JP7311140B2 - 蒸留方法および蒸留装置 - Google Patents

蒸留方法および蒸留装置 Download PDF

Info

Publication number
JP7311140B2
JP7311140B2 JP2019124514A JP2019124514A JP7311140B2 JP 7311140 B2 JP7311140 B2 JP 7311140B2 JP 2019124514 A JP2019124514 A JP 2019124514A JP 2019124514 A JP2019124514 A JP 2019124514A JP 7311140 B2 JP7311140 B2 JP 7311140B2
Authority
JP
Japan
Prior art keywords
distillation
undiluted
solution
heating
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019124514A
Other languages
English (en)
Other versions
JP2021010850A (ja
Inventor
弘 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Frontier Engineering Co Ltd
Original Assignee
Frontier Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Frontier Engineering Co Ltd filed Critical Frontier Engineering Co Ltd
Priority to JP2019124514A priority Critical patent/JP7311140B2/ja
Publication of JP2021010850A publication Critical patent/JP2021010850A/ja
Application granted granted Critical
Publication of JP7311140B2 publication Critical patent/JP7311140B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Alcoholic Beverages (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Description

本発明は、焼酎、ウイスキー等の蒸留酒を製造するための蒸留技術に関する。
蒸留酒は、穀物や果実等の原料を発酵し、発酵液つまり醪(もろみ)を蒸留原液としてこれを蒸留することにより製造され、蒸留酒には焼酎、ウイスキー、ブランデー、ウオッカ等がある。焼酎は芋類等を発酵させた醪を蒸留することにより製造され、ウイスキーは麦芽を発酵させた発酵液を蒸留することにより製造され、ブランデーは果実を発酵させた発酵液を蒸留することにより製造される。
発酵液を蒸留する蒸留方法としては、単式蒸留法と連続蒸留法とがある。単式蒸留法は、醪を蒸留釜で加熱蒸発させる蒸留法であり、発生した蒸気を冷却機により凝縮させることによって蒸留酒が製造される。蒸留釜における醪の加熱方式には、蒸留釜の外側を水蒸気により加熱するようにした間接加熱式と、醪に直接水蒸気を注入する直接加熱式とがある。
連続蒸留法は、無数の孔が開けられた水平の多数の棚により仕切られた縦型の蒸留機を用い、蒸留機の上端から醪を供給し、下端から蒸気を供給することにより、醪のアルコールを分離する方法である。醪廃液は蒸留機の下端部から排出され、蒸留機に連続的に醪を供給することができる。
特許文献1には単式蒸留装置が記載されており、蒸留釜を大気圧よりも減圧した状態で、蒸留釜内に直接水蒸気を吹き込んで蒸留するようにした単式蒸留装置が記載されている。
特開2005-287357号公報
蒸留釜を減圧した状態で蒸留原液つまり醪を加熱すると、減圧により醪の蒸留温度が低くなり、常圧で蒸留する場合よりも醪の加熱温度が低くなるので、蒸留酒の焦げ臭となるフルフラールの発生を抑制できるという利点がある。一方、蒸留釜を外側から加熱する間接加熱式の場合には、蒸留釜の内部に供給された醪が所定の加熱温度となるように、蒸留釜の外面温度を醪の温度よりも熱媒体により高める必要があり、醪が所定の加熱温度よりも過加熱されることがあり、蒸留酒にフルフラールが発生することがある。
これに対し、醪に直接水蒸気を注入する直接加熱式の場合には、醪が過加熱されることを抑制することができるが、醪に水蒸気が直接注入されるので、蒸留処理後の蒸留釜に残った蒸留廃液や残留醪からなる蒸留残渣の量が増加する。このため、蒸留残渣の処理に時間がかかり、残渣処理を含めて蒸留作業を効率的に行うことができない。連続蒸留法においても、蒸留機の上端から醪を供給し、棚に設けられた多数の孔から醪を落下させながら、下端から供給された蒸気を醪に注入しており、蒸留機の下端部から排出される蒸留残渣の量が増加することが避けられない。
