JP6076733B2 - Update device from existing diffuser system to modified diffuser system and update method from existing diffuser system to modified diffuser system - Google Patents

Update device from existing diffuser system to modified diffuser system and update method from existing diffuser system to modified diffuser system Download PDF

Info

Publication number
JP6076733B2
JP6076733B2 JP2012288101A JP2012288101A JP6076733B2 JP 6076733 B2 JP6076733 B2 JP 6076733B2 JP 2012288101 A JP2012288101 A JP 2012288101A JP 2012288101 A JP2012288101 A JP 2012288101A JP 6076733 B2 JP6076733 B2 JP 6076733B2
Authority
JP
Japan
Prior art keywords
air
diffuser
low
pressure
existing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012288101A
Other languages
Japanese (ja)
Other versions
JP2014128765A (en
Inventor
弘明 富田
弘明 富田
鈴木 康司
康司 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanki Engineering Co Ltd
Original Assignee
Sanki Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanki Engineering Co Ltd filed Critical Sanki Engineering Co Ltd
Priority to JP2012288101A priority Critical patent/JP6076733B2/en
Publication of JP2014128765A publication Critical patent/JP2014128765A/en
Application granted granted Critical
Publication of JP6076733B2 publication Critical patent/JP6076733B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Description

本発明は、既設の散気システムから改修散気システムへの更新装置及び既設の散気システムから改修散気システムへの更新方法に関する。 The present invention relates to an update device from an existing diffuser system to a modified diffuser system and an update method from an existing diffuser system to a modified diffuser system .

下水、し尿、産業排水などの有機性汚水を好気性微生物により生物学的に処理して浄化する好気性生物処理法の一つとして活性汚泥法が知られている。
図6は、標準的な活性汚泥法の処理工程を示す。
先ず、処理すべき汚水(以下、被処理水と称する)は、最初沈殿池に導かれる。被処理水は、最初沈殿池において被処理水中の微細な砂やSS(Suspended Solids:浮遊物質)を重力の作用によって沈殿除去される。
次に、被処理水は、最初沈殿池から曝気槽内に導かれる。この際、曝気槽には、種汚泥として好気性微生物(細菌、カビ、原生動物など)を運転開始当初導入され、被処理水中の有機物をえさとして増殖した、活性汚泥といわれる好気性微生物を多量に含む返送汚泥が、後段の最終沈殿池から再び返送されて導かれる。曝気槽内には、微生物の活動に必要な空気(酸素)を槽中に導入し、且つ活性汚泥を被処理水と充分混合するための散気装置が設置されている。
The activated sludge method is known as one of the aerobic biological treatment methods for biologically treating and purifying organic sewage such as sewage, human waste and industrial wastewater with aerobic microorganisms.
FIG. 6 shows a standard activated sludge process.
First, sewage to be treated (hereinafter referred to as treated water) is first guided to a settling basin. In the first settling basin, fine sand and SS (Suspended Solids) in the water to be treated are precipitated and removed by the action of gravity.
Next, the water to be treated is first introduced into the aeration tank from the settling basin. At this time, aerobic microorganisms (bacteria, mold, protozoa, etc.) were introduced into the aeration tank as seed sludge at the beginning of operation, and a large amount of aerobic microorganisms called activated sludge that grew using organic matter in the water to be treated were fed. The returned sludge contained in is returned and guided from the final sedimentation basin at the latter stage. In the aeration tank, an air diffuser for introducing air (oxygen) necessary for the activity of microorganisms into the tank and mixing the activated sludge sufficiently with the water to be treated is installed.

散気装置には、無数の散気孔が設けられており、ブロアから空気配管を介して空気が供給されると、無数の散気孔から曝気槽内に空気を噴出させ、噴出するエアのエアリフト作用によって気液混合の上向流を生起することができる。そのため、曝気槽に活性汚泥を多量に含む返送汚泥が導かれると、散気装置は返送汚泥と被処理水とを十分混合し、被処理水中に気泡状の空気を吹き込んで曝気し、被処理水中の酸素濃度を高め、活性汚泥に含まれる微生物の代謝作用により有機物を除去する作用を奏する。
次に、曝気槽を溢出した活性汚泥と被処理水との混合液は、正常な活性汚泥は分離が容易であるため、最終沈殿池において沈降分離され、その上、上澄水は処理水として放流されたり、後工程の高度処理へ送られたりする。
次に、最終沈殿池中にて沈降した活性汚泥のうち、好気性排水処理に必要な量は反応槽(曝気槽)に返送され、再度、種汚泥として処理に使用される。
なお、沈殿汚泥の増殖分は、余剰汚泥として最初沈殿池の上流に戻され、最初沈殿池で沈降した沈殿池汚泥として集められた後、別途処理される。
The air diffuser is provided with an infinite number of air holes, and when air is supplied from the blower through the air pipe, air is ejected from the innumerable air holes into the aeration tank. Can cause an upward flow of gas-liquid mixing. Therefore, when the return sludge containing a large amount of activated sludge is introduced into the aeration tank, the air diffuser sufficiently mixes the return sludge and the water to be treated, blows bubbled air into the water to be treated and aerates it. The oxygen concentration in water is increased, and the organic substance is removed by the metabolic action of microorganisms contained in the activated sludge.
Next, the mixed liquid of activated sludge overflowing the aeration tank and treated water is settled and separated in the final sedimentation basin because normal activated sludge is easy to separate, and the supernatant water is discharged as treated water. Or sent to advanced processing in a later process.
Next, of the activated sludge settled in the final sedimentation basin, the amount necessary for the aerobic waste water treatment is returned to the reaction tank (aeration tank) and used again as seed sludge for treatment.
In addition, the growth of sediment sludge is returned to the upstream of the first sedimentation basin as surplus sludge, collected as sedimentation basin sludge settled in the first sedimentation basin, and then processed separately.

図7は、従来の散気装置を備えた散気システムの一例を示す(例えば、特許文献1,2,3,4,5,6参照)。図7では、例えば、10槽の曝気槽1A〜1Jを備える散気システムについて説明する。
10槽の曝気槽1A〜1J内には、それぞれの底面に散気装置群2が配置されている。散気装置群2は、曝気槽1A〜1J内の被処理水中に気泡を曝気させる複数の散気装置3と、各散気装置3をそれぞれ配置する枝配管4とで構成されている。各枝配管4は空気配管5に接続され、空気配管5は1つの主配管(既設ヘッダ)6に連結され、主配管6には5台のブロア7a〜7eがそれぞれ元配管8a〜8eを介して接続されている。5台のブロア7a〜7eは、1台で2つ半の散気装置群2に空気を供給することができるように設定されているので、本例ではブロア7eが予備として機能する。空気配管5は、4台ブロア7a〜7dで供給される圧縮空気の全圧(静圧+動圧)を曝気槽1A〜1J毎に調整する複数の空気調節弁(図示せず)を設けている。
FIG. 7 shows an example of an air diffusion system including a conventional air diffuser (see, for example, Patent Documents 1, 2, 3, 4, 5, and 6). In FIG. 7, for example, an aeration system including 10 aeration tanks 1A to 1J will be described.
In 10 tanks 1A-1J, the diffuser group 2 is arrange | positioned at each bottom face. The air diffuser group 2 includes a plurality of air diffusers 3 that aerate bubbles in the water to be treated in the aeration tanks 1A to 1J, and branch pipes 4 in which the air diffusers 3 are respectively arranged. Each branch pipe 4 is connected to an air pipe 5, the air pipe 5 is connected to one main pipe (existing header) 6, and five blowers 7 a to 7 e are connected to the main pipe 6 via original pipes 8 a to 8 e, respectively. Connected. Since the five blowers 7a to 7e are set so that one unit can supply air to the two and a half diffuser groups 2, the blower 7e functions as a spare in this example. The air pipe 5 is provided with a plurality of air control valves (not shown) for adjusting the total pressure (static pressure + dynamic pressure) of the compressed air supplied by the four blowers 7a to 7d for each of the aeration tanks 1A to 1J. Yes.

