, solvent, etc., and this resin-type silver paste is printed on a conductor circuit pattern or terminal and then heat-cured at 100 ° C. to 200 ° C. to form a conductive film.
  • wiring and electrodes are formed.
  • the fired silver paste is made of silver powder, glass, solvent, etc., and this sintered silver paste is printed on a conductor circuit pattern or terminal and then heated and fired at 600 ° C. to 800 ° C. to form a conductive film.
  • wiring and electrodes are formed. Fillability and sinterability of silver powder are important for the conductivity of these wirings and electrodes formed by heating silver paste.
  • silver powder having a particle size of 0.1 ⁇ m to several ⁇ m is used for the conductive silver paste.
  • the particle size of the silver powder used is fine according to the thickness of the intended wiring and the thickness of the electrode. Selected. Further, high uniformity is required for the thickness of the formed wiring and the thickness of the electrode, and the dispersibility in the paste of silver powder is important for that purpose. Improved dispersibility also leads to improved fillability.
  • the characteristics required for the silver powder for conductive silver paste vary depending on the application and use conditions, but generally high dispersibility and sinterability in the paste.
  • silver powder with low dispersibility in the paste not only the thickness of the wiring and the thickness of the electrode become non-uniform, but also the treatment of curing and baking becomes non-uniform, increasing the resistance of the conductive film and the conductive film Will lead to embrittlement.
  • the deterioration of sinterability is directly linked to an increase in the resistance of the conductive film.
  • these three characteristics largely depend on the stability of the silver powder production process and the surface treatment of the silver powder.
  • the silver powder when producing the silver paste, first, the silver powder is kneaded with other components such as a solvent and then kneaded with a three-roll mill or the like while applying a predetermined pressure. At this time, the silver powder is required to be efficiently kneaded with a roll, that is, to have good kneading properties.
  • the occurrence of flakes greatly affects the kneadability during paste production and the printability during screen printing. Therefore, it is desired that the silver powder has good dispersibility in a solvent at the time of preparing the paste and does not generate coarse powder such as flakes.
  • the present invention has been proposed in view of such circumstances, silver powder having good dispersibility in a solvent during paste preparation, and suppressing the generation of coarse powder such as flakes during kneading and It aims at providing the manufacturing method.
  • the present inventors have found that silver powder having an aggregate formed by connecting substantially spherical particles to a predetermined size has good dispersibility in the paste. And the generation of coarse powders such as flakes during kneading can be suppressed, and the present invention has been completed.
  • silver powder according to the present invention cohesion is at -0.2N / cm 2 or more 0.7 N / cm 2 or less, a compression ratio in the powder layer shear force measurements 20-50%, and JIS- The absorption amount of dibutyl phthalate measured by the K6217-4 method is 3.0 to 9.0 ml / 100 g.
  • the silver powder production method according to the present invention includes a silver complex containing solution obtained by dissolving silver chloride and a complexing agent and a reducing agent solution, and reducing the silver complex to produce silver powder.
  • a silver complex containing solution obtained by dissolving silver chloride and a complexing agent and a reducing agent solution, and reducing the silver complex to produce silver powder.
  • 0.1 to 15% by mass of a water-soluble polymer based on silver is added to one or both of the silver complex-containing solution and the reducing agent solution.
  • the paste is excellent in dispersibility in a solvent, and generation of coarse powder such as flakes can be effectively suppressed during kneading of the paste preparation.
  • the name for the silver particle form is defined as shown in FIG. That is, as shown in FIG. 1 (A), silver particles are judged from the apparent geometric form, and those considered as unit particles are called primary particles. Further, as shown in FIG. 1B, particles in which two to three or more primary particles are connected by necking are called secondary particles. Further, as shown in FIG. 1C, an aggregate of primary particles and secondary particles is called an aggregate.
  • silver powder having an individual primary particle dispersed as much as possible and having an average particle size of 0.1 to 1.5 ⁇ m has been used in the production of silver paste.
  • Fine silver in which such primary particles are dispersed has been used. Since the particles are densely packed, there are many contact points with other particles and the cohesive force increases, and silver particles easily aggregate in the paste to form a large lump. Then, for example, when kneading is performed by a three-roll mill generally used in paste production, the aggregated mass enters the roll as it is without breaking, and as a result, coarse powder of mm order such as flakes is formed. I found out.
  • the present inventors have appropriately formed an aggregate in which primary particles or secondary particles are linked to a predetermined size, and the aggregate has a predetermined strength.
  • the cohesive force between silver particles when viewed as one particle is reduced, the dispersibility is excellent, the generation of coarse powder such as flakes is effectively suppressed during kneading of paste preparation, and the kneadability is improved. It turns out that it can improve.
  • the cohesive force is at -0.2N / cm 2 or more 0.7 N / cm 2 or less, a compression ratio in the powder layer shear force measurements 20-50%, and
  • the absorption of dibutyl phthalate measured by JIS-K6217-4 method is 3.0 to 9.0 ml / 100 g.
  • Silver powder having such characteristics has good dispersibility in a solvent during paste preparation, and can effectively suppress generation of coarse powder such as flakes during kneading.
  • the silver particles used in the present embodiment preferably have a primary particle having an average particle size in the range of 0.1 to 1.5 ⁇ m.
  • the average particle size of the primary particles is 0.1 ⁇ m or more, when the conductive paste is made, a large resistance is not generated and the conductivity is good.
  • the average particle size of the primary particles is 1.5 ⁇ m or less, as described later, even when primary particles are connected to a predetermined size to form an aggregate, kneading is performed without deteriorating dispersibility. And printability are good.
  • the agglomeration force represents the ease of aggregation of the silver powder itself, and is an index for aggregation of silver particles in the paste.
  • This cohesive force can be defined as a shear stress in a state where silver powder is not loaded. Therefore, for example, using a powder layer shear force measuring device, it can be obtained from a graph of shear stress and normal stress, and in the graph of shear stress against normal stress, the shear stress value of the Y-intercept becomes the cohesive force. That is, the higher the Y intercept, the greater the cohesive force.
  • the inclination of the graph of the shear stress with respect to the normal stress is an internal friction force of the silver powder, and is an index of the slipperiness of the powder.
  • the cohesive force is -0.2N / cm 2 or more 0.7 N / cm 2 or less.
  • the cohesive force is within the above-described range, the generation of coarse flakes is suppressed without excessively aggregating silver particles in the paste.
  • the absorption amount of dibutyl phthalate can be measured based on JIS-K6217-4 method.
  • the silver powder according to the present embodiment has an absorption amount of dibutyl phthalate of 3.0 to 9.0 ml / 100 g.
  • Silver powder having an absorption of dibutyl phthalate of 3.0 to 9.0 ml / 100 g indicates that silver particles of a predetermined size are connected to form, for example, a bunch of grape-like aggregates. .
  • a silver powder having an aggregate formed by connecting silver particles of a predetermined size the voids increase, and when dibutyl phthalate is dropped, phthalates are formed between the silver particles forming the aggregate.
  • Dibutyl acid is absorbed (oil absorption).
  • the amount of absorption decreases because there are few voids between silver particles. Therefore, by measuring the amount of dibutyl phthalate absorbed, it is possible to determine how much the aggregate is formed.
  • components such as the solvent of the paste and the silver particles can be easily blended and can be kneaded well.
  • the viscosity of the paste made using the silver powder can be judged.
  • the silver powder having an aggregate in which silver particles are connected takes in the solvent component of the paste between the particles constituting the aggregate, the amount of the solvent component in the paste outside the aggregate is relatively high.
  • the viscosity of the paste becomes high, the shearing force generated between the rolls during kneading is efficiently propagated to the paste as a dispersion force for dispersing the silver powder, and the silver powder does not aggregate and is easily dispersed.
  • the absorbed amount of dibutyl phthalate is less than 3.0 ml / 100 g, it indicates that the number of the above-mentioned aggregates formed is small, and flakes are generated during paste production.
  • the amount of absorption is larger than 9.0 ml / 100 g, it indicates that the silver particles are excessively aggregated, the dispersibility is deteriorated, and flakes are generated.
  • Compressibility is a volume reduction rate of silver powder from a set load to a state where a set load is applied, and is an index representing the void amount between silver particles and the structural strength of the aggregate of silver powder.
  • This compression rate is determined by using a powder layer shear force measuring device to fill a cell with a predetermined amount of silver powder and measure it under no load (static bulk height) and the volume when a set load (60 N) is applied ( It can be measured from (bulkness).
  • a load is applied to the silver powder by the powder layer shear force measuring device, the powder layer will be compressed, but if the silver particles are separated into primary particles, the amount of voids between the compressed particles will be reduced, The compression rate is large.
  • the silver powder according to the present embodiment contains an aggregate formed by connecting silver particles in a predetermined size. Since the presence of this aggregate can effectively suppress the generation of flakes, the structure of the aggregate does not easily change, and preferably has structural strength.
  • agglomerates contained in silver powder are not preferable if they are easily broken by the hands of paste workers.
  • pre-kneading by a self-revolving mixer or the like and main kneading by a three-roll mill or the like are generally performed.
  • the aggregate breaks into primary particles or secondary particles in the initial stage of kneading, so that they are densely packed in the paste, Since the number of contact points with the particles increases and the cohesive force increases, the particles tend to aggregate in the paste, and flakes are generated. Thereby, kneadability is impaired remarkably.
  • the formed aggregate has a structural strength and does not easily change in structure. Thereby, the state in which the aggregate is present in the silver powder is maintained, the viscosity is not reduced, the generation of coarse powder such as flakes can be suppressed, and good kneadability can be exhibited.
  • the silver powder according to the present embodiment has a compression rate of 20 to 50%.
  • the compression ratio is less than 20%, the above-mentioned aggregate structure is strong, indicating that the aggregate structure is not easily broken, and flakes are produced during paste production.
  • the compression ratio is greater than 50%, the mechanical strength of the agglomerate is weak, indicating that the agglomerated structure is easily broken, and the silver particles are densely packed during the preparation of the paste, and the contact with other particles is Since it increases and the cohesion force becomes large, it becomes easy to aggregate in a paste and will produce flakes.
  • the cohesive force is at -0.2N / cm 2 or more 0.7 N / cm 2 or less
  • the compression ratio in the powder layer shear force measurement is 20-50%
  • Silver powder having a measured absorption of dibutyl phthalate of 3.0 to 9.0 ml / 100 g has agglomerates with many voids in which silver particles are linked to a predetermined size, and the aggregates are The predetermined strength is maintained. According to such silver powder, the dispersibility in a solvent is good at the time of paste preparation, and generation of coarse powder such as flakes during kneading can be effectively suppressed.
  • the presence of aggregates contained in the silver powder as described above can also be determined by comparing the average particle diameter as follows. Specifically, the determination is made by comparing the volume average particle size D50 measured using the laser diffraction scattering method with the average particle size DS obtained by image analysis of a scanning electron microscope (SEM). Can do.
  • SEM scanning electron microscope
  • the particle size measurement by laser diffraction confusion method is the particle size of the unit particles dispersed in the solvent, that is, when aggregated particles are included, not only the primary particles dispersed alone but also the aggregates and secondary particles
  • the particle size containing On the other hand, the average particle diameter obtained by image analysis of SEM is an average value of the particle diameters of the primary particles. Therefore, as the ratio determined by D50 / DS is larger than 1, it indicates that secondary particles and aggregates in which primary particles are connected at a predetermined ratio are formed.
  • the silver powder according to the present embodiment is obtained by D50 / DS, where D50 is the volume average particle diameter measured using the laser diffraction scattering method and DS is the average particle diameter obtained by SEM image analysis.
  • the resulting ratio is 1.5 to 5.0.
  • the strength of the aggregate can also be determined by comparing the specific surface areas as follows. Specifically, the determination can be made by comparing the specific surface area obtained by the BET method with the specific surface area obtained from the average particle diameter obtained by SEM image analysis.
  • the BET method is a method for measuring a surface area of a powder by a gas phase adsorption method, and is a method for obtaining a total surface area, that is, a specific surface area of a 1 g sample from an adsorption isotherm.
  • Nitrogen gas is often used as the adsorbed gas, and a method of measuring the amount of adsorption from the change in pressure or volume of the gas to be adsorbed is often used.
  • the specific surface area can be determined by determining the amount of adsorption based on the BET formula and multiplying the area occupied by one adsorbed molecule on the surface.
  • the strength of the aggregate is related to the strength of the connection between the silver particles.
  • the connection between the particles is weak, for example, when the spherical primary particles are connected only at the contact points, the surface area is reduced only at the contact points where the particles are connected.
  • the reduction in the specific surface area measured as a result is the sum of the specific surface areas in a state where the particles are completely dispersed, that is, the specific surface area of the primary particles is slightly smaller.
  • the connection between the particles is strong, in other words, when the primary particles are strongly connected so that the secondary particles are in the shape of a gourd or snowman, the specific surface area of the thick connection part decreases.
  • the specific surface area measured by the BET method decreases more than the specific surface area of the primary particles.
  • the average particle diameter obtained by image analysis of SEM is the average value of the particle diameter of the primary particles, and the specific surface area obtained from this average particle diameter is the sum of the surface areas of individual particles as spheres, The value approximates the specific surface area of the primary particles.
  • the ratio (SSA 1 / SSA 2 ) between the specific surface area SSA 1 determined by the BET method and the specific surface area SSA 2 determined from the average particle diameter obtained by SEM image analysis is the aggregation index or spherical shape of the silver powder. It becomes an index, whereby it can be determined how strongly the above-mentioned connected particles are connected, and the strength of the aggregate can be determined.
  • Silver powder according to the present embodiment when the specific surface area determined by the BET method and SSA 1, the specific surface area determined from the average particle diameter obtained by image analysis of SEM was SSA 2, SSA 1 / SSA 2 The ratio determined by is less than 1.0.
  • the silver powder having a ratio determined by SSA 1 / SSA 2 of less than 1.0 means that the formed aggregate has a predetermined strength, and the aggregate structure is maintained even by kneading, for example, The generation of flakes during paste production can be more effectively suppressed.
  • it is preferable ratio sought SSA 1 / SSA 2 is 0.7 or more. When the ratio is less than 0.7, the aggregation proceeds, indicating that the aggregate is coarse and has a high strength. If such an aggregate is contained in the silver powder, it may cause clogging during screen printing, and may impair the uniformity of the wiring layer and electrodes formed with the silver paste.
  • the ratio sought SSA 1 / SSA 2 is 1.0 or more, or aggregates are not formed, a case connection of the connecting particle is weak, for example, was kneaded in a predetermined or more pressure Therefore, the aggregate structure may be easily broken and flakes may be generated.
  • each component is weighed and placed in a predetermined container, pre-kneaded using a self-revolving mixer, etc., and then main-kneaded with three rolls. To make. As described above, it is important to maintain the aggregate structure of the aggregate formed by connecting silver particles to a predetermined size. Even if the preliminary kneading and the main kneading are performed during paste preparation, It is desirable to maintain the aggregate structure at a high level. That is, it is desirable that the aggregate has an appropriate structural stability.
  • a paste was prepared by experimentally kneading silver powder and an epoxy resin with a centrifugal force of 420 G, and the volume average particle diameter D1 measured by using a laser diffraction scattering method for the silver powder in the paste, and then further The stability of the aggregated structure can be determined by comparing the silver powder in the paste obtained by kneading with a three-roll mill with the volume average particle diameter D2 measured using the laser diffraction scattering method. That is, in general, the structure of the aggregates collapses with kneading, and the average particle diameter of silver powder shifts to become smaller. Therefore, the average particle diameter D1 after preliminary kneading and the average particle diameter D2 after main kneading are By comparing, the stability of the structure of the aggregate can be determined.
  • the silver powder in the paste obtained by kneading the silver powder and the epoxy resin with a centrifugal force of 420 G is used by laser diffraction scattering method.
  • the average particle diameter of volume integration measured by the laser diffraction scattering method is D2
  • the average particle diameter of volume integration measured by laser diffraction scattering method is D1
  • the ratio obtained by D2 / D1 is 0.5 to 1.5.
  • the ratio calculated by D2 / D1 is 0.5 to 1.5, it can be determined that the structure of the aggregate is stable also by the preliminary kneading and the main kneading.
  • required by D2 / D1 is smaller than 0.5, there is no stability of the structure of an aggregate, the structure breaks by kneading
  • the apparatus for kneading silver powder and epoxy resin with a centrifugal force of 420 G is not particularly limited as long as it can knead with the centrifugal force of 420 G.
  • a mixer or the like can be used.
  • mixing) by a 3 roll mill is performed on conditions with a roll diameter of 150 mm and roll pressure of 10 bar, for example.
  • the stability of the structure of the aggregate can be evaluated by measuring the viscosity of the paste after kneading, in addition to comparing the average particle diameter after kneading as described above.
  • the silver powder according to the present embodiment has an aggregate with many voids in which silver particles (primary particles and secondary particles) are aggregated to a predetermined size. Therefore, as described above, the viscosity increases in the initial stage of paste production. However, when the strength of the aggregate is weak, the viscosity gradually shifts with kneading. Therefore, the stability of the structure of the agglomerates is judged by preparing a paste with silver powder and an epoxy resin on a trial basis and comparing the viscosity ⁇ 1 of the paste after preliminary kneading with the viscosity ⁇ 2 of the paste after main kneading. can do.
  • the silver powder according to the present embodiment is a shear rate obtained by measuring a paste obtained by kneading the silver powder and an epoxy resin with a centrifugal force of 420 G using a viscoelasticity measuring device as an evaluation of the structural stability of the aggregate.
  • a viscoelasticity measuring device as an evaluation of the structural stability of the aggregate.
  • the ratio obtained by ⁇ 2 / ⁇ 1 is 0.5 to 1.5, it can be determined that the structure of the aggregate is stable also by the preliminary kneading and the main kneading.
  • required by (eta) 2 / (eta) 1 is smaller than 0.5, there is no stability of the structure of an aggregate, the structure breaks by kneading
  • a self-revolving mixer or the like can be used as an apparatus for kneading (preliminary kneading) silver powder and epoxy resin with a centrifugal force of 420 G. Further, the kneading (main kneading) by the three roll mill is performed under the conditions of a roll diameter of 150 mm and a roll pressure of 10 bar, for example.
  • the viscoelasticity measuring device is not particularly limited as long as it can measure the viscosity at a desired shear rate.
  • composition of the paste for evaluation prepared in this viscosity measurement is, for example, 80% by mass of silver powder, epoxy resin (100 to 200 P (10 to 20 Pa ⁇ s) / 25 ° C., preferably 120 to 150 P (12 to 15 Pa ⁇ s). s) / 25 ° C.) is preferably 20% by mass.
  • silver powder according to the present embodiment cohesion -0.2N / cm 2 or more 0.7 N / cm 2 or less, at a compression rate of the powder layer shear force measurements 20-50%
  • the absorption amount of dibutyl phthalate measured by the JIS-K6217-4 method is 3.0 to 9.0 ml / 100 g. That is, this silver powder has an aggregate with many voids in which silver particles are connected in a predetermined size, and the aggregate has a predetermined strength. According to such silver powder, dispersibility in a solvent becomes good at the time of paste preparation, and silver powder is prevented from agglomerating and lumping in the paste, and coarse powder such as flakes is generated. Can be suppressed.
  • the silver powder which can suppress generation
  • the method for producing silver powder according to the present embodiment uses, for example, silver chloride or silver nitrate as a starting material, and basically a solution containing a silver complex obtained by dissolving silver chloride or the like with a complexing agent.
  • a silver particle slurry is obtained by mixing the (silver complex-containing solution) and the reducing agent solution, and reducing the silver complex to precipitate silver particles.
  • 0.1 to 15% by mass of a water-soluble polymer with respect to silver is added to either or both of the silver complex-containing solution and the reducing agent solution. To do. More preferably, more than 3.0 mass% and 10 mass% or less water-soluble polymer is added with respect to silver.
  • the cohesion force is -0.2 N / cm 2 or more and 0.7 N / cm 2 or less
  • the compressibility in the measurement of the powder layer shear force is 20 to 50%
  • the absorption of dibutyl phthalate measured by the JIS-K6217-4 method is 3.0.
  • a silver powder of ⁇ 9.0 ml / 100 g can be produced.
  • silver particles (primary particles) produced by reduction with a reducing agent solution have an active surface, and are easily connected to other silver particles to form secondary particles. Further, the secondary particles aggregate to form an aggregate.
  • an anti-aggregation agent having a high anti-aggregation effect for example, a surfactant or a fatty acid is used, secondary particles and aggregates are not sufficiently formed, primary particles increase, and appropriate aggregates are not formed.
  • the formation of secondary particles and aggregates becomes excessive, resulting in a silver powder containing excessively aggregated coarse aggregates.
  • the water-soluble polymer has an appropriate anti-aggregation effect, so it is possible to easily control the formation of secondary particles and aggregates by adjusting the addition amount, and the silver complex containing after the addition of the reducing agent solution Aggregates of an appropriate size can be formed in the solution.
  • the water-soluble polymer to be added is not particularly limited, but is preferably at least one of polyethylene glycol, polyethylene oxide, polyvinyl alcohol, and polyvinyl pyrrolidone. According to these water-soluble polymers, in addition to preventing excessive aggregation, the aggregation of the grown nuclei is insufficient, preventing the silver particles (primary particles) from becoming fine, The silver powder which has can be formed easily.
  • the mechanism by which silver particles are connected to a predetermined size and aggregates are formed by adding a water-soluble polymer is as follows. That is, by adding a water-soluble polymer, the water-soluble polymer is adsorbed on the surface of the silver particles. At this time, when almost the entire surface of the silver particles is covered with the water-soluble polymer, the silver particles will be present alone, but 0.1 to 15% by mass of the water-soluble polymer is added to the silver. Thus, it is considered that a surface in which a part of the water-soluble polymer does not exist remains, and silver particles are connected through the surface to form an aggregate.
  • the addition amount of the water-soluble polymer is 0.1 to 15% by mass with respect to silver.
  • the addition amount of the water-soluble polymer is less than 0.1% by mass with respect to silver, the dispersibility in the silver particle slurry is deteriorated, the silver powder is excessively aggregated, and many coarse aggregates Will cause flakes.
  • the addition amount with respect to silver is more than 15% by mass, almost all the silver particle surfaces are covered with the water-soluble polymer, the silver particles cannot be connected to each other, and an aggregate is formed. I can't. As a result, silver powder composed of primary particles is formed, and even in this case, flakes are generated during paste preparation.
  • silver particles can be connected with an appropriate cohesive force to form a structurally stable aggregate.
  • the dispersibility in the inside can be improved, and the occurrence of flakes can be effectively suppressed.
  • the water-soluble polymer is added to either or both of the silver complex-containing solution and the reducing agent solution.
  • the addition of the water-soluble polymer to either or both of the silver complex-containing solution and the reducing agent solution may be added in advance to the solution to be added prior to the reduction treatment, and may contain a silver complex for the reduction treatment. You may make it add at the time of mixing of a solution and a reducing agent solution.
  • a water-soluble polymer is added in advance to the reducing agent solution.
  • a water-soluble polymer exists in the nucleation or nucleation field, and the surface of the generated nuclei or silver particles is rapidly water-soluble.
  • Polymers can be adsorbed and the aggregation of silver particles can be controlled efficiently.
  • the concentration so as to be more than 3.0% by mass and 10% by mass or less the silver particles are more appropriately connected to a predetermined size to form a highly stable aggregate. And the occurrence of flakes can be more effectively suppressed.
  • a starting material such as silver chloride is dissolved using a complexing agent to prepare a solution containing a silver complex.
  • a complexing agent it does not specifically limit as a complexing agent, It is preferable to use the ammonia water which is easy to form a complex with silver chloride etc. and does not contain the component which remains as an impurity. Moreover, when using silver chloride, it is preferable to use a high purity thing.
  • a slurry such as silver chloride may be prepared and ammonia water may be added, but in order to increase the complex concentration and increase productivity. Is preferably dissolved by adding silver chloride in ammonia water.
  • the aqueous ammonia used for the dissolution may be a normal one used industrially, but preferably has a purity as high as possible in order to prevent contamination with impurities.
  • a reducing agent solution to be mixed with the silver complex solution is prepared.
  • a strong reducing power such as ascorbic acid, hydrazine, formalin and the like.
  • Ascorbic acid is particularly preferred because the crystal grains in the silver particles are easy to grow.
  • Hydrazine or formalin can reduce the crystals in the silver particles.
  • it can also be used as an aqueous solution whose concentration is adjusted by dissolving or diluting a reducing agent with pure water or the like.
  • a water-soluble polymer with respect to silver is added to either or both of the silver complex-containing solution and the reducing agent.
  • foaming may occur during the reduction reaction due to the addition of the water-soluble polymer, and therefore an antifoaming agent may be added to the silver complex solution or the reducing agent mixed solution.
  • the antifoaming agent is not particularly limited and may be one usually used during reduction. However, in order not to inhibit the reduction reaction, the addition amount of the antifoaming agent is preferably set to a minimum level at which an antifoaming effect can be obtained.
  • the water used when preparing a silver complex solution and a reducing agent solution in order to prevent mixing of an impurity, it is preferable to use the water from which the impurity was removed, and it is especially preferable to use a pure water.
  • the silver complex solution prepared as described above and the reducing agent solution are mixed, and the silver complex is reduced to precipitate silver particles.
  • This reduction reaction may be performed by a batch method or a continuous reduction method such as a tube reactor method or an overflow method.
  • the particle size of the silver particles can be controlled by the mixing rate of the silver complex solution and the reducing agent solution and the reduction rate of the silver complex, and can be easily controlled to the intended particle size.
  • the washing step may be performed after the surface treatment step on the silver particles. preferable.
  • the washing method is not particularly limited, but the silver particles solid-liquid separated from the slurry by a filter press or the like are put into the washing liquid, stirred using an agitator or an ultrasonic washing machine, and then again solid-liquid.
  • a method of separating and collecting silver particles is generally used. Further, in order to sufficiently remove the surface adsorbate, it is preferable to repeat the operations consisting of charging into the cleaning liquid, stirring cleaning, and solid-liquid separation several times.
  • the cleaning liquid water may be used, but an alkaline aqueous solution may be used in order to efficiently remove chlorine. Although it does not specifically limit as an alkaline solution, It is preferable to use the sodium hydroxide aqueous solution with few remaining impurities and cheap. In the case of using a sodium hydroxide aqueous solution as the cleaning liquid, it is desirable to further wash the silver particles or the slurry thereof with water in order to remove sodium after washing with the sodium hydroxide aqueous solution.
  • the concentration of the sodium hydroxide aqueous solution is preferably 0.01 to 1.00 mol / l.
  • concentration is less than 0.01 mol / l, the cleaning effect is insufficient.
  • concentration exceeds 1.00 mol / l, sodium may remain in silver particles more than allowable.
  • the water used for the cleaning liquid is preferably water that does not contain an impurity element harmful to silver particles, and it is particularly preferable to use pure water.
  • the surface of the formed aggregate is aggregated before the aggregate formed by reduction in the silver complex-containing solution further aggregates to form a coarse aggregate.
  • the second important factor is to prevent excessive aggregation by surface treatment with a treatment agent having a high prevention effect. That is, after the above-described aggregates are formed and before excessive aggregation proceeds, the silver particles are treated with a surfactant, or more preferably a surface treatment on silver particles treated with a surfactant and a dispersant. Perform the process. Thereby, excessive aggregation can be prevented from occurring, the structural stability of the desired aggregate can be maintained, and the generation of flakes can be more effectively suppressed.
  • the effect of surface treatment can be obtained at any stage before the silver particles are dried. For example, it can be performed after the reduction process and before the above-described cleaning process, simultaneously with the cleaning process, or after the cleaning process.
  • the surface of the silver particles A water-soluble polymer is adsorbed moderately to form an aggregate in which silver particles are linked to a predetermined size.
  • the water-soluble polymer adsorbed on the surface of the silver particles is easily cleaned by the cleaning process. Therefore, when the washing process is performed prior to the surface treatment, the water-soluble polymer on the surface of the silver particles is washed, the silver particles start to excessively aggregate with each other, and a larger amount of agglomerates than the formed aggregates. Lumps may be formed. And this may cause flakes.
  • the surface treatment step is performed before the washing step or after one washing step, that is, in a state where an amount of water-soluble polymer that can suppress at least aggregation of silver particles remains on the surface of the silver particles.
  • the surface treatment after the reduction process and before the cleaning process may be performed after solid-liquid separation of the slurry containing silver particles with a filter press or the like after the reduction process.
  • this surface treatment step it is more preferable to treat the surface with both a surfactant and a dispersant.
  • a strong surface treatment layer can be formed on the surface of the silver particles due to the interaction. It is effective to maintain the aggregate.
  • the silver particles are put into water added with a surfactant and a dispersant and stirred, or put into water added with a surfactant. After stirring, a dispersant may be further added and stirred.
  • a surfactant and a dispersing agent should be added simultaneously to a washing
  • the silver particles are added to the water or the cleaning liquid to which the surfactant is added and stirred, and then the dispersant is further added and stirred. It is preferable.
  • the surfactant is not particularly limited, but a cationic surfactant is preferably used. Since the cationic surfactant is ionized into positive ions without being affected by pH, for example, an effect of improving the adsorptivity to silver powder using silver chloride as a starting material can be obtained.
  • the cationic surfactant is not particularly limited, but is an alkyl monoamine salt type represented by a monoalkylamine salt, an alkyldiamine salt represented by an N-alkyl (C14 to C18) propylenediamine dioleate.
  • alkyltrimethylammonium salt type represented by alkyltrimethylammonium chloride
  • alkyldimethylbenzylammonium salt type represented by alkyldimethylbenzylammonium chloride
  • quaternary ammonium salt type represented by alkyldipolyoxyethylenemethylammonium chloride
  • Alkyl pyridinium salt type tertiary amine type represented by dimethylstearylamine
  • N N ′, N′-tris (2-hydroxyethyl) -N-alkyl (C14-18) is preferably at least one selected from oxyethylene addition types of diamines represented by 1,3-diaminopropane Any of ammonium salt type, tertiary amine salt type or a mixture thereof is more preferable.
  • the surfactant preferably has at least one alkyl group having a C4 to C36 carbon number represented by methyl group, butyl group, cetyl group, stearyl group, beef tallow, hard beef tallow, and plant stearyl.
  • the alkyl group is preferably a group to which at least one selected from polyoxyethylene, polyoxypropylene, polyoxyethylene polyoxypropylene, polyacrylic acid, and polycarboxylic acid is added. Since these alkyl groups are strongly adsorbed with a fatty acid used as a dispersant described later, the fatty acid can be strongly adsorbed when the dispersant is adsorbed to the silver particles via the surfactant.
  • the addition amount of the surfactant is preferably in the range of 0.002 to 1.000% by mass with respect to the silver particles. Since almost the entire amount of the surfactant is adsorbed on the silver particles, the addition amount of the surfactant and the adsorption amount are almost equal. When the addition amount of the surfactant is less than 0.002% by mass, the effect of suppressing aggregation of silver particles or improving the adsorptivity of the dispersant may not be obtained. On the other hand, when the addition amount exceeds 1.000% by mass, the conductivity of the wiring layer or electrode formed using the silver paste is not preferable.
  • the dispersant for example, protective colloids such as fatty acids, organometallics, and gelatins can be used.
  • fatty acids or salts thereof in view of adsorbability with a surfactant without the possibility of contamination with impurities, it is preferable to use fatty acids or salts thereof. .
  • the fatty acid used as the dispersant is not particularly limited, but is preferably at least one selected from stearic acid, oleic acid, myristic acid, palmitic acid, linoleic acid, lauric acid, and linolenic acid. This is because these fatty acids have a relatively low boiling point and thus have little adverse effect on the wiring layer and electrodes formed using the silver paste.
  • the addition amount of the dispersant is preferably in the range of 0.01 to 3.00% by mass with respect to the silver particles, and more preferably in the range of 0.01 to 1.00% by mass with respect to the silver particles.
  • the amount of adsorption on the silver particles varies depending on the type of the dispersant, but when the added amount is less than 0.01% by mass, the amount of the dispersant is sufficient to sufficiently suppress the aggregation of the silver particles or improve the adsorptivity of the dispersant. May not be adsorbed by silver powder.
  • the added amount of the dispersant exceeds 3.00% by mass, the dispersant adsorbed on the silver particles increases, and the conductivity of the wiring layer and the electrode formed using the silver paste cannot be sufficiently obtained. Sometimes.
  • cleaning and surface treatment may be used normally,
  • the reaction tank with a stirrer etc. can be used.
  • the apparatus used for solid-liquid separation may also be a normally used apparatus, for example, a centrifuge, a suction filter, a filter press, etc. can be used.
  • the silver particles that have been washed and surface-treated are dried by evaporating moisture in the drying step.
  • a drying method for example, silver powder recovered after completion of cleaning and surface treatment is placed on a stainless steel pad and heated at a temperature of 40 to 80 ° C. using a commercially available drying apparatus such as an atmospheric oven or a vacuum dryer. Good.
  • the dried silver powder is crushed and classified. Even if the silver powder after the surface treatment described above is further aggregated between the aggregates by subsequent drying or the like, since the binding force is weak, it is easily separated into aggregates of a predetermined size at the time of preparing the paste. However, in order to stabilize the paste, it is preferable to crush and classify.
  • the crushing method is not particularly limited, but it is preferable to use an apparatus having a weak crushing force such as a jet mill or a high-speed stirrer. In an apparatus with a strong crushing force, even the above-mentioned aggregates are crushed or the silver powder is deformed, which is not preferable. Moreover, what is necessary is just to adjust to the grade which the formed aggregate is maintained as crushing conditions.
  • the classifying device is not particularly limited, and an airflow classifier, a sieve, or the like can be used.
  • Example 1 A silver complex solution was prepared by adding 2492 g of silver chloride (manufactured by Sumitomo Metal Mining Co., Ltd.) with stirring to 36 L of 25% aqueous ammonia maintained at a liquid temperature of 36 ° C. in a 38 ° C. bath. The complex solution was kept at 36 ° C. in a warm bath.
  • the prepared silver complex solution and the reducing agent solution are fed into the mixing tube at a silver complex solution of 2.7 L / min and a reducing agent solution of 0.9 L / min using a MONO pump (manufactured by Hyojin Equipment Co., Ltd.).
  • the silver complex was reduced.
  • the reduction rate at this time is 127 g / min in terms of silver.
  • the ratio of the reducing agent supply rate to the silver supply rate was 1.4.
  • a PVC pipe having an inner diameter of 25 mm and a length of 725 mm was used as the mixing tube.
  • the slurry containing silver particles obtained by reduction of the silver complex was received in a receiving tank with stirring.
  • a polyoxyethylene-added quaternary ammonium salt that is a commercially available cationic surfactant as a surface treatment agent is added to the silver particle slurry obtained by reduction (trade name: Silasol G-265, manufactured by Croda Japan Co., Ltd.). , 0.048% by mass with respect to silver particles) and 16.47 g of stearic acid emulsion as a dispersant (manufactured by Chukyo Yushi Co., Ltd., Cellosol 920, 0.90% by mass with respect to silver particles), 60 Surface treatment was performed by stirring for a minute. After the surface treatment, the silver particle slurry was filtered using a filter press, and the silver particles were solid-liquid separated.
  • the silver particles are put into 23 L of a 0.2 mass% sodium hydroxide (NaOH) aqueous solution maintained at 40 ° C., washed with stirring for 15 minutes, and then filtered. And silver particles were collected.
  • NaOH sodium hydroxide
  • the collected silver particles were put into 23 L of pure water kept at 40 ° C., stirred and filtered, and then the silver particles were transferred to a stainless steel pad and dried at 60 ° C. for 10 hours in a vacuum dryer. Subsequently, the dried silver particles were crushed at a peripheral speed of 22.7 m / sec using a 5 L high-speed stirrer (manufactured by Nippon Coke Industries, Ltd., FM5C). After the pulverization treatment, the silver particles were removed using a gas stream classifier (Nippon Mining Co., Ltd., EJ-3) to remove coarse particles with a classification point of 7 ⁇ m to obtain silver particles.
  • a gas stream classifier Nippon Mining Co., Ltd., EJ-3
  • the cohesive force was measured using a powder layer shear force measuring device (NS-S300, manufactured by Nano Seeds Co., Ltd.). The measurement was performed by continuously using 18 g of silver powder in a measurement container having an inner diameter of 15 mm and setting the applied load to 20 N, 40 N, and 60 N, and putting the silver powder. At this time, the indentation speed to the silver powder is 0.2 mm / sec. When the set load is reached, the indentation is stopped, and after waiting for 100 sec from there, the side slide is performed at a speed of 10 ⁇ m / sec for measuring the shear force. Start and measure shear force. The shearing force sampling frequency was 10 Hz.
  • the average particle diameter DS of the silver powder measured by SEM observation was 1.12 ⁇ m.
  • the volume average particle diameter D50 measured by using a laser diffraction scattering method in which silver powder was dispersed in isopropyl alcohol was 2.37 ⁇ m. Therefore, the ratio calculated
  • the specific surface area SSA 1 measured by the BET method is 0.42 m 2 / g
  • the specific surface area SSA 2 obtained from the average particle diameter DS obtained by SEM observation is 0.51 m 2 / g
  • SSA The ratio determined by 1 / SSA 2 was 0.82.
  • the viscosity of the obtained paste at a shear rate of 4 sec ⁇ 1 was determined using a viscoelasticity measuring device (Anton Paar, MCR-301).
  • the viscosity ⁇ 1 after kneading by the self-revolving mixer is 62.7 (Pa ⁇ s)
  • the viscosity ⁇ 2 after kneading by the three roll mill is 56.3 (Pa ⁇ s)
  • the ratio obtained by ⁇ 2 / ⁇ 1 is 0.90.
  • the average particle size D1 of the paste after kneading by the self-revolving mixer was 2.35 ⁇ m, 3 roll mill
  • the later average particle diameter D2 was 2.10 ⁇ m, and the ratio determined by D2 / D1 was 0.89.
  • Example 1 it was confirmed that almost no flakes were generated in the paste due to the formation of aggregates in which silver particles were linked to a predetermined size. Further, it was found that there was little change in viscosity and average particle size after kneading with the self-revolving mixer and after kneading with the three-roll mill, and the aggregate structure of the aggregate was maintained.
  • Example 2 silver powder was produced in the same manner as in Example 1 except that the amount of polyvinyl alcohol, which is a water-soluble polymer, was 183 g (10% by mass with respect to silver).
  • the cohesive force was 0.14 N / cm 2 and the compression rate was 35.0%.
  • the absorbed amount of butyl phthalate measured by JIS-K6217-4 method was 7.0 ml / 100 g.
  • the average particle diameter DS of the silver powder measured by SEM observation was 1.05 ⁇ m.
  • the volume average particle diameter D50 measured by using a laser diffraction scattering method in which silver powder was dispersed in isopropyl alcohol was 2.16 ⁇ m. Therefore, the ratio calculated
  • the specific surface area SSA 1 as measured by the BET method was 0.46 m 2 / g
  • average particle specific surface area SSA 2 obtained from the diameter DS obtained by the SEM observation is 0.55 m 2 / g
  • SSA The ratio determined by 1 / SSA 2 was 0.84.
  • Example 2 In the same manner as in Example 1, a paste was prepared using the obtained silver powder. Also in Example 2, when flaking was made using a three-roll mill, visual flake generation was not recognized, and the kneadability was good.
  • the number of flakes on the 20 ⁇ m-opening sieve was 6 after 2 g of paste kneaded by a three roll mill was put into 40 ml of isopropyl alcohol and subjected to ultrasonic dispersion. Further, when the paste was dispersed in isopropyl alcohol and the volume average particle size was measured using a laser diffraction scattering method, the average particle size D1 of the paste after kneading by the self-revolving mixer was 2.14 ⁇ m, after three roll mills The average particle diameter D2 was 2.13 ⁇ m, and the ratio determined by D2 / D1 was 0.99.
  • Example 2 As described above, in Example 2, as in Example 1, it was confirmed that almost no flakes were generated in the paste due to the formation of aggregates in which silver particles were linked to a predetermined size. Further, it was found that there was little change in viscosity and average particle size after kneading with a self-revolving mixer and after kneading with a three-roll mill, and the aggregate structure of the aggregate was maintained.
  • Comparative Example 1 silver powder was produced in the same manner as in Example 1 except that the amount of polyvinyl alcohol, which is a water-soluble polymer, was 329.4 g (18% by mass with respect to silver).
  • the obtained silver powder was evaluated in the same manner as in Examples 1 and 2. As a result, the cohesive force was 0.80 N / cm 2 and the compression rate was 38.1%. Further, the absorption amount of butyl phthalate measured by the JIS-K6217-4 method was 2.5 ml / 100 g.
  • the average particle diameter DS of the silver powder measured by SEM observation was 1.04 ⁇ m.
  • the volume average particle diameter D50 measured by using a laser diffraction scattering method in which silver powder was dispersed in isopropyl alcohol was 1.51 ⁇ m. Therefore, the ratio calculated
  • the specific surface area SSA 1 as measured by the BET method is 0.62 meters 2 / g
  • average particle specific surface area SSA 2 obtained from the diameter DS obtained by the SEM observation is 0.55 m 2 / g
  • SSA The ratio determined by 1 / SSA 2 was 1.13.
  • Comparative Example 1 Although there was no sudden decrease in viscosity or dispersibility, a large amount of flakes were generated, resulting in a decrease in kneadability. This is probably because the formation of aggregates was not sufficient, and the strength of the aggregated structure was weak, and it was easily released by kneading, resulting in excessive aggregation.
  • Comparative Example 2 silver powder was produced in the same manner as in Example 1 except that the amount of polyvinyl alcohol, which is a water-soluble polymer, was 0.92 g (0.05% by mass with respect to silver).
  • the obtained silver powder was evaluated in the same manner as in Examples 1 and 2. As a result, the cohesive strength was ⁇ 0.82 N / cm 2 and the compression rate was 18.4%. The absorbed amount of butyl phthalate measured by JIS-K6217-4 method was 14.8 ml / 100 g.
  • the average particle diameter DS of the silver powder measured by SEM observation was 1.02 ⁇ m.
  • the volume average particle diameter D50 measured by using a laser diffraction scattering method in which silver powder was dispersed in isopropyl alcohol was 5.92 ⁇ m. Therefore, the ratio calculated
  • the specific surface area SSA 1 measured by the BET method is 0.12 m 2 / g
  • the specific surface area SSA 2 determined from the average particle diameter DS obtained by SEM observation is 0.56 m 2 / g
  • SSA The ratio determined by 1 / SSA 2 was 0.21.
  • Table 1 summarizes the evaluation results in each example and comparative example.
  • the silver powders of Examples 1 and 2 and Comparative Example 1 were used to knead an epoxy resin, a curing agent (phenol resin) and a solvent (trimethylene glycol, diprolene glycol), and a commercially available general type A silver paste was prepared and kneadability was confirmed.
  • a curing agent phenol resin
  • a solvent trimethylene glycol, diprolene glycol
  • the pastes produced using the silver powders of Examples 1 and 2 showed almost no flakes and showed good kneading properties.
  • the paste produced using the silver powder of Comparative Example 1 produced many flakes and poor kneadability.
  • the silver powder has a cohesive force of ⁇ 0.2 or more and 0.7 N / cm 2 or less, a compressibility in the measurement of the powder layer shear force of 20 to 50%, and JIS-K6217.
  • the absorption of dibutyl phthalate measured by the -4 method is 3.0 to 9.0 ml / 100 g, so that the generation of flakes can be effectively suppressed during paste preparation, and good kneading properties are exhibited. I understood that I could do it. It was also found that an appropriate viscosity can be maintained and excellent printability can be realized.