このように、水蒸気により醪を加熱すると、蒸留釜や蒸留機のみならず、蒸気を発生させるボイラを併設する必要があり、ボイラを含めた蒸留のための設備の大型化が避けられない。
本発明の目的は、蒸留原液に外部から熱を加えることなく、蒸留原液にジュール熱を発生させることにより、蒸留作業の効率を向上させることにある。
本発明の蒸留方法は、蒸留原液を搬送する加熱流路が形成された蒸留加熱管の流入口に、原液収容タンクに収容された蒸留原液を供給する一方、前記原液収容タンクの循環口に前記蒸留加熱管の原液流出口から流出する蒸留原液を返流し、前記原液収容タンクから前記加熱流路を介して前記原液収容タンクに戻る蒸留原液の循環流を形成する循環工程と、前記蒸留加熱管に対をなして設けられた電極部材に電源ユニットから電力を供給し、前記電極部材から前記加熱流路内の蒸留原液に電流を流して循環流にジュール熱を発生させる発熱工程と、前記加熱流路内の蒸留原液から発生した蒸気を冷却ユニットにより凝縮する凝縮工程と、を有し、前記加熱流路内の蒸留原液の導電率の上昇に応じて、前記電源ユニットが設定最大電力を出力するように、蒸留原液を流れる電流の上昇に伴って前記電極部材に印加される電圧を低下させる
本発明の蒸留装置は、蒸留原液を収容する原液収容タンクと、蒸留原液を搬送する加熱流路が形成された蒸留加熱管と前記原液収容タンクの吐出口と前記蒸留加熱管の流入口との間に設けられた供給配管と、前記蒸留加熱管の原液流出口と前記原液収容タンクの循環口との間に設けられた循環配管前記蒸留加熱管に対をなして設けられ、前記加熱流路を流れる蒸留原液に電流を流してジュール熱を発生させる電極部材前記電極部材に接続され前記電極部材に電力を供給する電源ユニット前記蒸留加熱管の蒸気流出口に接続され前記加熱流路内の蒸留原液から発生した蒸気を凝縮する冷却ユニットを有し、前記電源ユニットは、電圧の相違した出力電圧を出力する複数の給電タップを備えた出力トランスと、複数の前記給電タップのいずれか1つをオンに切り換えて電力を前記電極部材に出力するタップ切換機と、前記加熱流路内の蒸留原液の導電率の上昇に応じて、蒸留原液を流れる電流の上昇に伴って前記電極部材に印加される電圧を低下させるように、前記タップ切換機に切換信号を出力するコントローラと、を有する
蒸留原液を加熱するために、ジュール熱を利用して蒸留原液を発熱させて加熱するようにしたので、蒸留原液が過加熱されることなく、蒸留原液の過加熱に起因して蒸留液にフルフラールが発生することがなく、高品質の蒸留酒を製造することができる。また、蒸留原液を発熱により加熱するようにしたので、蒸留加熱管の内壁面にスケールが付着することがなく、蒸留加熱管の定期的な洗浄処理を容易に行うことができる。さらに、従来のように、蒸留原液に水蒸気を注入して蒸留原液を加熱すると、蒸留残渣の量が増加してしまい、その処理に時間がかかるが、ジュール熱により蒸留原液を加熱すると、蒸留残渣は増加することなく、残渣処理を含めた蒸留作業を効率的に行うことができる。
一実施の形態である蒸留装置を示す概略図である。 図1に示された電源ユニットの制御回路を示すブロック図である。 出力トランスの設定最大電力を出力する電圧と電流との関係を示す特性線図である。 (A)は蒸留加熱管の変形例を示す縦断面図であり、(B)は(A)におけるB-B線断面図である。
以下、本発明の実施の形態を図面に基づいて詳細に説明する。図1に示されるように、蒸留装置10は、蒸留原液Mを収容する原液収容タンク11と、蒸留原液Mを蒸留して蒸気を発生させる蒸留加熱管12とを備えており、蒸留加熱管12には蒸留原液Mを搬送する加熱流路13が形成されている。原液収容タンク11には注入配管14により蒸留原液Mである発酵液つまり醪が供給される。
蒸留加熱管12の下端部には流入口15が設けられ、原液収容タンク11の下端部に設けられた吐出口16と流入口15との間には供給配管17が接続されている。供給配管17にはポンプ18が設けられており、ポンプ18により原液収容タンク11の吐出口16から吐出された蒸留原液Mは、供給配管17により蒸留加熱管12の流入口15から加熱流路13に供給される。
蒸留加熱管12の上端部には原液流出口21が設けられ、原液収容タンク11の循環口22と原液流出口21との間には蒸留原液Mを原液収容タンク11に返流するための循環配管23が設けられている。この循環配管23により、蒸留加熱管12の加熱流路13内を上端部にまで流れた蒸留原液Mは、原液流出口21から流出して原液収容タンク11内に戻される。このように、原液収容タンク11、蒸留加熱管12、供給配管17および循環配管23により、原液収容タンク11から加熱流路13を介して原液収容タンク11に蒸留原液Mを戻すように蒸留原液Mの循環流が形成される。
図1に示される蒸留加熱管12は、5つのリング状の電極部材24と、これらの間に配置される円筒部材25とを有している。電極部材24はチタンやステンレス等の導体により形成され、円筒部材25は樹脂等の絶縁部材により形成されている。加熱流路13内の蒸留原液Mの流れる方向に隣り合う2つの電極部材24は対を成しており、蒸留加熱管12は4対の電極部材24を有している。下端部の電極部材24には流入側の継手部26が取り付けられ、上端部の電極部材24には流出側の継手部27が取り付けられている。継手部26には流入口15が設けられ、継手部27には原液流出口21が設けられている。
