JP7310333B2 - biological treatment equipment - Google Patents

biological treatment equipment Download PDF

Info

Publication number
JP7310333B2
JP7310333B2 JP2019107191A JP2019107191A JP7310333B2 JP 7310333 B2 JP7310333 B2 JP 7310333B2 JP 2019107191 A JP2019107191 A JP 2019107191A JP 2019107191 A JP2019107191 A JP 2019107191A JP 7310333 B2 JP7310333 B2 JP 7310333B2
Authority
JP
Japan
Prior art keywords
valve
biological treatment
aeration tank
blower
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019107191A
Other languages
Japanese (ja)
Other versions
JP2020199445A (en
Inventor
つばさ 鏡
孝之 大月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2019107191A priority Critical patent/JP7310333B2/en
Publication of JP2020199445A publication Critical patent/JP2020199445A/en
Application granted granted Critical
Publication of JP7310333B2 publication Critical patent/JP7310333B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)

Description

本発明は、下水、産業排水などの有機性排水を複数の曝気槽により好気性生物処理する生物処理装置に係り、特に各曝気槽への空気供給量を制御する技術に関する。 The present invention relates to a biological treatment apparatus for aerobic biological treatment of organic wastewater such as sewage and industrial wastewater using a plurality of aeration tanks, and more particularly to technology for controlling the amount of air supplied to each aeration tank.

曝気槽を有する生物処理装置では、曝気槽に空気を適切な量だけ供給するように制御が行われる。特許文献1には、1つの曝気槽に対して複数のブロアを並列接続し、目標のDO(溶存酸素)濃度となるように、ブロアの風量を制御することが記載されている。 In a biological treatment apparatus having an aeration tank, control is performed so that an appropriate amount of air is supplied to the aeration tank. Patent Document 1 describes connecting a plurality of blowers in parallel to one aeration tank and controlling the air volume of the blowers so as to achieve a target DO (dissolved oxygen) concentration.

特許文献2,3には、曝気槽を複数槽備えた生物処理装置において、それぞれの曝気槽のDO濃度を制御するために、曝気槽ごとに、曝気槽の散気管にブロアを接続し、目標のDO濃度となるように、ブロアの風量を制御することが記載されている。 In Patent Documents 2 and 3, in a biological treatment apparatus having a plurality of aeration tanks, in order to control the DO concentration of each aeration tank, a blower is connected to the diffuser pipe of the aeration tank for each aeration tank, and the target It is described that the air volume of the blower is controlled so that the DO concentration of .

特許文献4,5には、1つ以上のブロアに接続した1つの主管から、1つ以上の流量調整機構を備えたバルブを各曝気槽に分岐させ、圧力が一定となるようにブロアを運転することが記載されている。DO濃度が目標値からズレた場合、流量調整機構を備えたバルブの開度を調整しDO濃度を調整する。 In Patent Documents 4 and 5, one main pipe connected to one or more blowers is branched to each aeration tank with a valve having one or more flow rate adjustment mechanisms, and the blowers are operated so that the pressure is constant. It is stated that When the DO concentration deviates from the target value, the DO concentration is adjusted by adjusting the opening of a valve provided with a flow control mechanism.

特開平6-142678号公報JP-A-6-142678 特開平5-220495号公報JP-A-5-220495 特開平7-185584号公報JP-A-7-185584 特許第5714355号公報Japanese Patent No. 5714355 特開2012-200705号公報JP 2012-200705 A

曝気槽を複数備えた生物処理装置において、各曝気槽のDO濃度を制御する場合、特許文献2,3の方法では、ブロア(及び予備ブロア)およびブロアと曝気槽を接続する配管を曝気槽ごとに設置する必要があり、設備コストが高い上に、構成が大がかりとなるために、設置スペースが大きくなる問題があった。 When controlling the DO concentration in each aeration tank in a biological treatment apparatus having a plurality of aeration tanks, the methods of Patent Documents 2 and 3 use a blower (and a preliminary blower) and a pipe connecting the blower and the aeration tank for each aeration tank. In addition to the high equipment cost, the large-scale configuration results in a large installation space.

これに対して、特許文献4,5の方法では、各曝気槽の合計風量を送風できる必要最小風量のブロア(及び予備ブロア)を設置すれば良く、ブロアコストを低減できる。また、ブロアと各曝気槽の接続もブロアに接続した共通管から各曝気槽に分岐管をバイパスすればよく、配管敷設コストを低減できる。合計の設置スペースを削減することも可能である。 On the other hand, in the methods of Patent Documents 4 and 5, it is sufficient to install a blower (and a spare blower) with the minimum required air volume capable of blowing the total air volume of each aeration tank, and the blower cost can be reduced. In addition, the connection between the blower and each aeration tank can be achieved by bypassing the branch pipe from the common pipe connected to the blower to each aeration tank, thereby reducing the piping installation cost. It is also possible to reduce the total installation space.