Abstract

The present invention pertains to a silver powder which, when preparing a silver paste, exhibits excellent dispersibility in a solvent and which minimizes the generation of coarse powder particles such as flakes during kneading. The present invention provides a silver powder which exhibits a cohesive force of -0.2 to 0.7N/cm2, a compressibility of 20 to 50% as determined by powder-bed shear stress measurement, and a dibutyl phthalate absorption of 3.0 to 9.0ml/100g as determined according to JIS-K6217-4 method.

Description

銀粉及びその製造方法Silver powder and method for producing the same
 本発明は、銀粉及びその製造方法に関し、より詳しくは電子機器の配線層、電極等の形成に利用される銀ペーストの主たる成分となる銀粉及びその製造方法に関する。
 本出願は、日本国において2011年6月8日に出願された日本特許出願番号特願2011-128015を基礎として優先権を主張するものであり、これらの出願を参照することにより、本出願に援用される。
The present invention relates to a silver powder and a method for producing the same, and more particularly to a silver powder that is a main component of a silver paste used for forming a wiring layer, an electrode, and the like of an electronic device and a method for producing the same.
This application claims priority on the basis of Japanese Patent Application No. 2011-128015 filed in Japan on June 8, 2011. By reference to these applications, the present application Incorporated.
 電子機器の配線層や電極等の形成には、樹脂型銀ペーストや焼成型銀ペースト等の銀ペーストが広く使用されている。配線層や電極等の導電膜は、銀ペーストを塗布又は印刷した後、加熱硬化あるいは加熱焼成することで形成される。 For the formation of wiring layers and electrodes for electronic devices, silver pastes such as resin-type silver paste and fired-type silver paste are widely used. Conductive films such as wiring layers and electrodes are formed by applying or printing a silver paste, followed by heat curing or heat baking.
 例えば、樹脂型銀ペーストは銀粉、樹脂、硬化剤、溶剤等からなり、この樹脂型銀ペーストを導電体回路パターン又は端子上に印刷した後、100℃~200℃で加熱硬化させ導電膜とすることにより、配線や電極を形成する。また、焼成型銀ペーストは、銀粉、ガラス、溶剤などからなり、この焼結型銀ペーストを導電体回路パターン又は端子上に印刷した後、600℃~800℃に加熱焼成させて導電膜とすることにより、配線や電極を形成する。銀ペーストを加熱して形成されたこれらの配線や電極の導電性には、銀粉の充填性と焼結性が重要である。 For example, the resin-type silver paste is composed of silver powder, resin, curing agent, solvent, etc., and this resin-type silver paste is printed on a conductor circuit pattern or terminal and then heat-cured at 100 ° C. to 200 ° C. to form a conductive film. Thus, wiring and electrodes are formed. The fired silver paste is made of silver powder, glass, solvent, etc., and this sintered silver paste is printed on a conductor circuit pattern or terminal and then heated and fired at 600 ° C. to 800 ° C. to form a conductive film. Thus, wiring and electrodes are formed. Fillability and sinterability of silver powder are important for the conductivity of these wirings and electrodes formed by heating silver paste.
 導電性銀ペーストには一般的に粒径が0.1μmから数μmの銀粉が用いられているが、使用する銀粉の粒径は、目的とする配線の太さや電極の厚さに合わせて細かく選定されている。また、形成された配線の太さや電極の厚さに高い均一性が求められており、それには銀粉のペースト中での分散性が重要である。分散性の向上は充填性の向上にも繋がる。 In general, silver powder having a particle size of 0.1 μm to several μm is used for the conductive silver paste. The particle size of the silver powder used is fine according to the thickness of the intended wiring and the thickness of the electrode. Selected. Further, high uniformity is required for the thickness of the formed wiring and the thickness of the electrode, and the dispersibility in the paste of silver powder is important for that purpose. Improved dispersibility also leads to improved fillability.
 導電性銀ペースト用銀粉に求められる特性は、用途及び使用条件により様々であるが、一般的には、ペースト中での高い分散性、及び焼結性である。ペースト中での分散性が低い銀粉を用いた場合は、配線の太さや電極の厚さが不均一となるばかりか、硬化や焼成の処理も不均一となり、導電膜の抵抗の増大や導電膜の脆化を招くことになる。また、焼結性の悪化は、導電膜の抵抗の増大に直結する。しかし、これら3つの特性については、銀粉製造プロセスの安定性、銀粉の表面処理に拠る所が大きい。 The characteristics required for the silver powder for conductive silver paste vary depending on the application and use conditions, but generally high dispersibility and sinterability in the paste. When silver powder with low dispersibility in the paste is used, not only the thickness of the wiring and the thickness of the electrode become non-uniform, but also the treatment of curing and baking becomes non-uniform, increasing the resistance of the conductive film and the conductive film Will lead to embrittlement. Moreover, the deterioration of sinterability is directly linked to an increase in the resistance of the conductive film. However, these three characteristics largely depend on the stability of the silver powder production process and the surface treatment of the silver powder.
 ところで、銀ペーストを作製するに際しては、まず、銀粉を溶媒等の他の構成成分と混練してなじませ、その後、3本ロールミル等で所定の圧力をかけながら混練することにより作製する。このとき、銀粉には、ロールで効率的に混練できること、すなわち良好な混練性を有することが求められる。 By the way, when producing the silver paste, first, the silver powder is kneaded with other components such as a solvent and then kneaded with a three-roll mill or the like while applying a predetermined pressure. At this time, the silver powder is required to be efficiently kneaded with a roll, that is, to have good kneading properties.
 しかしながら、ペースト中に大きな銀粉の塊が存在すると、ロールで混練していくことによって、ペースト中の銀粉の塊がつぶれ、数mm単位の薄片状粉(フレーク)等の粗大な粉体が発生してしまう。発生したフレークをそのままペースト中に残しておくことは望ましくないため、メッシュ等を用いて篩をかけて除去するが、あまりに多くのフレークができるとメッシュの間に粗大粉体が詰まる等の不具合も生じて効率的に除去できず、生産性が著しく損なわれることになる。 However, if there is a large lump of silver powder in the paste, kneading with a roll causes the lump of silver powder in the paste to collapse, producing coarse powder such as flaky powder (flakes) in units of several mm. End up. Since it is not desirable to leave the generated flakes in the paste as they are, they are removed by sieving using a mesh or the like, but if too much flakes are formed, there is a problem such as coarse powder clogging between the meshes It is generated and cannot be removed efficiently, and productivity is significantly impaired.
 また、上述のようにフレークがペースト中に発生すると、そのペーストを用いてスクリーン印刷した場合、微細なスクリーンに粗大なフレークが目詰まってしまい、パターンの正確な印刷が困難となる。 In addition, when flakes are generated in the paste as described above, when screen printing is performed using the paste, coarse flakes are clogged on a fine screen, and accurate pattern printing becomes difficult.
 このように、フレークの発生は、ペースト作製時の混練性やスクリーン印刷する際の印刷性に大きく影響する。そのため、銀粉には、ペースト作製時の溶媒中での分散性が良好であるとともに、フレーク等の粗大な粉体が発生しないことが望まれている。 Thus, the occurrence of flakes greatly affects the kneadability during paste production and the printability during screen printing. Therefore, it is desired that the silver powder has good dispersibility in a solvent at the time of preparing the paste and does not generate coarse powder such as flakes.
特開2004-197030号公報Japanese Patent Application Laid-Open No. 2004-197030 特開2000-129318号公報JP 2000-129318 A
 そこで、本発明は、このような実情に鑑みて提案されたものであり、ペースト作製時に溶媒中での分散性がよく、混練時にフレーク等の粗大な粉体が発生することを抑制した銀粉及びその製造方法を提供することを目的とする。 Therefore, the present invention has been proposed in view of such circumstances, silver powder having good dispersibility in a solvent during paste preparation, and suppressing the generation of coarse powder such as flakes during kneading and It aims at providing the manufacturing method.
 本発明者らは、上述した目的を達成するために鋭意検討を重ねた結果、略球状の粒子が所定の大きさに連結し形成された凝集体を有する銀粉が、ペースト中で良好な分散性を有し、混練時にフレーク等の粗大な粉体の発生を抑制できることを見出し、本発明を完成させた。 As a result of intensive studies in order to achieve the above-mentioned object, the present inventors have found that silver powder having an aggregate formed by connecting substantially spherical particles to a predetermined size has good dispersibility in the paste. And the generation of coarse powders such as flakes during kneading can be suppressed, and the present invention has been completed.
 すなわち、本発明に係る銀粉は、凝集力が-0.2N/cm以上0.7N/cm以下であり、粉体層せん断力測定における圧縮率が20~50%であり、かつJIS-K6217-4法で測定したフタル酸ジブチルの吸収量が3.0~9.0ml/100gであることを特徴とする。 That is, silver powder according to the present invention, cohesion is at -0.2N / cm 2 or more 0.7 N / cm 2 or less, a compression ratio in the powder layer shear force measurements 20-50%, and JIS- The absorption amount of dibutyl phthalate measured by the K6217-4 method is 3.0 to 9.0 ml / 100 g.
 また、本発明に係る銀粉の製造方法は、塩化銀と錯化剤により溶解して得られた銀錯体含有溶液と還元剤溶液とを混合し、銀錯体を還元して銀粉を製造する銀粉の製造方法であって上記銀錯体含有溶液及び上記還元剤溶液の両方、又はいずれか一方に、銀に対して0.1~15質量%の水溶性高分子を添加することを特徴とする。 In addition, the silver powder production method according to the present invention includes a silver complex containing solution obtained by dissolving silver chloride and a complexing agent and a reducing agent solution, and reducing the silver complex to produce silver powder. In the production method, 0.1 to 15% by mass of a water-soluble polymer based on silver is added to one or both of the silver complex-containing solution and the reducing agent solution.
 本発明によれば、ペーストの溶媒中での分散性に優れ、ペースト作製の混練時においてフレーク等の粗大な粉体の発生を効果的に抑制することができる。 According to the present invention, the paste is excellent in dispersibility in a solvent, and generation of coarse powder such as flakes can be effectively suppressed during kneading of the paste preparation.
銀粒子形態について模式的に示す図である。It is a figure which shows typically about a silver particle form.
 以下、本発明に係る銀粉及びその製造方法の具体的な実施形態について詳細に説明する。なお、本発明は、以下の実施の形態に限定されるものではなく、本発明の要旨を変更しない限りにおいて適宜変更することができる。 Hereinafter, specific embodiments of the silver powder and the production method thereof according to the present invention will be described in detail. Note that the present invention is not limited to the following embodiments, and can be appropriately changed without changing the gist of the present invention.
 説明に当たって、銀粒子形態に対する呼称を図1のように定義する。すなわち、図1(A)に示すように、銀粒子を、外見上の幾何学的形態から判断して、単位粒子と考えられるものを一次粒子と呼ぶ。また、図1(B)に示すように、一次粒子がネッキングにより2乃至3以上連結した粒子を二次粒子と呼ぶ。さらに、図1(C)に示すように、一次粒子及び二次粒子の集合体を凝集体と呼ぶ。 In the description, the name for the silver particle form is defined as shown in FIG. That is, as shown in FIG. 1 (A), silver particles are judged from the apparent geometric form, and those considered as unit particles are called primary particles. Further, as shown in FIG. 1B, particles in which two to three or more primary particles are connected by necking are called secondary particles. Further, as shown in FIG. 1C, an aggregate of primary particles and secondary particles is called an aggregate.
 従来、銀ペーストの作製において、個々の一次粒子ができるだけ分散し、かつ平均粒径が0.1~1.5μmである銀粉が用いられてきたが、このような一次粒子が分散した微細な銀粒子は、密に充填されるため、他の粒子との接点が多く凝集力が大きくなり、ペースト中において銀粒子同士が容易に凝集して大きな塊が形成されてしまう。すると、例えばペースト作製で一般的に用いられる3本ロールミルによって混練を行ったとき、その凝集した塊は壊れることなくロールにそのまま入り込み、その結果、フレーク等のmmオーダーの粗大な粉体が形成されてしまうことが分かった。 Conventionally, silver powder having an individual primary particle dispersed as much as possible and having an average particle size of 0.1 to 1.5 μm has been used in the production of silver paste. Fine silver in which such primary particles are dispersed has been used. Since the particles are densely packed, there are many contact points with other particles and the cohesive force increases, and silver particles easily aggregate in the paste to form a large lump. Then, for example, when kneading is performed by a three-roll mill generally used in paste production, the aggregated mass enters the roll as it is without breaking, and as a result, coarse powder of mm order such as flakes is formed. I found out.
 これに対し、所定の割合で一次粒子及び二次粒子が疎に凝集した凝集体を有する粒度分布の大きい銀粉の場合には、凝集体間に十分な空隙を有し、接点数が少ないため、ペースト中において大きな塊を形成せず、フレークが発生しないことが確認された。このような銀粉は、一次粒子及び二次粒子が所定の大きさで凝集して連結し、例えばぶどうの房状の図1(C)に示したような凝集体を形成している。この凝集体は、およそ5~10μm程度の大きさであり、数個の一次粒子の比較的強い結合による二次粒子と、その二次粒子と一次粒子とが比較的弱い結合で連結した構造とからなっているものと推測される。このことから、本件発明者らは、所定の大きさに一次粒子又は二次粒子が連結した凝集体が適度に形成され、かつその凝集体が所定の強度を有するものであることにより、凝集体も1個の粒子として見た場合における銀粒子間の凝集力が低減され、分散性に優れ、ペースト作製の混練時においてフレーク等の粗大な粉体の発生を効果的に抑制し、混練性を改善できることが分かった。 On the other hand, in the case of silver powder having a large particle size distribution having an aggregate in which primary particles and secondary particles are loosely aggregated at a predetermined ratio, there are sufficient voids between the aggregates, and the number of contacts is small. It was confirmed that no large lump was formed in the paste and flakes were not generated. In such silver powder, primary particles and secondary particles are aggregated and connected in a predetermined size to form, for example, an aggregate as shown in FIG. The aggregate has a size of about 5 to 10 μm, and has a structure in which secondary particles formed by relatively strong bonds of several primary particles and a structure in which the secondary particles and the primary particles are connected by relatively weak bonds. It is assumed that it consists of From this, the present inventors have appropriately formed an aggregate in which primary particles or secondary particles are linked to a predetermined size, and the aggregate has a predetermined strength. In addition, the cohesive force between silver particles when viewed as one particle is reduced, the dispersibility is excellent, the generation of coarse powder such as flakes is effectively suppressed during kneading of paste preparation, and the kneadability is improved. It turns out that it can improve.
 すなわち、本実施の形態に係る銀粉は、凝集力が-0.2N/cm以上0.7N/cm以下であり、粉体層せん断力測定における圧縮率が20~50%であり、かつJIS-K6217-4法で測定したフタル酸ジブチルの吸収量が3.0~9.0ml/100gである。このような特性を有する銀粉は、ペースト作製時に溶媒中での分散性がよく、混練に際してフレーク等の粗大な粉体の発生を効果的に抑制することができる。 That is, silver powder according to the present embodiment, the cohesive force is at -0.2N / cm 2 or more 0.7 N / cm 2 or less, a compression ratio in the powder layer shear force measurements 20-50%, and The absorption of dibutyl phthalate measured by JIS-K6217-4 method is 3.0 to 9.0 ml / 100 g. Silver powder having such characteristics has good dispersibility in a solvent during paste preparation, and can effectively suppress generation of coarse powder such as flakes during kneading.
 本実施の形態において用いられる銀粒子は、一次粒子が平均粒径0.1~1.5μmの範囲であることが好ましい。一次粒子の平均粒径が0.1μm以上であることにより、導電性ペーストにした場合に大きな抵抗を生じさせず導電性が良好なものとなる。また、一次粒子の平均粒径が1.5μm以下とすることにより、後述するように一次粒子が所定の大きさに連結して凝集体を形成したときでも、分散性を悪化させることなく、混練性及び印刷性が良好なものとなる。 The silver particles used in the present embodiment preferably have a primary particle having an average particle size in the range of 0.1 to 1.5 μm. When the average particle size of the primary particles is 0.1 μm or more, when the conductive paste is made, a large resistance is not generated and the conductivity is good. In addition, when the average particle size of the primary particles is 1.5 μm or less, as described later, even when primary particles are connected to a predetermined size to form an aggregate, kneading is performed without deteriorating dispersibility. And printability are good.
 凝集力は、銀粉そのものの凝集のし易さを表すものであり、ペースト中で銀粒子が凝集する指標となる。この凝集力は、銀粉の加重のない状態におけるせん断応力と定義することができる。したがって、例えば粉体層せん断力測定装置を用いて、せん断応力と垂直応力とのグラフから求めることができ、垂直応力に対するせん断応力のグラフにおいて、Y切片のせん断応力値が凝集力となる。つまり、そのY切片が上昇するほど凝集力が大きいことを意味する。なお、垂直応力に対するせん断応力のグラフの傾きは、銀粉の内部摩擦力となり、粉体の滑りやすさの指標となる。 The agglomeration force represents the ease of aggregation of the silver powder itself, and is an index for aggregation of silver particles in the paste. This cohesive force can be defined as a shear stress in a state where silver powder is not loaded. Therefore, for example, using a powder layer shear force measuring device, it can be obtained from a graph of shear stress and normal stress, and in the graph of shear stress against normal stress, the shear stress value of the Y-intercept becomes the cohesive force. That is, the higher the Y intercept, the greater the cohesive force. In addition, the inclination of the graph of the shear stress with respect to the normal stress is an internal friction force of the silver powder, and is an index of the slipperiness of the powder.
 本実施の形態に係る銀粉は、その凝集力が-0.2N/cm以上0.7N/cm以下である。凝集力が上述した範囲内であることにより、ペースト中において過剰に銀粒子が凝集されることなく、粗大なフレークが発生することが抑制される。 Silver powder according to the present embodiment, the cohesive force is -0.2N / cm 2 or more 0.7 N / cm 2 or less. When the cohesive force is within the above-described range, the generation of coarse flakes is suppressed without excessively aggregating silver particles in the paste.
 フタル酸ジブチルの吸収量は、JIS-K6217-4法に基づいて測定することができる。本実施の形態に係る銀粉は、そのフタル酸ジブチルの吸収量が3.0~9.0ml/100gである。フタル酸ジブチルの吸収量が3.0~9.0ml/100gである銀粉は、所定の大きさで銀粒子が連結して例えばぶどうの房状の凝集体を適度に形成していることを示す。 The absorption amount of dibutyl phthalate can be measured based on JIS-K6217-4 method. The silver powder according to the present embodiment has an absorption amount of dibutyl phthalate of 3.0 to 9.0 ml / 100 g. Silver powder having an absorption of dibutyl phthalate of 3.0 to 9.0 ml / 100 g indicates that silver particles of a predetermined size are connected to form, for example, a bunch of grape-like aggregates. .
 すなわち、所定の大きさで銀粒子が連結して形成された凝集体を有する銀粉においては、空隙が多くなり、フタル酸ジブチルを滴下していくと、その凝集体を形成する銀粒子間にフタル酸ジブチルが吸収(吸油)されるようになる。凝集体の形成が少ない銀粉では、銀粒子間の空隙が少ないため、吸収量も減少する。したがって、このフタル酸ジブチルの吸収量を測定することにより、その凝集体がどの程度形成されているかを判断することができる。また、所定の吸収量を有することにより、ペーストの溶媒等の成分と銀粒子とがなじみ易くなり良好に混練することができる。 That is, in a silver powder having an aggregate formed by connecting silver particles of a predetermined size, the voids increase, and when dibutyl phthalate is dropped, phthalates are formed between the silver particles forming the aggregate. Dibutyl acid is absorbed (oil absorption). In silver powder with less aggregate formation, the amount of absorption decreases because there are few voids between silver particles. Therefore, by measuring the amount of dibutyl phthalate absorbed, it is possible to determine how much the aggregate is formed. Moreover, by having a predetermined absorption amount, components such as the solvent of the paste and the silver particles can be easily blended and can be kneaded well.
 また、このフタル酸ジブチルの吸収量に基づいて、その銀粉を用いて作製したペーストの粘性を判断することもできる。上述のように、銀粒子が連結した凝集体を有する銀粉は、その凝集体を構成する粒子間にペーストの溶媒成分を取り込むようになるため、凝集体外のペースト中の溶媒成分の量が相対的に減少し、ペーストの粘度が上がる。高粘度となることによって、混練時にロール間で発生するせん断力が、銀粉を分散させる分散力として効率よくペーストに伝播し、銀粉同士が凝集せず分散しやすくなる。 Also, based on the absorbed amount of dibutyl phthalate, the viscosity of the paste made using the silver powder can be judged. As described above, since the silver powder having an aggregate in which silver particles are connected takes in the solvent component of the paste between the particles constituting the aggregate, the amount of the solvent component in the paste outside the aggregate is relatively high. To reduce the viscosity of the paste. When the viscosity becomes high, the shearing force generated between the rolls during kneading is efficiently propagated to the paste as a dispersion force for dispersing the silver powder, and the silver powder does not aggregate and is easily dispersed.
 なお、フタル酸ジブチルの吸収量が3.0ml/100gより少ない場合には、形成されている上述した凝集体の数が少ないことを示し、ペースト作製時にフレークを発生させてしまう。一方、吸収量が9.0ml/100gより多い場合には、銀粒子が凝集し過ぎていることを示し、分散性が悪化し、フレークを発生させてしまう。 In addition, when the absorbed amount of dibutyl phthalate is less than 3.0 ml / 100 g, it indicates that the number of the above-mentioned aggregates formed is small, and flakes are generated during paste production. On the other hand, when the amount of absorption is larger than 9.0 ml / 100 g, it indicates that the silver particles are excessively aggregated, the dispersibility is deteriorated, and flakes are generated.