なお、図7では、10槽の曝気槽1A〜1J内の散気装置群2は、便宜上1本の枝配管4に3つの散気装置3を配置した形で示したが、それぞれの下水処理場の規模などにより使用される散気装置3及び枝配管4の数が求められる。また、曝気槽の数もそれぞれの下水処理場の規模などにより異なる。
図5(A)は、図6に示す従来の散気装置を備えた散気システムのブロアの吐出圧力とブロアの風量との関係を示すグラフである。なお、図5において、従来の散気装置3を用いた散気装置群2を標準系として示し、後述する低圧損型の散気装置であるパネル型のメンブレン式散気装置を用いる散気装置群を低風量系として示す。
従来の散気装置を備えた散気システムでは、4台のブロア7a〜7dを稼働することによって、抵抗曲線とブロアの吐出圧力の設定値とが重なり、運転点を形成している。
In FIG. 7, the aeration device group 2 in the 10 aeration tanks 1 </ b> A to 1 </ b> J is shown in a form in which three aeration devices 3 are arranged in one branch pipe 4 for convenience. The number of diffusers 3 and branch pipes 4 to be used is determined depending on the scale of the field. In addition, the number of aeration tanks varies depending on the size of each sewage treatment plant.
FIG. 5A is a graph showing the relationship between the blower discharge pressure and the blower air volume in the air diffusion system including the conventional air diffuser shown in FIG. In FIG. 5, the diffuser group 2 using the conventional diffuser 3 is shown as a standard system, and a diffuser using a panel-type membrane diffuser, which is a low-pressure loss diffuser described later. Groups are shown as low airflow systems.
In an air diffuser system equipped with a conventional air diffuser, by operating four blowers 7a to 7d, the resistance curve and the set value of the discharge pressure of the blower overlap to form an operating point.

また、従来の散気装置としては、例えば、メッシュクロス、セラミック、樹脂、金属の焼結体などの伸縮性や収縮性のない四角形状又は円形状の散気エレメントを用いた複数の散気板を、水平面上縦横に対にして配置し、水面上から空気を供給する給気ホースに接続されるヘッダー管から複数に分岐する配管にそれぞれゴムホースを介して接続して成る散気装置が知られている(例えば、特許文献5参照)。
特許文献5の散気板は、伸縮性や収縮性のない四角形状又は円形状の散気エレメントと、この散気エレメントの下側に設置された、通気口を有する可撓性のあるダイヤフラムとを備え、散気停止時には散気エレメントとダイヤフラムとの間に空間がなく、送気時には散気エレメントの通気抵抗により下面のダイヤフラムが下方に撓んで通気を可能にする構成になっている(特許文献5の図1参照)。
In addition, as a conventional diffuser, for example, a plurality of diffuser plates using a square or circular diffuser element having no stretchability or shrinkage such as a mesh cloth, ceramic, resin, metal sintered body, etc. There are known diffuser devices that are arranged in pairs on the horizontal plane, and are connected via a rubber hose to a pipe that branches from a header pipe connected to an air supply hose that supplies air from above the water surface. (For example, see Patent Document 5).
The air diffuser of Patent Document 5 includes a rectangular or circular air diffuser element that is not stretchable or contractible, and a flexible diaphragm that has an air vent installed under the air diffuser element. When there is no air space, there is no space between the air diffuser element and the diaphragm, and when air is supplied, the lower diaphragm is bent downward by the air flow resistance of the air diffuser element to allow ventilation (patented) (Refer FIG. 1 of literature 5).

また、従来の別の散気装置としては、角型弾性多孔体と、角型弾性多孔体を下方から支持し且つ加圧空気用のオリフィスを有する支持体と、角型弾性多孔体を支持体に一体に固定する固定部材からなり、加圧空気送付用のパイプ上への設置が容易な散気装置が知られている(例えば、特許文献6参照)。
特許文献6において、弾性多孔体は、弾性を有する材料を所望の形状に成型して得られるものであり、多孔体の材質は、例えば、エチレンプロピレンゴム(EPDM)、シリコンゴム、ポリウレタン、クロロプレンゴム、ニトリルゴム、フッ素ゴム(例えば、登録商標バイトン,PTFE)、パーフルオロエラストマーなどのゴムから選ぶことができる。これらの中でも、特にエチレンプロピレンゴムが、膜強度が強く、耐熱性、耐水性に優れているため、好ましい。また、耐薬品性の点でフッ素ゴム、パーフルオロエラストマーが好ましい。
特許文献6の散気装置は、加圧空気送付用のパイプ上に2つ以上を設置して散気システムを構成することができる(特許文献6の図5参照)。
Further, as another conventional air diffuser, a rectangular elastic porous body, a support body that supports the rectangular elastic porous body from below and has an orifice for pressurized air, and a rectangular elastic porous body as a support body There is known an air diffuser that includes a fixing member that is integrally fixed to a pipe and that can be easily installed on a pipe for sending pressurized air (see, for example, Patent Document 6).
In Patent Document 6, an elastic porous body is obtained by molding an elastic material into a desired shape. Examples of the material of the porous body include ethylene propylene rubber (EPDM), silicon rubber, polyurethane, and chloroprene rubber. , Rubbers such as nitrile rubber, fluoro rubber (for example, registered trademark Viton, PTFE), perfluoroelastomer, and the like. Among these, ethylene propylene rubber is particularly preferable because it has high film strength and excellent heat resistance and water resistance. Further, fluororubber and perfluoroelastomer are preferable in terms of chemical resistance.
Two or more of the air diffusers of Patent Document 6 can be installed on a pipe for sending pressurized air to configure an air diffuser system (see FIG. 5 of Patent Document 6).

