JP7323062B2 - Fe系電気めっき鋼板,電着塗装鋼板,自動車部品,電着塗装鋼板の製造方法,及びFe系電気めっき鋼板の製造方法 - Google Patents

Fe系電気めっき鋼板,電着塗装鋼板,自動車部品,電着塗装鋼板の製造方法,及びFe系電気めっき鋼板の製造方法 Download PDF

Info

Publication number
JP7323062B2
JP7323062B2 JP2022520145A JP2022520145A JP7323062B2 JP 7323062 B2 JP7323062 B2 JP 7323062B2 JP 2022520145 A JP2022520145 A JP 2022520145A JP 2022520145 A JP2022520145 A JP 2022520145A JP 7323062 B2 JP7323062 B2 JP 7323062B2
Authority
JP
Japan
Prior art keywords
steel sheet
less
cold
rolled steel
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022520145A
Other languages
English (en)
Other versions
JPWO2022097732A1 (ja
Inventor
俊佑 山本
克利 ▲高▼島
麻衣 青山
友輔 奥村
友美 金澤
克弥 星野
広志 松田
叡 奥村
洋一 牧水
正貴 木庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JPWO2022097732A1 publication Critical patent/JPWO2022097732A1/ja
Application granted granted Critical
Publication of JP7323062B2 publication Critical patent/JP7323062B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/20Electroplating: Baths therefor from solutions of iron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/10Spot welding; Stitch welding
    • B23K11/11Spot welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/10Spot welding; Stitch welding
    • B23K11/11Spot welding
    • B23K11/115Spot welding by means of two electrodes placed opposite one another on both sides of the welded parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/16Resistance welding; Severing by resistance heating taking account of the properties of the material to be welded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/16Resistance welding; Severing by resistance heating taking account of the properties of the material to be welded
    • B23K11/163Welding of coated materials
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/12Orthophosphates containing zinc cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/78Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/20Pretreatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/22Servicing or operating apparatus or multistep processes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/562Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of iron or nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/36Pretreatment of metallic surfaces to be electroplated of iron or steel
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/615Microstructure of the layers, e.g. mixed structure
    • C25D5/617Crystalline layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は,耐抵抗溶接割れ特性に優れたFe系電気めっき鋼板,電着塗装鋼板,自動車部品,電着塗装鋼板の製造方法,及びFe系電気めっき鋼板の製造方法に関する。
近年,地球環境を保護する観点から,自動車の燃費改善が強く求められている。また,衝突時における乗員の安全を確保する観点から,自動車の安全性向上も強く要求されている。これらの要求に応えるためには,自動車車体の軽量化と高強度化とを両立する必要があり,自動車部品の素材となる冷延鋼板においては,高強度化による薄肉化が積極的に進められている。しかし,自動車部品の多くは,鋼板を成形加工して製造されることから,これらの鋼板には,高い強度に加えて,優れた成形性が求められる。
冷延鋼板の強度を高めるには種々の方法があるが,冷延鋼板の成形性を大きく損なわずに高強度化を図ることができる方法としては,Si添加による固溶強化が挙げられる。一方,自動車部品の製造において,プレス成型された部品は抵抗溶接(スポット溶接)により組み合わせることが多い。抵抗溶接される部品が高強度亜鉛めっき鋼板を含んでいる場合,抵抗溶接時に,溶接部近傍に残留応力が生成した状態で,めっき層の亜鉛が溶融して結晶粒界に拡散侵入することで,液体金属脆化(Liquid Metal Embrittlement:LME)が起き,鋼板に粒界割れ(LME割れ)が生じてしまうことが懸念される。特に溶接用の電極が鋼板に対して角度がついた状態で溶接が行われると,残留応力が増加して割れが生成する虞がある。残留応力は鋼板の高強度化に伴い増大すると考えられるため,鋼板の高強度化に伴うLME割れの発生が懸念される。高強度鋼板が亜鉛めっき層を有さない鋼板であっても,溶接される相手側の鋼板が亜鉛めっき鋼板であると,その亜鉛めっき層が溶融してしまうため,亜鉛めっき層を有さない鋼板においてもLME割れが起こりうることが問題である。このようなLME割れの問題は,特にSiを含有する鋼板において顕著である。
以上より,板組相手が亜鉛めっき鋼板である場合の溶接部における耐抵抗溶接割れ特性(以下,単に「溶接部における耐抵抗溶接割れ特性」とも称する)に優れる高強度鋼板が求められている。
従来,上記問題に対する改善策が報告されている。例えば,特許文献1においては,母材の表面から5.0μm以上の深さまで,結晶粒界の少なくとも一部が酸化物に被覆された内部酸化層を有し,かつ,前記母材の表面から5.0μmの深さまでの領域において,前記酸化物の粒界被覆率が60%以上である鋼板が開示されている。
特許第6388099号公報
本発明者らは,Fe系電気めっき層を冷延鋼板表面に形成することにより,耐抵抗溶接割れ特性を改善できることを新たに知見したが,一方でFe系電気めっき層を形成後に焼鈍を施す場合,焼鈍条件によってはFe系電気めっき層と冷延鋼板との界面においてFe系電気めっき層と冷延鋼板との結晶方位が高い割合で一体化することを見出した。このようなFe系電気めっき鋼板においては,板組相手が亜鉛めっき鋼板である場合に溶融した亜鉛がFe系電気めっき層の結晶粒界を経由して冷延鋼板の結晶粒界に侵入しやすくなることを知見した。特許文献1ではこのような現象は全く検討されていなかった。
そこで本発明は,Fe系電気めっき層と冷延鋼板との界面においてFe系電気めっき層とSi含有冷延鋼板との結晶方位が高い割合で一体化している場合であっても,溶接部における耐抵抗溶接割れ特性に優れる鋼板を提供することを目的とする。
本発明者らは,上記課題を解決すべく,鋭意検討を重ねた結果,溶接部における耐抵抗溶接割れ特性を高い水準で満足するためには,冷間圧延後の連続焼鈍前の冷延鋼板の表面に,Fe系電気めっき層を片面あたりの付着量:20.0g/m超で形成することが重要であることを見出した。軟質なFe系電気めっき層を冷延鋼板の片面あたりの付着量:20.0g/m超で形成することで,溶接時に鋼板表面に印加される応力を緩和するとともに,冷延鋼板がSiを含有する場合にFe系電気めっき層が固溶Si欠乏層として働いてSi固溶による靭性低下を抑制し,溶接部における耐抵抗溶接割れ特性を向上させることができることを見出し,本発明を完成させた。
本発明は,上記知見に基づいてなされたものである。すなわち,本発明の要旨構成は以下の通りである。
[1] Siを0.1質量%以上3.0質量%以下含有するSi含有冷延鋼板と,
前記Si含有冷延鋼板の少なくとも片面に形成された,片面あたりの付着量が20.0g/m超であるFe系電気めっき層とを有し,
前記Fe系電気めっき層と前記Si含有冷延鋼板との界面において前記Fe系電気めっき層と前記Si含有冷延鋼板との結晶方位が一体化している割合が50%超である,Fe系電気めっき鋼板。
[2] 前記Si含有冷延鋼板は,Siを0.50質量%以上3.0質量%以下含有する,前記[1]に記載のFe系電気めっき鋼板。
[3] 前記Fe系電気めっき層の片面あたりの付着量が,25.0g/m以上である,前記[1]または[2]に記載のFe系電気めっき鋼板。
[4] 前記Si含有冷延鋼板は,前記Siに加えて,質量%で,
C:0.8%以下,
Mn:1.0%以上12.0%以下,
P:0.1%以下,
S:0.03%以下,
N:0.010%以下及び
Al:1.0%以下を含有し,残部がFe及び不可避的不純物からなる成分組成を有する,前記[1]から[3]のいずれか1項に記載のFe系電気めっき鋼板。
[5] 前記成分組成がさらに,
B:0.005%以下,
Ti:0.2%以下,
Cr:1.0%以下,
Cu:1.0%以下,
Ni:1.0%以下,
Mo:1.0%以下,
Nb:0.20%以下,
V:0.5%以下,
Sb:0.200%以下,
Ta:0.1%以下,
W:0.5%以下,
Zr:0.1%以下,
Sn:0.20%以下,
Ca:0.005%以下,
Mg:0.005%以下及び
REM:0.005%以下
からなる群から選ばれる1種または2種以上を含有する,前記[4]に記載のFe系電気めっき鋼板。
[6] 前記Fe系電気めっき層は,B,C,P,N,O,Ni,Mn,Mo,Zn,W,Pb,Sn,Cr,V及びCoからなる群から選ばれる1または2以上の元素を合計で10質量%以下含み,残部はFe及び不可避的不純物からなる成分組成を有する,前記[1]から[5]のいずれか1項に記載のFe系電気めっき鋼板。
[7] 冷延鋼板と,
前記冷延鋼板の少なくとも片面に形成された,片面あたりの付着量が20.0g/m超であるFe系電気めっき層とを有し,
前記Fe系電気めっき層と前記冷延鋼板との界面において前記Fe系電気めっき層と前記冷延鋼板との結晶方位が一体化している割合が50%超である,Fe系電気めっき鋼板。
ここで,前記冷延鋼板は,圧延直角方向を長手として50×150mmに切り出した試験片を,同サイズに切り出した溶融亜鉛めっき層の片面あたりの付着量が50g/mである試験用合金化溶融亜鉛めっき鋼板と重ねて板組とし,