 圧縮率は、設定荷重ゼロから設定荷重を負荷した状態までの銀粉の体積減少率であり、銀粒子間の空隙量と銀粉の凝集体の構造的な強度を表す指標となる。この圧縮率は、粉体層せん断力測定装置を用いて、所定量の銀粉をセルに充填し無荷重で測定した体積(静嵩高さ)と、設定荷重(60N)を負荷した際の体積(嵩高さ)から測定することができる。粉体層せん断力測定装置により銀粉に対して荷重をかけると粉体層が圧縮されていくが、銀粒子が一次粒子に分離していると、圧縮後の粒子間の空隙量が少なくなり、圧縮率が大きい。一方、銀粒子が上述した凝集体を形成すると、凝集体の内部の空隙も含めて圧縮後の空隙が多くなるため、圧縮率が小さい。しかしながら、凝集体を形成していても、設定荷重を負荷した状態において、圧縮率が大きくなり過ぎる場合は、凝集体が十分な強度を有しておらず、混練時に容易に一次粒子に解砕されてしまうことを示している。 Compressibility is a volume reduction rate of silver powder from a set load to a state where a set load is applied, and is an index representing the void amount between silver particles and the structural strength of the aggregate of silver powder. This compression rate is determined by using a powder layer shear force measuring device to fill a cell with a predetermined amount of silver powder and measure it under no load (static bulk height) and the volume when a set load (60 N) is applied ( It can be measured from (bulkness). When a load is applied to the silver powder by the powder layer shear force measuring device, the powder layer will be compressed, but if the silver particles are separated into primary particles, the amount of voids between the compressed particles will be reduced, The compression rate is large. On the other hand, when the silver particles form the above-described aggregate, voids after compression including the voids inside the aggregate increase, and the compression rate is small. However, even if aggregates are formed, if the compression ratio becomes too large in a state where a set load is applied, the aggregates do not have sufficient strength and are easily crushed into primary particles during kneading. It shows that it will be done.
 上述したように、本実施の形態に係る銀粉は、所定の大きさに銀粒子が連結して形成された凝集体を含有している。この凝集体が存在することにより、フレークの発生を効果的に抑制することができるため、凝集体は容易にその構造が変わるものではなく、構造的な強度を有していることが好ましい。 As described above, the silver powder according to the present embodiment contains an aggregate formed by connecting silver particles in a predetermined size. Since the presence of this aggregate can effectively suppress the generation of flakes, the structure of the aggregate does not easily change, and preferably has structural strength.
 例えば、銀粉中に含有される凝集体は、ペースト作製の作業者の手によって容易に壊れてしまうものでは好ましくない。また、銀粉を用いてペーストを作製するに際しては、一般的に自公転ミキサー等による予備混練と3本ロールミル等による本混練が行われる。このとき、構造的強度が低い凝集体を有する銀粉の場合には、混練中の初期段階にその凝集体が壊れて一次粒子又は二次粒子となることにより、ペースト中で密に詰まり、他の粒子との接点が多くなって凝集力が大きくなるため、ペースト中で凝集し易くなり、フレークを発生させてしまう。これにより、混練性は著しく損なわれる。 For example, agglomerates contained in silver powder are not preferable if they are easily broken by the hands of paste workers. Moreover, when producing a paste using silver powder, pre-kneading by a self-revolving mixer or the like and main kneading by a three-roll mill or the like are generally performed. At this time, in the case of silver powder having an aggregate having a low structural strength, the aggregate breaks into primary particles or secondary particles in the initial stage of kneading, so that they are densely packed in the paste, Since the number of contact points with the particles increases and the cohesive force increases, the particles tend to aggregate in the paste, and flakes are generated. Thereby, kneadability is impaired remarkably.
 したがって、形成された凝集体は構造的な強度を有し、容易に構造変化が生じないものであることが好ましい。これにより、銀粉中に凝集体が存在している状態が維持され、粘度の低下がなくフレーク等の粗大な粉体の発生を抑制することができ、良好な混練性を発揮させることができる。 Therefore, it is preferable that the formed aggregate has a structural strength and does not easily change in structure. Thereby, the state in which the aggregate is present in the silver powder is maintained, the viscosity is not reduced, the generation of coarse powder such as flakes can be suppressed, and good kneadability can be exhibited.
 本実施の形態に係る銀粉は、その圧縮率が20~50%である。圧縮率が20%より小さい場合には、上述した凝集体の構造が強く、その凝集構造が壊れ難いことを示し、ペースト作製時にフレークを生じさせてしまう。一方で、圧縮率が50%より大きい場合には、凝集体の機械的強度が弱く容易にその凝集構造が壊れることを示し、ペースト作製時に銀粒子が密に詰まり、他の粒子との接点が多くなって凝集力が大きくなるため、ペースト中で凝集し易くなり、フレークを生じさせてしまう。 The silver powder according to the present embodiment has a compression rate of 20 to 50%. When the compression ratio is less than 20%, the above-mentioned aggregate structure is strong, indicating that the aggregate structure is not easily broken, and flakes are produced during paste production. On the other hand, if the compression ratio is greater than 50%, the mechanical strength of the agglomerate is weak, indicating that the agglomerated structure is easily broken, and the silver particles are densely packed during the preparation of the paste, and the contact with other particles is Since it increases and the cohesion force becomes large, it becomes easy to aggregate in a paste and will produce flakes.
 このように、凝集力が-0.2N/cm以上0.7N/cm以下であり、粉体層せん断力測定における圧縮率が20~50%であり、かつJIS-K6217-4法で測定したフタル酸ジブチルの吸収量が3.0~9.0ml/100gである銀粉は、所定の大きさに銀粒子が連結した空隙の多い凝集体が存在しており、かつ、その凝集体が所定の強度を維持している。このような銀粉によれば、ペースト作製時に溶媒中での分散性がよく、混練に際してフレーク等の粗大な粉体が発生することを効果的に抑制することができる。 Thus, the cohesive force is at -0.2N / cm 2 or more 0.7 N / cm 2 or less, the compression ratio in the powder layer shear force measurement is 20-50%, and in JIS-K6217-4 method Silver powder having a measured absorption of dibutyl phthalate of 3.0 to 9.0 ml / 100 g has agglomerates with many voids in which silver particles are linked to a predetermined size, and the aggregates are The predetermined strength is maintained. According to such silver powder, the dispersibility in a solvent is good at the time of paste preparation, and generation of coarse powder such as flakes during kneading can be effectively suppressed.
 以上のような銀粉に含まれる凝集体の存在は、以下のように平均粒径を比較することによっても判断することができる。具体的には、レーザー回折散乱法を用いて測定した体積積算の平均粒径D50と、走査型電子顕微鏡(SEM)の画像解析により得られた平均粒径DSとを比較することによって判断することができる。 The presence of aggregates contained in the silver powder as described above can also be determined by comparing the average particle diameter as follows. Specifically, the determination is made by comparing the volume average particle size D50 measured using the laser diffraction scattering method with the average particle size DS obtained by image analysis of a scanning electron microscope (SEM). Can do.
 レーザー回折錯乱法による粒径測定は、溶媒中で分散した単位の粒子の粒径、すなわち、凝集した粒子が含まれる場合に、単体で分散した一次粒子のみならず、その凝集体や二次粒子を含む粒径を表している。これに対し、SEMの画像解析により得られる平均粒径は、一次粒子の粒径の平均値である。したがって、D50/DSで求められる比が1より大きくなるほど、一次粒子同士が所定の割合で連結した二次粒子や凝集体が形成されていることを示す。 The particle size measurement by laser diffraction confusion method is the particle size of the unit particles dispersed in the solvent, that is, when aggregated particles are included, not only the primary particles dispersed alone but also the aggregates and secondary particles The particle size containing On the other hand, the average particle diameter obtained by image analysis of SEM is an average value of the particle diameters of the primary particles. Therefore, as the ratio determined by D50 / DS is larger than 1, it indicates that secondary particles and aggregates in which primary particles are connected at a predetermined ratio are formed.
 本実施の形態に係る銀粉は、レーザー回折散乱法を用いて測定した体積積算の平均粒径をD50とし、SEMの画像解析により得られた平均粒径をDSとしたとき、D50/DSで求められる比が1.5~5.0となる。 The silver powder according to the present embodiment is obtained by D50 / DS, where D50 is the volume average particle diameter measured using the laser diffraction scattering method and DS is the average particle diameter obtained by SEM image analysis. The resulting ratio is 1.5 to 5.0.
 なお、D50/DSで求められる比が1.5よりも小さい場合には、上述した凝集体が少なく、ペースト作製時においてフレークを生じさせてしまう可能性がある。一方で、D50/DSで求められる比が5.0より大きい場合には、銀粒子が凝集し過ぎて大きな凝集体が多量に形成されており、ペーストの溶媒中における分散安定性が悪化するとともにフレークの原因となる可能性がある。 In addition, when the ratio calculated | required by D50 / DS is smaller than 1.5, there are few aggregates mentioned above and there exists a possibility of producing flakes at the time of paste preparation. On the other hand, when the ratio calculated by D50 / DS is larger than 5.0, the silver particles are excessively aggregated to form a large amount of large aggregates, and the dispersion stability of the paste in the solvent is deteriorated. May cause flakes.
 また、凝集体の強度については、以下のように比表面積を比較することによって判断することもできる。具体的には、BET法により求められた比表面積とSEMの画像解析により得られた平均粒径から求めた比表面積とを比較することによって判断することができる。 The strength of the aggregate can also be determined by comparing the specific surface areas as follows. Specifically, the determination can be made by comparing the specific surface area obtained by the BET method with the specific surface area obtained from the average particle diameter obtained by SEM image analysis.
 ここで、BET法とは、気相吸着法による粉体の表面積測定法であり、吸着等温線から1gの試料の持つ総表面積、すなわち比表面積を求める方法である。吸着気体としては、窒素ガスが多く用いられ、吸着量を被吸着気体の圧力、又は容積の変化から測定する方法が多用される。BET式に基づいて吸着量を求め、吸着分子1個が表面で占める面積を掛けることによって比表面積を求めることができる。 Here, the BET method is a method for measuring a surface area of a powder by a gas phase adsorption method, and is a method for obtaining a total surface area, that is, a specific surface area of a 1 g sample from an adsorption isotherm. Nitrogen gas is often used as the adsorbed gas, and a method of measuring the amount of adsorption from the change in pressure or volume of the gas to be adsorbed is often used. The specific surface area can be determined by determining the amount of adsorption based on the BET formula and multiplying the area occupied by one adsorbed molecule on the surface.
 凝集体の強度は、各銀粒子間の連結の強さに関係する。BET法による測定において、粒子間の連結が弱い場合、例えば球状の一次粒子が接点でのみ連結しているような場合には、表面積は粒子が連結している接点部のみが減少するため、その結果測定される比表面積の減少は、完全に粒子が分散している状態の比表面積の合計、すなわち、一次粒子の比表面積より僅かなものとなる。これに対して、粒子間の連結が強い場合、喩えれば二次粒子がひょうたん状や雪だるま状となるように一次粒子が強く連結している場合には、太い連結部の比表面積が減少するため、その結果BET法により測定される比表面積は一次粒子の比表面積より大きく減少する。一方、上述したようにSEMの画像解析により得られる平均粒径は一次粒子の粒径の平均値であり、この平均粒径から求められる比表面積は個々の粒子を球とした表面積の総計となり、一次粒子の比表面積に近似した値となる。 The strength of the aggregate is related to the strength of the connection between the silver particles. In the measurement by the BET method, when the connection between the particles is weak, for example, when the spherical primary particles are connected only at the contact points, the surface area is reduced only at the contact points where the particles are connected. The reduction in the specific surface area measured as a result is the sum of the specific surface areas in a state where the particles are completely dispersed, that is, the specific surface area of the primary particles is slightly smaller. On the other hand, when the connection between the particles is strong, in other words, when the primary particles are strongly connected so that the secondary particles are in the shape of a gourd or snowman, the specific surface area of the thick connection part decreases. As a result, the specific surface area measured by the BET method decreases more than the specific surface area of the primary particles. On the other hand, as described above, the average particle diameter obtained by image analysis of SEM is the average value of the particle diameter of the primary particles, and the specific surface area obtained from this average particle diameter is the sum of the surface areas of individual particles as spheres, The value approximates the specific surface area of the primary particles.
 したがって、BET法により求められた比表面積SSAと、SEMの画像解析により得られた平均粒径から求めた比表面積SSAとの比(SSA/SSA)は、銀粉の凝集指標や球形指標となり、これにより、上述の連結粒子がどの程度強固に連結しているかを判断することができ、凝集体の強度を判断することができる。 Therefore, the ratio (SSA 1 / SSA 2 ) between the specific surface area SSA 1 determined by the BET method and the specific surface area SSA 2 determined from the average particle diameter obtained by SEM image analysis is the aggregation index or spherical shape of the silver powder. It becomes an index, whereby it can be determined how strongly the above-mentioned connected particles are connected, and the strength of the aggregate can be determined.
 本実施の形態に係る銀粉は、BET法により求められた比表面積をSSAとし、SEMの画像解析により得られた平均粒径から求めた比表面積をSSAとしたとき、SSA/SSAで求められる比が1.0未満となる。このように、SSA/SSAで求められる比が1.0未満である銀粉は、形成された凝集体が所定の強度を有することを意味し、例えば混練によってもその凝集構造が維持され、ペースト作製時におけるフレークの発生を、より効果的に抑制することができる。一方で、SSA/SSAで求められる比が0.7以上であることが好ましい。0.7未満の場合、凝集が進み、粗大で強度が高い凝集体が銀粉に含まれることを示している。このような凝集体が銀粉に含まれると、スクリーン印刷をする際の目詰まりの原因になり、また銀ペーストで形成された配線層や電極の均一性を損なうおそれがある。 Silver powder according to the present embodiment, when the specific surface area determined by the BET method and SSA 1, the specific surface area determined from the average particle diameter obtained by image analysis of SEM was SSA 2, SSA 1 / SSA 2 The ratio determined by is less than 1.0. Thus, the silver powder having a ratio determined by SSA 1 / SSA 2 of less than 1.0 means that the formed aggregate has a predetermined strength, and the aggregate structure is maintained even by kneading, for example, The generation of flakes during paste production can be more effectively suppressed. On the other hand, it is preferable ratio sought SSA 1 / SSA 2 is 0.7 or more. When the ratio is less than 0.7, the aggregation proceeds, indicating that the aggregate is coarse and has a high strength. If such an aggregate is contained in the silver powder, it may cause clogging during screen printing, and may impair the uniformity of the wiring layer and electrodes formed with the silver paste.
 なお、SSA/SSAで求められる比が1.0以上の場合には、凝集体が形成されていないか、連結粒子の連結が弱い場合であり、例えば所定以上の圧力で混練処理した場合に容易にその凝集構造が壊れ、フレークを発生させてしまう可能性がある。 In the case when the ratio sought SSA 1 / SSA 2 is 1.0 or more, or aggregates are not formed, a case connection of the connecting particle is weak, for example, was kneaded in a predetermined or more pressure Therefore, the aggregate structure may be easily broken and flakes may be generated.
 ところで、一般に、銀粉を用いて焼成型ペースト等を製造する場合、各構成要素を計量して所定の容器に入れ、自公転ミキサー等を用いて予備混練した後、3本ロールで本混練することによって作製する。上述のように、所定の大きさに銀粒子が連結して形成された凝集体は、その凝集構造を維持することが重要となり、ペースト作製時において予備混練及び本混練の混練処理を行っても高い水準でその凝集構造が維持されることが望ましい。つまり、その凝集体は構造の適度な安定性を有することが望ましい。 By the way, in general, when producing a baking paste using silver powder, each component is weighed and placed in a predetermined container, pre-kneaded using a self-revolving mixer, etc., and then main-kneaded with three rolls. To make. As described above, it is important to maintain the aggregate structure of the aggregate formed by connecting silver particles to a predetermined size. Even if the preliminary kneading and the main kneading are performed during paste preparation, It is desirable to maintain the aggregate structure at a high level. That is, it is desirable that the aggregate has an appropriate structural stability.
 そこで、試験的に銀粉とエポキシ樹脂とを420Gの遠心力で混練してペーストを作製し、そのペースト中の銀粉をレーザー回折散乱法を用いて測定した体積積算の平均粒径D1と、その後さらに3本ロールミルにより混練して得られたペースト中の銀粉をレーザー回折散乱法を用いて測定した体積積算の平均粒径D2とを比較することによって、凝集構造の安定性を判断することができる。すなわち、一般には混練に伴って凝集体の構造が崩れていき、銀粉の平均粒径は小さくなるようにシフトするため、予備混練後の平均粒径D1と本混練後の平均粒径D2とを比較することによって、凝集体の構造の安定性を判断することができる。 Therefore, a paste was prepared by experimentally kneading silver powder and an epoxy resin with a centrifugal force of 420 G, and the volume average particle diameter D1 measured by using a laser diffraction scattering method for the silver powder in the paste, and then further The stability of the aggregated structure can be determined by comparing the silver powder in the paste obtained by kneading with a three-roll mill with the volume average particle diameter D2 measured using the laser diffraction scattering method. That is, in general, the structure of the aggregates collapses with kneading, and the average particle diameter of silver powder shifts to become smaller. Therefore, the average particle diameter D1 after preliminary kneading and the average particle diameter D2 after main kneading are By comparing, the stability of the structure of the aggregate can be determined.
 本実施の形態に係る銀粉は、上述した凝集体の構造安定性の評価として、当該銀粉とエポキシ樹脂とを420Gの遠心力で混練して得られたペースト中の銀粉をレーザー回折散乱法を用いて測定した体積積算の平均粒径をD1とし、その後さらに3本ロールミルにより混練して得られたペースト中の銀粉をレーザー回折散乱法を用いて測定した体積積算の平均粒径をD2としたとき、D2/D1で求められる比が0.5~1.5となる。 In the silver powder according to the present embodiment, as an evaluation of the structural stability of the above-described aggregate, the silver powder in the paste obtained by kneading the silver powder and the epoxy resin with a centrifugal force of 420 G is used by laser diffraction scattering method. When the average particle diameter of volume integration measured by the laser diffraction scattering method is D2 and the average particle diameter of volume integration measured by laser diffraction scattering method is D1 , The ratio obtained by D2 / D1 is 0.5 to 1.5.
 D2/D1で求められる比が0.5~1.5であることにより、予備混練及び本混練によっても凝集体の構造が安定していると判断できる。なお、D2/D1で求められる比が0.5より小さい場合には、凝集体の構造の安定性がなく、混練によってその構造が壊れ、急激な粘度の低下を生じさせるとともにフレークを発生させる可能性がある。 When the ratio calculated by D2 / D1 is 0.5 to 1.5, it can be determined that the structure of the aggregate is stable also by the preliminary kneading and the main kneading. In addition, when the ratio calculated | required by D2 / D1 is smaller than 0.5, there is no stability of the structure of an aggregate, the structure breaks by kneading | mixing, and it is possible to generate | occur | produce a flake while causing a rapid viscosity fall There is sex.
 なお、D1を求める場合において、銀粉とエポキシ樹脂とを420Gの遠心力で混練(予備混練)を行う装置としては、その420Gの遠心力で混練できるものであれば特に限定されず、例えば自公転ミキサー等を用いることができる。また、D2を求める場合において、3本ロールミルによる混練(本混練)は、例えば、ロール径150mm、ロール圧10barの条件で行う。 In the case of obtaining D1, the apparatus for kneading silver powder and epoxy resin with a centrifugal force of 420 G (preliminary kneading) is not particularly limited as long as it can knead with the centrifugal force of 420 G. A mixer or the like can be used. Moreover, when calculating | requiring D2, kneading | mixing (main kneading | mixing) by a 3 roll mill is performed on conditions with a roll diameter of 150 mm and roll pressure of 10 bar, for example.
 また、凝集体の構造の安定性については、上述のように混練後の平均粒径を比較することのほかに、混練後のペーストの粘度を測定することによっても評価することができる。 Further, the stability of the structure of the aggregate can be evaluated by measuring the viscosity of the paste after kneading, in addition to comparing the average particle diameter after kneading as described above.
 すなわち、上述しているように本実施の形態に係る銀粉は、所定の大きさに銀粒子(一次粒子及び二次粒子)が凝集した空隙の多い凝集体を有している。そのため、上述のようにペースト作製の初期においては、その粘度が上昇するが、凝集体の強度が弱い場合には、混練に伴って次第に粘度が小さくなるようにシフトする。したがって、試験的に銀粉とエポキシ樹脂とによりペーストを作製し、予備混練後のペーストの粘度η1と本混練後のペーストの粘度η2とを比較することによって、その凝集体の構造の安定性を判断することができる。 That is, as described above, the silver powder according to the present embodiment has an aggregate with many voids in which silver particles (primary particles and secondary particles) are aggregated to a predetermined size. Therefore, as described above, the viscosity increases in the initial stage of paste production. However, when the strength of the aggregate is weak, the viscosity gradually shifts with kneading. Therefore, the stability of the structure of the agglomerates is judged by preparing a paste with silver powder and an epoxy resin on a trial basis and comparing the viscosity η1 of the paste after preliminary kneading with the viscosity η2 of the paste after main kneading. can do.
 本実施の形態に係る銀粉は、上述した凝集体の構造安定性の評価として、当該銀粉とエポキシ樹脂とを420Gの遠心力で混練して得られたペーストを粘弾性測定装置により測定したせん断速度4sec-1における粘度をη1とし、その後さらに3本ロールミルにより混練して得られたペーストを粘弾性測定装置により測定したせん断速度4sec-1における粘度をη2としたとき、η2/η1で求められる比が0.5~1.5となる。 The silver powder according to the present embodiment is a shear rate obtained by measuring a paste obtained by kneading the silver powder and an epoxy resin with a centrifugal force of 420 G using a viscoelasticity measuring device as an evaluation of the structural stability of the aggregate. When the viscosity at 4 sec −1 is η1, and then the paste obtained by further kneading with a three-roll mill is measured by a viscoelasticity measuring device, the viscosity at shear rate 4 sec −1 is η2, and the ratio obtained by η2 / η1 Becomes 0.5 to 1.5.