ところで、曝気槽へ供給する空気の送風に要する動力は、下水処理場で消費する電力の4割〜5割といわれており、その消費電力削減による曝気動力の省エネルギーとそれに伴う下水処理場での使用エネルギー由来のCO2 排出量の削減による温室効果ガスの低減が期待されている。
そこで、曝気動力を削減するために送風機動力を低減するに当たり、ただ送風量を減らしただけでは、曝気槽内のDO(Dissolved Oxygen:溶存酸素)の低下、MLSS(Mixed Liquor Suspended Solid:活性汚泥浮遊物質)の沈殿を招き、処理水質が悪化して下水処理施設の本来の目的を果たすことができない。これを防ぐために少ない風量でも曝気槽内のDOを維持できる、従来のセラミックや合成樹脂製の高圧系(高風量系)の散気装置よりも微細な気泡を槽中に供給することで気液接触面積を劇的に増加させて、効率よく酸素を溶解させることの可能な高効率型散気装置である微細気泡散気装置を導入することで、曝気動力を低減することができる。
By the way, the power required to blow air supplied to the aeration tank is said to be 40% to 50% of the power consumed in the sewage treatment plant. Reduction of greenhouse gases by reducing CO 2 emissions derived from energy used is expected.
Therefore, when reducing the blower power in order to reduce the aeration power, simply reducing the amount of blown air will reduce the DO (Dissolved Oxygen) in the aeration tank, MLSS (Mixed Liquor Suspended Solid) Substance), the quality of the treated water deteriorates and the original purpose of the sewage treatment facility cannot be achieved. In order to prevent this, gas and liquid can be supplied by supplying finer bubbles into the tank than conventional high pressure (high air volume) air diffusers made of ceramic or synthetic resin that can maintain DO in the aeration tank even with a small air volume. Aeration power can be reduced by introducing a fine bubble diffuser that is a highly efficient diffuser capable of efficiently dissolving oxygen by dramatically increasing the contact area.

そのため、上述した従来のセラミックや合成樹脂製の高圧系(高風量系)の散気装置の改修時に、送風動力の削減を可能とする低圧系(低風量系)の超微細散気装置であるパネル型のメンブレン式散気装置に置き換えることが提案されている。低圧系(低風量系)の微細気泡散気装置は、小さな気泡を発生させることにより、被処理水中に酸素が溶けやすくなるため、送風量が抑えられ電力使用量が削減できる。低圧系(低風量系)の微細気泡散気装置は、小さな気泡を発生させることにより、気液接触度合いが大幅に増加して、被処理水中に酸素が溶けやすくなるため、同じDOを被処理水中に保つのに送風量が押さえられ電力使用量が削減できる。低圧系(低風量系)の微細気泡散気装置を導入することにより、従来の高圧系(高風量系)の散気装置に比べ約2割の電力削減が可能になるといわれている。
パネル型のメンブレン式散気装置は、曝気槽のエアレーションに使用する装置である(例えば、特許文献7参照)。
Therefore, it is a low-pressure (low air volume) ultrafine air diffuser capable of reducing the blowing power when the above-described conventional ceramic or synthetic resin high pressure system (high air volume) air diffuser is modified. It has been proposed to replace the panel type membrane diffuser. The low pressure system (low air volume system) fine bubble diffuser generates small bubbles, so that oxygen is easily dissolved in the water to be treated. The low pressure system (low air volume system) fine bubble diffuser generates small bubbles, which greatly increases the degree of gas-liquid contact and makes it easier for oxygen to dissolve in the water to be treated. The amount of air used can be reduced to keep the water underwater and the amount of power used can be reduced. It is said that the introduction of a low pressure system (low air volume system) fine bubble diffuser enables approximately 20% power reduction compared to a conventional high pressure system (high air volume system) air diffuser.
A panel type membrane diffuser is an apparatus used for aeration of an aeration tank (see, for example, Patent Document 7).

パネル型のメンブレン式散気装置の散気パネルは、平板状を為す金属製又は合成樹脂製のベースプレートの一面に散気膜を配置し、散気膜の四辺縁部とベースプレートの四辺縁部とをパッキンを介して金属製の枠体に固定している。散気膜は多数の小孔を有し、その材質は、ポリウレタン、シリコン、エチレンプロピレンゴムなどの適度の弾性を有する合成樹脂又は合成ゴムから成る。
パネル型のメンブレン式散気装置は、低圧系(低風量系)の散気装置であり、発生する気泡の直径が、例えば、1mm程度の微細気泡(超微細気泡)を発生することができるので、従来の散気装置に比べ気泡径が小さく、気液接触面積としての比表面積が同風量で劇的に大きくなるため、水中への酸素異動効率が高く、同じ酸素移動を水中へ行うための曝気を行うなら好気反応槽への送風量が少なくなり、電力削減と同時に曝気用エネルギー由来の温室効果ガスの排出量を抑制することが期待できる。
The diffuser panel of the panel type membrane diffuser has a diffuser film on one side of a flat plate made of metal or synthetic resin, and the four sides of the diffuser membrane and the four sides of the base plate Is fixed to a metal frame through packing. The diffuser membrane has a large number of small holes, and the material thereof is made of synthetic resin or synthetic rubber having moderate elasticity such as polyurethane, silicon, ethylene propylene rubber and the like.
The panel-type membrane diffuser is a low-pressure (low air flow) diffuser, and can generate fine bubbles (ultrafine bubbles) having a diameter of, for example, about 1 mm. Compared with conventional diffusers, the bubble diameter is small and the specific surface area as the gas-liquid contact area is dramatically increased with the same air volume. Therefore, the efficiency of oxygen transfer into water is high, and the same oxygen transfer is performed in water. If aeration is performed, the amount of air blown to the aerobic reaction tank is reduced, and it can be expected that the amount of greenhouse gas derived from aeration energy is suppressed at the same time as power reduction.

図8は、従来の高圧系(高風量系)の散気装置群2の一部を低圧系(低風量系)のパネル型のメンブレン式散気装置10を用いる新たな散気装置群9に一部改修した後の散気システムの一例を示す。
なお、従来の高圧系(高風量系)の散気装置群2を低圧系(低風量系)のパネル型のメンブレン式散気装置10を用いる新たな散気装置群9に置き換える作業は、対象の下水処理場の運転に支障を与えないように、曝気槽1A〜1J全てを用いて好気性処理する必要のある原水量とならない原水量の少ない時期を見計らって、定格原水量と実際導入される原水量との差分の一部を受け持つ処理量の一部の曝気槽を閉鎖して水抜きし、高圧系(高風量系)の散気装置群2を順次低圧系(低風量系)の散気装置群9に更新していく。
FIG. 8 shows that a part of the conventional high pressure system (high airflow system) air diffuser group 2 is replaced with a new low airflow system (low airflow system) panel type membrane air diffuser 10. An example of the diffuser system after partial refurbishment is shown.
The work of replacing the conventional high pressure system (high airflow system) air diffuser group 2 with a new air diffuser group 9 using the low pressure system (low airflow system) panel type membrane air diffuser 10 In order not to interfere with the operation of the sewage treatment plant, it is actually introduced with the rated raw water amount in anticipation of the low raw water amount that does not become the raw water amount that needs to be aerobically treated using all of the aeration tanks 1A to 1J. Close a part of the aeration tank that handles a part of the difference from the amount of raw water to be drained, drain the water, and sequentially turn the high pressure system (high air volume system) diffuser group 2 into the low pressure system (low air volume system) The air diffuser group 9 is updated.