それぞれの電極部材24には、対をなす2つの電極部材24が逆極性となるように、電源ユニット28から高周波電流が供給される。蒸留加熱管12を構成する電極部材24の数は、5つに限られることなく、複数であれば任意の数とすることができる。また、電極部材24はリング状に限られず、板状の電極部材とすることができる。なお、図1においては、供給配管17および循環配管23は便宜的に線で表されているが、加熱流路13と同様の内径を有する管状の部材により形成されている。図1においては、蒸留加熱管12はほぼ垂直方向になって示されているが、蒸留加熱管12は傾斜させて配置するようにしても良い。
原液収容タンク11に蒸留原液Mが収容された状態のもとで、ポンプ18を駆動すると、蒸留原液Mは供給配管17を通って蒸留加熱管12の流入口15から加熱流路13に流入する。加熱流路13に流入した蒸留原液Mは、液面Sが原液流出口21よりも高い位置となるように保持され、原液流出口21から循環配管23に流入する。これにより、蒸留原液Mは原液収容タンク11に戻される。このようにして、加熱流路13を蒸留原液Mが循環している状態つまり循環工程のもとで、電源ユニット28から電極部材24に電力が供給される。電源ユニット28は、対をなす2つの電極部材24の一方に接続される低電位側の共通端子COMと、他方に接続される高電位側の出力端子Hiとを有しており、電源ユニット28からは高周波電流が電極部材対に印加される。対をなす電極部材24の間の蒸留原液Mに電流が流れると、蒸留原液Mにはジュール熱が発生し、ジュール熱により蒸留原液Mを加熱する発熱工程が実行される。蒸留加熱管12内の蒸留原液Mが加熱されると、蒸留原液Mは原液収容タンク11に戻されて原液収容タンク11内を循環するので、原液収容タンク11内の蒸留原液Mの温度も高められる。これにより、循環している蒸留原液Mからから蒸気成分が発生する。
蒸留加熱管12内で発生した蒸気成分が原液流出口21から循環配管23内に入り込まないように、蒸留加熱管12内の蒸留原液Mの液面Sよりも低い位置に原液流出口21が設けられている。さらに、上側部が液面Sとほぼ同一かそれよりも高い位置となる屈曲部29が循環配管23に設けられており、循環配管23はその内部に加熱流路13内の気体が流入しないように水封状態となっている。
循環している蒸留原液Mから発生した蒸気成分を凝縮するために、蒸留装置10は冷却ユニット31を有している。原液収容タンク11内で発生した蒸気成分を冷却ユニット31に供給するために蒸気供給管32が原液収容タンク11の上部に設けられている。さらに、蒸留加熱管12内で発生して蒸留原液Mから分離された蒸気成分を冷却ユニット31に供給するために、蒸留加熱管12の蒸気流出口33は接続配管34により蒸気供給管32に接続されている。
冷却ユニット31には、原液収容タンク11および蒸留加熱管12から供給された蒸気を冷却する冷却ジャケットが設けられており、冷却ジャケットには、冷却水供給管35から冷却水が供給され、冷却水排出管36から排出される。冷却ユニット31により蒸気は冷却されて凝縮され、蒸留液つまり蒸留酒Lが生成される。このように凝縮工程において凝縮された蒸留液Lは、製品ガイド37により回収タンク38に供給される。
原液収容タンク11および蒸留加熱管12内の蒸気を冷却ユニット31に吸引し、凝縮された蒸留液Lを回収タンク38に吸引するために、回収タンク38には吸引ポンプ39が接続されている。吸引ポンプ39により循環流路の圧力は大気圧よりも低い圧力に設定される。
循環配管23には、その内部を循環する蒸留原液Mを外部から目視するために、透明性を有するサイトガラス41が設けられている。また、供給配管17内を流れる蒸留原液Mのサンプルを抽出するために、供給配管17にはサンプル取出し弁42が設けられ、循環配管23の内部を流れる蒸留原液Mのサンプルを抽出するために、循環配管23にはサンプル取出し弁43が設けられている。蒸留原液Mからの蒸留液Lの蒸留作業が終了した後に、原液収容タンク11内の蒸留残渣を外部に排出するために、供給配管17には三方弁44が設けられている。ただし、原液収容タンク11の上面から蒸留残渣を排出するようにしても良い。
原液収容タンク11は保温ジャケット45により保温されており、保温ジャケット45内には温水供給管46から温水が供給され、温水排出管47から外部に排出される。これにより、保温ジャケット45内の温水は一定の温度に保持される。
蒸留原液Mを加熱するために、従来のように蒸留釜の外側を加熱することなく、ジュール熱により蒸留原液Mを発熱させて加熱するようにしたので、蒸留原液が過加熱されることはない。これにより、蒸留原液の過加熱に起因して蒸留液にフルフラールが発生することがなく、高品質の蒸留酒を製造することができる。また、蒸留原液Mを発熱により加熱するようにしたので、蒸留加熱管12の内壁面にスケールが付着することがなく、蒸留加熱管12の定期的な洗浄処理を容易に行うことができる。