 η2/η1で求められる比が0.5~1.5であることにより、予備混練及び本混練によっても凝集体の構造が安定していると判断できる。なお、η2/η1で求められる比が0.5より小さい場合には、凝集体の構造の安定性がなく、混練によってその構造が壊れ、急激な粘度の低下を生じさせるとともにフレークを発生させる可能性がある。 When the ratio obtained by η2 / η1 is 0.5 to 1.5, it can be determined that the structure of the aggregate is stable also by the preliminary kneading and the main kneading. In addition, when the ratio calculated | required by (eta) 2 / (eta) 1 is smaller than 0.5, there is no stability of the structure of an aggregate, the structure breaks by kneading | mixing, and it is possible to generate | occur | produce a flake while causing a rapid viscosity fall There is sex.
 なお、上述のように、銀粉とエポキシ樹脂とを420Gの遠心力で混練(予備混練)を行う装置としては、例えば自公転ミキサー等を用いることができる。また、3本ロールミルによる混練(本混練)は、例えば、ロール径150mm、ロール圧10barの条件で行う。また、粘弾性測定装置についても、所望のせん断速度における粘度測定が可能なものであれば特に限定されない。 As described above, as an apparatus for kneading (preliminary kneading) silver powder and epoxy resin with a centrifugal force of 420 G, for example, a self-revolving mixer or the like can be used. Further, the kneading (main kneading) by the three roll mill is performed under the conditions of a roll diameter of 150 mm and a roll pressure of 10 bar, for example. The viscoelasticity measuring device is not particularly limited as long as it can measure the viscosity at a desired shear rate.
 また、この粘度測定において作製する評価用のペーストの組成は、例えば銀粉を80質量%、エポキシ樹脂(100~200P(10~20Pa・s)/25℃、好ましくは120~150P(12~15Pa・s)/25℃)を20質量%とすることが好ましい。 The composition of the paste for evaluation prepared in this viscosity measurement is, for example, 80% by mass of silver powder, epoxy resin (100 to 200 P (10 to 20 Pa · s) / 25 ° C., preferably 120 to 150 P (12 to 15 Pa · s). s) / 25 ° C.) is preferably 20% by mass.
 以上のように、本実施の形態に係る銀粉は、凝集力が-0.2N/cm以上0.7N/cm以下であり、粉体層せん断力測定における圧縮率が20~50%であり、かつJIS-K6217-4法で測定したフタル酸ジブチルの吸収量が3.0~9.0ml/100gであるという特性を有する。すなわち、この銀粉は、所定の大きさに銀粒子が連結した空隙の多い凝集体を有しており、かつ、その凝集体は所定の強度を有する。このような銀粉によれば、ペースト作製時において溶媒中での分散性が良好となり、銀粉同士がペースト中で凝集して塊になることを抑制し、フレーク等の粗大な粉体が発生することを抑制することができる。 As described above, silver powder according to the present embodiment, cohesion -0.2N / cm 2 or more 0.7 N / cm 2 or less, at a compression rate of the powder layer shear force measurements 20-50% And the absorption amount of dibutyl phthalate measured by the JIS-K6217-4 method is 3.0 to 9.0 ml / 100 g. That is, this silver powder has an aggregate with many voids in which silver particles are connected in a predetermined size, and the aggregate has a predetermined strength. According to such silver powder, dispersibility in a solvent becomes good at the time of paste preparation, and silver powder is prevented from agglomerating and lumping in the paste, and coarse powder such as flakes is generated. Can be suppressed.
 そして、このようなフレークの発生を抑制できる銀粉によれば、ペースト作製の混練時に混練性が損なわれることなく、またスクリーン印刷をする際にも目詰まりを防止することができ、優れた印刷性を実現することができる。 And according to the silver powder which can suppress generation | occurrence | production of such flakes, it can prevent clogging also when screen printing, without impairing kneadability at the time of paste kneading, and excellent printability Can be realized.
 次に、上述した銀粉の製造方法について説明する。本実施の形態に係る銀粉の製造方法は、例えば塩化銀や硝酸銀を出発原料とするものであって、基本的には、塩化銀等を錯化剤により溶解して得た銀錯体を含む溶液(銀錯体含有溶液)と還元剤溶液とを混合し、銀錯体を還元して銀粒子を析出させることにより銀粒子スラリーを得る。なお、塩化銀を出発原料とした場合においては、硝酸銀を出発原料とする方法で必要とされた亜硝酸ガスの回収装置や廃水中の硝酸系窒素の処理装置を設置する必要がなく、環境への影響も少ないプロセスであることから、製造コストの低減を図ることができる。 Next, a method for producing the above-described silver powder will be described. The method for producing silver powder according to the present embodiment uses, for example, silver chloride or silver nitrate as a starting material, and basically a solution containing a silver complex obtained by dissolving silver chloride or the like with a complexing agent. A silver particle slurry is obtained by mixing the (silver complex-containing solution) and the reducing agent solution, and reducing the silver complex to precipitate silver particles. When silver chloride is used as the starting material, there is no need to install a nitrite gas recovery device or a treatment system for nitrate nitrogen in wastewater, which is required in the method using silver nitrate as a starting material. Therefore, the manufacturing cost can be reduced.
 そして、本実施の形態に係る銀粉の製造方法においては、銀錯体含有溶液及び還元剤溶液の両方、又はいずれか一方に、銀に対して0.1~15質量%の水溶性高分子を添加する。また、より好ましくは、銀に対して3.0質量%を超えて10質量%以下の水溶性高分子を添加する。このように、銀に対して0.1~15質量%の水溶性高分子を銀錯体含有溶液及び還元剤溶液の両方、又はいずれか一方に添加することによって、凝集力が-0.2N/cm以上0.7N/cm以下であり、粉体層せん断力測定における圧縮率が20~50%であり、かつJIS-K6217-4法で測定したフタル酸ジブチルの吸収量が3.0~9.0ml/100gである銀粉を製造することができる。 In the method for producing silver powder according to the present embodiment, 0.1 to 15% by mass of a water-soluble polymer with respect to silver is added to either or both of the silver complex-containing solution and the reducing agent solution. To do. More preferably, more than 3.0 mass% and 10 mass% or less water-soluble polymer is added with respect to silver. In this way, by adding 0.1 to 15% by mass of a water-soluble polymer with respect to silver to either or both of the silver complex-containing solution and the reducing agent solution, the cohesion force is -0.2 N / cm 2 or more and 0.7 N / cm 2 or less, the compressibility in the measurement of the powder layer shear force is 20 to 50%, and the absorption of dibutyl phthalate measured by the JIS-K6217-4 method is 3.0. A silver powder of ˜9.0 ml / 100 g can be produced.
 本実施の形態に係る銀粉の製造においては、凝集防止剤として水溶性高分子を選択することとその添加量が重要となる。還元剤溶液により還元され生成した銀粒子(一次粒子)は表面が活性であり、容易に他の銀粒子と連結して二次粒子を形成する。さらに二次粒子は凝集して凝集体を形成する。このとき、凝集防止効果が高い凝集防止剤、例えば界面活性剤や脂肪酸を用いると、二次粒子や凝集体の形成が十分に行われず、一次粒子が多くなり、適度な凝集体が形成されない。一方、凝集防止効果が低い凝集防止剤を用いた場合には、二次粒子や凝集体の形成が過剰になるため、過剰に凝集した粗大な凝集塊を含んだ銀粉となる。水溶性高分子は、適度な凝集防止効果を有するため、添加量を調整することで、二次粒子や凝集体の形成を容易に制御することが可能となり、還元剤溶液添加後の銀錯体含有溶液中に適度な大きさの凝集体を形成させることができる。 In the production of silver powder according to the present embodiment, it is important to select a water-soluble polymer as an anti-aggregation agent and to add it. Silver particles (primary particles) produced by reduction with a reducing agent solution have an active surface, and are easily connected to other silver particles to form secondary particles. Further, the secondary particles aggregate to form an aggregate. At this time, when an anti-aggregation agent having a high anti-aggregation effect, for example, a surfactant or a fatty acid is used, secondary particles and aggregates are not sufficiently formed, primary particles increase, and appropriate aggregates are not formed. On the other hand, when an anti-agglomeration agent having a low anti-agglomeration effect is used, the formation of secondary particles and aggregates becomes excessive, resulting in a silver powder containing excessively aggregated coarse aggregates. The water-soluble polymer has an appropriate anti-aggregation effect, so it is possible to easily control the formation of secondary particles and aggregates by adjusting the addition amount, and the silver complex containing after the addition of the reducing agent solution Aggregates of an appropriate size can be formed in the solution.
 添加する水溶性高分子としては、特に限定されないが、ポリエチレングリコール、ポリエチレンオキシド、ポリビニルアルコール、ポリビニルピロリドンの少なくとも1種であることが好ましい。これらの水溶性高分子によれば、特に過剰な凝集を防止するとともに、成長した核の凝集が不十分で銀粒子(一次粒子)が微細になることを防止し、所定の大きさの凝集体を有する銀粉を容易に形成できる。 The water-soluble polymer to be added is not particularly limited, but is preferably at least one of polyethylene glycol, polyethylene oxide, polyvinyl alcohol, and polyvinyl pyrrolidone. According to these water-soluble polymers, in addition to preventing excessive aggregation, the aggregation of the grown nuclei is insufficient, preventing the silver particles (primary particles) from becoming fine, The silver powder which has can be formed easily.
 ここで、水溶性高分子を添加することにより所定の大きさに銀粒子が連結して凝集体が形成されるメカニズムとしては以下のものと考えられる。すなわち、水溶性高分子を添加することにより、水溶性高分子は銀粒子表面に吸着する。このとき、銀粒子表面のほぼ全てが水溶性高分子で覆われると銀粒子がそれぞれ単体で存在するようになるが、銀に対して0.1~15質量%の水溶性高分子を添加することで、一部水溶性高分子が存在しない表面が残り、その表面を介して銀粒子同士が連結し、凝集体を形成するものと考えられる。 Here, it is considered that the mechanism by which silver particles are connected to a predetermined size and aggregates are formed by adding a water-soluble polymer is as follows. That is, by adding a water-soluble polymer, the water-soluble polymer is adsorbed on the surface of the silver particles. At this time, when almost the entire surface of the silver particles is covered with the water-soluble polymer, the silver particles will be present alone, but 0.1 to 15% by mass of the water-soluble polymer is added to the silver. Thus, it is considered that a surface in which a part of the water-soluble polymer does not exist remains, and silver particles are connected through the surface to form an aggregate.
 このことから、水溶性高分子の添加量については、銀に対して0.1~15質量%を添加する。水溶性高分子の添加量が銀に対して0.1質量%未満の場合には、銀粒子スラリー中での分散性が悪くなり、銀粉が過度に凝集してしまい、多くの粗大な凝集塊であるフレークを発生させてしまう。一方で、銀に対する添加量が15質量%より多い場合には、ほぼ全ての銀粒子表面が水溶性高分子で覆われてしまい、銀粒子同士が連結することができず、凝集体を形成させることができない。その結果、一次粒子からなる銀粉となり、この場合においてもペースト作製時にフレークを発生させてしまう。したがって、銀に対して0.1~15質量%の水溶性高分子を添加することによって、適度な凝集力で銀粒子を連結させ、構造的に安定した凝集体を形成させることができ、ペースト中での分散性を良好にさせるとともに、フレークの発生を効果的に抑制することができる。 For this reason, the addition amount of the water-soluble polymer is 0.1 to 15% by mass with respect to silver. When the addition amount of the water-soluble polymer is less than 0.1% by mass with respect to silver, the dispersibility in the silver particle slurry is deteriorated, the silver powder is excessively aggregated, and many coarse aggregates Will cause flakes. On the other hand, when the addition amount with respect to silver is more than 15% by mass, almost all the silver particle surfaces are covered with the water-soluble polymer, the silver particles cannot be connected to each other, and an aggregate is formed. I can't. As a result, silver powder composed of primary particles is formed, and even in this case, flakes are generated during paste preparation. Therefore, by adding 0.1 to 15% by mass of a water-soluble polymer based on silver, silver particles can be connected with an appropriate cohesive force to form a structurally stable aggregate. The dispersibility in the inside can be improved, and the occurrence of flakes can be effectively suppressed.
 また、水溶性高分子は、銀錯体含有溶液及び還元剤溶液の両方、又はいずれか一方に添加する。銀錯体含有溶液及び還元剤溶液の両方、又はいずれか一方への水溶性高分子の添加については、還元処理に先立ち予め添加対象の溶液に添加してもよく、還元処理のための銀錯体含有溶液及び還元剤溶液の混合時に添加するようにしてもよい。 Further, the water-soluble polymer is added to either or both of the silver complex-containing solution and the reducing agent solution. The addition of the water-soluble polymer to either or both of the silver complex-containing solution and the reducing agent solution may be added in advance to the solution to be added prior to the reduction treatment, and may contain a silver complex for the reduction treatment. You may make it add at the time of mixing of a solution and a reducing agent solution.
 より好ましくは、水溶性高分子を、予め還元剤溶液に添加しておくとよい。このように、予め還元剤溶液に水溶性高分子を添加しておくことによって、核発生あるいは核成長の場に水溶性高分子が存在し、生成した核あるいは銀粒子の表面に迅速に水溶性高分子を吸着させ、銀粒子の凝集を効率よく制御できる。そして、さらに好ましくは、その濃度を3.0質量%を超え10質量%以下となるように添加することにより、より適度に銀粒子を所定の大きさまで連結させて安定性の高い凝集体を形成させることができ、フレークの発生をより効果的に抑制できる。 More preferably, a water-soluble polymer is added in advance to the reducing agent solution. In this way, by adding a water-soluble polymer to the reducing agent solution in advance, the water-soluble polymer exists in the nucleation or nucleation field, and the surface of the generated nuclei or silver particles is rapidly water-soluble. Polymers can be adsorbed and the aggregation of silver particles can be controlled efficiently. And more preferably, by adding the concentration so as to be more than 3.0% by mass and 10% by mass or less, the silver particles are more appropriately connected to a predetermined size to form a highly stable aggregate. And the occurrence of flakes can be more effectively suppressed.
 なお、水溶性高分子を、予め銀錯体含有溶液に添加した場合には、核発生あるいは核成長の場に水溶性高分子が供給され難く、銀粒子の表面に適度に水溶性高分子を吸着させることができないおそれがある。そのため、予め銀錯体含有溶液に添加する場合には、水溶性高分子の添加量を3.0質量%を超える量とすることが好ましい。 In addition, when a water-soluble polymer is added to a silver complex-containing solution in advance, it is difficult to supply the water-soluble polymer to the site of nucleation or growth, and the water-soluble polymer is adsorbed to the surface of the silver particles appropriately. There is a possibility that it cannot be made. Therefore, when adding to a silver complex containing solution previously, it is preferable to make the addition amount of water-soluble polymer more than 3.0 mass%.
 次に、銀粉の製造方法について、工程毎にさらに具体的に説明する。まず、還元工程においては、錯化剤を用いて塩化銀等の出発原料を溶解し、銀錯体を含む溶液を調製する。錯化剤としては、特に限定されるものではないが、塩化銀等と錯体を形成し易くかつ不純物として残留する成分が含まれないアンモニア水を用いることが好ましい。また、塩化銀を用いる場合には、高純度のものを用いることが好ましい。 Next, the method for producing silver powder will be described more specifically for each process. First, in the reduction step, a starting material such as silver chloride is dissolved using a complexing agent to prepare a solution containing a silver complex. Although it does not specifically limit as a complexing agent, It is preferable to use the ammonia water which is easy to form a complex with silver chloride etc. and does not contain the component which remains as an impurity. Moreover, when using silver chloride, it is preferable to use a high purity thing.
 塩化銀等の溶解方法としては、例えば錯化剤としてアンモニア水を用いる場合、塩化銀等のスラリーを作製してアンモニア水を添加してもよいが、錯体濃度を高めて生産性を上げるためにはアンモニア水中に塩化銀を添加して溶解することが好ましい。溶解に用いるアンモニア水は、工業的に用いられる通常のものでよいが、不純物混入を防止するため可能な限り高純度のものが好ましい。 As a method for dissolving silver chloride, for example, when ammonia water is used as a complexing agent, a slurry such as silver chloride may be prepared and ammonia water may be added, but in order to increase the complex concentration and increase productivity. Is preferably dissolved by adding silver chloride in ammonia water. The aqueous ammonia used for the dissolution may be a normal one used industrially, but preferably has a purity as high as possible in order to prevent contamination with impurities.
 次に、銀錯体溶液と混合する還元剤溶液を調製する。還元剤としては、アスコルビン酸、ヒドラジン、ホルマリン等の還元力が強いものを用いることが好ましい。アスコルビン酸は、銀粒子中の結晶粒が成長し易く特に好ましい。ヒドラジン又はホルマリンは、銀粒子中の結晶を小さくすることができる。また、反応の均一性又は反応速度を制御するために、還元剤を純水等で溶解又は希釈して濃度調整した水溶液として用いることもできる。 Next, a reducing agent solution to be mixed with the silver complex solution is prepared. As the reducing agent, it is preferable to use a strong reducing power such as ascorbic acid, hydrazine, formalin and the like. Ascorbic acid is particularly preferred because the crystal grains in the silver particles are easy to grow. Hydrazine or formalin can reduce the crystals in the silver particles. Moreover, in order to control the uniformity of reaction or reaction rate, it can also be used as an aqueous solution whose concentration is adjusted by dissolving or diluting a reducing agent with pure water or the like.
 上述したように、この銀粉の製造方法においては、銀錯体含有溶液及び還元剤の両方、又はいずれか一方に、銀に対して0.1~15質量%の水溶性高分子を添加するが、このとき、水溶性高分子の添加により還元反応時に発泡することがあるため、銀錯体溶液又は還元剤混合液に消泡剤を添加することもできる。消泡剤としては、特に限定されるものではなく、通常還元時に用いられているものでよい。ただし、還元反応を阻害させないため、消泡剤の添加量は消泡効果が得られる最小限程度にしておくことが好ましい。 As described above, in this silver powder production method, 0.1 to 15% by mass of a water-soluble polymer with respect to silver is added to either or both of the silver complex-containing solution and the reducing agent. At this time, foaming may occur during the reduction reaction due to the addition of the water-soluble polymer, and therefore an antifoaming agent may be added to the silver complex solution or the reducing agent mixed solution. The antifoaming agent is not particularly limited and may be one usually used during reduction. However, in order not to inhibit the reduction reaction, the addition amount of the antifoaming agent is preferably set to a minimum level at which an antifoaming effect can be obtained.
 なお、銀錯体溶液及び還元剤溶液を調製する際に用いる水については、不純物の混入を防止するため、不純物が除去された水を用いることが好ましく、純水を用いることが特に好ましい。 In addition, about the water used when preparing a silver complex solution and a reducing agent solution, in order to prevent mixing of an impurity, it is preferable to use the water from which the impurity was removed, and it is especially preferable to use a pure water.
 次に、上述のようにして調製した銀錯体溶液と還元剤溶液とを混合し、銀錯体を還元して銀粒子を析出させる。この還元反応は、バッチ法でもよく、チューブリアクター法やオーバーフロー法のような連続還元法を用いて行ってもよい。また、銀粒子の粒径は、銀錯体溶液と還元剤溶液の混合速度や銀錯体の還元速度で制御することが可能であり、目的とする粒径に容易に制御することができる。 Next, the silver complex solution prepared as described above and the reducing agent solution are mixed, and the silver complex is reduced to precipitate silver particles. This reduction reaction may be performed by a batch method or a continuous reduction method such as a tube reactor method or an overflow method. The particle size of the silver particles can be controlled by the mixing rate of the silver complex solution and the reducing agent solution and the reduction rate of the silver complex, and can be easily controlled to the intended particle size.
 還元工程で得られた銀粒子は、表面に多量の塩素イオン及び水溶性高分子が吸着している。したがって、銀ペーストを用いて形成される配線層や電極の導電性を十分なものとするために、得られた銀粒子のスラリーを次の洗浄工程において洗浄し、表面吸着物を洗浄により除去することが好ましい。なお、後述するが、銀粒子表面に吸着した水溶性高分子を除去することにより過剰な凝集が生じることを抑制するために、洗浄工程は、銀粒子への表面処理工程後等に行うことが好ましい。 A large amount of chloride ions and water-soluble polymers are adsorbed on the surface of the silver particles obtained in the reduction process. Therefore, in order to make the conductivity of the wiring layer and the electrode formed using the silver paste sufficient, the obtained silver particle slurry is washed in the next washing step, and the surface adsorbate is removed by washing. It is preferable. As will be described later, in order to suppress the occurrence of excessive aggregation by removing the water-soluble polymer adsorbed on the surface of the silver particles, the washing step may be performed after the surface treatment step on the silver particles. preferable.
 洗浄方法としては、特に限定されるものではないが、スラリーからフィルタープレス等で固液分離した銀粒子を洗浄液に投入し、撹拌機又は超音波洗浄器を使用して撹拌した後、再び固液分離して銀粒子を回収する方法が一般的に用いられる。また、表面吸着物を十分に除去するためには、洗浄液への投入、撹拌洗浄、及び固液分離からなる操作を、数回繰り返して行うことが好ましい。 The washing method is not particularly limited, but the silver particles solid-liquid separated from the slurry by a filter press or the like are put into the washing liquid, stirred using an agitator or an ultrasonic washing machine, and then again solid-liquid. A method of separating and collecting silver particles is generally used. Further, in order to sufficiently remove the surface adsorbate, it is preferable to repeat the operations consisting of charging into the cleaning liquid, stirring cleaning, and solid-liquid separation several times.
 洗浄液は、水を用いてもよいが、塩素を効率よく除去するためにアルカリ水溶液を用いてもよい。アルカリ溶液としては、特に限定されるものではないが、残留する不純物が少なくかつ安価な水酸化ナトリウム水溶液を用いることが好ましい。洗浄液として水酸化ナトリウム水溶液を用いる場合、水酸化ナトリウム水溶液での洗浄後、ナトリウムを除去するために銀粒子又はそのスラリーをさらに水で洗浄することが望ましい。 As the cleaning liquid, water may be used, but an alkaline aqueous solution may be used in order to efficiently remove chlorine. Although it does not specifically limit as an alkaline solution, It is preferable to use the sodium hydroxide aqueous solution with few remaining impurities and cheap. In the case of using a sodium hydroxide aqueous solution as the cleaning liquid, it is desirable to further wash the silver particles or the slurry thereof with water in order to remove sodium after washing with the sodium hydroxide aqueous solution.