しかし、特許文献4,5の方法では、流量調整機構を備えたバルブの開度が小さい状態が長時間継続すると、ブロアのモータ部およびヘッド部が高温になり、過度な昇温等の異常が発生するおそれがある上に、モータ部への負荷が増大してモータ部が過電流となり故障の原因となることが懸念された。また、流量調整機構を備えたバルブの開度が小さくなる場合、たとえ曝気槽内全体の平均的な溶存酸素濃度が十分であっても、曝気槽内の流動性が部分的に低下しているため、曝気槽内の溶存酸素濃度が局所的に低下し、汚泥が反応槽底部に堆積し、微生物の腐敗に起因する臭気等の問題が発生することがあった。 However, in the methods of Patent Literatures 4 and 5, if the opening of the valve provided with the flow control mechanism is kept small for a long period of time, the motor and head of the blower become hot, causing abnormalities such as excessive temperature rise. In addition to this, there was a concern that the load on the motor unit would increase, causing overcurrent in the motor unit and causing failure. In addition, when the opening of the valve equipped with the flow rate adjustment mechanism is small, even if the average dissolved oxygen concentration in the entire aeration tank is sufficient, the fluidity in the aeration tank is partially reduced. As a result, the dissolved oxygen concentration in the aeration tank locally decreases, sludge accumulates on the bottom of the reaction tank, and problems such as odor caused by putrefaction of microorganisms may occur.

本発明は、省スペースで安定した曝気制御を行うことができる生物処理装置を提供することを目的とする。 An object of the present invention is to provide a space-saving biological treatment apparatus capable of performing stable aeration control.

本発明の生物処理装置は、曝気槽と、該曝気槽の散気部材に曝気用の空気を供給するための送風装置とを備えた生物処理装置において、該送風装置は、ブロアと、該ブロアに連なる主配管と、該配管から分岐する複数の分岐配管と、各分岐配管に設けられた弁とを備えており、第1の分岐配管には、該曝気槽の溶存酸素濃度に関わりなく所定開度とされる弁が設置されており、他の第2の分岐配管には、該曝気槽の溶存酸素濃度に応じて流量が制御される弁が設置されていることを特徴とする。 The biological treatment apparatus of the present invention is a biological treatment apparatus comprising an aeration tank and an air blower for supplying air for aeration to an air diffusion member of the aeration tank, wherein the air blower comprises a blower and a blower. A main pipe connected to the aeration tank, a plurality of branch pipes branching from the pipe, and a valve provided in each branch pipe, and the first branch pipe has a predetermined oxygen concentration regardless of the dissolved oxygen concentration in the aeration tank. A valve for adjusting the degree of opening is installed, and another second branch pipe is provided with a valve for controlling the flow rate according to the dissolved oxygen concentration in the aeration tank.

本発明の一態様では、前記第2の分岐配管が複数本設けられており、各第2の分岐配管にそれぞれオンオフ弁が設けられている。 In one aspect of the present invention, a plurality of the second branch pipes are provided, and each second branch pipe is provided with an on/off valve.

本発明の一態様では、前記第2の分岐配管に比例制御弁が設けられている。 In one aspect of the present invention, the second branch pipe is provided with a proportional control valve.

本発明の一態様では、前記曝気槽が直列又は並列に複数設置されている。 In one aspect of the present invention, a plurality of aeration tanks are installed in series or in parallel.

本発明の一態様では、前記第1の分岐配管に手動弁が設置されている。 In one aspect of the present invention, a manual valve is installed in the first branch pipe.

本発明の一態様では、前記手動弁の開度は、すべての第2の分岐配管の弁が閉とされた状態でも、ブロアがモータートリップせず、かつ、曝気槽内の流動性が確保されるように設定されている。 In one aspect of the present invention, the degree of opening of the manual valve is such that the blower does not motor trip even when all the valves of the second branch pipe are closed, and the fluidity in the aeration tank is ensured. is set to

本発明の生物処理装置によると、曝気槽の溶存酸素濃度の設定値が小さい場合でも、送風装置に過度な温度上昇を生じさせることなく安定して送風を行うことができる。 According to the biological treatment apparatus of the present invention, even when the set value of the dissolved oxygen concentration in the aeration tank is small, air can be stably blown without causing an excessive temperature rise in the blower.