次いで,サーボモータ加圧式で単相交流(50Hz)の抵抗溶接機を用いて,該抵抗溶接機の電極対(先端径6mm)の中心軸同士を結んだ線に対する垂直面に対して前記板組を該板組の長手方向側に5°傾け,前記電極対の下側電極と前記試験片との間に前記板組の長手方向60mm×前記板組の厚さ方向2.0mmの空隙を設けて前記下側電極と前記板組とを固定し,前記電極対の上側電極を可動にした状態で,前記板組に,加圧力:3.5kN,ホールドタイム:0.16秒,並びにナゲット径が5.9mmになる溶接電流及び溶接時間の条件にて抵抗溶接を施して溶接部付き板組とし,
次いで,前記溶接部付き板組を溶接部を含むように前記試験片の長手方向に沿って半切して,該溶接部の断面を光学顕微鏡(倍率200倍)で観察した場合に,0.1mm以上の長さのき裂が認められる冷延鋼板である。
[8] 前記冷延鋼板は,前記ホールドタイムを0.24秒とした条件にて,前記抵抗溶接を施して前記溶接部付き板組を得,前記溶接部の断面を前記光学顕微鏡(倍率200倍)で観察した場合に,0.1mm以上の長さのき裂が認められる冷延鋼板である,前記[7]に記載のFe系電気めっき鋼板。
[9] 前記[1]から[8]のいずれか1項に記載のFe系電気めっき鋼板上に,前記Fe系電気めっき層に接触して形成された化成処理皮膜と,該化成処理皮膜上に形成された電着塗装皮膜とをさらに有する,電着塗装鋼板。
[10] 前記[9]に記載の電着塗装鋼板を少なくとも一部に用いてなる,自動車部品。
[11] 前記[1]から[8]のいずれか1項に記載のFe系電気めっき鋼板に追加のめっき処理を施さずに化成処理を施して,前記Fe系電気めっき層に接触して化成処理皮膜が形成された化成処理鋼板を得る,化成処理工程と,
前記化成処理鋼板に電着塗装処理を施して,前記化成処理皮膜上に電着塗装皮膜が形成された電着塗装鋼板を得る,電着塗装工程と,
を含む,電着塗装鋼板の製造方法。
[12] Siを0.1質量%以上3.0質量%以下含有する冷延鋼板にFe系電気めっきを施して,片面あたりの付着量が20.0g/m超の焼鈍前Fe系電気めっき層が少なくとも片面に形成された焼鈍前Fe系電気めっき鋼板とし,
次いで,前記焼鈍前Fe系電気めっき鋼板を露点-30℃以下の雰囲気下で焼鈍して,Fe系電気めっき鋼板を得る,Fe系電気めっき鋼板の製造方法。
[13] 前記冷延鋼板は,Siを0.5質量%以上3.0質量%以下含有する,前記[12]に記載のFe系電気めっき鋼板の製造方法。
[14] 冷延鋼板にFe系電気めっきを施して,片面あたりの付着量が20.0g/m超の焼鈍前Fe系電気めっき層が少なくとも片面に形成された焼鈍前Fe系電気めっき鋼板とし,
次いで,前記焼鈍前Fe系電気めっき鋼板を焼鈍して,Fe系電気めっき鋼板を得る,Fe系電気めっき鋼板の製造方法。
ここで,前記冷延鋼板は,圧延直角方向を長手として50×150mmに切り出した試験片を,同サイズに切り出した溶融亜鉛めっき層の片面あたりの付着量が50g/mである試験用合金化溶融亜鉛めっき鋼板と重ねて板組とし,
次いで,サーボモータ加圧式で単相交流(50Hz)の抵抗溶接機を用いて,該抵抗溶接機の電極対(先端径6mm)の中心軸同士を結んだ線に対する垂直面に対して前記板組を該板組の長手方向側に5°傾け,前記電極対の下側電極と前記試験片との間に前記板組の長手方向60mm×前記板組の厚さ方向2.0mmの空隙を設けて前記下側電極と前記板組とを固定し,前記電極対の上側電極を可動にした状態で,前記板組に,加圧力:3.5kN,ホールドタイム:0.16秒,並びにナゲット径が5.9mmになる溶接電流及び溶接時間の条件にて抵抗溶接を施して溶接部付き板組とし,
次いで,前記溶接部付き板組を溶接部を含むように前記試験片の長手方向に沿って半切して,該溶接部の断面を光学顕微鏡(倍率200倍)で観察した場合に,0.1mm以上の長さのき裂が認められる冷延鋼板である。
[15] 前記冷延鋼板は,前記ホールドタイムを0.24秒とした条件にて,前記抵抗溶接を施して前記溶接部付き板組を得,前記溶接部の断面を光学顕微鏡(倍率200倍)で観察した場合に,0.1mm以上の長さのき裂が認められる冷延鋼板である,前記[14]に記載のFe系電気めっき鋼板の製造方法。
[16] B,C,P,N,O,Ni,Mn,Mo,Zn,W,Pb,Sn,Cr,V及びCoからなる群から選ばれる1または2以上の元素を,前記焼鈍前Fe系電気めっき層中でこれらの元素の合計含有量が10質量%以下となるように含有するFe系電気めっき浴を用いて,前記Fe系電気めっきを施す,前記[12]から[15]のいずれか1項に記載のFe系電気めっき鋼板の製造方法。
本発明によれば,Fe系電気めっき層とSi含有冷延鋼板との界面においてFe系電気めっき層とSi含有冷延鋼板との結晶方位が高い割合で一体化している場合であっても,溶接部における耐抵抗溶接割れ特性に優れる鋼板を提供することができる。
Fe系電気めっき鋼板の断面の概要を示す図である。 結晶方位が一体化している割合を測定するための観察用サンプルの概要を示す(a)斜視図及び(b)A-A断面図である。 結晶方位が一体化している割合の評価方法を説明するための図であり,(a)SIM像のFe系電気めっき層及びSi含有冷延鋼板の界面に境界線を描画した図,(b)2値化処理した画像に境界線及び判定領域を描画した図,並びに(c)上記(b)の四角で囲った箇所の拡大図である。 発明例No.31のFe系電気めっき層及びSi含有冷延鋼板の界面の観察像を示す図である。 発明例No.31において,Fe系電気めっき層及びSi含有冷延鋼板の界面の2値化処理後に境界線及び判定領域を描画した画像を示す図である。 発明例No.34のFe系電気めっき層及びSi含有冷延鋼板の界面の観察像を示す図である。 発明例No.34において,Fe系電気めっき層及びSi含有冷延鋼板の界面の2値化処理後に境界線及び判定領域を描画した画像を示す図である。 (a)は溶接部における耐抵抗溶接割れ特性の評価方法について説明するための図,(b)上図は同評価における溶接後の板組の上面図,及び下図は上図のB-B断面図である。
上述したLME割れは,大きく「電極と接する表面で発生する割れ(以下,表面割れ)」と「鋼板間においてコロナボンド近傍で発生する割れ(以下,内割れ)」とに分類することができる。表面割れは,スパッタが発生するような高電流域での抵抗溶接において起こりやすいことが知られており,スパッタが発生しない適正な電流範囲内とすることで表面割れの抑制が可能である。一方で,内割れは抵抗溶接時の電流をスパッタが発生しない適正な範囲内としても起こる。また,表面割れが製造工程における外観検査で発見されやすいのに対し,内割れは外観検査で発見されにくい。これらの理由から,LME割れの中でも,内割れが特に大きな課題となる。溶接用の電極が鋼板に対して角度がついた状態で抵抗溶接が行われると,残留応力が増加して内割れが生成する虞がある。残留応力は鋼板の高強度化に伴い増大すると考えられるため,鋼板の高強度化に伴う内割れの発生が懸念される。本開示においては,耐抵抗溶接割れ特性の中でも,特にこの内割れを防ぐ特性を向上することができる。
以下,本発明の実施形態について説明する。
なお,以下の説明において,Si含有冷延鋼板の成分組成の各元素の含有量,めっき層成分組成の各元素の含有量の単位はいずれも「質量%」であり,特に断らない限り単に「%」で示す。また,本明細書中において,「~」を用いて表される数値範囲は,「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。また,本明細書において,鋼板が「高強度」であるとは,JIS Z 2241(2011)に準拠して測定した鋼板の引張強さTSが590MPa以上であることを意味する。
[実施形態1]
図1に,本実施形態に係るFe系電気めっき鋼板1の断面の概要を示す。図1に示すように,Fe系電気めっき鋼板1は,Si含有冷延鋼板2の少なくとも片面に,Fe系電気めっき層3を有する。まず,Si含有冷延鋼板の成分組成について説明する。
Si:0.1%以上3.0%以下
Siは,加工性を大きく損なうことなく,固溶により鋼の強度を高める効果(固溶強化能)が大きいため,鋼板の高強度化を達成するのに有効な元素である。一方で,Siは溶接部における耐抵抗溶接割れ特性に悪影響を及ぼす元素でもある。Siを鋼板の高強度化を達成するために添加する場合には,0.1%以上の添加が必要である。Siが0.50%未満では,従来の0.24秒程度のホールドタイムによる溶接では,溶接部における耐抵抗溶接割れ特性に特に問題は生じない。しかしながら,自動車部品の組み立て工程におけるスポット溶接時のタクトタイムが生産コストの観点で課題となり,ホールドタイム低減による対策が取られた場合,Si量が0.50%未満でも溶接部における耐抵抗溶接割れ特性が不十分となる場合がある。一方,Siの含有量が3.0%を超えると,熱間圧延性及び冷間圧延性が大きく低下し,生産性に悪影響を及ぼしたり,鋼板自体の延性の低下を招いたりする。よって,Siは0.1%以上3.0%以下の範囲で添加する。Si量は,好ましくは0.50%以上,より好ましくは0.7%以上,さらに好ましくは0.9%以上とする。また,Si量は,好ましくは2.5%以下,より好ましくは2.0%以下,さらに好ましくは1.7%以下とする。
本実施形態に係るSi含有冷延鋼板は,Siを上記範囲で含有することを必須の要件とするが,その他の成分については,通常の冷延鋼板が有する組成範囲であれば許容することができ,特に制限されるものではない。ただし,本実施形態のSi含有冷延鋼板を,引張強さ(TS)590MPa以上の高強度とする場合には,以下の成分組成とすることが好ましい。
C:0.8%以下(0%を含まない)
Cは,鋼組織としてマルテンサイトなどを形成させることで加工性を向上する。Cを含有させる場合,良好な溶接性を得るため,C量は0.8%以下とすることが好ましく,0.3%以下とすることがより好ましい。Cの下限は特に限定されないが,良好な加工性を得るためにはC量は0%超であることが好ましく,0.03%以上とすることがより好ましく,0.08%以上含有させることがさらに好ましい。
Mn:1.0%以上12.0%以下
Mnは,鋼を固溶強化して高強度化するとともに,焼入性を高め,残留オーステナイト,ベイナイト,及びマルテンサイトの生成を促進する作用を有する元素である。このような効果は,Mnを1.0%以上添加することで発現する。一方,Mn量が12.0%以下であれば,コストの上昇を招かずに上記効果が得られる。よって,Mn量は1.0%以上とすることが好ましく,12.0%以下とすることが好ましい。Mn量は1.3%以上とすることがより好ましく,1.5%以上とすることがさらに好ましく,1.8%以上とすることが最も好ましい。また,Mn量は3.5%以下とすることがより好ましく,3.3%以下とすることがさらに好ましい。
P:0.1%以下(0%を含まない)
Pの含有量を抑制することで,溶接性の低下を防ぐことができる。さらにPが粒界に偏析することを防いで,延性,曲げ性,及び靭性が劣化することを防ぐことができる。また,Pを多量に添加すると,フェライト変態を促進することで結晶粒径も大きくなってしまう。そのため,P量は0.1%以下とすることが好ましい。Pの下限は特に限定されず,生産技術上の制約から0%超であり得,0.001%以上であり得る。
S:0.03%以下(0%を含まない)
S量は0.03%以下とすることが好ましく,0.02%以下とすることがより好ましい。S量を抑制することで,溶接性の低下を防ぐとともに,熱間時の延性の低下を防いで,熱間割れを抑制し,表面性状を著しく向上することができる。さらに,S量を抑制することで,不純物元素として粗大な硫化物を形成することにより,鋼板の延性,曲げ性,伸びフランジ性の低下を防ぐことができる。これらの問題はS量が0.03%を超えると顕著となり,Sの含有量は極力低減することが好ましい。Sの下限は特に限定されず,生産技術上の制約から0%超であり得,0.0001%以上であり得る。
N:0.010%以下(0%を含まない)
Nの含有量は0.010%以下とすることが好ましい。Nの含有量を0.010%以下とすることで,NがTi,Nb,Vと高温で粗大な窒化物を形成することでTi,Nb,V添加による鋼板の高強度化の効果が損なわれることを防ぐことができる。また,Nの含有量を0.010%以下とすることで靭性の低下も防ぐことができる。さらに,Nの含有量を0.010%以下とすることで,熱間圧延中にスラブ割れ,表面疵が発生することを防ぐことができる。Nの含有量は,好ましくは0.005%以下であり,より好ましくは0.003%以下であり,さらに好ましくは0.002%以下である。Nの含有量の下限は特に限定されず,生産技術上の制約から0%超であり得,0.0005%以上であり得る。
Al:1.0%以下(0%を含まない)