 また、水酸化ナトリウム水溶液の濃度は0.01~1.00mol/lとすることが好ましい。濃度が0.01mol/l未満では洗浄効果が不十分であり、一方で濃度が1.00mol/lを超えると、銀粒子にナトリウムが許容以上に残留することがある。なお、洗浄液に用いる水は、銀粒子に対して有害な不純物元素を含有していない水が好ましく、特に純水を用いることが好ましい。 Further, the concentration of the sodium hydroxide aqueous solution is preferably 0.01 to 1.00 mol / l. When the concentration is less than 0.01 mol / l, the cleaning effect is insufficient. On the other hand, when the concentration exceeds 1.00 mol / l, sodium may remain in silver particles more than allowable. The water used for the cleaning liquid is preferably water that does not contain an impurity element harmful to silver particles, and it is particularly preferable to use pure water.
 本実施の形態に係る銀粉の製造においては、銀錯体含有溶液中で還元され形成された凝集体がさらに凝集して粗大な凝集塊を形成する前に、その形成された凝集体の表面を凝集防止効果が高い処理剤で表面処理して過剰な凝集を防止することが第2に重要な要素となる。すなわち、上述した凝集体が形成された後、過剰な凝集が進行する前に、銀粒子を界面活性剤で処理するか、より好ましくは界面活性剤と分散剤で処理する銀粒子への表面処理工程を行う。これにより、過剰な凝集が生じることを防止でき、所望とする凝集体の構造的な安定性を維持させ、フレークの発生をより効果的に抑制できる。 In the production of the silver powder according to the present embodiment, before the aggregate formed by reduction in the silver complex-containing solution further aggregates to form a coarse aggregate, the surface of the formed aggregate is aggregated. The second important factor is to prevent excessive aggregation by surface treatment with a treatment agent having a high prevention effect. That is, after the above-described aggregates are formed and before excessive aggregation proceeds, the silver particles are treated with a surfactant, or more preferably a surface treatment on silver particles treated with a surfactant and a dispersant. Perform the process. Thereby, excessive aggregation can be prevented from occurring, the structural stability of the desired aggregate can be maintained, and the generation of flakes can be more effectively suppressed.
 過剰な凝集は、乾燥によって特に進行することから、表面処理は、銀粒子が乾燥する前であればいずれの段階で行っても効果が得られる。例えば、還元工程後であり上述した洗浄工程前、洗浄工程と同時、あるいは洗浄工程後に行うことができる。 Since excessive agglomeration is particularly advanced by drying, the effect of surface treatment can be obtained at any stage before the silver particles are dried. For example, it can be performed after the reduction process and before the above-described cleaning process, simultaneously with the cleaning process, or after the cleaning process.
 その中でも、特に、還元工程後であり洗浄工程の前に行うことが好ましい。または、1回の洗浄工程後に行うことが好ましい。これにより、還元処理を経て形成された、所定の大きさに凝集した凝集体を維持することができ、その凝集体を含めた銀粒子に表面処理が施されるため、分散性のよい銀粉を製造することができる。 Among these, it is particularly preferable to carry out after the reduction step and before the washing step. Or it is preferable to carry out after one washing process. As a result, aggregates formed through a reduction treatment and aggregated to a predetermined size can be maintained, and the surface treatment is performed on the silver particles including the aggregates. Can be manufactured.
 より具体的に説明すると、本実施の形態に係る銀粉の製造方法においては、上述したように、銀に対して0.1~15質量%の水溶性高分子を添加することによって、銀粒子表面に適度に水溶性高分子を吸着させて、所定の大きさに銀粒子が連結した凝集体を形成させている。しかしながら、銀粒子表面に吸着させた水溶性高分子は、比較的容易に洗浄工程によって洗浄されてしまう。そのため、表面処理に先立って洗浄工程を行った場合には、銀粒子表面の水溶性高分子が洗浄され、銀粒子同士が互いに過度な凝集をはじめ、形成された凝集体よりも大きく多量の凝集塊が形成されるおそれがある。そして、これによりフレークの原因になってしまう可能性が生じる。 More specifically, in the method for producing silver powder according to the present embodiment, as described above, by adding 0.1 to 15% by mass of a water-soluble polymer with respect to silver, the surface of the silver particles A water-soluble polymer is adsorbed moderately to form an aggregate in which silver particles are linked to a predetermined size. However, the water-soluble polymer adsorbed on the surface of the silver particles is easily cleaned by the cleaning process. Therefore, when the washing process is performed prior to the surface treatment, the water-soluble polymer on the surface of the silver particles is washed, the silver particles start to excessively aggregate with each other, and a larger amount of agglomerates than the formed aggregates. Lumps may be formed. And this may cause flakes.
 したがって、このことから、表面処理工程は、洗浄工程よりも前、もしくは1回の洗浄工程後、すなわち、銀粒子表面に少なくとも銀粒子の凝集を抑制できる量の水溶性高分子が残存した状態で行うことが好ましい。なお、還元処理後であり洗浄工程前の表面処理は、還元工程終了後に銀粒子を含有するスラリーをフィルタープレス等で固液分離した後でもよい。このように固液分離後に表面処理を行うことによって、生成された銀粒子に対して直接表面処理剤である界面活性剤や分散剤を作用させることができるので、形成された凝集体に的確に表面処理剤が吸着し、過剰な凝集により凝集構造が大きくなってフレークが発生することを効果的に抑制できる。 Therefore, from this, the surface treatment step is performed before the washing step or after one washing step, that is, in a state where an amount of water-soluble polymer that can suppress at least aggregation of silver particles remains on the surface of the silver particles. Preferably it is done. The surface treatment after the reduction process and before the cleaning process may be performed after solid-liquid separation of the slurry containing silver particles with a filter press or the like after the reduction process. By performing the surface treatment after the solid-liquid separation in this way, it is possible to cause the surfactant or dispersant, which is a surface treatment agent, to act directly on the generated silver particles. It is possible to effectively suppress the surface treatment agent from being adsorbed and the occurrence of flakes due to an excessive aggregation due to an increased aggregate structure.
 この表面処理工程では、界面活性剤と分散剤の両方で表面処理することがより好ましい。このように界面活性剤と分散剤の両方で表面処理すると、その相互作用により銀粒子表面に強固な表面処理層を形成することができるため、過剰な凝集の防止効果が高く、所望とする凝集体を維持することに有効である。界面活性剤と分散剤を用いる好ましい表面処理の具体的方法としては、銀粒子を界面活性剤及び分散剤を添加した水中に投入して撹拌するか、界面活性剤を添加した水中に投入して撹拌した後、さらに分散剤を添加して撹拌すればよい。また、洗浄工程と同時に表面処理を行う場合には、洗浄液に界面活性剤及び分散剤を同時に添加するか、又は界面活性剤の添加後に分散剤を添加すればよい。銀粒子への界面活性剤及び分散剤の吸着性をより良好にするためには、界面活性剤を添加した水又は洗浄液に銀粒子を投入して撹拌した後、分散剤をさらに添加し撹拌することが好ましい。 In this surface treatment step, it is more preferable to treat the surface with both a surfactant and a dispersant. When the surface treatment is performed with both the surfactant and the dispersant as described above, a strong surface treatment layer can be formed on the surface of the silver particles due to the interaction. It is effective to maintain the aggregate. As a specific method of preferable surface treatment using a surfactant and a dispersant, the silver particles are put into water added with a surfactant and a dispersant and stirred, or put into water added with a surfactant. After stirring, a dispersant may be further added and stirred. Moreover, when performing surface treatment simultaneously with a washing | cleaning process, a surfactant and a dispersing agent should be added simultaneously to a washing | cleaning liquid, or a dispersing agent should just be added after addition of surfactant. In order to improve the adsorptivity of the surfactant and the dispersant to the silver particles, the silver particles are added to the water or the cleaning liquid to which the surfactant is added and stirred, and then the dispersant is further added and stirred. It is preferable.
 ここで、界面活性剤としては、特に限定されないが、カチオン系界面活性剤を用いることが好ましい。カチオン系界面活性剤は、pHの影響を受けることなく正イオンに電離するため、例えば塩化銀を出発原料とした銀粉への吸着性の改善効果が得られる。 Here, the surfactant is not particularly limited, but a cationic surfactant is preferably used. Since the cationic surfactant is ionized into positive ions without being affected by pH, for example, an effect of improving the adsorptivity to silver powder using silver chloride as a starting material can be obtained.
 カチオン系界面活性剤は、特に限定されるものではないが、モノアルキルアミン塩に代表されるアルキルモノアミン塩型、N-アルキル(C14~C18)プロピレンジアミンジオレイン酸塩に代表されるアルキルジアミン塩型、アルキルトリメチルアンモニウムクロライドに代表されるアルキルトリメチルアンモニウム塩型、アルキルジメチルベンジルアンモニウムクロライドに代表されるアルキルジメチルベンジルアンモニウム塩型、アルキルジポリオキシエチレンメチルアンモニウムクロライドに代表される4級アンモニウム塩型、アルキルピリジニウム塩型、ジメチルステアリルアミンに代表される3級アミン型、ポリオキシプロピレン・ポリオキシエチレンアルキルアミンに代表されるポリオキシエチレンアルキルアミン型、N、N’、N’-トリス(2-ヒドロキシエチル)-N-アルキル(C14~18)1,3-ジアミノプロパンに代表されるジアミンのオキシエチレン付加型から選択される少なくとも1種が好ましく、4級アンモニウム塩型、3級アミン塩型のいずれか又はその混合物がより好ましい。 The cationic surfactant is not particularly limited, but is an alkyl monoamine salt type represented by a monoalkylamine salt, an alkyldiamine salt represented by an N-alkyl (C14 to C18) propylenediamine dioleate. Type, alkyltrimethylammonium salt type represented by alkyltrimethylammonium chloride, alkyldimethylbenzylammonium salt type represented by alkyldimethylbenzylammonium chloride, quaternary ammonium salt type represented by alkyldipolyoxyethylenemethylammonium chloride, Alkyl pyridinium salt type, tertiary amine type represented by dimethylstearylamine, polyoxyethylene alkylamine type represented by polyoxypropylene / polyoxyethylene alkylamine, N N ′, N′-tris (2-hydroxyethyl) -N-alkyl (C14-18) is preferably at least one selected from oxyethylene addition types of diamines represented by 1,3-diaminopropane Any of ammonium salt type, tertiary amine salt type or a mixture thereof is more preferable.
 また、界面活性剤は、メチル基、ブチル基、セチル基、ステアリル基、牛脂、硬化牛脂、植物系ステアリルに代表されるC4~C36の炭素数を持つアルキル基を少なくとも1個有することが好ましい。アルキル基としては、ポリオキシエチレン、ポリオキシプロピレン、ポリオキシエチレンポリオキシプロピレン、ポリアクリル酸、ポリカルボン酸から選択される少なくとも1種を付加されたものであることが好ましい。これらのアルキル基は、後述する分散剤として用いる脂肪酸との吸着が強いため、界面活性剤を介して銀粒子に分散剤を吸着させる場合に脂肪酸を強く吸着させることができる。 Further, the surfactant preferably has at least one alkyl group having a C4 to C36 carbon number represented by methyl group, butyl group, cetyl group, stearyl group, beef tallow, hard beef tallow, and plant stearyl. The alkyl group is preferably a group to which at least one selected from polyoxyethylene, polyoxypropylene, polyoxyethylene polyoxypropylene, polyacrylic acid, and polycarboxylic acid is added. Since these alkyl groups are strongly adsorbed with a fatty acid used as a dispersant described later, the fatty acid can be strongly adsorbed when the dispersant is adsorbed to the silver particles via the surfactant.
 また、界面活性剤の添加量は、銀粒子に対して0.002~1.000質量%の範囲が好ましい。界面活性剤はほぼ全量が銀粒子に吸着されるため、界面活性剤の添加量と吸着量はほぼ等しいものとなる。界面活性剤の添加量が0.002質量%未満になると、銀粒子の凝集抑制あるいは分散剤の吸着性改善の効果が得られないことがある。一方、添加量が1.000質量%を超えると、銀ペーストを用いて形成された配線層や電極の導電性が低下するため好ましくない。 Further, the addition amount of the surfactant is preferably in the range of 0.002 to 1.000% by mass with respect to the silver particles. Since almost the entire amount of the surfactant is adsorbed on the silver particles, the addition amount of the surfactant and the adsorption amount are almost equal. When the addition amount of the surfactant is less than 0.002% by mass, the effect of suppressing aggregation of silver particles or improving the adsorptivity of the dispersant may not be obtained. On the other hand, when the addition amount exceeds 1.000% by mass, the conductivity of the wiring layer or electrode formed using the silver paste is not preferable.
 分散剤としては、例えば脂肪酸、有機金属、ゼラチン等の保護コロイドを用いることができるが、不純物混入のおそれがなくかつ界面活性剤との吸着性を考慮すると、脂肪酸又はその塩を用いることが好ましい。なお、脂肪酸又はその塩は、エマルジョンとして添加してもよい。 As the dispersant, for example, protective colloids such as fatty acids, organometallics, and gelatins can be used. However, in view of adsorbability with a surfactant without the possibility of contamination with impurities, it is preferable to use fatty acids or salts thereof. . In addition, you may add a fatty acid or its salt as an emulsion.
 分散剤として用いる脂肪酸としては、特に限定されるものではないが、ステアリン酸、オレイン酸、ミリスチン酸、パルミチン酸、リノール酸、ラウリン酸、リノレン酸から選択される少なくとも1種であることが好ましい。これらの脂肪酸は、沸点が比較的低いため、銀ペーストを用いて形成された配線層や電極への悪影響が少ないからである。 The fatty acid used as the dispersant is not particularly limited, but is preferably at least one selected from stearic acid, oleic acid, myristic acid, palmitic acid, linoleic acid, lauric acid, and linolenic acid. This is because these fatty acids have a relatively low boiling point and thus have little adverse effect on the wiring layer and electrodes formed using the silver paste.
 また、分散剤の添加量は、銀粒子に対して0.01~3.00質量%の範囲が好ましく、銀粒子に対して0.01~1.00質量%の範囲がより好ましい。分散剤の種類により銀粒子への吸着量は異なるが、添加量が0.01質量%未満になると、銀粒子の凝集抑制あるいは分散剤の吸着性改善の効果が十分に得られる量の分散剤が銀粉に吸着されないことがある。一方、分散剤の添加量が3.00質量%を超えると、銀粒子に吸着される分散剤が多くなり、銀ペーストを用いて形成された配線層や電極の導電性が十分に得られないことがある。 Further, the addition amount of the dispersant is preferably in the range of 0.01 to 3.00% by mass with respect to the silver particles, and more preferably in the range of 0.01 to 1.00% by mass with respect to the silver particles. The amount of adsorption on the silver particles varies depending on the type of the dispersant, but when the added amount is less than 0.01% by mass, the amount of the dispersant is sufficient to sufficiently suppress the aggregation of the silver particles or improve the adsorptivity of the dispersant. May not be adsorbed by silver powder. On the other hand, when the added amount of the dispersant exceeds 3.00% by mass, the dispersant adsorbed on the silver particles increases, and the conductivity of the wiring layer and the electrode formed using the silver paste cannot be sufficiently obtained. Sometimes.
 洗浄及び表面処理を行った後、固液分離して銀粒子を回収する。なお、洗浄及び表面処理に用いられる装置は、通常用いられるものでよく、例えば撹拌機付きの反応槽等を用いることができる。また、固液分離に用いられる装置も、通常用いられるものでよく、例えば遠心機、吸引濾過機、フィルタープレス等を用いることができる。 After washing and surface treatment, solid-liquid separation is performed to collect silver particles. In addition, the apparatus used for washing | cleaning and surface treatment may be used normally, For example, the reaction tank with a stirrer etc. can be used. Moreover, the apparatus used for solid-liquid separation may also be a normally used apparatus, for example, a centrifuge, a suction filter, a filter press, etc. can be used.
 洗浄及び表面処理が終了した銀粒子は、乾燥工程において水分を蒸発させて乾燥させる。乾燥方法としては、例えば、洗浄及び表面処理の終了後に回収した銀粉をステンレスパッド上に置き、大気オーブン又は真空乾燥機等の市販の乾燥装置を用いて、40~80℃の温度で加熱すればよい。 The silver particles that have been washed and surface-treated are dried by evaporating moisture in the drying step. As a drying method, for example, silver powder recovered after completion of cleaning and surface treatment is placed on a stainless steel pad and heated at a temperature of 40 to 80 ° C. using a commercially available drying apparatus such as an atmospheric oven or a vacuum dryer. Good.
 さらに、乾燥後の銀粉を解砕し、分級処理する。上述した表面処理後の銀粉は、その後の乾燥等により凝集体間でさらに凝集していても、その結合力は弱いため、ペースト作製時に所定の大きさの凝集体まで容易に分離する。しかしながら、ペーストを安定化させるためには、解砕し分級処理することが好ましい。解砕方法は、特に限定されるものではないが、ジェットミル、高速撹拌機等の解砕力が弱い装置を用いることが好ましい。解砕力が強い装置では、上述した凝集体までも解砕されるか、銀粉が変形することがあり好ましくない。また、解砕条件としては、形成された凝集体が維持される程度に調整すればよい。分級装置は、特に限定されるものではなく、気流式分級機、篩い等を用いることができる。 Furthermore, the dried silver powder is crushed and classified. Even if the silver powder after the surface treatment described above is further aggregated between the aggregates by subsequent drying or the like, since the binding force is weak, it is easily separated into aggregates of a predetermined size at the time of preparing the paste. However, in order to stabilize the paste, it is preferable to crush and classify. The crushing method is not particularly limited, but it is preferable to use an apparatus having a weak crushing force such as a jet mill or a high-speed stirrer. In an apparatus with a strong crushing force, even the above-mentioned aggregates are crushed or the silver powder is deformed, which is not preferable. Moreover, what is necessary is just to adjust to the grade which the formed aggregate is maintained as crushing conditions. The classifying device is not particularly limited, and an airflow classifier, a sieve, or the like can be used.
 以下に、本発明の具体的な実施例について説明する。ただし、本発明は、以下の実施例に何ら限定されるものではない。 Hereinafter, specific examples of the present invention will be described. However, the present invention is not limited to the following examples.
 [実施例1]
 38℃の温浴中で液温36℃に保持した25%アンモニア水36Lに、塩化銀2492g(住友金属鉱山(株)製)を撹拌しながら投入して銀錯体溶液を作製し、得られた銀錯体溶液を温浴中で36℃に保持した。
[Example 1]
A silver complex solution was prepared by adding 2492 g of silver chloride (manufactured by Sumitomo Metal Mining Co., Ltd.) with stirring to 36 L of 25% aqueous ammonia maintained at a liquid temperature of 36 ° C. in a 38 ° C. bath. The complex solution was kept at 36 ° C. in a warm bath.
 一方、還元剤のアスコルビン酸1068g(関東化学(株)製、試薬)を、36℃の純水14Lに溶解して還元剤溶液とした。次に、水溶性高分子であるポリビニルアルコール64.1g((株)クラレ製、PVA205、銀に対して3.5質量%)を36℃の純水550mlに溶解した後、還元剤溶液に混合した。 On the other hand, 1068 g of reducing agent ascorbic acid (manufactured by Kanto Chemical Co., Ltd., reagent) was dissolved in 14 L of pure water at 36 ° C. to obtain a reducing agent solution. Next, 64.1 g of polyvinyl alcohol which is a water-soluble polymer (manufactured by Kuraray Co., Ltd., PVA205, 3.5% by mass with respect to silver) is dissolved in 550 ml of pure water at 36 ° C. and then mixed with the reducing agent solution. did.
 作製した銀錯体溶液と還元剤溶液とを、モーノポンプ(兵神装備(株)製)を使用し、銀錯体溶液2.7L/min、還元剤溶液0.9L/minで混合管内に送液して、銀錯体を還元した。このときの還元速度は銀量で127g/minである。また、銀の供給速度に対する還元剤の供給速度の比は1.4とした。なお、混合管には内径25mm及び長さ725mmの塩ビ製パイプを使用した。銀錯体の還元により得られた銀粒子を含むスラリーは撹拌しながら受槽に受け入れた。 The prepared silver complex solution and the reducing agent solution are fed into the mixing tube at a silver complex solution of 2.7 L / min and a reducing agent solution of 0.9 L / min using a MONO pump (manufactured by Hyojin Equipment Co., Ltd.). The silver complex was reduced. The reduction rate at this time is 127 g / min in terms of silver. The ratio of the reducing agent supply rate to the silver supply rate was 1.4. A PVC pipe having an inner diameter of 25 mm and a length of 725 mm was used as the mixing tube. The slurry containing silver particles obtained by reduction of the silver complex was received in a receiving tank with stirring.
 その後、還元により得られた銀粒子スラリーへ、表面処理剤として市販のカチオン系界面活性剤であるポリオキシエチレン付加4級アンモニウム塩0.88g(クローダジャパン(株)製、商品名 シラソルG-265、銀粒子に対して0.048質量%)及び分散剤であるステアリン酸エマルジョン16.47g(中京油脂(株)製、セロゾール920、銀粒子に対して0.90質量%)を投入し、60分間撹拌して表面処理を行った。表面処理後、銀粒子スラリーをフィルタープレスを使用して濾過し、銀粒子を固液分離した。 Thereafter, 0.88 g of a polyoxyethylene-added quaternary ammonium salt that is a commercially available cationic surfactant as a surface treatment agent is added to the silver particle slurry obtained by reduction (trade name: Silasol G-265, manufactured by Croda Japan Co., Ltd.). , 0.048% by mass with respect to silver particles) and 16.47 g of stearic acid emulsion as a dispersant (manufactured by Chukyo Yushi Co., Ltd., Cellosol 920, 0.90% by mass with respect to silver particles), 60 Surface treatment was performed by stirring for a minute. After the surface treatment, the silver particle slurry was filtered using a filter press, and the silver particles were solid-liquid separated.
 引き続き、回収した銀粒子が乾燥する前に、銀粒子を40℃に保持した0.2質量%の水酸化ナトリウム(NaOH)水溶液23L中に投入し、15分間撹拌して洗浄した後、フィルタープレスで濾過し、銀粒子を回収した。 Subsequently, before the collected silver particles are dried, the silver particles are put into 23 L of a 0.2 mass% sodium hydroxide (NaOH) aqueous solution maintained at 40 ° C., washed with stirring for 15 minutes, and then filtered. And silver particles were collected.
 次に、回収した銀粒子を、40℃に保持した23Lの純水中に投入し、撹拌及び濾過した後、銀粒子をステンレスパッドに移し、真空乾燥機にて60℃で10時間乾燥した。続いて、乾燥した銀粒子を、5Lの高速攪拌機(日本コークス工業(株)製、FM5C)を用いて、周速22.7m/秒で解砕を行った。解砕処理後、銀粒子を気流式分級機(日本鉱業(株)、EJ-3)を用い、分級点7μmとして粗大粒子を除去し、銀粒子を得た。 Next, the collected silver particles were put into 23 L of pure water kept at 40 ° C., stirred and filtered, and then the silver particles were transferred to a stainless steel pad and dried at 60 ° C. for 10 hours in a vacuum dryer. Subsequently, the dried silver particles were crushed at a peripheral speed of 22.7 m / sec using a 5 L high-speed stirrer (manufactured by Nippon Coke Industries, Ltd., FM5C). After the pulverization treatment, the silver particles were removed using a gas stream classifier (Nippon Mining Co., Ltd., EJ-3) to remove coarse particles with a classification point of 7 μm to obtain silver particles.