また、本発明の生物処理装置によると、曝気槽の溶存酸素濃度の設定値が小さい場合でも、曝気槽内の必要最低限の流動性を確保できるように送風することにより、曝気槽内の汚泥の堆積、微生物の腐敗を防止することができる。 In addition, according to the biological treatment apparatus of the present invention, even when the set value of the dissolved oxygen concentration in the aeration tank is small, by blowing air so as to ensure the minimum necessary fluidity in the aeration tank, the sludge in the aeration tank deposition and microbial putrefaction can be prevented.

実施の形態に係る生物処理装置の構成図である。1 is a configuration diagram of a biological treatment apparatus according to an embodiment; FIG. 実施の形態に係る生物処理装置の構成図である。1 is a configuration diagram of a biological treatment apparatus according to an embodiment; FIG. 実施の形態に係る生物処理装置の構成図である。1 is a configuration diagram of a biological treatment apparatus according to an embodiment; FIG. 実施の形態に係る生物処理装置の構成図である。1 is a configuration diagram of a biological treatment apparatus according to an embodiment; FIG. 比較例に係る生物処理装置の構成図である。It is a block diagram of the biological treatment apparatus which concerns on a comparative example.

以下、図1~3を参照して実施の形態について説明する。 Embodiments will be described below with reference to FIGS.

図1は第1の実施の形態を示すものであり、原水(有機性排水)は、直列に接続された第1曝気槽1及び第2曝気槽2によって順次に処理され、処理水となる。なお、図1では曝気槽1,2は直列に設置されているが、並列に設置されてもよい。また、直列、並列のいずれの場合でも、曝気槽の数は3以上であってもよい。 FIG. 1 shows the first embodiment, in which raw water (organic wastewater) is sequentially treated in a first aeration tank 1 and a second aeration tank 2 connected in series to produce treated water. Although the aeration tanks 1 and 2 are installed in series in FIG. 1, they may be installed in parallel. The number of aeration tanks may be 3 or more in either case of series or parallel.

各曝気槽1,2には散気管3,4が設置されている。なお、散気管としては、散気筒式、粗気泡式、チューブ型メンブレン式などが挙げられ、特に限定されない。 Aeration tanks 1 and 2 are provided with diffuser pipes 3 and 4, respectively. The diffuser pipe may be of a diffuser type, a coarse bubble type, a tubular membrane type, or the like, and is not particularly limited.

また、各曝気槽1,2にはDO計5,6が設置されている。DO計5,6の検出信号は、制御装置7に入力される。制御装置7によってブロア8が制御される。ブロア8からの空気は、主配管9を介して送風される。主配管9に圧力計9aが設けられている。 DO meters 5 and 6 are installed in each of the aeration tanks 1 and 2, respectively. Detection signals from the DO meters 5 and 6 are input to the control device 7 . A blower 8 is controlled by a control device 7 . Air from the blower 8 is blown through the main pipe 9 . The main pipe 9 is provided with a pressure gauge 9a.

この実施の形態では、主配管9に中継配管10,20が接続されている。各中継配管10,20は、4本の分岐配管11,12,13,14及び21,22,23,24に分岐している。 In this embodiment, relay pipes 10 and 20 are connected to the main pipe 9 . Each relay pipe 10, 20 branches into four branch pipes 11, 12, 13, 14 and 21, 22, 23, 24.

分岐配管11,21は、第1の分岐配管であり、開度を手動で調節することが可能な手動弁31,41が設置されている。 The branch pipes 11 and 21 are first branch pipes, and are provided with manual valves 31 and 41 whose opening can be manually adjusted.

分岐配管12~14、22~24は、第2の分岐配管であり、それぞれ制御装置7によって開、閉が切り替えられる電磁弁などよりなるオンオフ弁32~34、42~44が設けられている。 The branch pipes 12 to 14 and 22 to 24 are second branch pipes, and are provided with on/off valves 32 to 34 and 42 to 44, which are electromagnetic valves that are switched between open and closed by the control device 7, respectively.

分岐配管11~14は、弁31~34の下流側において合流配管15に連なっており、該合流配管15が散気管3に接続されている。また、分岐配管21~24は、弁41~44の下流側において合流配管25に連なっており、該合流配管25が散気管4に接続されている。 The branch pipes 11 to 14 are connected to a joint pipe 15 downstream of the valves 31 to 34 , and the joint pipe 15 is connected to the diffuser pipe 3 . The branch pipes 21 to 24 are connected to a confluence pipe 25 downstream of the valves 41 to 44 , and the confluence pipe 25 is connected to the diffuser pipe 4 .

この実施の形態では、手動弁31、41は常に所定開度で開とされており、オンオフ弁32~34、42~44のオン、オフ(開閉)が切り替えられることにより、散気管3,4からの曝気風量が制御される。 In this embodiment, the manual valves 31 and 41 are always opened at a predetermined degree of opening, and the on/off valves 32 to 34 and 42 to 44 are switched between on and off (opening and closing) to allow the diffusion pipes 3 and 4 to open. Aeration air volume from is controlled.