Alは熱力学的に最も酸化しやすいため,Si及びMnに先だって酸化し,Si及びMnの鋼板最表層での酸化を抑制し,Si及びMnの鋼板内部での酸化を促進する効果がある。この効果はAl量が0.01%以上で得られる。一方,Al量が1.0%を超えるとコストアップになる。したがって,添加する場合,Al量は1.0%以下とすることが好ましい。Al量は0.1%以下とすることがより好ましい。Alの下限は特に限定されず,0%超であり得,0.001%以上であり得る。
成分組成はさらに,任意で,B:0.005%以下,Ti:0.2%以下,Cr:1.0%以下,Cu:1.0%以下,Ni:1.0%以下,Mo:1.0%以下,Nb:0.20%以下,V:0.5%以下,Sb:0.200%以下,Ta:0.1%以下,W:0.5%以下,Zr:0.1%以下,Sn:0.20%以下,Ca:0.005%以下,Mg:0.005%以下及びREM:0.005%以下からなる群から選ばれる1種または2種以上を含有し得る。
B:0.005%以下
Bは鋼の焼入れ性を向上させるのに有効な元素である。焼入れ性を向上するためには,B量は0.0003%以上とすることが好ましく,0.0005%以上とすることがより好ましい。しかし,Bを過度に添加すると成形性が低下するため,B量は0.005%以下とすることが好ましい。
Ti:0.2%以下
Tiは鋼の析出強化に有効である。Tiの下限は特に限定されないが,強度調整の効果を得るためには,0.005%以上とすることが好ましい。しかし,Tiを過度に添加すると,硬質相が過大となり,成形性が低下するため,Tiを添加する場合,Ti量は0.2%以下とすることが好ましく,0.05%以下とすることがより好ましい。
Cr:1.0%以下
Cr量は0.005%以上とすることが好ましい。Cr量を0.005%以上とすることで,焼き入れ性を向上し,強度と延性とのバランスを向上することができる。添加する場合,コストアップを防ぐ観点から,Cr量は1.0%以下とすることが好ましい。
Cu:1.0%以下
Cu量は0.005%以上とすることが好ましい。Cu量を0.005%以上とすることで,残留γ相の形成を促進することができる。また,Cu量を添加する場合,コストアップを防ぐ観点から,Cu量は1.0%以下とすることが好ましい。
Ni:1.0%以下
Ni量は0.005%以上とすることが好ましい。Ni量を0.005%以上とすることで,残留γ相の形成を促進することができる。また,Niを添加する場合,コストアップを防ぐ観点から,Ni量は1.0%以下とすることが好ましい。
Mo:1.0%以下
Mo量は0.005%以上とすることが好ましい。Mo量を0.005%以上とすることで,強度調整の効果を得ることができる。Mo量はより好ましくは0.05%以上とする。また,Moを添加する場合,コストアップを防ぐ観点から,Mo量は1.0%以下が好ましい。
Nb:0.20%以下
Nbは,0.005%以上含有することで強度向上の効果が得られる。また,Nbを含有する場合,コストアップを防ぐ観点から,Nb量は0.20%以下とすることが好ましい。
V:0.5%以下
Vは,0.005%以上含有することで強度向上の効果が得られる。また,Vを含有する場合,コストアップを防ぐ観点から,V量は0.5%以下とすることが好ましい。
Sb:0.200%以下
Sbは鋼板表面の窒化,酸化,あるいは酸化により生じる鋼板表面の数十ミクロン領域の脱炭を抑制する観点から含有することができる。Sbは,鋼板表面の窒化及び酸化を抑制することで,鋼板表面においてマルテンサイトの生成量が減少するのを防止し,鋼板の疲労特性及び表面品質を改善する。このような効果を得るために,Sb量は0.001%以上とすることが好ましい。一方,良好な靭性を得るためには,Sb量は0.200%以下とすることが好ましい。
Ta:0.1%以下
Taは,0.001%以上含有することで強度向上の効果が得られる。また,Taを含有する場合,コストアップを防ぐ観点から,Ta量は0.1%以下とすることが好ましい。
W:0.5%以下
Wは,0.005%以上含有することで強度向上の効果が得られる。また,Wを含有する場合,コストアップを防ぐ観点から,W量は0.5%以下とすることが好ましい。
Zr:0.1%以下
Zrは,0.0005%以上含有することで強度向上の効果が得られる。また,Zrを含有する場合,コストアップを防ぐ観点から,Zr量は0.1%以下とすることが好ましい。
Sn:0.20%以下
Snは脱窒,脱硼等を抑制して,鋼の強度低下抑制に有効な元素である。こうした効果を得るにはそれぞれ0.002%以上とすることが好ましい。一方,良好な耐衝撃性を得るために,Sn量は0.20%以下とすることが好ましい。
Ca:0.005%以下
Caは,0.0005%以上含有することで硫化物の形態を制御し,延性,靭性を向上させることができる。また,良好な延性を得る観点から,Ca量は0.005%以下とすることが好ましい。
Mg:0.005%以下
Mgは,0.0005%以上含有することで硫化物の形態を制御し,延性,靭性を向上させることができる。また,Mgを含有する場合,コストアップを防ぐ観点から,Mg量は0.005%以下とすることが好ましい。
REM:0.005%以下
REMは,0.0005%以上含有することで硫化物の形態を制御し,延性,靭性を向上させることができる。また,REMを含有する場合,良好な靭性を得る観点から,REM量は0.005%以下とすることが好ましい。
本実施形態のSi含有冷延鋼板は,上記成分以外の残部はFe及び不可避的不純物である。
次に,上述したSi含有冷延鋼板の少なくとも片面に形成されたFe系電気めっき層について説明する。
Fe系電気めっき層:20.0g/m
片面あたりの付着量が20.0g/m超のFe系電気めっき層を有することで溶接部における耐抵抗溶接割れ特性が向上するメカニズムは明らかではないが,Fe系電気めっき層が軟質層として機能し,溶接時に鋼板表面に付与される応力を緩和することができ,抵抗溶接部の残留応力を低減することにより,溶接部における耐抵抗溶接割れ特性,特に内割れを防ぐ特性を向上させることができていると考えられる(応力緩和効果)。また,鋼板表面における固溶Si量が多い場合には溶接部で靭性が低下して溶接部における耐抵抗溶接割れ特性が劣化するものと考えられる。これに対し,一定量以上のFe系電気めっき層を鋼板表面に有する場合,該Fe系電気めっき層が固溶Si欠乏層として働き,溶接部に固溶するSi量が減少するため,Si固溶による溶接部の靭性の低下が抑制されて溶接部における耐抵抗溶接割れ特性,特に内割れを防ぐ特性が改善すると考えられる(靭性低下抑制効果)。一方,本実施形態においては,後述するように,Fe系電気めっき層を形成後に焼鈍を施す。Fe系電気めっき層を形成後に焼鈍を施すことにより,焼鈍時に形成するSi及びMn等の表面酸化物によりピックアップと呼ばれる押疵がFe系電気めっき鋼板の表面に発生することを抑制できる反面,Fe系電気めっき層とSi含有冷延鋼板との界面においてFe系電気めっき層とSi含有冷延鋼板との結晶方位が50%超の割合で一体化する。そのため,溶融した亜鉛がFe系電気めっき層の結晶粒界を経由してSi含有冷延鋼板の結晶粒界に侵入しやすくなる。したがって,本実施形態においては,20.0g/m超の付着量を有するFe系電気めっき層を形成させる。20.0g/m超の付着量を有するFe系電気めっき層を形成させることにより,抵抗溶接時に溶融した亜鉛がSi含有冷延鋼板の結晶粒界に到達する時間を遅延させ,溶接部における耐抵抗溶接割れ特性,特に内割れを防ぐ特性を改善することができると考えられる(亜鉛の粒界侵入抑制効果)。これらFe系電気めっき層付与による応力緩和効果,靭性低下抑制効果,及び亜鉛の粒界侵入抑制効果の耐抵抗溶接割れ特性への寄与は複雑ゆえ定量的には明らかではないが,複合的に作用して耐抵抗溶接割れ特性を改善しているものと考えられる。溶接部における耐抵抗溶接割れ特性を向上させる効果を生じさせるためには,Fe系電気めっき層の片面あたりの付着量を20.0g/m超とすることが必要である。Fe系電気めっき層の片面あたりの付着量の上限は特に限定されないが,コストの観点から,Fe系電気めっき層の片面あたりの付着量を60.0g/m以下とすることが好ましい。Fe系電気めっき層の付着量は,好ましくは25.0g/m以上,より好ましくは30.0g/m以上,さらに好ましくは35.0g/m以上とする。Fe系電気めっき鋼板は,好ましくはSi含有冷延鋼板の表裏両面にFe系電気めっき層を有する。Fe系電気めっき層の付着量を25.0g/m以上とすることで,溶接部における耐抵抗溶接割れ特性が特に良好となる。
なお,Fe系電気めっき層の厚みは,以下の通り測定する。Fe系電気めっき鋼板から10×15mmサイズのサンプルを採取して樹脂に埋め込み,断面埋め込みサンプルとする。同断面の任意の3か所を走査型電子顕微鏡(Scanning Electron Microscope:SEM)を用いて加速電圧15kV,及びFe系電気めっき層の厚みに応じて倍率2000~10000倍で観察し,3視野の厚みの平均値に鉄の密度を乗じることによってFe系電気めっき層の片面あたりの付着量に換算する。
Fe系電気めっき層としては,純Feの他,Fe-B合金,Fe-C合金,Fe-P合金,Fe-N合金,Fe-O合金,Fe-Ni合金,Fe-Mn合金,Fe-Mo合金,Fe-W合金等の合金めっき層が使用できる。Fe系電気めっき層の成分組成は特に限定されないが,B,C,P,N,O,Ni,Mn,Mo,Zn,W,Pb,Sn,Cr,V及びCoからなる群から選ばれる1または2以上の元素を合計で10質量%以下含み,残部はFe及び不可避的不純物からなる成分組成とすることが好ましい。Fe以外の元素の量を合計で10質量%以下とすることで,電解効率の低下を防ぎ,低コストでFe系電気めっき層を形成することができる。Fe-C合金の場合,Cの含有量は0.08質量%以下とすることが好ましい。
なお,本実施形態に係るSi含有冷延鋼板は,表面にFe系電気めっき以外のめっき層を有さないことが好ましい。Si含有冷延鋼板が表面にFe系電気めっき以外のめっき層を有さないことで,防錆用途としての亜鉛めっき鋼板が過剰に必要とされない部品,あるいは腐食環境がマイルドで過剰な防錆が必要とされない環境下で用いられる部品を,低コストで提供できる。
Fe系電気めっき層とSi含有冷延鋼板との界面においてFe系電気めっき層とSi含有冷延鋼板との結晶方位が一体化している割合は,50%超とする。Fe系電気めっき層とSi含有冷延鋼板との界面においてFe系電気めっき層とSi含有冷延鋼板との結晶方位が一体化している割合が50%超の場合に,溶融した亜鉛がFe系電気めっき層の結晶粒界を経由してSi含有冷延鋼板の結晶粒界に侵入しやすくなり,本実施形態によるFe系電気めっき層を設けることによる効果が顕著になるからである。本実施形態に係るFe系電気めっき鋼板は,Fe系電気めっき層とSi含有冷延鋼板との界面においてFe系電気めっき層とSi含有冷延鋼板との結晶方位が一体化している割合が,70%以上であり得,75%以上であり得る。なお,Fe系電気めっき層とSi含有冷延鋼板との界面においてFe系電気めっき層とSi含有冷延鋼板との結晶方位が一体化している割合の上限は特に限定されず,100%であってもよい。
上述の通り,Fe系電気めっき層とSi含有冷延鋼板との界面においてFe系電気めっき層とSi含有冷延鋼板との結晶方位が一体化している割合が高いほど,溶融した亜鉛がFe系電気めっき層の結晶粒界を経由してSi含有冷延鋼板の結晶粒界に侵入しやすくなる。特に,Fe系電気めっき層とSi含有冷延鋼板との界面においてFe系電気めっき層とSi含有冷延鋼板との結晶方位が一体化している割合が50%超の場合に,その傾向は顕著となる。本実施形態においては,Si含有冷延鋼板に対してFe系電気めっきを施した後に焼鈍を施し,かつ後述の通り低露点の雰囲気化で焼鈍を施すため,Fe系電気めっき層とSi含有冷延鋼板との結晶方位が一体化する割合が高い。そこで,20.0g/m超の付着量を有するFe系電気めっき層を形成することによって,溶融した亜鉛がFe系電気めっき層の結晶粒界を経由してSi含有冷延鋼板の結晶粒界に侵入することを遅延させることが期待でき,ひいては溶接部における耐抵抗溶接割れ特性,特に内割れを防ぐ特性をより向上することが期待できる。