本例では、図7に示す散気システムにおける2つの曝気槽1E,1G内の高圧系(高風量系)の散気装置群2をパネル型のメンブレン式散気装置10を用いる新たな散気装置群9に置き換える場合について説明する。
先ず、2つの曝気槽1E,1Gの空気系の枝配管4の図示しない開閉弁(空気調節弁と兼用でも別体でも良い)を閉止し、その後、2つの曝気槽1E,1G内に原水が流入しないように、原水流入配管途中のバルブを閉止したり、原水流入堰を上昇させたり閉鎖したりし、その後、2つの曝気槽1E,1G内の被処理水を排水して、2つの曝気槽1E,1G内を空にする。
次に、2つの曝気槽1E,1G内の改修する高圧系(高風量系)の散気装置群2を撤去する。
次に、2つの曝気槽1E,1G内に低圧系(低風量系)のパネル型のメンブレン式散気装置10を用いる新たな散気装置群9を配置する。
In this example, a new air diffuser using a panel type membrane air diffuser 10 is used as the high pressure system (high air flow system) air diffuser group 2 in the two aeration tanks 1E and 1G in the air diffuser system shown in FIG. The case where it replaces with the apparatus group 9 is demonstrated.
First, the on-off valves (not shown) of the branch pipes 4 of the air system of the two aeration tanks 1E and 1G (which may be combined with or separate from the air control valve) are closed, and then the raw water is in the two aeration tanks 1E and 1G. To prevent inflow, close the valve in the raw water inflow pipe, raise or close the raw water inflow weir, and then drain the treated water in the two aeration tanks 1E and 1G to The tanks 1E and 1G are emptied.
Next, the high pressure system (high air volume system) diffuser group 2 to be repaired in the two aeration tanks 1E and 1G is removed.
Next, a new air diffuser group 9 using the low pressure system (low air volume system) panel type membrane air diffuser 10 is disposed in the two aeration tanks 1E and 1G.

次に、原水流入配管のバルブを開いたり、原水流入堰を下降させたり開放させたりして、原水流入堰から溢出させて原水を導入して、2つの曝気槽1E,1G内に原水を流入する。
次に、低圧系(低風量系)のパネル型のメンブレン式散気装置10を用いる新たな散気装置群9のバルブ12を開いて配管11から圧縮空気を供給する。
以上によって、2つの曝気槽1E,1G内の低圧系(低風量系)の散気装置群2をパネル型のメンブレン式散気装置10を用いる新たな散気装置群9に置き換える作業が完了する。
Next, open the raw water inflow piping valve, lower or open the raw water inflow weir, overflow the raw water inflow weir, introduce the raw water, and flow the raw water into the two aeration tanks 1E, 1G To do.
Next, the valve 12 of the new air diffuser group 9 using the low pressure system (low air flow system) panel type membrane diffuser 10 is opened to supply compressed air from the pipe 11.
Thus, the work of replacing the low pressure system (low air volume system) diffuser group 2 in the two aeration tanks 1E and 1G with the new diffuser group 9 using the panel type membrane diffuser 10 is completed. .

図8に示す従来の高圧系(高風量系)の散気装置の改修後の散気システムでは、低圧系(低風量系)のパネル型のメンブレン式散気装置10であっても、ブロア静圧と各散気装置吹き出し風量から、配管11に設けたバルブ12を絞ってわざわざ抵抗を付けていた。その理由は、5台のブロア7a〜7eを用いる空気導入配管系はそのまま使用され、5台のブロア7a〜7eは低速で運転されるため、低圧系(低風量系)のパネル型のメンブレン式散気装置10に対しては圧縮空気の送風量や空気圧力が多すぎるためである。
なお、特許文献1〜4には、曝気槽の散気装置などにおける、複数のブロワにより散気装置へ空気を供給する散気システムの技術的水準が示されている。
In the air diffuser system after the modification of the conventional high pressure system (high air flow system) air diffuser shown in FIG. 8, even if it is a low pressure system (low air flow system) panel type membrane air diffuser 10, From the pressure and the amount of blown air from each air diffuser, the valve 12 provided in the pipe 11 was throttled to bother resistance. The reason is that the air introduction piping system using the five blowers 7a to 7e is used as it is, and the five blowers 7a to 7e are operated at a low speed, so that the panel type membrane type of the low pressure system (low air flow system). This is because the amount of compressed air blown and the air pressure are too large for the air diffuser 10.
Patent Documents 1 to 4 show the technical level of an air diffusion system that supplies air to an air diffuser using a plurality of blowers in an air diffuser for an aeration tank.

特開2006−116388号公報JP 2006-116388 A 特開2012−200706号公報JP 2012-200706 A 特開2004−041928号公報JP 2004-041928 A 特開平11−138191号公報JP 11-138191 A 特許第4539568号公報Japanese Patent No. 4539568 特許第4846339号公報Japanese Patent No. 4846339 特開2004−313938号公報JP 2004-313938 A

上述したように、図7に示す従来の高圧系(高風量系)の散気装置群2の曝気槽の一部改修後の散気システムでは、従来の高圧系(高風量系)の散気装置群2の一部を低圧系(低風量系)のパネル型のメンブレン式散気装置10に置き換えても、空気導入配管系が1系統であるため、ブロア静圧と各散気装置吹き出し風量から、低圧系(低風量系)のパネル型のメンブレン式散気装置10の配管11のバルブ12を絞ってわざわざ抵抗を付けていた。
よって、図7に示す従来の散気装置を一部改修した場合、処理場全体の曝気槽中の散気装置を順次変更する過程においてその途上では、散気システムにおいて、ブロア7の消費電力は、従来の散気システムと変わらないため、低圧損型(搬送空気動力の低動力型)の散気装置であるパネル型のメンブレン式散気装置10の散気装置群9による送風動力の削減効果を得ることができなかった。
As described above, in the diffused system after partial modification of the aeration tank of the conventional high pressure system (high air flow system) air diffuser group 2 shown in FIG. 7, the conventional high pressure system (high air flow system) air diffuser. Even if a part of the device group 2 is replaced with a low pressure system (low air flow system) panel type membrane diffuser 10, since there is only one air introduction piping system, the blower static pressure and the air flow rate of each air diffuser Therefore, the valve 12 of the pipe 11 of the low pressure system (low air flow system) panel type membrane diffuser 10 is throttled to bother resistance.
Therefore, when the conventional air diffuser shown in FIG. 7 is partially refurbished, in the process of sequentially changing the air diffuser in the aeration tank of the entire treatment plant, the power consumption of the blower 7 in the air diffuser system is Since the air diffuser system is not different from the conventional air diffuser system, the air blowing power reduction effect by the air diffuser group 9 of the panel type membrane diffuser 10 which is a low pressure loss type (low power type of carrier air power) diffuser. Could not get.