一方、従来のように、蒸留原液に水蒸気を注入して蒸留原液を加熱すると、蒸留残渣の量が増加してしまい、その処理に時間がかかるが、ジュール熱により蒸留原液Mを加熱すると、蒸留残渣は増加することなく、残渣処理を含めた蒸留作業を効率的に行うことができる。
蒸留原液Mは原液収容タンク11と蒸留加熱管12とを循環しており、原液収容タンク11において発生した蒸気は蒸気供給管32により冷却ユニット31に送られ、蒸留加熱管12において発生した蒸気は接続配管34により冷却ユニット31に送られる。このように、蒸留原液Mを循環させてアルコール成分を蒸発させるようにしているので、蒸留効率を高めることができる。図1に示されるように、吸引ポンプ39により加熱流路13および原液収容タンク11を大気圧以下に減圧すると、アルコール成分をより効率的に蒸気させることができる。
図2は電源ユニットの制御回路を示すブロック図である。電源ユニット28は、一次側コイルと二次側コイルとを備えた出力トランス51とタップ切換機52とを有している。出力トランス51の二次側コイルは、低電位側の給電タップV0と、出力電圧が相違する複数の高電位側の給電タップV1~V4とを備えている。タップ切換機52は、出力トランス51の低電位側の給電タップV0に接続される共通端子COMと、全ての高電位側の給電タップV1~V4に接続される高電位側の出力端子Hiとを有している。相互に対をなす2種類の電極部材24のうちの一方に低電位側の共通端子COMを接続し、他方に逆極性の高電位側の出力端子Hiを接続すると、出力トランス51からは、電極対の間の蒸留原液Mに電流が印加される。電極対に高周波電流を供給するために、商用電源の交流を直流に整流した後にインバータにより、例えば、20kHzの高周波に変換される。
タップ切換機52は、それぞれの給電タップV1~V4を出力端子Hiに接続する出力配線に、リレー等からなるスイッチ53~56が設けられている。したがって、1つのスイッチ53をオンとして、他のスイッチをオフにすると、出力端子Hiには給電タップV4に接続される。他の給電タップについても同様である。それぞれのスイッチ53~56は、コントローラ60からの切換信号により切換制御される。
コントローラ60には、蒸留加熱管12に供給される蒸留原液Mの導電率を検出するための導電率センサ61からの検出信号と、電極部材24に流れる電流を検出する電流センサからの検出信号とが送られるようになっている。さらに、蒸留加熱管12に供給される蒸留原液Mの温度を検出する温度センサ63からの検出信号がコントローラ60に送られるようになっている。
蒸留原液Mは、温度が上昇すると、導電率が高くなって電気が流れ易くなる。蒸留原液Mを循環させることにより、時間の経過に伴って循環回数が増加すると、流入口15から加熱流路13に供給される蒸留原液Mの温度は高まってくる。したがって、蒸留処理の時間が経過して導電率が高くなると、蒸留原液Mを電流が流れ易くなって電流が高くなる。
加熱開始から加熱終了まで、常に特定の1つの給電タップを電極部材に接続して蒸留原液Mを加熱すると、電源ユニット28から電極部材24に流れる電流は、出力トランス51の設定最大電力Wmaxのときの電流つまり最大電流を超えないように設定される。このため、蒸留原液Mの温度上昇により蒸留原液Mを流れる電流が最大電流値まで高くなると、電流値はそれ以上高くならない。したがって、常に特定の1つの給電タップを電極部材に接続する方式では、蒸留原液Mを循環させてジュール加熱する場合には、加熱効率を高めることができない。
そこで、蒸留原液Mを循環させる場合には、効率的に蒸留を行うために、蒸留原液の導電率が高くなって蒸留原液Mを流れる電流が高くなったら、電圧が低い給電タップに切り換えて、蒸留原液Mを流れる電流を高くするように制御する。電圧を低下させて出力トランス51の設定最大電力Wmaxを出力させると、蒸留原液に供給される電流を高めることができる。これにより、迅速に蒸留原液Mの温度を高めることができる。
例えば、図2に示される出力トランス51の設定最大電力Wmaxを70kWとし、高電位側の給電タップV4の電圧が2500V、給電タップV3の電圧が1900V、給電タップV2の電圧が1400V、給電タップV1の電圧が1000Vであるとする。この場合には、2500Vの給電タップV4がオンされているときには、蒸留原液Mに流れる最大電流は28Aであり、給電タップV3がオンされているときには、蒸留原液Mに流れる最大電流は36.8Aである。さらに、給電タップV2がオンされているときには、蒸留原液Mに流れる最大電流は50Aであり、給電タップV1がオンされているときには、蒸留原液Mに流れる最大電流は70Aである。