 得られた銀粒子について、粉体層せん断力測定装置((株)ナノシーズ製、NS-S300)を用いて凝集力を測定した。測定は、銀粉18gを使用し、内径15mmの測定容器に入れ、設定の印加荷重を20N、40N、60Nとして、銀粉を入れた状態で連続的に測定した。このとき、銀粉への押し込み速度は0.2mm/秒とし、設定の印加荷重まで達したら押し込みを停止し、そこから100秒待機させた後にせん断力測定のため横摺りを10μm/秒の速度で開始し、せん断力を測定した。なお、せん断力のサンプリング周波数は10Hzとした。せん断力の最大値及び横摺り開始直前の垂直荷重から、20N、40N、60Nの各設定印加荷重におけるせん断応力及び垂直応力を求め、垂直応力に対するせん断応力のグラフを作り、これら3点について最小自乗法を用いた直線の関係式を求めた。その結果、Y切片に相当する凝集力は0.37N/cmであった。また、圧縮率は印加荷重を60Nとしたときの値であり、30.1%であった。また、吸収量測定装置((株)あさひ総研製)を用いてJIS-K6217-4法で測定したフタル酸ジブチルの吸収量は6.9ml/100gであった。 For the obtained silver particles, the cohesive force was measured using a powder layer shear force measuring device (NS-S300, manufactured by Nano Seeds Co., Ltd.). The measurement was performed by continuously using 18 g of silver powder in a measurement container having an inner diameter of 15 mm and setting the applied load to 20 N, 40 N, and 60 N, and putting the silver powder. At this time, the indentation speed to the silver powder is 0.2 mm / sec. When the set load is reached, the indentation is stopped, and after waiting for 100 sec from there, the side slide is performed at a speed of 10 μm / sec for measuring the shear force. Start and measure shear force. The shearing force sampling frequency was 10 Hz. From the maximum value of the shear force and the vertical load immediately before the start of the sideslip, obtain the shear stress and normal stress at each set applied load of 20N, 40N, and 60N, create a graph of the shear stress against the normal stress, A linear relational expression using multiplication was obtained. As a result, the cohesive force corresponding to the Y slice was 0.37 N / cm 2 . The compressibility was a value when the applied load was 60 N, and was 30.1%. In addition, the amount of dibutyl phthalate absorbed measured by the JIS-K6217-4 method using an absorption measuring device (manufactured by Asahi Research Institute) was 6.9 ml / 100 g.
 また、SEM観察により測定した銀粉の平均粒径DSは1.12μmであった。また、イソプロピルアルコール中に銀粉を分散させレーザー回折散乱法を用いて測定した体積積算の平均粒径D50は2.37μmであった。よって、D50/DSで求められる比は2.12であった。また、BET法により測定した比表面積SSAは0.42m/gであり、SEM観察により得られた平均粒径DSから求められた比表面積SSAは0.51m/gであり、SSA/SSAで求められる比は0.82であった。 Moreover, the average particle diameter DS of the silver powder measured by SEM observation was 1.12 μm. Further, the volume average particle diameter D50 measured by using a laser diffraction scattering method in which silver powder was dispersed in isopropyl alcohol was 2.37 μm. Therefore, the ratio calculated | required by D50 / DS was 2.12. The specific surface area SSA 1 measured by the BET method is 0.42 m 2 / g, the specific surface area SSA 2 obtained from the average particle diameter DS obtained by SEM observation is 0.51 m 2 / g, and SSA The ratio determined by 1 / SSA 2 was 0.82.
 次に、得られた銀粉を80質量%、エポキシ樹脂(三菱化学(株)製、819)を20質量%となるように秤量し、自公転ミキサー((株)シンキー製、ARE-250)を用いて、420Gの遠心力で混練してペースト化した後、さらに3本ロールミル(ビューラー(株)製、3本ロールミル SDY-300)を用いて混練して評価を行った。3本ロールミルによる混練中、目視によるフレークの発生は認められず、混練性は良好であった。 Next, 80% by mass of the obtained silver powder and 20% by mass of an epoxy resin (Mitsubishi Chemical Co., Ltd., 819) were weighed, and a self-revolving mixer (ARE-250, manufactured by Shinkey Co., Ltd.) was used. The mixture was kneaded with a centrifugal force of 420 G to form a paste, and further evaluated by kneading using a three-roll mill (Bueller Co., Ltd., three-roll mill SDY-300). During the kneading by the three roll mill, the occurrence of flakes by visual observation was not recognized, and the kneading property was good.
 得られたペーストについて、粘弾性測定装置(Anton Paar社、MCR-301)を用いてせん断速度4sec-1における粘度を求めた。自公転ミキサーによる混練後の粘度η1は62.7(Pa・s)であり、3本ロールミルによる混練後の粘度η2は56.3(Pa・s)であり、η2/η1で求められる比は0.90であった。 The viscosity of the obtained paste at a shear rate of 4 sec −1 was determined using a viscoelasticity measuring device (Anton Paar, MCR-301). The viscosity η1 after kneading by the self-revolving mixer is 62.7 (Pa · s), the viscosity η2 after kneading by the three roll mill is 56.3 (Pa · s), and the ratio obtained by η2 / η1 is 0.90.
 また、3本ロールミルによる混練を行ったペースト2gをイソプロピルアルコール40ml中に投入して超音波分散を行った後、開口20μmの篩を用いて吸引ろ過を行い、篩上の粒子を採取し500倍のSEM像より数を測定した。その結果、20μm以上の粒子は2個であった。また、イソプロピルアルコール中にペーストを分散させ、レーザー回折散乱法を用いて体積積算の平均粒径を測定したところ、自公転ミキサーによる混練後のペーストの平均粒径D1が2.35μm、3本ロールミル後の平均粒径D2が2.10μmであり、D2/D1で求められる比は0.89であった。 Also, 2 g of the paste kneaded by a three roll mill was put into 40 ml of isopropyl alcohol and subjected to ultrasonic dispersion, followed by suction filtration using a sieve having an opening of 20 μm, and the particles on the sieve were collected to obtain 500 times The number was measured from the SEM image. As a result, there were two particles of 20 μm or more. Further, when the paste was dispersed in isopropyl alcohol and the average particle size of volume integration was measured using a laser diffraction scattering method, the average particle size D1 of the paste after kneading by the self-revolving mixer was 2.35 μm, 3 roll mill The later average particle diameter D2 was 2.10 μm, and the ratio determined by D2 / D1 was 0.89.
 以上のように、実施例1では、所定の大きさに銀粒子が連結した凝集体が形成されたことにより、ペースト中にフレークがほとんど発生しないことが確認された。また、自公転ミキサーによる混練後と3本ロールミルによる混練後で粘度と平均粒径の変化が少なく、その凝集体の凝集構造は維持されていたことが分かった。 As described above, in Example 1, it was confirmed that almost no flakes were generated in the paste due to the formation of aggregates in which silver particles were linked to a predetermined size. Further, it was found that there was little change in viscosity and average particle size after kneading with the self-revolving mixer and after kneading with the three-roll mill, and the aggregate structure of the aggregate was maintained.
 [実施例2]
 実施例2では、水溶性高分子であるポリビニルアルコールの量を183g(銀に対して10質量%)としたこと以外は、実施例1と同様にして銀粉を製造した。
[Example 2]
In Example 2, silver powder was produced in the same manner as in Example 1 except that the amount of polyvinyl alcohol, which is a water-soluble polymer, was 183 g (10% by mass with respect to silver).
 得られた銀粉について、実施例1と同様に評価した結果、凝集力は0.14N/cmであり、圧縮率は35.0%であった。また、JIS-K6217-4法で測定したフタル酸ブチルの吸収量は7.0ml/100gであった。 As a result of evaluating the obtained silver powder in the same manner as in Example 1, the cohesive force was 0.14 N / cm 2 and the compression rate was 35.0%. The absorbed amount of butyl phthalate measured by JIS-K6217-4 method was 7.0 ml / 100 g.
 また、SEM観察により測定した銀粉の平均粒径DSは1.05μmであった。また、イソプロピルアルコール中に銀粉を分散させレーザー回折散乱法を用いて測定した体積積算の平均粒径D50は2.16μmであった。よって、D50/DSで求められる比は2.06であった。また、BET法により測定した比表面積SSAは0.46m/gであり、SEM観察により得られた平均粒径DSから求められた比表面積SSAは0.55m/gであり、SSA/SSAで求められる比は0.84であった。 Moreover, the average particle diameter DS of the silver powder measured by SEM observation was 1.05 μm. The volume average particle diameter D50 measured by using a laser diffraction scattering method in which silver powder was dispersed in isopropyl alcohol was 2.16 μm. Therefore, the ratio calculated | required by D50 / DS was 2.06. The specific surface area SSA 1 as measured by the BET method was 0.46 m 2 / g, average particle specific surface area SSA 2 obtained from the diameter DS obtained by the SEM observation is 0.55 m 2 / g, SSA The ratio determined by 1 / SSA 2 was 0.84.
 次に、実施例1と同様にして、得られた銀粉を用いてペーストを作製した。実施例2においても、3本ロールミルを用いてペースト化した際に目視によるフレーク発生は認められず、混練性は良好であった。 Next, in the same manner as in Example 1, a paste was prepared using the obtained silver powder. Also in Example 2, when flaking was made using a three-roll mill, visual flake generation was not recognized, and the kneadability was good.
 得られたペーストについて、粘弾性測定装置(Anton Paar社、MCR-301)を用いてせん断速度4sec-1における粘度を求めたところ、自公転ミキサーによる混練後の粘度η1は58.6(Pa・s)であり、3本ロールミルによる混練後の粘度η2は46.4(Pa・s)であり、η2/η1で求められる比は0.79であった。 When the viscosity of the obtained paste was determined at a shear rate of 4 sec −1 using a viscoelasticity measuring apparatus (Anton Paar, MCR-301), the viscosity η1 after kneading with a self-revolving mixer was 58.6 (Pa · s), the viscosity η2 after kneading with a three-roll mill was 46.4 (Pa · s), and the ratio determined by η2 / η1 was 0.79.
 また、3本ロールミルによる混練を行ったペースト2gをイソプロピルアルコール40ml中に投入して超音波分散を行った後の開口20μm篩上のフレーク個数は6個であることが確認された。また、イソプロピルアルコール中にペーストを分散させレーザー回折散乱法を用いて体積積算の平均粒径を測定したところ、自公転ミキサーによる混練後のペーストの平均粒径D1が2.14μm、3本ロールミル後の平均粒径D2が2.13μmであり、D2/D1で求められる比は0.99であった。 Further, it was confirmed that the number of flakes on the 20 μm-opening sieve was 6 after 2 g of paste kneaded by a three roll mill was put into 40 ml of isopropyl alcohol and subjected to ultrasonic dispersion. Further, when the paste was dispersed in isopropyl alcohol and the volume average particle size was measured using a laser diffraction scattering method, the average particle size D1 of the paste after kneading by the self-revolving mixer was 2.14 μm, after three roll mills The average particle diameter D2 was 2.13 μm, and the ratio determined by D2 / D1 was 0.99.
 以上のように、実施例2では、実施例1と同様に、所定の大きさに銀粒子が連結した凝集体が形成されたことにより、ペースト中にフレークがほとんど発生しないことが確認された。また、自公転ミキサーによる混練後と3本ロールミルによる混練後で、粘度と平均粒径の変化が少なく、その凝集体の凝集構造は維持されていたことが分かった。 As described above, in Example 2, as in Example 1, it was confirmed that almost no flakes were generated in the paste due to the formation of aggregates in which silver particles were linked to a predetermined size. Further, it was found that there was little change in viscosity and average particle size after kneading with a self-revolving mixer and after kneading with a three-roll mill, and the aggregate structure of the aggregate was maintained.
 [比較例1]
 比較例1では、水溶性高分子であるポリビニルアルコールの量を329.4g(銀に対して18質量%)としたこと以外は、実施例1と同様にして銀粉を製造した。
[Comparative Example 1]
In Comparative Example 1, silver powder was produced in the same manner as in Example 1 except that the amount of polyvinyl alcohol, which is a water-soluble polymer, was 329.4 g (18% by mass with respect to silver).
 得られた銀粉について、実施例1及び2と同様に評価した結果、凝集力は0.80N/cmであり、圧縮率は38.1%であった。また、JIS-K6217-4法で測定したフタル酸ブチルの吸収量は2.5ml/100gであった。 The obtained silver powder was evaluated in the same manner as in Examples 1 and 2. As a result, the cohesive force was 0.80 N / cm 2 and the compression rate was 38.1%. Further, the absorption amount of butyl phthalate measured by the JIS-K6217-4 method was 2.5 ml / 100 g.
 また、SEM観察により測定した銀粉の平均粒径DSは1.04μmであった。また、イソプロピルアルコール中に銀粉を分散させレーザー回折散乱法を用いて測定した体積積算の平均粒径D50は1.51μmであった。よって、D50/DSで求められる比は1.45であった。また、BET法により測定した比表面積SSAは0.62m/gであり、SEM観察により得られた平均粒径DSから求められた比表面積SSAは0.55m/gであり、SSA/SSAで求められる比は1.13であった。 Moreover, the average particle diameter DS of the silver powder measured by SEM observation was 1.04 μm. Further, the volume average particle diameter D50 measured by using a laser diffraction scattering method in which silver powder was dispersed in isopropyl alcohol was 1.51 μm. Therefore, the ratio calculated | required by D50 / DS was 1.45. The specific surface area SSA 1 as measured by the BET method is 0.62 meters 2 / g, average particle specific surface area SSA 2 obtained from the diameter DS obtained by the SEM observation is 0.55 m 2 / g, SSA The ratio determined by 1 / SSA 2 was 1.13.
 次に、実施例1及び2と同様に、得られた銀粉を用いてペーストを作製した。すると、3本ロールミルを用いてペースト化したところ、目視によるフレーク発生が認められた。 Next, in the same manner as in Examples 1 and 2, a paste was prepared using the obtained silver powder. Then, when it was made into a paste using a three-roll mill, visual flake generation was observed.
 得られたペーストについて、粘弾性測定装置(Anton Paar社、MCR-301)を用いてせん断速度4sec-1における粘度を求めたところ、自公転ミキサーによる混練後の粘度η1は42.8(Pa・s)であり、3本ロールミルによる混練後の粘度η2は38.1(Pa・s)であり、η2/η1で求められる比は0.89であり、粘度の変化は小さかった。 When the viscosity of the obtained paste was determined at a shear rate of 4 sec −1 using a viscoelasticity measuring apparatus (Anton Paar, MCR-301), the viscosity η1 after kneading with a self-revolving mixer was 42.8 (Pa · s), the viscosity η2 after kneading with a three-roll mill was 38.1 (Pa · s), the ratio obtained by η2 / η1 was 0.89, and the change in viscosity was small.
 また、3本ロールミルによる混練を行ったペースト2gをイソプロピルアルコール40ml中に投入して超音波分散を行った後の開口20μm篩上のフレーク個数は36個であり、多数のフレークが発生したことが確認された。また、イソプロピルアルコール中にペーストを分散させレーザー回折散乱法を用いて体積積算の平均粒径を測定したところ、自公転ミキサー後の平均粒径D1が1.62μm、3本ロールミル後の平均粒径D2が1.56μmであり、D2/D1で求められる比は0.96で、D1とD2がほぼ同じであり、自公転ミキサーの混練によって銀粉は分散されていた。 Also, after 2 g of paste kneaded by a three-roll mill was put into 40 ml of isopropyl alcohol and subjected to ultrasonic dispersion, the number of flakes on the opening 20 μm sieve was 36, and many flakes were generated. confirmed. Further, when the paste was dispersed in isopropyl alcohol and the volume average particle diameter was measured using a laser diffraction scattering method, the average particle diameter D1 after the revolution mixer was 1.62 μm, and the average particle diameter after three roll mills. D2 was 1.56 μm, the ratio calculated by D2 / D1 was 0.96, D1 and D2 were almost the same, and silver powder was dispersed by kneading with a revolving mixer.
 以上のように、比較例1では、急激な粘度の低下や分散性の低下は生じなかったものの、フレークが多量に発生し、混練性の低下を招いた。このことは、凝集体の形成が十分ではなく、またその凝集構造の強度も弱く混練によって容易に解れてしまったために、過剰な凝集を生じさせてしまったと考えられる。 As described above, in Comparative Example 1, although there was no sudden decrease in viscosity or dispersibility, a large amount of flakes were generated, resulting in a decrease in kneadability. This is probably because the formation of aggregates was not sufficient, and the strength of the aggregated structure was weak, and it was easily released by kneading, resulting in excessive aggregation.
 [比較例2]
 比較例2では、水溶性高分子であるポリビニルアルコールの量を0.92g(銀に対して0.05質量%)としたこと以外は、実施例1と同様にして銀粉を製造した。
[Comparative Example 2]
In Comparative Example 2, silver powder was produced in the same manner as in Example 1 except that the amount of polyvinyl alcohol, which is a water-soluble polymer, was 0.92 g (0.05% by mass with respect to silver).
 得られた銀粉について、実施例1及び2と同様に評価した結果、凝集力は-0.82N/cmであり、圧縮率は18.4%であった。また、JIS-K6217-4法で測定したフタル酸ブチルの吸収量は14.8ml/100gであった。 The obtained silver powder was evaluated in the same manner as in Examples 1 and 2. As a result, the cohesive strength was −0.82 N / cm 2 and the compression rate was 18.4%. The absorbed amount of butyl phthalate measured by JIS-K6217-4 method was 14.8 ml / 100 g.
 また、SEM観察により測定した銀粉の平均粒径DSは1.02μmであった。また、イソプロピルアルコール中に銀粉を分散させレーザー回折散乱法を用いて測定した体積積算の平均粒径D50は5.92μmであった。よって、D50/DSで求められる比は5.80であった。また、BET法により測定した比表面積SSAは0.12m/gであり、SEM観察により得られた平均粒径DSから求められた比表面積SSAは0.56m/gであり、SSA/SSAで求められる比は0.21であった。 Moreover, the average particle diameter DS of the silver powder measured by SEM observation was 1.02 μm. The volume average particle diameter D50 measured by using a laser diffraction scattering method in which silver powder was dispersed in isopropyl alcohol was 5.92 μm. Therefore, the ratio calculated | required by D50 / DS was 5.80. The specific surface area SSA 1 measured by the BET method is 0.12 m 2 / g, the specific surface area SSA 2 determined from the average particle diameter DS obtained by SEM observation is 0.56 m 2 / g, and SSA The ratio determined by 1 / SSA 2 was 0.21.
 次に、実施例1及び2と同様に、得られた銀粉を用いてペーストを作製した。すると、自公転ミキサーによる混練では、非常に硬いペーストとなった。さらに、3本ロールミルを用いて混練したところ、混練中にフレークの発生が確認された。 Next, in the same manner as in Examples 1 and 2, a paste was prepared using the obtained silver powder. Then, it became a very hard paste by kneading with a self-revolving mixer. Furthermore, when kneading was performed using a three-roll mill, generation of flakes was confirmed during kneading.
 得られたペーストについて、粘弾性測定装置(Anton Paar社、MCR-301)を用いてせん断速度4sec-1における粘度を求めたところ、自公転ミキサーによる混練後の粘度η1は211.3(Pa・s)であり、3本ロールミルによる混練後の粘度η2は95.1(Pa・s)であり、η2/η1で求められる比は0.45であった。 When the viscosity of the obtained paste was determined at a shear rate of 4 sec −1 using a viscoelasticity measuring apparatus (Anton Paar, MCR-301), the viscosity η1 after kneading with a self-revolving mixer was 211.3 (Pa · s), the viscosity η2 after kneading with a three-roll mill was 95.1 (Pa · s), and the ratio determined by η2 / η1 was 0.45.
 また、3本ロールミルによる混練を行ったペースト2gをイソプロピルアルコール40ml中に投入して超音波分散を行った後の開口20μm篩上のフレーク個数は134個であり、特に50μmを超える大きなフレークが発生したことが確認された。また、イソプロピルアルコール中にペーストを分散させレーザー回折散乱法を用いて体積積算の平均粒径を測定したところ、自公転ミキサー後の平均粒径D1が5.94μm、3本ロールミル後の平均粒径D2が2.49μmであり、D2/D1で求められる比は0.42であった。 In addition, after 2 g of paste kneaded by a three-roll mill was put into 40 ml of isopropyl alcohol and subjected to ultrasonic dispersion, the number of flakes on the opening 20 μm sieve was 134, and particularly large flakes exceeding 50 μm were generated. It was confirmed that Further, when the paste was dispersed in isopropyl alcohol and the volume average particle size was measured using a laser diffraction scattering method, the average particle size D1 after the auto-revolving mixer was 5.94 μm, and the average particle size after three roll mills D2 was 2.49 μm, and the ratio determined by D2 / D1 was 0.42.
 以上のように、比較例2では、ペースト中に多量のフレークが発生し、また急激な粘度の低下や分散性の低下を生じさせ、ペースト化が困難であったとともに混練性の著しい低下を招いた。このことは、過剰に凝集した大きな凝集塊が多量に形成され、解れにくい銀粉となったためと考えられる。 As described above, in Comparative Example 2, a large amount of flakes were generated in the paste, and the viscosity was suddenly lowered and the dispersibility was lowered. As a result, pasting was difficult and the kneadability was significantly lowered. It was. This is presumably because a large amount of excessively aggregated large agglomerates were formed, resulting in silver powder that was difficult to unravel.
 下記の表1に各実施例及び比較例における評価結果をまとめて示す。 Table 1 below summarizes the evaluation results in each example and comparative example.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 なお、実施例1及び2と、比較例1の銀粉を用いて、エポキシ樹脂、硬化剤(フェノール樹脂)及び溶剤(トリメチレングリコール、ジプロレングリコ-ル)を混練し、市販型の一般的な銀ペーストを作製して、混練性を確認した。なお、混練には、量産型のニーダーと3本ロールを用い、予備混練と本混練を行った。 The silver powders of Examples 1 and 2 and Comparative Example 1 were used to knead an epoxy resin, a curing agent (phenol resin) and a solvent (trimethylene glycol, diprolene glycol), and a commercially available general type A silver paste was prepared and kneadability was confirmed. For kneading, pre-kneading and main kneading were performed using a mass production type kneader and three rolls.
 その結果、実施例1及び2の銀粉を用いて作製したペーストでは、フレークの発生がほとんどなく良好な混練性を示した。一方で、比較例1の銀粉を用いて作製したペーストでは、フレーク発生が多く混練性が悪い結果となった。 As a result, the pastes produced using the silver powders of Examples 1 and 2 showed almost no flakes and showed good kneading properties. On the other hand, the paste produced using the silver powder of Comparative Example 1 produced many flakes and poor kneadability.
 以上の結果から分かるように、銀粉が、凝集力が-0.2以上0.7N/cm以下であり、粉体層せん断力測定における圧縮率が20~50%であり、かつJIS-K6217-4法で測定したフタル酸ジブチルの吸収量が3.0~9.0ml/100gであることにより、ペースト作製時においてフレークの発生を効果的に抑制することができ、良好な混練性を発揮できることが分かった。また、適度な粘度を維持でき、優れた印刷性を実現できることも分かった。 As can be seen from the above results, the silver powder has a cohesive force of −0.2 or more and 0.7 N / cm 2 or less, a compressibility in the measurement of the powder layer shear force of 20 to 50%, and JIS-K6217. The absorption of dibutyl phthalate measured by the -4 method is 3.0 to 9.0 ml / 100 g, so that the generation of flakes can be effectively suppressed during paste preparation, and good kneading properties are exhibited. I understood that I could do it. It was also found that an appropriate viscosity can be maintained and excellent printability can be realized.