ブロア8は、圧力計9aで検出される主配管9の内圧が設定範囲内で一定となるように運転が制御される。図1ではブロア9は1台のみ示されているが、複数台併設し、主配管9の内圧が設定範囲を下回った場合、ブロアの稼働台数を増やし、圧力が設定範囲を上回った場合、ブロアの稼働台数を減らすように制御してもよい。 The operation of the blower 8 is controlled so that the internal pressure of the main pipe 9 detected by the pressure gauge 9a is kept constant within a set range. Although only one blower 9 is shown in FIG. 1, a plurality of blowers are installed side by side. may be controlled to reduce the number of operating units.

図1では、曝気槽ごとに4本の分岐配管11~14、21~24が設けられているが、2本、3本又は5本以上であってもよい。実用的には、2~5本程度が好適である。 Although four branch pipes 11 to 14 and 21 to 24 are provided for each aeration tank in FIG. 1, the number may be two, three, or five or more. Practically, about 2 to 5 is suitable.

図2は3本の分岐配管11~13、21~23を設けたものである。図1と同じく、それぞれ第1の分岐配管11,21に手動弁31,41が設置され、第2の分岐配管12,13,22,23にオンオフ弁32,33,42,43が設置されている。図2のその他の構成は図1と同一であり、同一符号は同一部分を示している。 In FIG. 2, three branch pipes 11-13 and 21-23 are provided. 1, manual valves 31, 41 are installed in the first branch pipes 11, 21, respectively, and on-off valves 32, 33, 42, 43 are installed in the second branch pipes 12, 13, 22, 23. there is Other configurations in FIG. 2 are the same as in FIG. 1, and the same reference numerals denote the same parts.

図1,2では、主配管9から中継配管10,20を分岐させ、中継配管10,20から分岐配管11~14(又は11~13)、21~24(又は21~23)を分岐させているが、図3のように、主配管9から直接に分岐配管11~13、21~23を分岐させ、各分岐配管11~13、21~23の末端側を直接に散気管3又は4に接続してもよい。図3において、分岐配管11~13、21~23の下流側のみを、それぞれ合流配管15,25に接続し、合流配管15,25を散気管3,4に接続してもよい。 1 and 2, relay pipes 10 and 20 are branched from the main pipe 9, and branch pipes 11 to 14 (or 11 to 13) and 21 to 24 (or 21 to 23) are branched from the relay pipes 10 and 20. However, as shown in FIG. 3, the branch pipes 11 to 13 and 21 to 23 are branched directly from the main pipe 9, and the terminal side of each branch pipe 11 to 13 and 21 to 23 is directly connected to the air diffuser 3 or 4. may be connected. In FIG. 3, only the downstream sides of the branch pipes 11 to 13 and 21 to 23 may be connected to the combined pipes 15 and 25, respectively, and the combined pipes 15 and 25 may be connected to the diffuser pipes 3 and 4.

図1~3のように、流量可変機構としてオンオフ弁を用いる場合、全てのオンオフ弁が開のときにDO濃度の目標値に基づいて設定された設定風量が通気されるように各オンオフ弁の開度を調整するのが好ましい。この場合、全てのオンオフ弁の開時のオンオフ弁ごとの送風量を同じにしておくことが望ましい。このようにすることで、オンオフ弁の開の個数を段階的に増やした場合の風量の増加量を均等にすることができる。 As shown in Figures 1 to 3, when on-off valves are used as the flow rate variable mechanism, each on-off valve is set so that the set air volume set based on the target value of DO concentration is ventilated when all the on-off valves are open. It is preferable to adjust the degree of opening. In this case, it is desirable to keep the same amount of air blown for each on/off valve when all the on/off valves are open. By doing so, it is possible to equalize the amount of increase in air volume when the number of open on/off valves is increased in stages.

手動弁31、41については、オンオフ弁が全て閉じた場合でもブロアがモータートリップせず、かつ、曝気槽1,2内の流動性が確保できる最少の流量となるように、開度を予め調整し固定することが望ましい。 Regarding the manual valves 31, 41, the opening degree is adjusted in advance so that the blower does not trip even when all the on-off valves are closed, and the minimum flow rate that can secure the fluidity in the aeration tanks 1 and 2 is obtained. It is desirable to

生物処理装置の運転中、DO濃度の計測値がDO濃度の目標範囲よりも大きい又は小さい場合、オンオフ弁のうち1つを閉又は開とすることで供給する風量を変化させる。所定時間経過後のDO濃度の計測値に基づいて上記調整を繰り返し、風量を段階的に変化させる。 During operation of the biological treatment apparatus, when the measured value of DO concentration is greater or less than the target range of DO concentration, one of the on/off valves is closed or opened to change the amount of air supplied. The above adjustment is repeated based on the measured value of the DO concentration after the lapse of a predetermined time, and the air volume is changed stepwise.