ここで,Fe系電気めっき層とSi含有冷延鋼板との界面においてFe系電気めっき層とSi含有冷延鋼板との結晶方位が一体化している割合は,以下のように測定する。Fe系電気めっき鋼板から10×10mmサイズのサンプルを採取する。該サンプルの任意の箇所を集束イオンビーム(Focused Ion Beam:FIB)装置にて加工し,T断面(鋼板の圧延直角方向に対して平行かつ鋼板表面に垂直な断面)方向に対して45°の角度をつけた,圧延直角方向30μm幅,T断面方向に対して45°方向の長さが50μmの45°断面を該箇所に形成して,観察用サンプルとする。図2に,該観察用サンプルの概要を示す。図2(a)は,観察用サンプルの斜視図である。図2(b)は,図2(a)に示す観察用サンプルのA-A断面図である。次いで,走査イオン顕微鏡(Scanning Ion Microscope:SIM)を用いて該観察用サンプルの45°断面の中央部を倍率5000倍で観察し,幅1024×高さ943ピクセル,8ビットのSIM像を撮影する。3箇所に作成した45°断面毎に撮像したSIM像から,以下の式(1)に基づいて,Fe系電気めっき層とSi含有冷延鋼板との界面においてFe系電気めっき層とSi含有冷延鋼板との結晶方位が一体化している割合を求める。なお,小数点以下は切り上げとする。
(Fe系電気めっき層とSi含有冷延鋼板との界面においてFe系電気めっき層とSi含有冷延鋼板との結晶方位が一体化している割合)=(Fe系電気めっき層とSi含有冷延鋼板との界面のうち,Fe系電気めっき層とSi含有冷延鋼板との結晶方位が一体化している箇所の長さ)÷(観察視野での界面の長さ)×100・・・(1)
Fe系電気めっき層とSi含有冷延鋼板との界面においてFe系電気めっき層とSi含有冷延鋼板との結晶方位が一体化しているか否かは,画像処理で判断する。図3を用いて,結晶方位が一体化している割合の評価方法を説明する。まず,図3(a)に示すように,前述したSIM像のFe系電気めっき層とSi含有冷延鋼板との界面に,走査型電子顕微鏡(Scanning Electron Microscope)を用いて境界線Bを描画する。次いで,前境界線を描画した像とは別に,SIM像を画像処理した像を作成する。具体的には,まず撮像した幅1024×高さ943ピクセル,8ビットのSIM像に対し,ソーベルフィルタにより結晶粒界を強調する。続いて,結晶粒界を強調した画像にガウスフィルタ(半径(R):10ピクセル)により平滑化処理を行なう。次いで,平滑化処理後の画像に二値化処理(閾値:17)を行う。引き続き,界面を描画した像の境界線Bを,二値化処理した像に転写する。その後,図3(b)に示すように,2値化処理後の画像において,境界線Bを中心とする幅40ピクセルの判定領域(図3(b)のL及びLによって囲まれる領域)を二値化処理した像上の境界線Bに沿うように描画する。境界線Bの長さのうち,該判定領域内にFe系電気めっき層とSi含有冷延鋼板との界面(二値化処理した像上の白黒の境界)が存在しない長さの合計を,結晶方位が一体化している箇所の長さとみなす。ここで,境界線の長さのうち判定領域内にFe系電気めっき層とSi含有冷延鋼板との界面が存在しない長さの合計は,以下の通り求める。まず,境界線Bの法線二本によって,白黒いずれか一色のみが含まれるよう判定領域を略矩形に区分できる箇所を判定領域全域について探す。次いで,該箇所における境界線と二本の法線との交点同士の最大距離を,判定領域全域について合計して,境界線の長さのうち判定領域内にFe系電気めっき層とSi含有冷延鋼板との界面が存在しない長さの合計とする。なお,観察視野での界面の長さから結晶方位が一体化していない箇所の長さを引くことによって,結晶方位が一体化している箇所の長さを求めてもよい。説明のために,図3(c)に,図3(b)の四角で囲った箇所の拡大図を示す。まず,図3(c)に示すように境界線Bの法線二本(図3(c)においては,l及びl,並びにl及びl)によって,白黒の二色が含まれるよう判定領域を略矩形に区分できる箇所を判定領域全域について探す。次いで,該箇所における境界線と二本の法線との交点同士の最大距離を,判定領域全域について合計して,境界線の長さのうち判定領域内にFe系電気めっき層とSi含有冷延鋼板との界面が存在する長さの合計とする。該長さ,すなわち,結晶方位が一体化していない箇所の長さを,観察視野での界面の長さから引くことにより,結晶方位が一体化している箇所の長さを求めることができる。
図4に,後述する実施例の発明例No.31についての,Fe系電気めっき層及びSi含有冷延鋼板の界面のSIM像を示す。該SIM像を上述したように画像処理して2値化処理した後の画像を,図5に示す。発明例No.31においては,Fe系電気めっき層とSi含有冷延鋼板との界面においてFe系電気めっき層とSi含有冷延鋼板との結晶方位が一体化している割合は,97%であった。また,図6に,後述する実施例の発明例No.34についての,Fe系電気めっき層及びSi含有冷延鋼板の界面のSIM像を示す。該SIM像を上述したように画像処理して2値化処理した後の画像を,図7に示す。発明例No.34においては,Fe系電気めっき層とSi含有冷延鋼板との界面においてFe系電気めっき層とSi含有冷延鋼板との結晶方位が一体化している割合は,95%であった。
本開示によれば,JIS Z 2241(2011)に準拠して測定した鋼板の引張強さTSが590MPa以上の高強度のFe系電気めっき鋼板を提供することができる。Fe系電気めっき鋼板の強度は,より好ましくは,800MPa以上である。
本実施形態に係るFe系電気めっき鋼板の板厚は特に限定されないが,通常0.5mm以上であり,また3.2mm以下であり得る。
<Fe系電気めっき鋼板の製造方法>
次に,Fe系電気めっき鋼板の製造方法を説明する。
一実施形態に係るFe系電気めっき鋼板の製造方法は,Siを0.1質量%以上3.0質量%以下含有する冷延鋼板にFe系電気めっきを施して,片面あたりの付着量が20.0g/m超の焼鈍前Fe系電気めっき層が少なくとも片面に形成された焼鈍前Fe系電気めっき鋼板とし,
次いで,前記焼鈍前Fe系電気めっき鋼板を露点-30℃以下の雰囲気下で焼鈍して,Fe系電気めっき鋼板を得る,Fe系電気めっき鋼板の製造方法であり得る。
まず,Siを0.1質量%以上3.0質量%以下含有する冷延鋼板を製造する。なお,冷延鋼板は,Siを0.50質量%以上3.0質量%以下含有してもよい。冷延鋼板の製造方法は,通常の冷延鋼板の製造方法に従うことができる。一例において,冷延鋼板は,上述した成分組成を有する鋼スラブに熱間圧延を施して熱延板とし,次いで該熱延板に酸洗を施し,次いで,熱延板に冷間圧延を施して冷延鋼板とすることによって製造する。
次いで,冷延鋼板の表面にFe系電気めっき処理を施して,焼鈍前Fe系電気めっき処理鋼板とする。Fe系電気めっき処理方法は特に限定されない。例えば,Fe系電気めっき浴としては硫酸浴,塩酸浴あるいは両者の混合などが適用できる。なお,焼鈍前Fe系電気めっき鋼板とは,Fe系電気めっき層が焼鈍工程を経ていないことを意味し,Fe系電気めっき処理前の冷延鋼板について予め焼鈍された態様を除外するものではない。
通電開始前のFe系電気めっき浴中のFeイオン含有量は,Fe2+として0.5mol/L以上とすることが好ましい。Fe系電気めっき浴中のFeイオン含有量が,Fe2+として0.5mol/L以上であれば,十分なFe付着量を得ることができる。また,十分なFe付着量を得るために,通電開始前のFe系電気めっき浴中のFeイオン含有量は,2.0mol/L以下とすることが好ましい。
また,Fe系電気めっき浴中にはFeイオン,並びにB,C,P,N,O,Ni,Mn,Mo,Zn,W,Pb,Sn,Cr,V及びCoからなる群から選ばれる少なくとも一種の元素を含有することができる。Fe系電気めっき浴中でのこれらの元素の合計含有量は,焼鈍前Fe系電気めっき層中でこれらの元素の合計含有量が10質量%以下となるようにすることが好ましい。なお,金属元素は金属イオンとして含有すればよく,非金属元素はホウ酸,リン酸,硝酸,有機酸等の一部として含有することができる。また,硫酸鉄めっき液中には,硫酸ナトリウム,硫酸カリウム等の伝導度補助剤や,キレート剤,pH緩衝剤が含まれていてもよい。
Fe系電気めっき浴のその他の条件についても特に限定しない。Fe系電気めっき液の温度は,定温保持性を考えると,30℃以上とすることが好ましく,85℃以下が好ましい。Fe系電気めっき浴のpHも特に規定しないが,水素発生による電流効率の低下を防ぐ観点から1.0以上とすることが好ましく,またFe系電気めっき浴の電気伝導度を考慮すると,3.0以下が好ましい。電流密度は,生産性の観点から10A/dm以上とすることが好ましく,Fe系電気めっき層の付着量制御を容易にする観点から150A/dm以下とすることが好ましい。通板速度は,生産性の観点から5mpm以上とすることが好ましく,付着量を安定的に制御する観点から150mpm以下とすることが好ましい。
なお,Fe系電気めっき処理を施す前の処理として,冷延鋼板表面を清浄化するための脱脂処理及び水洗,さらには,冷延鋼板表面を活性化するための酸洗処理及び水洗を施すことができる。これらの前処理に引き続いてFe系電気めっき処理を実施する。脱脂処理及び水洗の方法は特に限定されず,通常の方法を用いることができる。酸洗処理においては,硫酸,塩酸,硝酸,及びこれらの混合物等各種の酸が使用できる。中でも,硫酸,塩酸あるいはこれらの混合が好ましい。酸の濃度は特に規定しないが,酸化皮膜の除去能力,及び過酸洗による肌荒れ(表面欠陥)防止等を考慮すると,1~20mass%程度が好ましい。また,酸洗処理液には,消泡剤,酸洗促進剤,酸洗抑制剤等を含有してもよい。
次いで,Fe系電気めっき処理を施した後,焼鈍前Fe系電気めっき鋼板に,露点:-30℃以下,水素濃度:1.0体積%以上30.0体積%以下の還元性雰囲気中で,650℃以上900℃以下の温度域で30秒以上600秒以下保持した後に冷却する焼鈍工程を行なって,Fe系電気めっき鋼板を得る。焼鈍工程は,圧延工程によって生じた焼鈍前Fe系電気めっき鋼板の歪を除去し,組織を再結晶させることで,鋼板強度を高めるために行う。
露点:-30℃以下
本実施形態において,焼鈍工程における焼鈍雰囲気の露点は,加湿設備等の追加設備が不要な条件となる-30℃以下の低露点とする。露点-30℃以下の制御は650℃以上900℃以下の温度域にて行なうことが好ましい。本発明者らは独自の検討によって,Fe系電気めっき層とSi含有冷延鋼板との界面においてFe系電気めっき層とSi含有冷延鋼板との結晶方位が一体化している割合と,Fe系電気めっき層形成後の焼鈍工程における焼鈍雰囲気の露点との間に相関関係があることを見出した。すなわち,Fe系電気めっき層形成後の焼鈍前Fe系電気めっき鋼板に焼鈍を施す際に,焼鈍雰囲気の露点が低いほど,焼鈍後に得られるFe系電気めっき鋼板のFe系電気めっき層とSi含有冷延鋼板との結晶方位が一体化している割合が高く,逆に焼鈍雰囲気の露点が高いほどFe系電気めっき層とSi含有冷延鋼板との結晶方位が一体化している割合が低いことが分かった。このように,Fe系電気めっき層とSi含有冷延鋼板との結晶方位が一体化している割合と,露点との間に相関関係が見いだせる理由は明らかではないが,以下のように推測することができる。一定以上の高露点で制御した場合,焼鈍時に鋼板からFe系電気めっき層へ拡散する元素がFe系電気めっき層の内部で酸化物として形成し,この酸化物がFe系電気めっき層の結晶成長を阻害し,細粒化させる。一方で,Fe系電気めっき層を形成後に低露点の雰囲気下にて焼鈍を施した場合,上記のような酸化物は形成されにくく,Fe系電気めっき層の結晶粒径が粗大化する。そのため,低露点で焼鈍を施した際にはFe系電気めっき層の結晶方位がSi含有冷延鋼板との結晶方位と高い割合で一体化すると考えることができる。焼鈍炉の加湿設備のコストなどを理由に,焼鈍工程における焼鈍雰囲気の露点を-30℃以下とした場合,Fe系電気めっき層とSi含有冷延鋼板との界面においてFe系電気めっき層とSi含有冷延鋼板との結晶方位が一体化している割合が高まる。その結果,板組相手が亜鉛めっき鋼板である場合,抵抗溶接時に溶融した亜鉛がFe系電気めっき層の結晶粒界を経由してSi含有冷延鋼板の結晶粒界に侵入しやすくなる。本実施形態においては,特定の付着量を有するFe系電気めっき層を形成させることにより,板組相手が亜鉛めっき鋼板である場合,抵抗溶接時に溶融した亜鉛がFe系電気めっき層の結晶粒界を経由してSi含有冷延鋼板の結晶粒界に到達する時間を遅延させ,溶接部における耐抵抗溶接割れ特性を改善する。焼鈍雰囲気の露点の下限は特に定めないが,-80℃未満は工業的に実現が困難であるため,-80℃以上とすることが好ましい。焼鈍雰囲気の露点はより好ましくは-55℃以上である。
水素濃度:1.0体積%以上30.0体積%以下
焼鈍工程は,水素濃度が1.0体積%以上30.0体積%以下の還元性雰囲気中で行う。水素は,焼鈍工程中の焼鈍前Fe系電気めっき鋼板表面のFeの酸化を抑制し,鋼板表面を活性化する役割を果たす。水素濃度が1.0体積%以上であれば,鋼板表面のFeが酸化することにより,後述するように化成処理皮膜を設ける場合に化成処理性が劣化することを回避することができる。よって,焼鈍工程は水素濃度1.0体積%以上の還元性雰囲気にて行うことが好ましく,2.0体積%以上の還元性雰囲気にて行うことがより好ましい。焼鈍工程における水素濃度の上限は特に限定されないが,コストの観点から,水素濃度は30.0体積%以下とすることが好ましく,20.0体積%以下とすることがより好ましい。焼鈍雰囲気の水素以外の残部は,窒素とすることが好ましい。