Claims (11)

  1.  凝集力が-0.2N/cm以上0.7N/cm以下であり、粉体層せん断力測定における圧縮率が20~50%であり、かつJIS-K6217-4法で測定したフタル酸ジブチルの吸収量が3.0~9.0ml/100gであることを特徴とする銀粉。 Cohesion is at -0.2N / cm 2 or more 0.7 N / cm 2 or less, the compression ratio in the powder layer shear force measurement is 20-50%, and phthalic acid as measured by JIS-K6217-4 method A silver powder characterized by having an absorption of dibutyl of 3.0 to 9.0 ml / 100 g.
  2.  レーザー回折散乱法を用いて測定した体積積算の平均粒径をD50とし、SEMの画像解析により得られた平均粒径をDSとしたとき、D50/DSで求められる比が1.5~5.0であることを特徴とする請求項1記載の銀粉。 When the average particle diameter of volume integration measured using the laser diffraction scattering method is D50, and the average particle diameter obtained by image analysis of SEM is DS, the ratio obtained by D50 / DS is 1.5 to 5. The silver powder according to claim 1, wherein the silver powder is zero.
  3.  BET法により求められた比表面積をSSAとし、SEMの画像解析により得られた平均粒径から求めた比表面積をSSAとしたとき、SSA/SSAで求められる比が1.0未満であることを特徴とする請求項1又は2記載の銀粉。 When the specific surface area obtained by the BET method is SSA 1 and the specific surface area obtained from the average particle diameter obtained by image analysis of SEM is SSA 2 , the ratio obtained by SSA 1 / SSA 2 is less than 1.0. The silver powder according to claim 1 or 2, wherein:
  4.  当該銀粉とエポキシ樹脂とを420Gの遠心力で混練して得られたペースト中の銀粉をレーザー回折散乱法を用いて測定した体積積算の平均粒径をD1とし、その後さらに3本ロールミルにより混練して得られたペースト中の銀粉をレーザー回折散乱法を用いて測定した体積積算の平均粒径をD2としたとき、D2/D1で求められる比が0.5~1.5であることを特徴とする請求項1乃至3のいずれか1項記載の銀粉。 The silver powder in the paste obtained by kneading the silver powder and the epoxy resin with a centrifugal force of 420 G is D1 as an average particle diameter of volume integration measured using a laser diffraction scattering method, and then kneaded with a three-roll mill. The ratio obtained by D2 / D1 is 0.5 to 1.5, where D2 is the average particle diameter of volume integration measured using a laser diffraction scattering method for the silver powder in the paste obtained. The silver powder according to any one of claims 1 to 3.
  5.  当該銀粉とエポキシ樹脂とを420Gの遠心力で混練して得られたペーストを粘弾性測定装置により測定したせん断速度4sec-1における粘度をη1とし、その後さらに3本ロールミルにより混練して得られたペーストを粘弾性測定装置により測定したせん断速度4sec-1における粘度をη2としたとき、η2/η1で求められる比が0.5~1.5であることを特徴とする請求項1乃至3のいずれか1項記載の銀粉。 The paste obtained by kneading the silver powder and the epoxy resin with a centrifugal force of 420 G was obtained by kneading with a three-roll mill after setting the viscosity at a shear rate of 4 sec −1 measured with a viscoelasticity measuring device to η1. The ratio obtained by η2 / η1 is 0.5 to 1.5 when the viscosity at a shear rate of 4 sec −1 measured by a viscoelasticity measuring device is η2, and the ratio is 0.5 to 1.5. The silver powder of any one of Claims.
  6.  塩化銀と錯化剤により溶解して得られた銀錯体含有溶液と還元剤溶液とを混合し、銀錯体を還元して銀粉を製造する銀粉の製造方法において、
     上記銀錯体含有溶液及び上記還元剤溶液の両方、又はいずれか一方に、銀に対して0.1~15質量%の水溶性高分子を添加し、還元後、乾燥前に界面活性剤、又は、界面活性剤及び分散剤により表面処理することを特徴とする銀粉の製造方法。
    In a silver powder production method of producing a silver powder by mixing a silver complex-containing solution obtained by dissolution with silver chloride and a complexing agent and a reducing agent solution, and reducing the silver complex to produce silver powder,
    To the silver complex-containing solution and the reducing agent solution, or both of them, 0.1 to 15% by mass of a water-soluble polymer based on silver is added, and after the reduction, before the drying, A method for producing silver powder, characterized by surface-treating with a surfactant and a dispersant.
  7.  上記表面処理を、洗浄前、もしくは1回の洗浄後で、少なくとも銀粒子の凝集を抑制できる量の水溶性高分子が銀粒子表面に残存した状態で行うことを特徴とする請求項6記載の銀粉の製造方法。 The surface treatment is performed in a state where at least an amount of a water-soluble polymer capable of suppressing aggregation of silver particles remains on the surface of the silver particles before or after one cleaning. A method for producing silver powder.
  8.  上記洗浄を0.01~1.00mol/lの水酸化ナトリウム水溶液を用いて行うことを特徴とする請求項7記載の銀粉の製造方法。 The method for producing silver powder according to claim 7, wherein the washing is performed using an aqueous sodium hydroxide solution of 0.01 to 1.00 mol / l.
  9.  上記水溶性高分子は、ポリエチレングリコール、ポリビニルアルコール、ポリエチレンオキシド及びポリビニルピロリドンから選択される少なくとも1種であることを特徴とする請求項6乃至8のいずれか1項記載の銀粉の製造方法。 The method for producing silver powder according to any one of claims 6 to 8, wherein the water-soluble polymer is at least one selected from polyethylene glycol, polyvinyl alcohol, polyethylene oxide and polyvinylpyrrolidone.
  10.  上記水溶性高分子を、上記還元剤溶液に予め添加しておくことを特徴とする請求項6乃至9のいずれか1項記載の銀粉の製造方法。 The method for producing silver powder according to any one of claims 6 to 9, wherein the water-soluble polymer is previously added to the reducing agent solution.
  11.  上記還元剤溶液は、アスコルビン酸、ヒドラジン及びホルマリンから選択される少なくとも1種を含有する溶液であることを特徴とする請求項6乃至10のいずれか1項記載の銀粉の製造方法。 The method for producing silver powder according to any one of claims 6 to 10, wherein the reducing agent solution is a solution containing at least one selected from ascorbic acid, hydrazine and formalin.
PCT/JP2012/064832 2011-06-08 2012-06-08 Silver powder and process for manufacturing same WO2012169628A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012548247A JP5288063B2 (en) 2011-06-08 2012-06-08 Silver powder and method for producing the same
CN201280002696.0A CN103079728B (en) 2011-06-08 2012-06-08 Silver powder and process for manufacturing same
KR1020137005224A KR101885391B1 (en) 2011-06-08 2012-06-08 Silver powder and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011128015 2011-06-08
JP2011-128015 2011-06-08