1回の調整後、次の調整までには、少なくとも1分以上のインターバルを設けるのが好ましい。 After one adjustment, it is preferable to provide an interval of at least one minute or more before the next adjustment.

表1に、オンオフ弁の設置個数が3個である図1の場合のオンオフ弁開閉パターンとそのときの通気風量を示す。 Table 1 shows the on/off valve opening/closing pattern and the ventilation air volume at that time in the case of FIG. 1 where the number of on/off valves installed is three.

Figure 0007310333000001
Figure 0007310333000001

DO濃度の計測値がDO濃度の目標範囲よりも小さい場合、オンオフ弁の開度をパターン1からパターン4まで段階的に変化させ、通気風量を増加させる。 When the measured value of the DO concentration is smaller than the target range of the DO concentration, the degree of opening of the on/off valve is changed stepwise from pattern 1 to pattern 4 to increase the ventilation air volume.

DO濃度の計測値がDO濃度の目標範囲よりも大きい場合、オンオフ弁の開度をパターン4からパターン1まで段階的に減少させ、通気風量を低減させる。 When the measured value of the DO concentration is larger than the target range of the DO concentration, the degree of opening of the on/off valve is decreased stepwise from pattern 4 to pattern 1 to reduce the ventilation air volume.

パターン1において、DO濃度の計測値がDO濃度の目標範囲よりも大きい場合は、酸素供給は十分であるが、モータートリップの防止や反応槽内の流動性の確保のため、手動弁は閉じず、パターン1から設定変更しない。 In Pattern 1, if the measured value of DO concentration is higher than the target range of DO concentration, the oxygen supply is sufficient, but the manual valve is not closed to prevent motor trip and ensure fluidity in the reaction vessel. , the setting is not changed from pattern 1.

また、パターン4においてDO濃度の計測値がDO濃度の目標範囲よりも小さい場合は、過負荷状態になっていると考えられるので、原水の流入負荷の低減を図るか、ブロア台数の不足などハード面の問題を調査・検討するようにし、パターン4から設定変更しない。 Also, if the measured value of DO concentration is smaller than the target range of DO concentration in pattern 4, it is considered to be in an overloaded state. Investigate and consider the problem of the surface, and do not change the setting from pattern 4.

図1~3ではオンオフ弁が用いられているが、図4のように比例制御弁35,45を用いて連続的に開度を変えて送風量を調整するものとしてもよい。図4では、第1の分岐配管11,21に手動弁31,41を設け、第2の分岐配管12,22に比例制御弁35,45を設置している。図4でも、分岐配管11,12,21,22をそれぞれ主配管9及び散気管3,4に直接に接続する構成としてもよい。 1 to 3, on/off valves are used, but as shown in FIG. 4, proportional control valves 35 and 45 may be used to continuously change the degree of opening to adjust the amount of blown air. In FIG. 4, manual valves 31 and 41 are provided on first branch pipes 11 and 21, and proportional control valves 35 and 45 are provided on second branch pipes 12 and 22, respectively. 4, the branch pipes 11, 12, 21 and 22 may be directly connected to the main pipe 9 and the diffuser pipes 3 and 4, respectively.

図4の生物処理装置では、曝気槽のDO濃度の計測値がDO濃度の目標範囲よりも大きい又は小さい場合、DOを制御変数、比例制御弁35,45の開度または風量を操作変数としたPID制御を実施することで風量を変化させる。所定時間経過後のDO濃度の計測値に基づいて上記調整を繰り返す。 In the biological treatment apparatus of FIG. 4, when the measured value of the DO concentration in the aeration tank is larger or smaller than the target range of the DO concentration, the DO is the control variable, and the opening of the proportional control valves 35 and 45 or the air volume is the manipulated variable. The air volume is changed by implementing PID control. The above adjustment is repeated based on the measured value of the DO concentration after the lapse of a predetermined time.

図4の生物処理装置では、各曝気槽1,2において、第2の分岐配管を複数本ずつ設け、各第2の分岐配管にそれぞれ比例制御弁を設けてもよい。この場合、各比例制御弁の開度の変更の際は、1つの曝気槽に連なる全ての比例制御弁の開度が同じになるように連動制御されるように構成しておくことが望ましい。 In the biological treatment apparatus of FIG. 4, each of the aeration tanks 1 and 2 may be provided with a plurality of second branch pipes, and each second branch pipe may be provided with a proportional control valve. In this case, when changing the opening of each proportional control valve, it is desirable to perform interlocking control so that the opening of all the proportional control valves connected to one aeration tank is the same.