650℃以上900℃以下の温度域での保持時間:30秒以上600秒以下
焼鈍工程において,650℃以上900℃以下の温度域での保持時間を,30秒以上600秒以下とすることが好ましい。当該温度域での保持時間を30秒以上とすることで,焼鈍前Fe系電気めっき層表面に形成したFeの自然酸化膜を好適に除去し,後述するようにFe系電気めっき鋼板表面に化成処理皮膜を設ける場合の化成処理性を向上することができる。よって,当該温度域での保持時間は30秒以上とすることが好ましい。当該温度域での保持時間の上限は特に定めないが,生産性の観点から,当該温度域での保持時間は600秒以下とすることが好ましい。
焼鈍前Fe系電気めっき鋼板の最高到達温度:650℃以上900℃以下
焼鈍前Fe系電気めっき鋼板の最高到達温度は特に限定されないが,650℃以上900℃以下とすることが好ましい。焼鈍前Fe系電気めっき鋼板の最高到達温度を650℃以上とすることで,鋼板組織の再結晶が好適に進み,所望の強度を得ることができる。また,焼鈍前Fe系電気めっき層表面に形成したFeの自然酸化膜を好適に還元させ,後述するようにFe系電気めっき鋼板表面に化成処理皮膜を設ける場合の化成処理性を向上することができる。また,Fe系電気めっき鋼板の最高到達温度が900℃以下であれば,鋼中のSi及びMnの拡散速度が増加しすぎることを防ぎ,鋼板表面へのSi及びMnの拡散を防ぐことができるため,後述するように鋼板表面に化成処理皮膜を設ける場合の化成処理性を向上することができる。また,最高到達温度が900℃以下であれば,熱処理炉の炉体ダメージを防ぐことができ,コストダウンすることもできる。よって,焼鈍前Fe系電気めっき鋼板の最高到達温度は900℃以下とすることが好ましい。なお,上記最高到達温度は,焼鈍前Fe系電気めっき鋼板の表面にて測定された温度を基準とする。
<電着塗装鋼板>
また,本実施形態によれば,上述したFe系電気めっき鋼板上に,前記Fe系電気めっき層に接触して形成された化成処理皮膜と,該化成皮膜上に形成された電着塗装皮膜とをさらに有する電着塗装鋼板を提供することもできる。本実施形態に係るFe系電気めっき鋼板は,溶接部における耐抵抗溶接割れ特性に優れるため,該Fe系電気めっき鋼板を用いて形成した電着塗装鋼板は,自動車部品への適用に特に好適である。本実施形態に係る電着塗装鋼板は,Fe系電気めっき層の上に,直接化成処理皮膜が形成されていることが好ましい。換言すれば,本実施形態に係る電着塗装鋼板は,Fe系電気めっき層の他に,追加のめっき層を有さないことが好ましい。化成処理皮膜,及び電着塗装皮膜の種類は特に限定されず,公知の化成処理皮膜,及び電着塗装皮膜とすることができる。化成処理皮膜としては,リン酸亜鉛皮膜,ジルコニウム皮膜等が使用できる。電着塗装皮膜としては,自動車用の電着塗装皮膜であれば特に限定されない。電着塗装皮膜の厚みは,用途により異なるが,乾燥状態の塗膜で10μm以上30μm以下程度とすることが好ましい。また,本実施形態によれば,電着塗装を施すための電着塗装用Fe系電気めっき鋼板を提供することもできる。
<電着塗装鋼板の製造方法>
次いで,上述した電着塗装鋼板の製造方法について説明する。上述した電着塗装鋼板は,Fe系電気めっき鋼板に追加のめっき処理を施さずに化成処理を施して,前記Fe系電気めっき層に接触して化成処理皮膜が形成された化成処理鋼板を得る,化成処理工程と,前記化成処理鋼板に電着塗装処理を施して,前記化成処理皮膜上に電着塗装皮膜が形成された電着塗装鋼板を得る,電着塗装工程と,を含む,電着塗装鋼板の製造方法によって製造することができる。化成処理,及び電着塗装処理は,公知の方法によることができる。なお,化成処理を施す前の処理として,Fe系電気めっき鋼板表面を清浄化するための脱脂処理,水洗及び必要に応じて表面調整処理を施すことができる。これらの前処理に引き続いて化成処理を実施する。脱脂処理及び水洗の方法は特に限定されず,通常の方法を用いることができる。表面調整処理においては,Tiコロイド,あるいはリン酸亜鉛コロイドを有する表面調整剤等を使用できる。これらの表面調整剤を施すに際して,特別な工程を設ける必要はなく,常法に従い実施すればよい。例えば,所望の表面調整剤を所定の脱イオン水に溶解させ,十分攪拌したのち,既定の温度(通常は常温,25~30℃)の処理液とし,該処理液中に鋼板を所定時間(20~30秒)浸漬させる。引き続き乾燥させることなく,次工程の化成処理を行う。化成処理においても,常法に従い実施すればよい。例えば,所望の化成処理剤を所定の脱イオン水に溶解させ,十分攪拌したのち,所定の温度(通常35~45℃)の処理液とし,該処理液中に鋼板を所定時間(60~120秒)浸漬させる。化成処理剤としては,例えば鋼用のリン酸亜鉛処理剤,鋼・アルミニウム併用型のリン酸亜鉛処理剤,及びジルコニウム処理剤等を使用できる。引き続き,次工程の電着塗装を行う。電着塗装も,常法に従い実施すればよい。必要に応じて水洗処理等の前処理を施したのち,十分攪拌された電着塗料に鋼板を浸漬し,電着処理によって所望の厚みの電着塗装を得る。電着塗装としては,カチオン型の電着塗装の他,アニオン型電着塗装を使用できる。さらに,用途に応じて電着塗装後に上塗り塗装などを施してもよい。
<自動車部品>
また,本実施形態によれば,上述した電着塗装鋼板を少なくとも一部に用いてなる自動車部品を提供することができる。本実施形態に係るFe系電気めっき鋼板は,溶接部における耐抵抗溶接割れ特性に優れるため,該Fe系電気めっき鋼板を用いた電着塗装鋼板は,自動車部品への適用に特に好適である。電着塗装鋼板を用いてなる自動車部品は,本実施形態に係る電着塗装鋼板以外の鋼板を,素材として含んでいてもよい。本実施形態に係る電着塗装鋼板は溶接部における耐抵抗溶接割れ特性に優れるため,該Fe系電気めっき鋼板を用いてなる自動車部品が溶接相手として高強度溶融亜鉛めっき鋼板を含んでいる場合であっても,溶接部におけるもらい割れが好適に防がれる。電着塗装鋼板を少なくとも一部に用いてなる自動車部品の種類は特に限定されないが,例えば,サイドシル部品,ピラー部品,及び自動車車体等であり得る。
[実施形態2]
次に,本発明の実施形態2に係るFe系電気めっき鋼板について説明する。
本実施形態に係るFe系電気めっき鋼板は,
冷延鋼板と,
前記冷延鋼板の少なくとも片面に形成された,片面あたりの付着量が20.0g/m超であるFe系電気めっき層とを有し,
前記Fe系電気めっき層と前記冷延鋼板との界面において前記Fe系電気めっき層と前記冷延鋼板との結晶方位が一体化している割合が50%超である,Fe系電気めっき鋼板であり得る。
ここで,前記冷延鋼板は,圧延直角方向を長手として50×150mmに切り出した試験片を,同サイズに切り出した溶融亜鉛めっき層の片面あたりの付着量が50g/mである試験用合金化溶融亜鉛めっき鋼板と重ねて板組とし,
次いで,サーボモータ加圧式で単相交流(50Hz)の抵抗溶接機を用いて,該抵抗溶接機の電極対(先端径6mm)の中心軸同士を結んだ線に対する垂直面に対して前記板組を該板組の長手方向側に5°傾け,前記電極対の下側電極と前記試験片との間に前記板組の長手方向60mm×前記板組の厚さ方向2.0mmの空隙を設けて前記下側電極と前記板組とを固定し,前記電極対の上側電極を可動にした状態で,前記板組に,加圧力:3.5kN,ホールドタイム:0.16秒,並びにナゲット径が5.9mmになる溶接電流及び溶接時間の条件にて抵抗溶接を施して溶接部付き板組とし,
次いで,前記溶接部付き板組を溶接部を含むように前記試験片の長手方向に沿って半切して,該溶接部の断面を光学顕微鏡(倍率200倍)で観察した場合に,0.1mm以上の長さのき裂が認められる冷延鋼板である。
本実施形態に係る冷延鋼板は,下記の試験によって評価した場合に,板組相手が亜鉛めっき鋼板である場合の溶接部における耐抵抗溶接割れ特性に劣る鋼板であれば,特に限定されない。冷延鋼板の成分組成も特に限定されない。発明者らは,鋼中のSi含有量が0.1質量%以上の冷延鋼板であれば,以下の試験によって評価される溶接部における耐抵抗溶接割れ特性に劣るという知見を得ている。
冷延鋼板は,ホールドタイムを0.24秒とした条件にて,抵抗溶接を施して溶接部付き板組を得,溶接部の断面を光学顕微鏡(倍率200倍)で観察した場合に,0.1mm以上の長さのき裂が認められる冷延鋼板であってもよい。なお,同一の冷延鋼板であれば,一般的にホールドタイムを低減するほど溶接部における耐抵抗溶接割れ特性が劣位となる。そのため,ホールドタイムを0.24秒とした条件にて以下試験を実施した場合に,0.1mm以上の長さのき裂が認められる冷延鋼板であれば,ホールドタイムを0.16秒とした条件にて抵抗溶接を施した場合にも,溶接部の断面を光学顕微鏡(倍率200倍)で観察した場合に,0.1mm以上の長さのき裂が認められる。冷延鋼板の鋼中のSi含有量が0.50質量%以上の冷延鋼板であれば,以下の試験によって評価される溶接部における耐抵抗溶接割れ特性に劣るが,鋼中のSi含有量が0.50質量%未満の冷延鋼板であっても以下の試験によって評価される溶接部における耐抵抗溶接割れ特性に劣る例も確認している。
<板組相手が亜鉛めっき鋼板である場合の溶接部における耐抵抗溶接割れ特性>
図8を用いて,溶接部における耐抵抗溶接割れ特性の評価方法について説明する。圧延直角方向(TD)を長手とし,圧延方向を短手として50×150mmに切り出した試験片6を,同サイズに切り出した,溶融亜鉛めっき層の片面あたりの付着量が50g/mである試験用合金化溶融亜鉛めっき鋼板5と重ねて板組とする。板組は,試験片6の評価対象面(Fe系電気めっき層)と,試験用合金化溶融亜鉛めっき鋼板5の亜鉛めっき層とが向かい合うように組み立てる。当該板組を,厚さ2.0mmのスペーサー7を介して,固定台8に固定する。スペーサー7は,長手方向50mm×短手方向45mm×厚さ2.0mmの一対の鋼板であり,図8(a)に示すように,一対の鋼板各々の長手方向端面が,板組短手方向両端面とそろうように配置する。よって,一対の鋼板間の距離は60mmとなる。固定台8は,中央部に穴が開いた一枚の板である。
次いで,サーボモータ加圧式で単相交流(50Hz)の抵抗溶接機を用いて,板組を一対の電極9(先端径:6mm)で加圧しつつ板組をたわませた状態で,加圧力:3.5kN,ホールドタイム:0.18秒又は0.24秒の条件下で,ナゲット径rが5.9mmになる溶接電流及び溶接時間にて抵抗溶接を施して,溶接部付き板組とする。このとき,一対の電極9は,鉛直方向の上下から板組を加圧し,下側の電極は,固定台8の穴を介して,試験片6を加圧する。加圧に際しては,一対の電極9のうち下側の電極がスペーサー7と固定台8とが接する面を延長した平面に接するように,下側の電極と固定台8とを固定し,上側の電極を可動とする。また,上側の電極が試験用合金化溶融亜鉛めっき鋼板5の中央部に接するようにする。また,板組は,該抵抗溶接機の電極対の中心軸同士を結んだ線に対する垂直面(図8(a)では水平方向)に対して前記板組を該板組の長手方向側に5°傾けた状態で,溶接を行なう。上述のスペーサーにより,下側の電極と試験片6との間には,板組の長手方向60mm×板組の厚さ方向2.0mmの空隙が形成されている。なお,ホールドタイムとは,溶接電流を流し終わってから,電極を開放し始めるまでの時間を指す。ここで,図8(b)下図を参照して,ナゲット径rとは,板組の長手方向における,ナゲット10の端部同士の距離を意味する。
次いで,前記溶接部付き板組を,ナゲット10を含めた溶接部の中心を含むように,図8(b)上図のB-B線に沿って切断して,該溶接部の断面を光学顕微鏡(200倍)で観察し,以下の基準で溶接部における耐抵抗溶接割れ特性を評価した。なお,◎又は○であれば,溶接部における耐抵抗溶接割れ特性に優れると判断とする。×であれば,溶接部における耐抵抗溶接割れ特性に劣ると判断とする。
◎ : ホールドタイム0.14秒で0.1mm以上の長さのき裂が認められない
○ : ホールドタイム0.14秒で0.1mm以上の長さのき裂が認められるが,ホールドタイム0.16秒で0.1mm以上の長さのき裂が認められない
× : ホールドタイム0.16秒で0.1mm以上の長さのき裂が認められる
さらに,より穏やかな溶接条件として,以下の基準で同様に溶接部における耐抵抗溶接割れ特性を評価してもよい。
◎ : ホールドタイム0.18秒で0.1mm以上の長さのき裂が認められない