この出力トランス51の場合には、スイッチ53がオンされ、他のスイッチがオフとなっているときには、出力トランス51の給電タップV4から最大電流が28Aを超えないように電極部材24に電力が印加される。蒸留原液Mの加熱開始から加熱終了まで、給電タップV4から電圧を印加させるようにすると、最大電流は28Aを超えないようになっており、蒸留原液Mの温度が高められて導電率が高くなっても、最大電流である28Aが保持される。しかし、この電流を流し続けるようにすると、目標温度にまで加熱するには時間がかかってしまう。このように、導電率が高くなっても、電流値が28Aよりも高められないと、蒸留原液Mを効率的に加熱することができなくなる。
そこで、本発明においては、電流値が2500Vのときの最大電流28Aに所定範囲まで近づくか到達したら、出力トランス51の出力電圧が自動的に低下される。例えば、蒸留原液Mの導電率が加熱初期よりも高くなったら出力電圧が1900Vにまで低下される。設定最大電力が70kWの出力トランス51の場合には、出力電圧が1900Vであれば、最大電流36.8Aを流すことができる。
このように、給電タップV4がオンされて、給電タップV4の最大電流が28Aであるときに、電流値が28Aに所定範囲まで近づくか到達したら、給電タップV4をオフにして給電タップV3をオンに切り換えて電圧を1900Vに設定する。これにより、最大電流を36.8Aまで高めることができる。同様にして、蒸留原液Mの温度上昇に起因した導電率の上昇に伴って、順次、給電タップV2、給電タップV1に切り換える。これにより、蒸留原液Mに給電される電流値を高めることができるので、出力トランス51からは設定最大電力を蒸留原液Mに供給することができ、短時間で迅速に蒸留原液を加熱することができる。
蒸留原液Mの種類によっては、給電タップV4から給電タップV1まで切り換えることなく、給電タップV3または給電タップV2まで切り換えることにより、蒸留原液を目標温度まで加熱する。
図3は、図2に示した出力トランス51の給電タップを給電タップV4~V1に切り換えた場合における出力トランスの設定最大電力を出力する電圧と電流との関係を示す特性線図である。
設定最大電力Wmaxが70kWの場合には、給電タップV4がオンされて蒸留原液Mを加熱しているときに、蒸留原液Mの温度が上昇して導電率が高くなって電流値が電圧2500Vのときの上限値である28Aに近づくか到達したら、タップ切換機52により、給電タップV4がオフされて給電タップV3がオンされる。これにより、最大電流値が36.8Aに近づくまで、電流値を高めることができる。同様に、蒸留原液Mの温度がさらに高まって電流値が電圧1900Vのときの上限値である36.8Aに近づくか到達したら、タップ切換機52により、給電タップV3がオフされて給電タップV2がオンされる。これにより、最大電流値が50Aに近づくまで、電流値を高めることができる。さらに、電流値が1400Vのときの上限値である50Aに近づくか到達したら、給電タップV2がオフされて給電タップV1がオンされる。これにより、最大電流値が70Aに近づくまで、電流値を高めることができる。
加熱開始から加熱終了まで、常に特定の1つの給電タップを電極部材に接続して蒸留原液を加熱すると、印加電圧に応じた設定最大電力となる電流値を超えずにその電流値が維持される。このため、蒸留原液Mの加熱に時間がかかってしまう。これに対して、設定最大電力Wmaxが出力されるように、タップ切換機52により、導電率に応じて電圧を低下させると、低下された電圧に見合うように電流値が高められるので、蒸留原液Mをジュール熱により効率的に加熱させることができる。
図2に示されるように、導電率センサ61からの検出信号に基づいてタップ切換機52を切換制御する形態においては、蒸留原液Mの導電率に応じて電圧が切り換えられる。例えば、蒸留初期にスイッチ53がオンされているときに、蒸留原液Mの導電率が高くなったことが検出されたら、コントローラ60からの信号により、タップ切換機52のスイッチ54がオンに切り換えられ、他のスイッチはオフに設定される。このように、給電タップV4の電圧とその電圧に応じた出力電流とからなる最大電力が出力トランス51の設定最大電力に近づいたときには、タップ切換機52により、低い電圧の給電タップV3に切り換えられる。導電率の上昇に伴って、タップ切換機52により、順次、スイッチのオンオフが制御されて、電圧が低下されるので、蒸留原液Mに供給される電流値を高めることができる。
コントローラ60は、センサからの検出信号に基づいてタップ切換機52に対する制御信号を演算するマイクロプロセッサと、制御プログラム、マップデータおよび演算式等が格納されるメモリとを備えている。導電率センサ61からの検出信号に基づいてタップ切換機52を制御する形態においては、蒸留原液Mの導電率の範囲と導電率に応じた電圧値との関係を示すマップデータや演算式がコントローラ60に格納されている。格納されたデータや演算式に基づいてタップ切換機52のスイッチのオンオフが制御される。
蒸留原液Mの導電率が変化すると、電極部材24に流れる電流も変化するので、電流センサ62からの検出信号に基づいて、タップ切換機52を制御する形態としても良い。その場合にも、上述した導電率センサ61からの信号によりタップ切換機52を制御した場合と同様に、電流値の上昇に伴ってタップ切換機52が制御され、低い電圧の給電タップが電極部材に接続される。