また、特許文献6の散気装置は、既設の散気装置の散気板ホルダーを利用しながら、散気板自体を磁器製散気板から異種材の散気板へ簡単な部品構成を用いて変更したリプレース対応型散気装置であるため、交換される散気板がパネル型のメンブレン式散気装置9と同様に低圧損型となる可能性があるものの、図7に示す散気システムと同様に、ブロア7の消費電力は、従来の散気システムと変わらないため、低圧損型の散気装置による送風動力の削減効果を得ることができなかった。
また、特許文献6の散気装置では、一つの配管に設けられた多数の既設散気装置の散気板ホルダーを利用して置き換えるため、作業に手間暇を要するという問題もある。
また、特許文献6の散気装置では、仮に一つの配管に設けられた多数の既設散気装置の散気板ホルダーを利用して置き換えたとしても、各々小さな面積の散気装置毎に散気板ホルダーを有するので、一つのパネル型のメンブレン式散気装置と比較すると、散気面積が少ないという問題もある。
In addition, the air diffuser of Patent Document 6 uses a simple component configuration from the diffuser plate made of porcelain to the diffuser plate made of different materials while using the diffuser plate holder of the existing diffuser. 7 is a replacement-compatible diffuser, and the diffuser plate to be replaced may be a low-pressure loss type similar to the panel-type membrane diffuser 9, but the diffuser system shown in FIG. Similarly, since the power consumption of the blower 7 is the same as that of the conventional diffuser system, the effect of reducing the blast power by the low pressure loss diffuser cannot be obtained.
Moreover, in the air diffusion apparatus of patent document 6, since it replaces using the diffuser plate holder of many existing air diffusion apparatuses provided in one piping, there also exists a problem that work requires time and effort.
Further, in the air diffuser of Patent Document 6, even if the air diffuser plate holders of a number of existing air diffusers provided in one pipe are replaced, the air diffuser is diffused for each small area diffuser. Since it has a plate holder, there is also a problem that the diffused area is small as compared with one panel type membrane diffuser.

特許文献1には、曝気槽に浸積させている膜へ曝気空気を下方の散気管から供給する散気設備において、複数のブロアをヘッダで共通して接続し、通常の散気運転時には多数のブロアを運転し、散気管の汚泥詰まりを洗浄する洗浄運転時にはブロアを停止し、ヘッダで加圧空気を大気開放して急激に抜くことで、散気管内に水を流入させる技術の開示がある。
この特許文献1では、旧式の散気装置をメンブレン式散気装置へ変更更新することの開示は全くない。
特許文献2には、パネル型のメンブレン式散気装置を曝気槽内に設ける散気システムにおいて、メンブレン膜の開口部に堆積付着する付着物を洗浄するため、散気のための送気にミスト状の洗浄薬液を同伴させてメンブレン膜の開孔から吹き出させる技術の開示がある。
この特許文献2では、旧式の散気装置をメンブレン式散気装置へ変更する際に省エネルギーを図りながら更新することの開示は全くない。
In Patent Document 1, in a diffuser facility for supplying aeration air from a lower diffuser pipe to a film immersed in an aeration tank, a plurality of blowers are connected in common at a header, and a large number during normal aeration operation. Disclosed is a technology that allows water to flow into the diffuser pipe by stopping the blower during the cleaning operation to clean sludge clogging in the diffuser pipe, releasing the pressurized air to the atmosphere with the header, and removing it rapidly. is there.
In this patent document 1, there is no disclosure of changing and updating an old diffuser to a membrane diffuser.
In Patent Document 2, in a diffuser system in which a panel-type membrane diffuser is provided in an aeration tank, the deposits deposited and adhered to the openings of the membrane membrane are washed. There is a disclosure of a technique in which a liquid cleaning chemical is accompanied and blown out from an opening of a membrane film.
In Patent Document 2, there is no disclosure of renewing while saving energy when an old diffuser is changed to a membrane diffuser.

特許文献3では、パネル型のメンブレン式散気装置を曝気槽内に設ける散気システムにおいて、多数の散気装置に空気の供給量や空気圧が均一に安定的に供給できるように、多数の散気装置毎に独立して通気及び通気停止ができるようにすることで、順繰りに停止を掛けてメンブレン膜の開口部に付着物が付着する前に膜を大きく伸縮させて付着を防止して、全体としても空気の供給量や圧が均一になるようにした技術が開示されている。
この特許文献3では、旧式の散気装置をメンブレン式散気装置へ変更する際に省エネルギーを図りながら更新することの開示は全くない。
特許文献4でも、曝気槽内に設ける散気管へ空気を供給する曝気装置において、散気装置毎にインバータ付きブロアを設けて、流入負荷量に応じて各ブロアの生成空気量を調整する技術が開示されている。
この特許文献4では、旧式の散気装置をメンブレン式散気装置へ変更する際に省エネルギーを図りながら更新することの開示は全くない。
In Patent Document 3, in a diffuser system in which a panel-type membrane diffuser is provided in an aeration tank, a large number of diffusers are provided so that the supply amount of air and air pressure can be uniformly and stably supplied to a large number of diffusers. By allowing air to be vented and stopped independently for each air device, the membrane is greatly expanded and contracted before deposits adhere to the openings of the membrane membrane in order to prevent adhesion, A technique is disclosed in which the air supply amount and pressure are uniform as a whole.
In this patent document 3, there is no disclosure of updating while saving energy when changing an old diffuser to a membrane diffuser.
Also in Patent Document 4, in an aeration apparatus that supplies air to an air diffuser provided in an aeration tank, a technique is provided in which an air blower with an inverter is provided for each air diffuser and the amount of air generated by each blower is adjusted according to the inflow load amount. It is disclosed.
In this patent document 4, there is no disclosure of updating while saving energy when changing an old diffuser to a membrane diffuser.

本発明は斯かる従来の問題点を解決するために為されたもので、その目的は、従来のセラミックや合成樹脂製の散気部分を有する高圧系(高風量系)の散気装置を備えた既設の曝気槽の散気装置改修時に、一部を改修交換する過程でも、低圧系(低風量系)のパネル型のメンブレン式散気装置の導入を、調整を簡単に容易に行うことができ、且つ一部改修時から省エネルギー運転が実現可能な、既設の散気システムから改修散気システムへの更新装置及び既設の散気システムから改修散気システムへの更新方法を提供することにある。 The present invention has been made in order to solve such a conventional problem, and an object of the present invention is to provide a conventional high pressure system (high air flow system) air diffuser having an air diffused portion made of ceramic or synthetic resin. Even when a part of the existing aeration tank is being refurbished, the installation of a low-pressure (low airflow) panel-type membrane-type air diffuser can be easily and easily adjusted. can, and which can be energy-saving operation of a part during renovation achieved is to provide a method of updating from the diffusion system update device and existing from the existing aeration system to repair air diffuser system to repair the air diffuser system .