[実施例1]
図2の生物処理装置において、次の構成のポリウレタンスポンジ担体充填槽(担体充填率25%)よりなる曝気槽1,2への送風・曝気を以下のようにして行った。
[Example 1]
In the biological treatment apparatus of FIG. 2, air was blown and aerated in the aeration tanks 1 and 2, which consist of polyurethane sponge carrier-filled tanks (carrier filling rate: 25%) having the following configuration.

第1曝気槽1の容積:1,000m
第2曝気槽2の容積:600m
原水TOC:100mg/L(合成排水)
平均原水流量:150m/h
最大原水流量:180m/h
最小原水流量:0m/h
Volume of first aeration tank 1: 1,000 m 3
Volume of second aeration tank 2: 600 m 3
Raw water TOC: 100mg/L (synthetic wastewater)
Average raw water flow rate: 150 m 3 /h
Maximum raw water flow rate: 180 m 3 /h
Minimum raw water flow rate: 0 m 3 /h

原水流量ごとの必要DO濃度を表2に示した。 Table 2 shows the required DO concentration for each raw water flow rate.

Figure 0007310333000002
Figure 0007310333000002

また、弁31~34、41~44として次のものを設けた。 In addition, the following valves 31-34 and 41-44 are provided.

曝気槽1:80A手動弁および100Aオンオフ弁2個
曝気槽2:80A手動弁および80Aオンオフ弁2個
手動弁31,41の開度を、曝気槽1,2内が流動する最低風量(第1曝気槽:1,000m/h、第2曝気槽:600m/h)となるように調整した。
Aeration tank 1: 80A manual valve and two 100A on/off valves Aeration tank 2: 80A manual valve and two 80A on/off valves Aeration tank: 1,000 m 3 /h, second aeration tank: 600 m 3 /h).

原水流量が2時間に50m/hほど変動し、24時間に0~180m/hの間で変動することを想定し、5種類の流量について2時間ずつ継続運転を行い、DO濃度が設定範囲(設定値±0.5mg/L)を上回った場合又は下回ったときに、1個のオンオフ弁を閉→開又は開→閉に切り替える開閉切替を行い、DO濃度を自動制御した。弁開閉切替を行った時間間隔を計測して平均値を算出すると共に、ブロアサーマルトリップ発生の有無を観察した。結果を表3に示す。 Assuming that the raw water flow rate fluctuates about 50 m 3 /h in 2 hours and fluctuates between 0 and 180 m 3 /h in 24 hours, continuous operation is performed for 2 hours at each of 5 types of flow rates, and the DO concentration is set. When the concentration exceeded or fell below the range (set value ±0.5 mg/L), one ON/OFF valve was switched from closed to open or from open to closed to automatically control the DO concentration. The time intervals between the opening and closing of the valve were measured to calculate the average value, and the occurrence of blower thermal trip was observed. Table 3 shows the results.

Figure 0007310333000003
Figure 0007310333000003

表3の通り、オンオフ弁の開閉切替を平均2~10分間隔で行うことにより、DO濃度を所定範囲に制御することができた。また、サーマルトリップは全く発生しなかった。 As shown in Table 3, the DO concentration could be controlled within a predetermined range by switching the opening and closing of the on/off valve at intervals of 2 to 10 minutes on average. Also, no thermal trip occurred.

[実施例2]
実施例1において、分岐配管の構成を図3の通りとしたこと以外は実施例1と同一条件にて運転を行った。結果は実施例1と全く同一(前記表3の通り)であった。
[Example 2]
In Example 1, the operation was performed under the same conditions as in Example 1, except that the configuration of the branch pipes was as shown in FIG. The results were exactly the same as in Example 1 (as shown in Table 3 above).

[比較例1]
図5に示すように、中継配管10,20にそれぞれ比例制御弁35,45を設けて散気管3,4に直結し、分岐配管11~14、21~24を省略したこと以外は実施例1,2と同一構成の生物処理装置を運転した。
[Comparative Example 1]
As shown in FIG. 5, the relay pipes 10 and 20 are provided with proportional control valves 35 and 45, respectively, and are directly connected to the diffuser pipes 3 and 4, and the branch pipes 11 to 14 and 21 to 24 are omitted. , 2 was operated.

なお、比例制御弁35は150Aコントロール弁、比例制御弁45は100Aコントロール弁とした。 The proportional control valve 35 is a 150A control valve, and the proportional control valve 45 is a 100A control valve.