上述のように、タップ切換機52の制御形態としては、導電率センサ61の検出信号に基づいて制御する形態と、電流センサ62の検出信号に基づいて制御する形態とがあり、いずれでも適用可能である。ただし、両方のセンサからの検出信号に基づいてタップ切換機52を制御するようにし、両方のセンサからの検出信号がそれぞれ出力トランス51の設定最大電力に近づいたときに、スイッチ53~56を切り換えるようにしても良い。さらに、いずれか一方のセンサからの検出信号が出力トランスの許容電力値に近づいたときに、スイッチ53~56を切り換えるようにしても良い。
導電率は蒸留原液Mの温度よって変化するので、導電率を直接検出することなく、温度センサ63により蒸留原液Mの温度を検出し、温度を導電率に換算して給電タップの切換を行うようにしても良い。
次に、上述した蒸留装置10を用いて蒸留原液Mを蒸留して蒸留液Lを製造する蒸留方法について説明する。
例えば、この蒸留装置10により焼酎を製造する場合には、芋類を発酵させることにより製造された醪つまり蒸留原液Mが原液収容タンク11に供給される。原液収容タンク11内に所定量の蒸留原液Mが収容された状態のもとで、ポンプ18が駆動される。ポンプ18の駆動により、蒸留原液Mは蒸留加熱管12の下端部から加熱流路13に供給されて、内部を上方に向けて流れる。加熱流路13内を原液流出口21まで到達した蒸留原液Mは、循環配管23に案内されて原液収容タンク11に戻される。このようにして循環工程が実行され、蒸留加熱管12の内部には原液収容タンク11内の蒸留原液Mが循環して供給される。
蒸留原液Mが循環している状態のもとで、電源ユニット28から電極部材24に電力を供給する。これにより、対をなす電極部材24から蒸留原液Mには電流が流れて、循環流にジュール熱が発生する。この発熱工程により蒸留原液Mは蒸留されて、内部に溶存していたアルコール成分が蒸発する。さらに、循環流を蒸留するようにしたので、従来のような大型の蒸留釜を用いることなく、小型の蒸留加熱管12により蒸留液つまり蒸留酒を製造することができる。蒸留原液から発生したアルコール成分の蒸気は、冷却ユニット31により凝縮される。この凝縮工程により製造された蒸留液は回収タンク38に回収され、焼酎が製造される。
回収タンク38に収容された蒸留液つまり蒸留酒をさらに蒸留してアルコール濃度を高める場合には、さらに、他の蒸留装置を用いて蒸留操作が行われる。そのような再度の蒸留に使用する蒸留装置としては、図1に示したものと同様の蒸留装置10であって、図1に示した原液収容タンク11が回収タンク38に差し替えられる。このように、蒸留装置10を複数段設けると、蒸留原液Mからの蒸留液Lの回収効率を高めることができる。
上述のように、蒸留装置10においては、ジュール熱により蒸留原液Mを加熱すようにしたので、目的とする蒸留物の沸点温度に蒸留原液Mを調整することができ、フルフラールの発生を抑制することができる。さらに、ジュール熱により蒸留原液Mを加熱するので、蒸留原液に付与される熱量がそのまま気化熱として利用され、蒸留効率を高めることができる。
出力トランス51としては、出力が70kWのみならず、25kW~150kW程度の出力のものを使用することができる。また、出力トランス51の持っている最大出力を設定最大電力Wmaxとしても良く、出力トランス51の持っている最大出力の80%程度の出力を設定最大電力Wmaxとしても良い。さらに、設定最大電力の最大電流に到達したら電圧を低下させるようにしても良く、最大電流に所定値の範囲内に近づいたら電圧を低下させるようにしても良い。
図4(A)は蒸留加熱管12の変形例を示す縦断面図であり、図4(B)は図4(A)におけるB-B線断面図である。
この蒸留加熱管12は、絶縁性材料からなる横断面が四角形の管部材48を有し、管部材48は断面がU字形状の2つの管部材片48a、48bを突き当てることにより形成される。管部材48の内面には相互に対向して2つの板状の電極部材24が対となって取り付けられており、一方の電極部材24は電源ユニット28の共通端子COMに接続され、他方の電極部材24は電源ユニット28の高電位側の出力端子Hiに接続される。
管部材48の一端部には流入口15を備えた継手部26が一体に設けられ、他端部には原液流出口21を備えた継手部27が一体に設けられている。このように、対をなす電極部材24が設けられる蒸留加熱管12としては、図1に示すように、リング状の電極部材24としても良く、図3に示すように板状の電極部材24としても良い。
本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。蒸留装置10により焼酎のみならず、ウイスキーやブランデー等の蒸留酒を製造することができる。
10 蒸留装置
11 原液収容タンク
12 蒸留加熱管
13 加熱流路
14 注入配管
15 流入口
16 吐出口
17 供給配管
21 原液流出口
22 循環口
23 循環配管
24 電極部材
28 電源ユニット
31 冷却ユニット
32 蒸気供給管
38 回収タンク
51 出力トランス
52 タップ切換機
53~56 スイッチ
60 コントローラ