○ : ホールドタイム0.18秒で0.1mm以上の長さのき裂が認められるが,ホールドタイム0.24秒で0.1mm以上の長さのき裂が認められない
× : ホールドタイム0.24秒で0.1mm以上の長さのき裂が認められる
なお,図12(b)下図には,試験片6に発生したき裂の一例を模式的に符号11として示している。
本実施形態に係るFe系電気めっき鋼板のFe系電気めっき層については,上述した実施形態1と同様であるため,ここでは説明を省略する。また,Fe系電気めっき層と冷延鋼板との界面においてFe系電気めっき層と冷延鋼板との結晶方位が一体化している割合は上述した実施形態1と同様,50%超である。Fe系電気めっき層と冷延鋼板との界面においてFe系電気めっき層と冷延鋼板との結晶方位が一体化している割合の詳細については上述した実施形態1と同様であるため,ここでは説明を省略する。
次に,実施形態2に係るFe系電気めっき鋼板の製造方法を説明する。
一実施形態に係るFe系電気めっき鋼板の製造方法は,冷延鋼板にFe系電気めっきを施して,片面あたりの付着量が20.0g/m超の焼鈍前Fe系電気めっき層が少なくとも片面に形成された焼鈍前Fe系電気めっき鋼板とし,
次いで,前記焼鈍前Fe系電気めっき鋼板を焼鈍して,Fe系電気めっき鋼板を得る,Fe系電気めっき鋼板の製造方法である。
ここで,前記冷延鋼板は,圧延直角方向を長手として50×150mmに切り出した試験片を,同サイズに切り出した溶融亜鉛めっき層の片面あたりの付着量が50g/mである試験用合金化溶融亜鉛めっき鋼板と重ねて板組とし,
次いで,サーボモータ加圧式で単相交流(50Hz)の抵抗溶接機を用いて,該抵抗溶接機の電極対(先端径6mm)の中心軸同士を結んだ線に対する垂直面に対して前記板組を該板組の長手方向側に5°傾け,前記電極対の下側電極と前記試験片との間に前記板組の長手方向60mm×前記板組の厚さ方向2.0mmの空隙を設けて前記下側電極と前記板組とを固定し,前記電極対の上側電極を可動にした状態で,前記板組に,加圧力:3.5kN,ホールドタイム:0.16秒,並びにナゲット径が5.9mmになる溶接電流及び溶接時間の条件にて抵抗溶接を施して溶接部付き板組とし,
次いで,前記溶接部付き板組を溶接部を含むように前記試験片の長手方向に沿って半切して,該溶接部の断面を光学顕微鏡(倍率200倍)で観察した場合に,0.1mm以上の長さのき裂が認められる冷延鋼板である。
まず,冷延鋼板を製造する。冷延鋼板の製造方法は,通常の冷延鋼板の製造方法に従うことができる。一例においては,鋼スラブに熱間圧延を施して熱延板とし,次いで該熱延板に酸洗を施し,次いで,熱延板に冷間圧延を施して冷延鋼板を製造する。
本実施形態に係る冷延鋼板は,上述した試験によって評価した場合に,板組相手が亜鉛めっき鋼板である場合の溶接部における耐抵抗溶接割れ特性に劣る鋼板であれば,特に限定されない。冷延鋼板の成分組成も特に限定されず,鋼中のSi含有量が0.1質量%以上の冷延鋼板であれば,上述した試験によって評価される溶接部における耐抵抗溶接割れ特性に劣る。
冷延鋼板は,ホールドタイムを0.24秒とした条件にて,上述した抵抗溶接を施して溶接部付き板組を得,溶接部の断面を光学顕微鏡(倍率200倍)で観察した場合に,0.1mm以上の長さのき裂が認められる冷延鋼板であってもよい。なお,同一の冷延鋼板であれば,一般的にホールドタイムを低減するほど溶接部における耐抵抗溶接割れ特性が劣位となる。そのため,ホールドタイムを0.24秒とした条件にて抵抗溶接を施して得,溶接部の断面を光学顕微鏡(倍率200倍)で観察した場合に,0.1mm以上の長さのき裂が認められる冷延鋼板であれば,ホールドタイムを0.16秒とした条件にて抵抗溶接を施した場合にも,溶接部の断面を光学顕微鏡(倍率200倍)で観察した場合に,0.1mm以上の長さのき裂が認められる。冷延鋼板の鋼中のSi含有量が0.50質量%以上の冷延鋼板であれば,上述した試験によって評価される溶接部における耐抵抗溶接割れ特性に劣るが,鋼中のSi含有量が0.50質量%未満の冷延鋼板であっても上述した試験によって評価される溶接部における耐抵抗溶接割れ特性に劣る例も確認している。
次いで,冷延鋼板の表面にFe系電気めっき処理を施して,焼鈍前Fe系電気めっき鋼板を得る。Fe系電気めっき処理の詳細については上述したので,ここでは説明を省略する。
次いで,焼鈍前Fe系電気めっき鋼板に,露点:-30℃以下,水素濃度:1.0体積%以上30.0体積%以下の還元性雰囲気中で,650℃以上900℃以下の温度域で30秒以上600秒以下保持した後に冷却する焼鈍工程を行なって,Fe系電気めっき鋼板を得る。焼鈍工程の詳細については上述したので,ここでは説明を省略する。
本実施形態においても,上述した実施形態1と同様,本実施形態に係るFe系電気めっき鋼板上に,前記Fe系電気めっき層に接触して形成された化成処理皮膜と,該化成皮膜上に形成された電着塗装皮膜とをさらに有する電着塗装鋼板を提供することもできる。また,電着塗装を施すための電着塗装用Fe系電気めっき鋼板を提供することもできる。電着塗装鋼板及び電着塗装鋼板の製造方法の詳細については上述した実施形態1と同様であるため,ここでは説明を省略する。
また,本実施形態においても,上述した実施形態1と同様,自動車部品を提供することができる。自動車部品の詳細については上述したため,ここでは記載を省略する。
以下,本発明を,実施例に基づいて具体的に説明する。
表1及び表3に示す化学成分の鋼を溶製して得た鋳片を熱間圧延,酸洗,及び冷間圧延によって板厚1.6mmの冷延鋼板とした。
Figure 0007323062000001
Figure 0007323062000002
次いで,冷延鋼板に対して,アルカリにて脱脂処理を施し,次いで,以下に示す条件で,鋼板を陰極として電解処理を行ない,片面にFe系電気めっき層を有する焼鈍前Fe系電気めっき鋼板を製造した。Fe系電気めっき層の付着量は,通電時間で制御した。引き続き,焼鈍前Fe系電気めっき鋼板に対して,15%H-N,均熱帯温度800℃,雰囲気の露点を表2-1,2-2及び表4に示すように調整して還元焼鈍を施してFe系電気めっき鋼板を得た。還元焼鈍は100秒間実施した。
〔電解条件〕
浴温:50℃
pH:2.0
電流密度:45A/dm
Fe系電気めっき浴:Fe2+イオンを1.5mol/L含む
電極(陽極):酸化イリジウム電極
上記のように作製したFe系電気めっき鋼板から,上述した方法に従って,Fe系電気めっき層の片面あたりの付着量,並びに,Fe系電気めっき層とSi含有冷延鋼板との界面においてFe系電気めっき層とSi含有冷延鋼板との結晶方位が一体化している割合を求めた。
以上により得られたFe系電気めっき鋼板について,溶接部における耐抵抗溶接割れ特性を調査した。以下に,溶接部における耐抵抗溶接割れ特性の測定方法及び評価方法を示す。
<板組相手が亜鉛めっき鋼板である場合の溶接部における耐抵抗溶接割れ特性>
Fe系電気めっき鋼板について,上述した方法に従って,板組相手が,0.18秒のホールドタイムにおいて耐抵抗溶接割れ特性が課題とならないSiが0.50%未満の引張強さが980MPa級,及び片面あたりの付着量が50g/mの試験用合金化溶融亜鉛めっき鋼板(板厚1.6mm)である場合の溶接部における耐抵抗溶接割れ特性を評価した。溶接時間は0.36秒,ホールドタイムは0.18秒及び0.24秒とし,実施例No.毎に溶接電流を変化させてナゲット径を測定し,ナゲット径が5.9mmとなる溶接電流にて評価した。また,板組相手である試験用合金化溶融亜鉛めっき鋼板に割れが発生していないものを実施例データとして採用した。板組相手に割れが発生した場合,評価対象のFe系電気めっき鋼板への応力が分散し,適切な評価とならないためである。
上記試験の結果を表2-1,2-2及び表4に併記した。この結果から,連続焼鈍前に,本発明に適合する条件でFe系電気めっき層を形成した発明例のFe系電気めっき鋼板は,溶接部における耐抵抗溶接割れ特性が優れていることがわかる。なお,参考例1及び2については,Siが0.5%未満であるため,溶接部における耐抵抗溶接割れ特性に特に問題は生じなかった。Fe系電気めっき層の付着量を25.0g/m以上とした各発明例においては,ホールドタイム0.18秒の条件下でも0.1mm以上の長さのき裂が認められず,溶接部における耐抵抗溶接割れ特性が特に良好であった。なお,表2-1,2-2中において,Fe系電気めっき層を形成しなかった例については,Fe系電気めっき層の付着量を「-」と示している。また,高露点における焼鈍工程を行なった参考例No.17,30,46においては,高露点における焼鈍によりFe系電気めっき層とSi含有冷延鋼板との界面においてFe系電気めっき層とSi含有冷延鋼板との結晶方位が一体化している割合が低く,溶接部における耐抵抗溶接割れ特性が良好であった。なお,これらの参考例においては,焼鈍前Fe系電気めっき鋼板を,400℃以上650℃以下の温度域における平均昇温速度を10℃/秒以上として均熱帯温度800℃まで加熱し,還元焼鈍を施した。
Figure 0007323062000003
Figure 0007323062000004
Figure 0007323062000005
表5に示す化学成分の鋼を溶製して得た鋳片を熱間圧延,酸洗,及び冷間圧延によって板厚1.6mmの冷延鋼板とした。
Figure 0007323062000006
次いで,冷延鋼板に対して,アルカリにて脱脂処理を施し,次いで,以下に示す条件で,鋼板を陰極として電解処理を行ない,片面にFe系電気めっき層を有する焼鈍前Fe系電気めっき鋼板を製造した。Fe系電気めっき層の付着量は,通電時間で制御した。引き続き,焼鈍前Fe系電気めっき鋼板に対して,15%H-N,均熱帯温度800℃,雰囲気の露点を表6に示すように調整して還元焼鈍を施してFe系電気めっき鋼板を得た。還元焼鈍は100秒間実施した。
〔電解条件〕
浴温:50℃
pH:2.0
電流密度:45A/dm
Fe系電気めっき浴:Fe2+イオンを1.5mol/L含む
電極(陽極):酸化イリジウム電極
上記のように作製したFe系電気めっき鋼板から,上述した方法に従って,Fe系電気めっき層の片面あたりの付着量,並びに,Fe系電気めっき層とSi含有冷延鋼板との界面においてFe系電気めっき層とSi含有冷延鋼板との結晶方位が一体化している割合を求めた。
以上により得られたFe系電気めっき鋼板について,溶接部における耐抵抗溶接割れ特性を調査した。以下に,溶接部における耐抵抗溶接割れ特性の測定方法及び評価方法を示す。
<板組相手が亜鉛めっき鋼板である場合の溶接部における耐抵抗溶接割れ特性>
Fe系電気めっき鋼板について,上述した方法に従って,板組相手が,0.14秒のホールドタイムにおいて耐抵抗溶接割れ特性が課題とならないSiが0.1%未満の引張強さが590MPa級,及び片面あたりの付着量が50g/mの試験用合金化溶融亜鉛めっき鋼板(板厚1.6mm)である場合の溶接部における耐抵抗溶接割れ特性を評価した。溶接時間は0.36秒,ホールドタイムは0.14秒及び0.16秒とし,実施例No.毎に溶接電流を変化させてナゲット径を測定し,ナゲット径が5.9mmとなる溶接電流にて評価した。また,板組相手である試験用合金化溶融亜鉛めっき鋼板に割れが発生していないものを実施例データとして採用した。板組相手に割れが発生した場合,評価対象のFe系電気めっき鋼板への応力が分散し,適切な評価とならないためである。
上記試験の結果を表6に記した。この結果から,連続焼鈍前に,本発明に適合する条件でFe系電気めっき層を形成した発明例のFe系電気めっき鋼板は,溶接部における耐抵抗溶接割れ特性が優れていることがわかる。Fe系電気めっき層の付着量を25.0g/m以上とした各発明例においては,ホールドタイム0.14秒の条件下でも0.1mm以上の長さのき裂が認められず,溶接部における耐抵抗溶接割れ特性が特に良好であった。なお,表6中において,Fe系電気めっき層を形成しなかった例については,Fe系電気めっき層の付着量を「-」と示している。
Figure 0007323062000007
本発明により製造されるFe系電気めっき鋼板は,板組相手が亜鉛めっき鋼板である場合の溶接部における耐抵抗溶接割れ特性,特に内割れを防ぐ特性に優れるだけでなく,高い強度と優れた加工性とを有しているので,自動車部品に用いられる素材としてだけでなく,家電製品や建築部材などの分野で同様の特性が求められる用途の素材としても好適に用いることができる。
1 Fe系電気めっき鋼板
2 Si含有冷延鋼板
3 Fe系電気めっき層
5 試験用合金化溶融亜鉛めっき鋼板
6 試験片
7 スペーサー
8 固定台
9 電極
10 ナゲット
11 き裂