実施例1,2と同じく、原水流量が2時間に50m/hほど変動し、24時間に0~180m/hの間で変動することを想定し、5種類の流量について2時間ずつ継続運転を行い、DO濃度が設定範囲(設定値±0.5mg/L)を上回ったとき又は下回ったときコントロール弁の開度を、全開度に対して10%ずつ減少又は増加させる開度制御を行い、DO濃度をPID制御した。コントロール弁の開度とブロアサーマルトリップ発生の有無を観察した。結果を表4に示す。 As in Examples 1 and 2, assuming that the raw water flow rate fluctuates by about 50 m 3 /h in 2 hours and fluctuates between 0 and 180 m 3 /h in 24 hours, five types of flow rates are continued for 2 hours each. When the DO concentration exceeds or falls below the set range (set value ± 0.5 mg / L), the opening control is performed to decrease or increase the opening of the control valve by 10% with respect to the full opening. The DO concentration was PID-controlled. The opening of the control valve and the occurrence of blower thermal trip were observed. Table 4 shows the results.

Figure 0007310333000004
Figure 0007310333000004

表4の通り、コントロール弁の開度を適宜行うことにより、DO濃度は所定範囲に制御されたが、低流量条件では制御の際にサーマルトリップが発生する。 As shown in Table 4, the DO concentration was controlled within a predetermined range by appropriately adjusting the opening of the control valve, but a thermal trip occurred during control under low flow rate conditions.

1,2 曝気槽
7 制御装置
8 ブロア
9 主配管
10,20 中継配管
11~14,21~24 分岐配管
31,41 手動弁
32~34,42~44 オンオフ弁
35,45 比例制御弁
1, 2 Aeration tank 7 Control device 8 Blower 9 Main pipe 10, 20 Relay pipe 11-14, 21-24 Branch pipe 31, 41 Manual valve 32-34, 42-44 On-off valve 35, 45 Proportional control valve

Claims (6)

曝気槽と、該曝気槽の散気部材に曝気用の空気を供給するための送風装置とを備えた生物処理装置において、
該送風装置は、
ブロアと、
該ブロアに連なる主配管と、
配管から分岐する複数の分岐配管と、
各分岐配管から連なっており、前記散気部材に接続された合流配管と、
備えており、
該分岐配管は、第1の分岐配管と第2の分岐配管とからなり、
第1の分岐配管には、該曝気槽の溶存酸素濃度に関わりなく所定開度とされる第1の弁が設置されており、
第2の分岐配管には、該曝気槽の溶存酸素濃度に応じて前記合流配管から前記散気部材へ供給される空気の流量制御するための第2の弁が設置されていることを特徴とする生物処理装置。
A biological treatment apparatus comprising an aeration tank and a blower for supplying air for aeration to an air diffusion member of the aeration tank,
The blower is
blower and
a main pipe connected to the blower;
a plurality of branch pipes branching from the main pipe;
a confluence pipe extending from each branch pipe and connected to the diffuser member;
and
The branch pipe consists of a first branch pipe and a second branch pipe,
The first branch pipe is provided with a first valve that opens to a predetermined degree regardless of the dissolved oxygen concentration in the aeration tank,
The second branch pipe is provided with a second valve for controlling the flow rate of the air supplied from the confluence pipe to the diffuser member according to the dissolved oxygen concentration in the aeration tank. A biological treatment device characterized by:
前記第2の分岐配管が複数本設けられており、各第2の分岐配管に前記第2の弁としてそれぞれオンオフ弁が設けられていることを特徴とする請求項1の生物処理装置。 2. A biological treatment apparatus according to claim 1, wherein a plurality of said second branch pipes are provided, and each of said second branch pipes is provided with an on/off valve as said second valve. 前記第2の分岐配管に前記第2の弁として比例制御弁が設けられていることを特徴とする請求項1の生物処理装置。 2. A biological treatment apparatus according to claim 1, wherein said second branch pipe is provided with a proportional control valve as said second valve . 前記曝気槽が直列又は並列に複数設置されていることを特徴とする請求項1~3のいずれかの生物処理装置。 4. The biological treatment apparatus according to any one of claims 1 to 3, wherein a plurality of said aeration tanks are installed in series or in parallel. 前記第1の分岐配管に前記第1の弁として手動弁が設置されていることを特徴とする請求項1~4のいずれかの生物処理装置。 5. The biological treatment apparatus according to any one of claims 1 to 4, wherein a manual valve is installed as said first valve in said first branch pipe. 前記手動弁の開度は、すべての第2の分岐配管の前記第2の弁が閉とされた状態でも、前記ブロアがモータートリップせず、かつ、前記曝気槽内の流動性が確保されるように設定されていることを特徴とする請求項5の生物処理装置。 The degree of opening of the manual valve is such that the motor does not trip the blower even when the second valves of all the second branch pipes are closed, and the fluidity in the aeration tank is ensured. 6. A biological treatment apparatus according to claim 5, characterized in that it is set as follows.
JP2019107191A 2019-06-07 2019-06-07 biological treatment equipment Active JP7310333B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019107191A JP7310333B2 (en) 2019-06-07 2019-06-07 biological treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019107191A JP7310333B2 (en) 2019-06-07 2019-06-07 biological treatment equipment