Claims (4)

  1. 蒸留原液を搬送する加熱流路が形成された蒸留加熱管の流入口に、原液収容タンクに収容された蒸留原液を供給する一方、前記原液収容タンクの循環口に前記蒸留加熱管の原液流出口から流出する蒸留原液を返流し、前記原液収容タンクから前記加熱流路を介して前記原液収容タンクに戻る蒸留原液の循環流を形成する循環工程と、
    前記蒸留加熱管に対をなして設けられた電極部材に電源ユニットから電力を供給し、前記電極部材から前記加熱流路内の蒸留原液に電流を流して循環流にジュール熱を発生させる発熱工程と、
    前記加熱流路内の蒸留原液から発生した蒸気を冷却ユニットにより凝縮する凝縮工程と、
    を有し、
    前記加熱流路内の蒸留原液の導電率の上昇に応じて、前記電源ユニットが設定最大電力を出力するように、蒸留原液を流れる電流の上昇に伴って前記電極部材に印加される電圧を低下させる、蒸留方法。
  2. 蒸留原液を収容する原液収容タンクと、
    蒸留原液を搬送する加熱流路が形成された蒸留加熱管と
    前記原液収容タンクの吐出口と前記蒸留加熱管の流入口との間に設けられた供給配管と、
    前記蒸留加熱管の原液流出口と前記原液収容タンクの循環口との間に設けられた循環配管
    前記蒸留加熱管に対をなして設けられ、前記加熱流路を流れる蒸留原液に電流を流してジュール熱を発生させる電極部材
    前記電極部材に接続され前記電極部材に電力を供給する電源ユニット
    前記蒸留加熱管の蒸気流出口に接続され前記加熱流路内の蒸留原液から発生した蒸気を凝縮する冷却ユニット
    を有し、
    前記電源ユニットは、
    電圧の相違した出力電圧を出力する複数の給電タップを備えた出力トランスと、
    複数の前記給電タップのいずれか1つをオンに切り換えて電力を前記電極部材に出力するタップ切換機と、
    前記加熱流路内の蒸留原液の導電率の上昇に応じて、蒸留原液を流れる電流の上昇に伴って前記電極部材に印加される電圧を低下させるように、前記タップ切換機に切換信号を出力するコントローラと、
    を有する、蒸留装置。
  3. 請求項記載の蒸留装置において、
    前記加熱流路に供給される蒸留原液の導電率を検出し、導電率に応じた検出信号を前記コントローラに送る導電率センサを有し、
    導電率が高くなって電流が前記出力トランスの出力電圧に応じた設定最大電力に近づくか到達したときに、電流を高めるように出力電圧が低い給電タップに切り換える、蒸留装置。
  4. 請求項記載の蒸留装置において、
    蒸留原液の導電率に応じて前記電源ユニットから前記電極部材に流れる電流を検出して検出信号を前記コントローラに出力する電流センサを有し、
    導電率が高くなって電流が前記出力トランスの出力電圧に応じた設定最大電力に近づくか到達したときに、電流を高めるように出力電圧が低い給電タップに切り換える、蒸留装置。
JP2019124514A 2019-07-03 2019-07-03 蒸留方法および蒸留装置 Active JP7311140B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019124514A JP7311140B2 (ja) 2019-07-03 2019-07-03 蒸留方法および蒸留装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019124514A JP7311140B2 (ja) 2019-07-03 2019-07-03 蒸留方法および蒸留装置