Claims (19)

  1. Siを0.1質量%以上3.0質量%以下含有するSi含有冷延鋼板と,
    前記Si含有冷延鋼板の少なくとも片面に形成された,片面あたりの付着量が2.0g/m 以上であるFe系電気めっき層とを有し,
    前記Fe系電気めっき層と前記Si含有冷延鋼板との界面において前記Fe系電気めっき層と前記Si含有冷延鋼板との結晶方位が一体化している割合が50%超である,Fe系電気めっき鋼板。
  2. 前記Si含有冷延鋼板は,Siを0.50質量%以上3.0質量%以下含有する,請求項1に記載のFe系電気めっき鋼板。
  3. 前記Fe系電気めっき層の片面あたりの付着量が,5.0g/m以上である,請求項1または2に記載のFe系電気めっき鋼板。
  4. 前記Si含有冷延鋼板は,前記Siに加えて,質量%で,
    C:0.8%以下,
    Mn:1.0%以上12.0%以下,
    P:0.1%以下,
    S:0.03%以下,
    N:0.010%以下及び
    Al:1.0%以下を含有し,残部がFe及び不可避的不純物からなる成分組成を有する,請求項1から3のいずれか1項に記載のFe系電気めっき鋼板。
  5. 前記成分組成がさらに,
    B:0.005%以下,
    Ti:0.2%以下,
    Cr:1.0%以下,
    Cu:1.0%以下,
    Ni:1.0%以下,
    Mo:1.0%以下,
    Nb:0.20%以下,
    V:0.5%以下,
    Sb:0.200%以下,
    Ta:0.1%以下,
    W:0.5%以下,
    Zr:0.1%以下,
    Sn:0.20%以下,
    Ca:0.005%以下,
    Mg:0.005%以下及び
    REM:0.005%以下
    からなる群から選ばれる1種または2種以上を含有する,請求項4に記載のFe系電気めっき鋼板。
  6. 前記Fe系電気めっき層は,B,C,P,N,O,Ni,Mn,Mo,Zn,W,Pb,Sn,Cr,V及びCoからなる群から選ばれる1または2以上の元素を合計で10質量%以下含み,残部はFe及び不可避的不純物からなる成分組成を有する,請求項1から5のいずれか1項に記載のFe系電気めっき鋼板。
  7. 冷延鋼板と,
    前記冷延鋼板の少なくとも片面に形成された,片面あたりの付着量が2.0g/m 以上であるFe系電気めっき層とを有し,
    前記Fe系電気めっき層と前記冷延鋼板との界面において前記Fe系電気めっき層と前記冷延鋼板との結晶方位が一体化している割合が50%超である,Fe系電気めっき鋼板。
    ここで,前記冷延鋼板は,圧延直角方向を長手として50×150mmに切り出した試験片を,同サイズに切り出した溶融亜鉛めっき層の片面あたりの付着量が50g/mである試験用合金化溶融亜鉛めっき鋼板と重ねて板組とし,
    次いで,サーボモータ加圧式で単相交流(50Hz)の抵抗溶接機を用いて,該抵抗溶接機の電極対(先端径6mm)の中心軸同士を結んだ線に対する垂直面に対して前記板組を該板組の長手方向側に5°傾け,前記電極対の下側電極と前記試験片との間に前記板組の長手方向60mm×前記板組の厚さ方向2.0mmの空隙を設けて前記下側電極と前記板組とを固定し,前記電極対の上側電極を可動にした状態で,前記板組に,加圧力:3.5kN,ホールドタイム:0.16秒,並びにナゲット径が5.9mmになる溶接電流及び溶接時間の条件にて抵抗溶接を施して溶接部付き板組とし,
    次いで,前記溶接部付き板組を溶接部を含むように前記試験片の長手方向に沿って半切して,該溶接部の断面を光学顕微鏡(倍率200倍)で観察した場合に,0.1mm以上の長さのき裂が認められる冷延鋼板である。
  8. 前記冷延鋼板は,前記ホールドタイムを0.24秒とした条件にて,前記抵抗溶接を施して前記溶接部付き板組を得,前記溶接部の断面を前記光学顕微鏡(倍率200倍)で観察した場合に,0.1mm以上の長さのき裂が認められる冷延鋼板である,請求項7に記載のFe系電気めっき鋼板。
  9. 請求項1から8のいずれか1項に記載のFe系電気めっき鋼板上に,前記Fe系電気めっき層に接触して形成された化成処理皮膜と,該化成処理皮膜上に形成された電着塗装皮膜とをさらに有する,電着塗装鋼板。
  10. 請求項9に記載の電着塗装鋼板を少なくとも一部に用いてなる,自動車部品。
  11. 請求項1から8のいずれか1項に記載のFe系電気めっき鋼板に追加のめっき処理を施さずに化成処理を施して,前記Fe系電気めっき層に接触して化成処理皮膜が形成された化成処理鋼板を得る,化成処理工程と,
    前記化成処理鋼板に電着塗装処理を施して,前記化成処理皮膜上に電着塗装皮膜が形成された電着塗装鋼板を得る,電着塗装工程と,
    を含む,電着塗装鋼板の製造方法。
  12. Siを0.1質量%以上3.0質量%以下含有する冷延鋼板にFe系電気めっきを施して,片面あたりの付着量が2.0g/m 以上の焼鈍前Fe系電気めっき層が少なくとも片面に形成された焼鈍前Fe系電気めっき鋼板とし,
    次いで,前記焼鈍前Fe系電気めっき鋼板を露点-30℃以下の雰囲気下で焼鈍して,Fe系電気めっき鋼板を得る,Fe系電気めっき鋼板の製造方法。
  13. 前記冷延鋼板は,Siを0.5質量%以上3.0質量%以下含有する,請求項12に記載のFe系電気めっき鋼板の製造方法。
  14. 冷延鋼板にFe系電気めっきを施して,片面あたりの付着量が2.0g/m 以上の焼鈍前Fe系電気めっき層が少なくとも片面に形成された焼鈍前Fe系電気めっき鋼板とし,
    次いで,前記焼鈍前Fe系電気めっき鋼板を焼鈍して,Fe系電気めっき鋼板を得る,Fe系電気めっき鋼板の製造方法。
    ここで,前記冷延鋼板は,圧延直角方向を長手として50×150mmに切り出した試験片を,同サイズに切り出した溶融亜鉛めっき層の片面あたりの付着量が50g/mである試験用合金化溶融亜鉛めっき鋼板と重ねて板組とし,
    次いで,サーボモータ加圧式で単相交流(50Hz)の抵抗溶接機を用いて,該抵抗溶接機の電極対(先端径6mm)の中心軸同士を結んだ線に対する垂直面に対して前記板組を該板組の長手方向側に5°傾け,前記電極対の下側電極と前記試験片との間に前記板組の長手方向60mm×前記板組の厚さ方向2.0mmの空隙を設けて前記下側電極と前記板組とを固定し,前記電極対の上側電極を可動にした状態で,前記板組に,加圧力:3.5kN,ホールドタイム:0.16秒,並びにナゲット径が5.9mmになる溶接電流及び溶接時間の条件にて抵抗溶接を施して溶接部付き板組とし,
    次いで,前記溶接部付き板組を溶接部を含むように前記試験片の長手方向に沿って半切して,該溶接部の断面を光学顕微鏡(倍率200倍)で観察した場合に,0.1mm以上の長さのき裂が認められる冷延鋼板である。
  15. 前記冷延鋼板は,前記ホールドタイムを0.24秒とした条件にて,前記抵抗溶接を施して前記溶接部付き板組を得,前記溶接部の断面を光学顕微鏡(倍率200倍)で観察した場合に,0.1mm以上の長さのき裂が認められる冷延鋼板である,請求項14に記載のFe系電気めっき鋼板の製造方法。
  16. B,C,P,N,O,Ni,Mn,Mo,Zn,W,Pb,Sn,Cr,V及びCoからなる群から選ばれる1または2以上の元素を,前記焼鈍前Fe系電気めっき層中でこれらの元素の合計含有量が10質量%以下となるように含有するFe系電気めっき浴を用いて,前記Fe系電気めっきを施す,請求項12から15のいずれか1項に記載のFe系電気めっき鋼板の製造方法。
  17. Siを0.1質量%以上3.0質量%以下含有するSi含有冷延鋼板と,前記Si含有冷延鋼板の少なくとも片面に形成された,片面あたりの付着量が20.0g/m 超であるFe系電気めっき層とを有し,前記Fe系電気めっき層と前記Si含有冷延鋼板との界面において前記Fe系電気めっき層と前記Si含有冷延鋼板との結晶方位が一体化している割合が50%超であるFe系電気めっき鋼板上に,前記Fe系電気めっき層に接触して形成された化成処理皮膜と,該化成処理皮膜上に形成された電着塗装皮膜とをさらに有する,電着塗装鋼板。
  18. 請求項17に記載の電着塗装鋼板を少なくとも一部に用いてなる,自動車部品。
  19. Siを0.1質量%以上3.0質量%以下含有するSi含有冷延鋼板と,前記Si含有冷延鋼板の少なくとも片面に形成された,片面あたりの付着量が20.0g/m 超であるFe系電気めっき層とを有し,前記Fe系電気めっき層と前記Si含有冷延鋼板との界面において前記Fe系電気めっき層と前記Si含有冷延鋼板との結晶方位が一体化している割合が50%超であるFe系電気めっき鋼板に追加のめっき処理を施さずに化成処理を施して,前記Fe系電気めっき層に接触して化成処理皮膜が形成された化成処理鋼板を得る,化成処理工程と,
    前記化成処理鋼板に電着塗装処理を施して,前記化成処理皮膜上に電着塗装皮膜が形成された電着塗装鋼板を得る,電着塗装工程と,
    を含む,電着塗装鋼板の製造方法。
JP2022520145A 2020-11-06 2021-11-05 Fe系電気めっき鋼板,電着塗装鋼板,自動車部品,電着塗装鋼板の製造方法,及びFe系電気めっき鋼板の製造方法 Active JP7323062B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2020186204 2020-11-06
JP2020186204 2020-11-06
PCT/JP2021/040869 WO2022097732A1 (ja) 2020-11-06 2021-11-05 Fe系電気めっき鋼板,電着塗装鋼板,自動車部品,電着塗装鋼板の製造方法,及びFe系電気めっき鋼板の製造方法