本発明に係る既設の散気システムから改修散気システムへの更新装置は、被処理水を収容する複数の好気処理槽と、バルブを設けた複数の元配管を介して複数のブロアを既設ヘッダに接続して成る圧縮空気供給装置と、伸縮性や収縮性のない複数の散気エレメントを枝配管で連結した高圧系(高風量系)の散気装置で構成され、前記好気処理槽内に配置される高圧系(高風量系)の散気装置群と、前記既設ヘッダと前記高圧系(高風量系)の散気装置群の前記枝配管とを連結する1つの送気管とを備える既設の散気システムから、前記高圧系(高風量系)の散気装置群を、新設する低圧損型のパネル式メンブレン膜で構成され小さな気泡を発生する複数の散気パネルを新設枝配管で連結した低圧系(低風量系)の散気装置で構成される低圧系(低風量系)の散気装置群に置き換える既設の散気システムから改修散気システムへの更新装置において、前記更新装置は、前記複数の元配管の前記バルブより前記複数のブロア側に、バルブを設けた複数の分岐元配管を介して接続する1つの更新用のヘッダと、前記送気管に沿って配置され、前記低圧系(低風量系)の散気装置群と前記新設枝配管を介して接続され且つ前記更新用のヘッダと連結される追加送気管と、前記ブロアの内一部のブロアに設置されるインバータとを備え、前記インバータが最初に設置されたブロアは、半分の前記高圧系(高風量系)の散気装置群を前記低圧系(低風量系)の散気装置群に置き換えるまでは前記低圧系(低風量系)の散気装置専用のブロアとして前記更新用のヘッダに接続され、半分より多くの前記高圧系(高風量系)の散気装置群を前記低圧系(低風量系)の散気装置群に置き換えてからは前記低圧系(低風量系)の散気装置専用のブロアとして前記既設ヘッダに接続され、全ての前記高圧系(高風量系)の散気装置群を前記低圧系(低風量系)の散気装置群に置き換えると、前記既設ヘッダ及び前記更新用のヘッダに接続され、前記インバータが最初に設置されたブロア以外の前記ブロアの内の一部は、前記低圧系(低風量系)の散気装置群の置き換えに応じて前記既設ヘッダのみ、前記更新用のヘッダのみ、又は前記既設ヘッダと前記更新用のヘッダとの接続に切り換えられることを特徴とする。 The update device from the existing air diffuser system to the repair air diffuser system according to the present invention includes a plurality of aerobic treatment tanks containing treated water and a plurality of blowers via a plurality of original pipes provided with valves. The aerobic treatment tank includes a compressed air supply device connected to a header and a high-pressure (high air volume) air diffuser in which a plurality of air diffusers that are not stretchable or contractible are connected by branch pipes. A high-pressure system (high airflow system) air diffuser group disposed inside, and one air pipe that connects the existing header and the branch pipe of the high-pressure system (high airflow system) air diffuser group from the existing aeration system comprising, prior Symbol pressure system the air diffuser group (large air volume system), it is composed of a panel type membrane film low pressure loss for new branches established multiple aeration panels that generates small bubbles Low pressure system composed of low pressure system (low air flow system) diffuser connected by piping In the update device from the existing aeration system to repair diffuser system to replace the air diffuser group of the low air volume system), the updating unit, the multiple blower side of the valve of the plurality of original tubing, a valve and one header for updating connected via a plurality of branch source pipe provided, arranged before along Kioku trachea, through the newly branch pipes and air diffuser group of the low-pressure system (low air volume system) a and the header added Ru is connected to the air line for the update are connected Te, and an inverter that is installed to a part of the blower of the blower, before Symbol blower inverter is first installed, half of the Until the high-pressure system (high airflow system) diffuser group is replaced with the low-pressure system (low airflow system) diffuser group, the renewal blower is dedicated to the low-pressure system (low airflow system) air diffuser . More than half connected to the header The serial high-voltage air diffusion device group (large air volume system) as an air diffuser dedicated blower of the low voltage system the low-pressure system from substituting the diffuser groups (low air volume system) (low air volume system) existing When all the high-pressure (high airflow) diffuser groups are connected to the header and replaced with the low-pressure (low airflow) diffuser group, they are connected to the existing header and the update header. A part of the blower other than the blower in which the inverter is first installed includes only the existing header and the update header according to the replacement of the low pressure system (low air flow system) air diffuser group. Alternatively, the connection is switched to the connection between the existing header and the update header.

また、前記更新用のヘッダ内の圧力を検出する圧力計と、前記圧力計からの検出信号に基づき設定圧力値との差分から、前記インバータの周波数出力を演算し前記インバータへ出力する圧力調整計とからなる吐出圧制御装置とを備え、前記更新用のヘッダに接続された前記ブロアの吐出圧を制御することを特徴とする。
また、前記高圧系(高風量系)の散気装置群を前記低圧系(低風量系)の散気装置群への置き換えに際し、前記低圧系(低風量系)の散気装置群の数が、前記高圧系(高風量系)の散気装置群より多くなった際に、前記低圧系(低風量系)の散気装置群への圧縮空気の供給を、前記追加送気管から前記送気管へ切り換えるよう開閉可能に、前記更新用のヘッダに弁が備わることを特徴とする。
Further, the pressure gauge for detecting the pressure in the header for updating, from the difference between the set pressure value based on the detection signal from the pressure gauge, pressure regulator gauge to be output to the inverter calculates the frequency output of the inverter And a discharge pressure control device configured to control the discharge pressure of the blower connected to the update header.
Further, when replacing the high pressure system (high airflow system) diffuser group with the low pressure system (low airflow system) diffuser group, the number of low pressure system (low airflow system) diffuser groups is When the amount of the high pressure system (high air flow system) diffuser group is increased, compressed air is supplied from the additional air supply pipe to the air supply pipe to the low pressure system (low air volume system) air diffuser group. The update header is provided with a valve so that it can be opened and closed so as to be switched to.

また、前記好気処理槽毎に前記送気管及び前記追加送気管各々にバルブを1つずつ備え、前記バルブの片側を介して前記高圧系(高風量系)の散気装置群の枝配管と前記送気管とが接続され、前記低圧系(低風量系)の散気装置群が設置される毎に前記バルブのもう片側を介し前記低圧系(低風量系)の散気装置群の新設第2枝配管を介して前記追加送気管が接続され、前記低圧系(低風量系)の散気装置群に対する圧縮空気の供給を前記バルブの片側又は前記バルブのもう片側を介して切り換えることを特徴とする。
また、前記追加送気管の単位長さあたりの配管容量は、前記送気管の単位長さあたりの配管容量の40%以上50%以下であることを特徴とする。
Further, each of the aerobic treatment tanks is provided with one valve in each of the air supply pipe and the additional air supply pipe, and a branch pipe of the high-pressure system (high air volume system) air diffuser group through one side of the valve; Each time the low pressure system (low air flow system) diffuser group is connected to the air supply pipe, the low pressure system (low air flow system) diffuser group is installed through the other side of the valve. The additional air supply pipe is connected via a two-branch pipe, and the supply of compressed air to the low pressure system (low air volume system) air diffuser group is switched through one side of the valve or the other side of the valve. And
The pipe capacity per unit length of the additional air supply pipe is 40% or more and 50% or less of the pipe capacity per unit length of the air supply pipe.