Publications (2)

Publication Number Publication Date
JP2021010850A JP2021010850A (ja) 2021-02-04
JP7311140B2 true JP7311140B2 (ja) 2023-07-19

Family

ID=74227648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019124514A Active JP7311140B2 (ja) 2019-07-03 2019-07-03 蒸留方法および蒸留装置

Country Status (1)

Country Link
JP (1) JP7311140B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113897243A (zh) * 2021-09-01 2022-01-07 福建省丰盛佳园农林科技集团有限公司 一种抑制真菌的油茶树精油及其制造设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005200537A (ja) 2004-01-15 2005-07-28 Takeki Yoshimura 廃プラスチックの油化還元装置
JP2005230584A (ja) 2001-12-04 2005-09-02 Mitsubishi Chemicals Corp 易重合性化合物用の塔設備
JP2010509267A (ja) 2006-11-10 2010-03-25 ワッカー ケミー アクチエンゲゼルシャフト 液体の成分を蒸発させる方法
JP2016003189A (ja) 2014-06-16 2016-01-12 株式会社オメガ 有機物質含浸食塩の処理方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52142581A (en) * 1976-05-21 1977-11-28 Nippon Steel Corp Distillation of analysis sample by electrolysis and apparatus therefor
JPS5427560U (ja) * 1977-07-28 1979-02-22
FR2680700B1 (fr) * 1991-09-02 1994-05-13 Armines Procede et dispositif de vaporisation d'un liquide contenu dans un corps poreux.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005230584A (ja) 2001-12-04 2005-09-02 Mitsubishi Chemicals Corp 易重合性化合物用の塔設備
JP2005200537A (ja) 2004-01-15 2005-07-28 Takeki Yoshimura 廃プラスチックの油化還元装置
JP2010509267A (ja) 2006-11-10 2010-03-25 ワッカー ケミー アクチエンゲゼルシャフト 液体の成分を蒸発させる方法
JP2016003189A (ja) 2014-06-16 2016-01-12 株式会社オメガ 有機物質含浸食塩の処理方法

Also Published As

Publication number Publication date
JP2021010850A (ja) 2021-02-04

Similar Documents

Publication Publication Date Title
FI80218C (fi) Foerfarande och anlaeggning foer rening av en tvaokomponentvaetskeblandning medelst destillering.
JP7311140B2 (ja) 蒸留方法および蒸留装置
US4511437A (en) Process for the continuous rectification of alcoholic fermates
WO2008104900A2 (en) Injectable water distillation system
SE530856C2 (sv) Förfarande för att med låg energiförbrukning rena vatten medelst membrandestillering
JP7265256B2 (ja) 循環式加熱装置
RU2342432C1 (ru) Способ получения этанола
CN214861255U (zh) 甘油渣分离工业盐和聚合甘油的装置
WO2018030975A1 (ru) Способ рафинирования ректификованного алкоголя и установка для его реализации
RU2579937C1 (ru) Способ получения ректификованного спирта
CN207525004U (zh) 一种焚烧炉尾气喷淋除酸后的废碱液脱盐装置
JP6461596B2 (ja) 精密蒸溜精製装置及び方法
US7666281B2 (en) Method and device for treating water
JP2005095721A (ja) 内部還流式の多目的蒸留塔とこれを使用する回分式蒸留法
RU2352639C1 (ru) Способ получения ректификованного спирта
RU2666913C1 (ru) Способ совместного получения ректификованного этилового спирта и зернового дистиллята
RU2315108C2 (ru) Способ получения ректификованного спирта
RU2433162C1 (ru) Способ разделения жидкой смеси, содержащей воду и нефть и/или нефтепродукты, и установка для его осуществления
RU2809871C1 (ru) Установка производства битума из тяжелой нефти
RU2315109C2 (ru) Способ получения ректификованного спирта
CN219440727U (zh) 一种蒸馏回收溶剂自动调温装置
RU2205856C1 (ru) Способ фракционирования мазута
Brotherton Alcohol recovery in falling film evaporators
CN211885410U (zh) 换热辅热盐水分离器
US10604470B2 (en) Method for purifying an aqueous lactic acid solution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230629

R150 Certificate of patent or registration of utility model

Ref document number: 7311140

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150