Publications (1)

Publication Number Publication Date
WO2012169628A1 true WO2012169628A1 (en) 2012-12-13

Family

ID=47296181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/064832 WO2012169628A1 (en) 2011-06-08 2012-06-08 Silver powder and process for manufacturing same

Country Status (6)

Country Link
JP (1) JP5288063B2 (en)
KR (1) KR101885391B1 (en)
CN (1) CN103079728B (en)
MY (1) MY158931A (en)
TW (1) TWI574761B (en)
WO (1) WO2012169628A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5505535B1 (en) * 2012-12-07 2014-05-28 住友金属鉱山株式会社 Silver powder
WO2014087728A1 (en) * 2012-12-05 2014-06-12 住友金属鉱山株式会社 Silver powder
JP2015045065A (en) * 2013-08-28 2015-03-12 住友金属鉱山株式会社 Silver powder and production method thereof
JP2015045067A (en) * 2013-08-28 2015-03-12 住友金属鉱山株式会社 Silver powder and production method thereof
JP2015071813A (en) * 2013-10-03 2015-04-16 住友金属鉱山株式会社 Method of managing silver solution and method of producing silver powder
JP2015071814A (en) * 2013-10-03 2015-04-16 住友金属鉱山株式会社 Method of producing silver powder
JP2015161536A (en) * 2014-02-26 2015-09-07 住友金属鉱山株式会社 Evaluation method for coarse particle in conductive powder included in conductive paste
JP2015183200A (en) * 2014-03-20 2015-10-22 住友金属鉱山株式会社 Silver powder and production method thereof
JP2017206763A (en) * 2016-05-20 2017-11-24 Dowaエレクトロニクス株式会社 Silver powder and manufacturing method therefor and conductive paste
WO2021210557A1 (en) * 2020-04-14 2021-10-21 昭栄化学工業株式会社 Method for producing inorganic fine powder

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6282616B2 (en) * 2014-07-30 2018-02-21 Dowaエレクトロニクス株式会社 Silver powder and method for producing the same
CN107206489B (en) * 2015-01-30 2019-06-18 住友电气工业株式会社 The manufacturing method of metal powder, ink, sintered body, printed wiring board substrate and metal powder
EP4023721A4 (en) * 2019-08-26 2023-08-30 Kyocera Corporation Method for producing silver particles, thermosetting resin composition, semiconductor device, and electric/electronic part
CN112430443B (en) * 2019-08-26 2022-12-23 京瓷株式会社 Thermally conductive adhesive sheet, method for producing thermally conductive adhesive sheet, and semiconductor device
CN113192689B (en) * 2021-04-07 2023-05-09 湖南中伟新银材料科技有限公司 Preparation method and application of silver powder dispersion
CN113192690B (en) * 2021-04-07 2023-05-09 湖南中伟新银材料科技有限公司 Preparation method of UV-cured conductive silver paste

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008231531A (en) * 2007-03-22 2008-10-02 Furukawa Electric Co Ltd:The Fine particle dispersion and method for producing fine particle dispersion
JP2010236007A (en) * 2009-03-31 2010-10-21 Mitsubishi Materials Corp Spherical silver particle and method and apparatus for producing the same
JP2010537057A (en) * 2007-08-31 2010-12-02 メタラー テクノロジーズ インターナショナル ソスィエテ アノニム Method for producing silver nanoparticles
JP2011001581A (en) * 2009-06-17 2011-01-06 Sumitomo Metal Mining Co Ltd Silver powder and method for producing the same
JP2011100573A (en) * 2009-11-04 2011-05-19 Kyoto Elex Kk Thermosetting conductive paste composition

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09256008A (en) * 1996-03-15 1997-09-30 Noritake Co Ltd Production of monodispersive silver-palladium multiple powder and the same powder
JP3751154B2 (en) 1998-10-22 2006-03-01 同和鉱業株式会社 Silver powder manufacturing method
JP2004043892A (en) * 2002-07-11 2004-02-12 Sumitomo Electric Ind Ltd Fine particle of noble metal and manufacturing method therefor
JP3991218B2 (en) 2002-12-20 2007-10-17 信越化学工業株式会社 Conductive adhesive and method for producing the same
KR101375488B1 (en) * 2006-07-28 2014-03-18 후루카와 덴키 고교 가부시키가이샤 Fine particle dispersion and method for producing fine particle dispersion
CN101599310A (en) * 2009-07-02 2009-12-09 张祥成 Hydrophilic nano micron-sized microphase half-detached conductive Ag/AgCl reference electrode pastes and preparation method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008231531A (en) * 2007-03-22 2008-10-02 Furukawa Electric Co Ltd:The Fine particle dispersion and method for producing fine particle dispersion
JP2010537057A (en) * 2007-08-31 2010-12-02 メタラー テクノロジーズ インターナショナル ソスィエテ アノニム Method for producing silver nanoparticles
JP2010236007A (en) * 2009-03-31 2010-10-21 Mitsubishi Materials Corp Spherical silver particle and method and apparatus for producing the same
JP2011001581A (en) * 2009-06-17 2011-01-06 Sumitomo Metal Mining Co Ltd Silver powder and method for producing the same
JP2011100573A (en) * 2009-11-04 2011-05-19 Kyoto Elex Kk Thermosetting conductive paste composition

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014087728A1 (en) * 2012-12-05 2014-06-12 住友金属鉱山株式会社 Silver powder
JP2014111812A (en) * 2012-12-05 2014-06-19 Sumitomo Metal Mining Co Ltd Silver powder
US9937555B2 (en) 2012-12-05 2018-04-10 Sumitomo Metal Mining Co., Ltd. Silver powder
US9796018B2 (en) 2012-12-07 2017-10-24 Sumitomo Metal Mining Co., Ltd. Silver powder
WO2014087727A1 (en) * 2012-12-07 2014-06-12 住友金属鉱山株式会社 Silver powder
JP5505535B1 (en) * 2012-12-07 2014-05-28 住友金属鉱山株式会社 Silver powder
JP2015045065A (en) * 2013-08-28 2015-03-12 住友金属鉱山株式会社 Silver powder and production method thereof
JP2015045067A (en) * 2013-08-28 2015-03-12 住友金属鉱山株式会社 Silver powder and production method thereof
JP2015071813A (en) * 2013-10-03 2015-04-16 住友金属鉱山株式会社 Method of managing silver solution and method of producing silver powder
JP2015071814A (en) * 2013-10-03 2015-04-16 住友金属鉱山株式会社 Method of producing silver powder
JP2015161536A (en) * 2014-02-26 2015-09-07 住友金属鉱山株式会社 Evaluation method for coarse particle in conductive powder included in conductive paste
JP2015183200A (en) * 2014-03-20 2015-10-22 住友金属鉱山株式会社 Silver powder and production method thereof
JP2017206763A (en) * 2016-05-20 2017-11-24 Dowaエレクトロニクス株式会社 Silver powder and manufacturing method therefor and conductive paste
WO2021210557A1 (en) * 2020-04-14 2021-10-21 昭栄化学工業株式会社 Method for producing inorganic fine powder

Also Published As

Publication number Publication date
KR20140030091A (en) 2014-03-11
MY158931A (en) 2016-11-30
CN103079728B (en) 2015-06-24
JPWO2012169628A1 (en) 2015-02-23
JP5288063B2 (en) 2013-09-11
CN103079728A (en) 2013-05-01
TWI574761B (en) 2017-03-21
TW201311377A (en) 2013-03-16
KR101885391B1 (en) 2018-08-03

Similar Documents

Publication Publication Date Title
JP5288063B2 (en) Silver powder and method for producing the same
JP5842548B2 (en) Silver powder manufacturing method
JP5310967B1 (en) Silver powder manufacturing method
JP5505535B1 (en) Silver powder
JP5510531B1 (en) Silver powder and silver paste
JP5344099B2 (en) Silver powder and method for producing the same
JP5278627B2 (en) Silver powder and method for producing the same
JP6252275B2 (en) Silver powder and method for producing the same
JP6065955B2 (en) Silver powder and silver paste
JP5790433B2 (en) Silver powder and method for producing the same
JP5895552B2 (en) Silver powder and method for producing the same
JP2018035424A (en) Manufacturing method of silver powder and silver powder
JP5500237B1 (en) Silver powder

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280002696.0

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2012548247

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12797603

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137005224

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12797603

Country of ref document: EP

Kind code of ref document: A1