また、本発明に係る既設の散気システムから改修散気システムへの更新方法は、被処理水を収容する複数の好気処理槽と、バルブを設けた複数の元配管を介して複数のブロアを既設ヘッダに接続して成る圧縮空気供給装置と、伸縮性や収縮性のない複数の散気エレメントを枝配管で連結した高圧系(高風量系)の散気装置で構成され、前記好気処理槽内に配置される高圧系(高風量系)の散気装置群と、前記既設ヘッダと前記高圧系(高風量系)の散気装置群の前記枝配管とを連結する1つの送気管とを備える既設の散気システムから、前記高圧系(高風量系)の散気装置群を、新設する低圧損型パネル式メンブレン膜で構成され小さな気泡を発生する複数の散気パネルを新設枝配管で連結した低圧系(低風量系)の散気装置で構成される低圧系(低風量系)の散気装置群に置き換える既設の散気システムから改修散気システムへの更新方法において、前記複数の元配管の前記バルブより前記複数のブロア側に、バルブを設けた複数の分岐元配管を介して接続する1つの更新用のヘッダを前記圧縮空気供給装置に設け、前記更新用のヘッダに接続される追加送気管を、前記送気管に沿って配置し、更新すべき前記高圧系(高風量系)の散気装置群を所定数の前記好気処理槽毎に順次撤去し、前記低圧系(低風量系)の散気装置群を、撤去された前記高圧系(高風量系)の散気装置群の位置に配置し、配置された前記低圧系(低風量系)の散気装置群に前記新設枝配管を介して前記更新用のヘッダを連結するように前記追加送気管を接続し、前記ブロアの内一部のブロアにインバータを設置し、前記インバータが最初に設置されたブロアを、全ての前記高圧系(高風量系)の散気装置群を前記低圧系(低風量系)の散気装置群に置き換えるまでは前記低圧系(低風量系)の散気装置専用のブロアとして前記更新用のヘッダ又は前記既設ヘッダに接続し、全ての前記高圧系(高風量系)の散気装置群を前記低圧系(低風量系)の散気装置群に置き換えると、前記既設ヘッダ及び前記更新用のヘッダに接続し、前記インバータが最初に設置されたブロア以外の前記ブロアの内の一部にインバータを設置し、前記低圧系(低風量系)の散気装置群の置き換えに応じて前記既設ヘッダのみ、前記更新用のヘッダのみ、又は前記既設ヘッダと前記更新用のヘッダとの接続に切り換えることを特徴とする。 Moreover, the update method from the existing air diffusion system to the modified air diffusion system according to the present invention includes a plurality of aerobic treatment tanks that store treated water and a plurality of blowers via a plurality of original pipes provided with valves. A compressed air supply device formed by connecting an existing header to the existing header, and a high pressure system (high air flow system) air diffusion device in which a plurality of air diffusion elements that are not stretchable or contractible are connected by branch pipes. One air pipe that connects the high pressure system (high air flow system) air diffuser group disposed in the treatment tank, and the existing header and the branch pipe of the high pressure system (high air volume system) air diffuser group. from the existing aeration system comprising bets, established before Symbol pressure system the air diffuser group (large air volume system), a plurality of diffuser panels consist of low pressure loss panel type membrane film generates small bubbles of new A low pressure system (low air flow system) diffuser connected by branch piping. System In the update method from the existing aeration system to replace the air diffuser groups (low air volume system) to repair the air diffuser system, wherein a plurality of blower side of the valve of the plurality of original tubing, a plurality of providing a valve One renewal header connected via the branching source pipe is provided in the compressed air supply device, and an additional air supply pipe connected to the renewal header is arranged along the air supply pipe and should be updated. The high pressure system (high air flow system) air diffuser group is sequentially removed for each predetermined number of aerobic treatment tanks, and the low pressure system (low air flow system) air diffuser group is removed. disposed at a position of the air diffuser groups large air volume system), so it arranged the low-pressure system (via the new branch pipes to the air diffuser group of the low air volume system) connecting the header for the update Connect the additional air pipe and connect an inverter to a part of the blower Installed, the blower in which the inverter is first installed, the low-pressure system until replaced by diffuser group of all the high-voltage the low voltage system the air diffuser group (large air volume system) (low air volume system) Connected to the renewal header or the existing header as a blower dedicated to the air diffuser of (low air flow system), and all the high pressure system (high air flow system) air diffuser group is the low pressure system (low air flow system) The diffuser group is connected to the existing header and the update header, the inverter is installed in a part of the blower other than the blower where the inverter is first installed, and the low-pressure system ( According to replacement of the diffuser group of the low air volume system, only the existing header, only the update header, or the connection between the existing header and the update header is switched.

また、前記更新用のヘッダ内の圧力を検出する圧力計と、前記圧力計からの検出信号に基づき設定圧力値との差分から、前記インバータの周波数出力を演算し前記インバータへ出力する圧力調整計とからなる吐出圧制御装置とを備え、前記更新用のヘッダに接続された前記ブロアの吐出圧を制御することを特徴とする。
また、前記高圧系(高風量系)の散気装置群を前記低圧系(低風量系)の散気装置群への置き換えに際し、前記低圧系(低風量系)の散気装置群の数が、前記高圧系(高風量系)の散気装置群より多くなった際に、前記低圧系(低風量系)の散気装置群への圧縮空気の供給を、前記追加送気管から前記送気管へ切り換えることを特徴とする。
Further, the pressure gauge for detecting the pressure in the header for updating, from the difference between the set pressure value based on the detection signal from the pressure gauge, pressure regulator gauge to be output to the inverter calculates the frequency output of the inverter And a discharge pressure control device configured to control the discharge pressure of the blower connected to the update header.
Further, when replacing the high pressure system (high airflow system) diffuser group with the low pressure system (low airflow system) diffuser group, the number of low pressure system (low airflow system) diffuser groups is When the amount of the high pressure system (high air flow system) diffuser group is increased, compressed air is supplied from the additional air supply pipe to the air supply pipe to the low pressure system (low air volume system) air diffuser group. It is characterized by switching to.

また、前記好気処理槽毎に前記送気管及び前記追加送気管各々にバルブを1つずつ備え、前記バルブの片側を介して前記高圧系(高風量系)の散気装置群の枝配管と前記送気管とを接続し、前記低圧系(低風量系)の散気装置群が設置される毎に前記バルブのもう片側を介し前記低圧系(低風量系)の散気装置群の新設第2枝配管を介して前記追加送気管とを接続し、前記低圧系(低風量系)の散気装置群に対する圧縮空気の供給を前記バルブの片側又は前記バルブのもう片側を介して切り換えることを特徴とする。
また、前記追加送気管の単位長さあたりの配管容量は、前記送気管の単位長さあたりの配管容量の40%以上50%以下であることを特徴とする。
Further, each of the aerobic treatment tanks is provided with one valve in each of the air supply pipe and the additional air supply pipe, and a branch pipe of the high-pressure system (high air volume system) air diffuser group through one side of the valve; Each time the low-pressure system (low airflow system) diffuser group is connected to the air supply pipe, the low-pressure system (low airflow system) air diffuser group is installed through the other side of the valve. The additional air supply pipe is connected via a two-branch pipe, and the supply of compressed air to the low pressure system (low air volume system) air diffuser group is switched via one side of the valve or the other side of the valve. Features.
Further, the pipe capacity per unit length of the additional air line is characterized in that the feed is 50% or less 40% of the pipe capacity per unit length of trachea.