Publications (2)

Publication Number Publication Date
JPWO2022097732A1 JPWO2022097732A1 (ja) 2022-05-12
JP7323062B2 true JP7323062B2 (ja) 2023-08-08

Family

ID=81458365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022520145A Active JP7323062B2 (ja) 2020-11-06 2021-11-05 Fe系電気めっき鋼板,電着塗装鋼板,自動車部品,電着塗装鋼板の製造方法,及びFe系電気めっき鋼板の製造方法

Country Status (7)

Country Link
US (1) US20230407506A1 (ja)
EP (1) EP4242355A4 (ja)
JP (1) JP7323062B2 (ja)
KR (1) KR20230098323A (ja)
CN (1) CN116368266A (ja)
MX (1) MX2023005274A (ja)
WO (1) WO2022097732A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015500925A (ja) 2011-12-23 2015-01-08 ポスコ 極低温接合性に優れた溶融亜鉛めっき鋼板及びその製造方法
WO2020148944A1 (ja) 2019-01-18 2020-07-23 Jfeスチール株式会社 溶融亜鉛めっき鋼板の製造方法
WO2021200412A1 (ja) 2020-03-31 2021-10-07 Jfeスチール株式会社 Fe系電気めっき鋼板,電着塗装鋼板,自動車部品,電着塗装鋼板の製造方法,およびFe系電気めっき鋼板の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5881991A (ja) * 1981-11-05 1983-05-17 Nippon Steel Corp 塗装適合性にすぐれた片面亜鉛系電気メツキ鋼板
JPH04214895A (ja) * 1990-02-21 1992-08-05 Kawasaki Steel Corp めっき性と溶接性に優れた表面処理鋼板およびその製造方法
JPH05132747A (ja) * 1991-11-12 1993-05-28 Kawasaki Steel Corp 溶融Znめつきクロム含有鋼板の製造方法
EP0591547B1 (en) * 1992-03-30 1997-07-09 Kawasaki Steel Corporation Surface-treated steel sheet reduced in plating defects and production thereof
JPH05320952A (ja) * 1992-05-25 1993-12-07 Nkk Corp 塗装後の耐食性に優れた高強度冷延鋼板
KR20130076589A (ko) * 2011-12-28 2013-07-08 주식회사 포스코 도금표면 품질 및 도금밀착성이 우수한 고강도 용융아연도금강판 및 그 제조방법
BR112020008427A2 (pt) 2017-12-15 2020-11-17 Nippon Steel Corporation chapa de aço, chapa de aço galvanizado por imersão a quente e chapa de aço galvanizado e recozido

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015500925A (ja) 2011-12-23 2015-01-08 ポスコ 極低温接合性に優れた溶融亜鉛めっき鋼板及びその製造方法
WO2020148944A1 (ja) 2019-01-18 2020-07-23 Jfeスチール株式会社 溶融亜鉛めっき鋼板の製造方法
WO2021200412A1 (ja) 2020-03-31 2021-10-07 Jfeスチール株式会社 Fe系電気めっき鋼板,電着塗装鋼板,自動車部品,電着塗装鋼板の製造方法,およびFe系電気めっき鋼板の製造方法

Also Published As

Publication number Publication date
EP4242355A4 (en) 2024-05-22
KR20230098323A (ko) 2023-07-03
EP4242355A1 (en) 2023-09-13
US20230407506A1 (en) 2023-12-21
WO2022097732A1 (ja) 2022-05-12
CN116368266A (zh) 2023-06-30
JPWO2022097732A1 (ja) 2022-05-12
MX2023005274A (es) 2023-07-26

Similar Documents

Publication Publication Date Title
JP7205664B2 (ja) Fe電気めっき鋼板,電着塗装鋼板,自動車部品,電着塗装鋼板の製造方法,およびFe電気めっき鋼板の製造方法
JP7311041B2 (ja) Fe系電気めっき鋼板,電着塗装鋼板,自動車部品,電着塗装鋼板の製造方法,及びFe系電気めっき鋼板の製造方法
EP3900866A1 (en) Spot welding member
JP7311042B2 (ja) 亜鉛めっき鋼板,電着塗装鋼板,自動車部品,電着塗装鋼板の製造方法,及び亜鉛めっき鋼板の製造方法
JP7311043B2 (ja) 合金化亜鉛めっき鋼板,電着塗装鋼板,自動車部品,電着塗装鋼板の製造方法,及び合金化亜鉛めっき鋼板の製造方法
US11408047B2 (en) Alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet production method
JP7323062B2 (ja) Fe系電気めっき鋼板,電着塗装鋼板,自動車部品,電着塗装鋼板の製造方法,及びFe系電気めっき鋼板の製造方法
JP7323064B2 (ja) 亜鉛めっき鋼板,電着塗装鋼板,自動車部品,電着塗装鋼板の製造方法,及び亜鉛めっき鋼板の製造方法
JP7323063B2 (ja) 合金化亜鉛めっき鋼板,電着塗装鋼板,自動車部品,電着塗装鋼板の製造方法,及び合金化亜鉛めっき鋼板の製造方法
KR20230160384A (ko) 강 용접 부재
WO2022244772A1 (ja) Fe系電気めっき鋼板および溶融亜鉛めっき鋼板ならびにそれらの製造方法
EP4316719A1 (en) Resistance spot welding member and resistance spot welding method therefor
JP7151948B1 (ja) 高強度亜鉛めっき鋼板および部材ならびにそれらの製造方法
JP2022180344A (ja) Fe系電気めっき高強度鋼板及びその製造方法
WO2022264585A1 (ja) 高強度亜鉛めっき鋼板および部材ならびにそれらの製造方法
WO2019188235A1 (ja) 合金化溶融亜鉛めっき鋼板、及び合金化溶融亜鉛めっき鋼板の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230710

R150 Certificate of patent or registration of utility model

Ref document number: 7323062

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150