Publications (2)

Publication Number Publication Date
JP2020199445A JP2020199445A (en) 2020-12-17
JP7310333B2 true JP7310333B2 (en) 2023-07-19

Family

ID=73742259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019107191A Active JP7310333B2 (en) 2019-06-07 2019-06-07 biological treatment equipment

Country Status (1)

Country Link
JP (1) JP7310333B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000051882A (en) 1998-08-06 2000-02-22 Mitsubishi Electric Corp Air supply system
US20150266759A1 (en) 2014-03-21 2015-09-24 Parkson Corporation Wastewater treatment apparatus with dual-level control
CN204848405U (en) 2015-06-10 2015-12-09 宁夏通泽科技有限公司 Waste water treatment PLC electric control system
CN108025934A (en) 2015-09-17 2018-05-11 通用电器技术有限公司 Integrated air distributor arrangement for waste seawater processing pond

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5841116B2 (en) * 1980-03-13 1983-09-09 株式会社荏原製作所 Sewage treatment feed gas control method
JPS5712890A (en) * 1980-06-26 1982-01-22 Mitsubishi Electric Corp Controller of aeration amount in aeration vessel
US5989428A (en) * 1996-06-21 1999-11-23 Goronszy; Mervyn Charles Controlling wastewater treatment by monitoring oxygen utilization rates
JP3670463B2 (en) * 1997-11-11 2005-07-13 株式会社東芝 Aeration tank aeration equipment
JP2002059189A (en) * 2000-08-11 2002-02-26 Ebara Corp Aeration method and device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000051882A (en) 1998-08-06 2000-02-22 Mitsubishi Electric Corp Air supply system
US20150266759A1 (en) 2014-03-21 2015-09-24 Parkson Corporation Wastewater treatment apparatus with dual-level control
CN204848405U (en) 2015-06-10 2015-12-09 宁夏通泽科技有限公司 Waste water treatment PLC electric control system
CN108025934A (en) 2015-09-17 2018-05-11 通用电器技术有限公司 Integrated air distributor arrangement for waste seawater processing pond

Also Published As

Publication number Publication date
JP2020199445A (en) 2020-12-17

Similar Documents

Publication Publication Date Title
JP7247283B2 (en) Water treatment system, control device and control method
JP7310333B2 (en) biological treatment equipment
JP2005199116A (en) Aeration air quantity controller for sewage treatment plant
US7862014B2 (en) Hybrid diffuser system headloss balancing
JP2016159277A (en) Aeration air quantity controller and aeration air quantity control system
CN106219739A (en) Multiple spot variable aeration amount intelligent integral complete set of equipments and control method thereof
JP2020110747A (en) Water treatment system
JP6076733B2 (en) Update device from existing diffuser system to modified diffuser system and update method from existing diffuser system to modified diffuser system
Alex et al. Comparison of advanced fine-bubble aeration control concepts with respect to energy efficiency and robustness
JP2018069183A (en) Device for treating water and method for managing the same
JPH0221998A (en) Method and device for aeration
JPH01242198A (en) Controlling device for stepped nitration denitrification process
JP2002210484A (en) Method and apparatus for treating organic waste water
WO2023095855A1 (en) Water quality adjustment system
JPH0579400B2 (en)
CN220201615U (en) Dissolved oxygen regulating and lowering system for biochemical pond
CN205556236U (en) Nitrify changeable dual -purpose biological filter of denitrification
JP7406445B2 (en) Air volume control device and air volume control method
JP7424997B2 (en) water treatment equipment
JP2005254595A (en) Cooling apparatus
JP2018187620A (en) Operation support apparatus and operation support method for sewage treatment plant using activated sludge method
WO2017110394A1 (en) Wastewater treating system, supplied-air-amount control device, and supplied-air-amount control method
JP2004000986A (en) Method for controlling biological water treatment apparatus
RU56376U1 (en) WASTE WATER TREATMENT AERATION SYSTEM
JP2023139479A (en) Load fluctuation responsive type water treatment system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230619

R150 Certificate of patent or registration of utility model

Ref document number: 7310333

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150