本発明によれば、既設のセラミックや合成樹脂製の高圧系(高風量系)の散気装置群の改修時に、高圧系(高風量系)の散気装置群の送気管とは別に更新用の送気管を配置し、高圧系(高風量系)の散気装置へ圧縮空気を供給するブロアの一部にインバータを配置し、置き換えられるパネル型のメンブレン式散気装置で構成される低圧系(低風量系)の散気装置群に吐出圧力を制御して圧縮空気を供給するようにしたので、ブロア電力の低減が可能となり、更新の進捗状況に応じた省エネルギー効果を得ることができる。
また、本発明によれば、高圧系(高風量系)の散気装置群を順次低圧系(低風量系)の散気装置群に更新するので、更新台数に応じて省エネルギー効果が得られる。
According to the present invention, when refurbishing an existing ceramic or synthetic resin high pressure system (high air flow system) air diffuser group, it is updated separately from the air pipe of the high pressure system (high air volume system) air diffuser group. A low-pressure system consisting of a panel-type membrane-type air diffuser that can be replaced by an inverter placed in a part of the blower that supplies compressed air to a high-pressure (high air volume) air diffuser. Since the compressed air is supplied by controlling the discharge pressure to the (low air volume system) air diffuser group, the blower power can be reduced, and an energy saving effect according to the progress of the update can be obtained.
Further, according to the present invention, the high pressure system (high air flow system) air diffuser group is sequentially updated to the low pressure system (low air flow system) air diffuser group, so that an energy saving effect can be obtained according to the number of updated units.

本発明の一実施形態において、10槽の曝気槽1A〜1Jの内、曝気槽1A,1Bの高圧系(高風量系)の各散気装置群2を低圧系(低風量系)の各散気装置群20に置き換えた状態を示す概念図である。In one embodiment of the present invention, among the 10 aeration tanks 1A to 1J, the aeration apparatus groups 2 of the high pressure system (high air volume system) of the aeration tanks 1A and 1B are each diffused of the low pressure system (low air volume system). FIG. 6 is a conceptual diagram showing a state where the air device group 20 is replaced. 本発明の一実施形態において、10槽の曝気槽1A〜1Jの内、曝気槽1A〜1Eの高圧系(高風量系)の各散気装置群2を低圧系(低風量系)の各散気装置群20に置き換えた状態を示す概念図である。In one embodiment of the present invention, among the 10 aeration tanks 1A to 1J, each of the aeration apparatus groups 2 of the high pressure system (high air flow system) of the aeration tanks 1A to 1E is replaced with each of the low pressure system (low air flow system). FIG. 6 is a conceptual diagram showing a state where the air device group 20 is replaced. 本発明の一実施形態において、10槽の曝気槽1A〜1Jの内、曝気槽1A〜1Hの高圧系(高風量系)の各散気装置群2を低圧系(低風量系)の各散気装置群20に置き換えた状態を示す概念図である。In one embodiment of the present invention, among the 10 aeration tanks 1A to 1J, each aeration apparatus group 2 of the high pressure system (high air volume system) of the aeration tanks 1A to 1H is replaced with each diffuser of the low pressure system (low air volume system). FIG. 6 is a conceptual diagram showing a state where the air device group 20 is replaced. 本発明の一実施形態において、10槽の曝気槽1A〜1Jの全ての高圧系(高風量系)の散気装置群2を低圧系(低風量系)の散気装置群20に置き換えた状態を示す概念図である。In one embodiment of the present invention, a state in which all of the high-pressure system (high airflow system) air diffuser group 2 in the 10 aeration tanks 1A to 1J are replaced with a low-pressure system (low airflow system) air diffuser group 20 FIG. (A)高圧系(高風量系)の各散気装置群を備えた散気システムのブロアの吐出圧力とブロアの風量との関係及び(B)〜(E)高圧系(高風量系)の各散気装置群を備えた散気システムの一部又は全部を低圧系(低風量系)の各散気装置群群を備えた散気システムに置き換えた場合の、ブロアの吐出圧力とブロアの風量との関係をそれぞれ示すグラフである。(A) Relationship between the blower discharge pressure and the blower air volume of the air diffuser system including each of the high pressure system (high air volume system) air diffuser groups and (B) to (E) the high pressure system (high air volume system) When a part or all of the air diffuser system having each air diffuser group is replaced with an air diffuser system having each air diffuser group having a low pressure system (low air flow system), the blower discharge pressure and the blower It is a graph which shows the relationship with an air volume, respectively. 標準的な活性汚泥法の処理工程を示す図である。It is a figure which shows the process of a standard activated sludge method. 従来の高圧系(高風量系)の散気装置群を備えた散気システムの一例を示す概念図である。It is a conceptual diagram which shows an example of the diffuser system provided with the diffuser group of the conventional high voltage | pressure system (high air volume system). 従来の高圧系(高風量系)の散気装置群の一部を低圧系(低風量系)のパネル型のメンブレン式散気装置を用いる新たな散気装置群に改修後の散気システムの一例を示す概念図である。Part of the conventional high-pressure system (high airflow system) air diffuser group is replaced with a new air diffuser group using a low-pressure (low airflow system) panel-type membrane air diffuser. It is a conceptual diagram which shows an example.

以下、本発明を図面に示す実施形態に基づいて説明する。
図1〜図5は、本発明の一実施形態に係る散気システムの更新装置及び散気システムの更新方法を示す。
本実施形態では、図7に示す既設の高圧系(高風量系)の散気装置群2を備えた散気システムにおける10槽の曝気槽1A〜1Jの各散気装置群2を曝気槽単位で順次撤去し、新たに低圧系(低風量系)の散気装置群20を配置する。
なお、図7,図8では詳細説明を省略したが、10槽の曝気槽1A〜1Jの高圧系(高風量系)の各散気装置群2へ圧縮空気を供給するための空気配管5には、曝気槽単位でそれぞれ枝配管である接続管13が設けられ、各接続管13には高圧系(高風量系)の各散気装置群2の枝配管4との接続部にバルブ14が設けられている。各接続管13は、バルブ14を設けた先端部が10槽の曝気槽1A〜1J内で高圧系(高風量系)の各散気装置群2を配置した枝配管4に接続可能な位置に配置されている。
Hereinafter, the present invention will be described based on embodiments shown in the drawings.
1 to 5 show an air diffuser system updating apparatus and an air diffuser system updating method according to an embodiment of the present invention.
In this embodiment, each aeration device group 2 of 10 aeration tanks 1 </ b> A to 1 </ b> J in the aeration system including the existing high-pressure system (high air volume system) aeration device group 2 shown in FIG. Are sequentially removed, and a new low pressure system (low air volume system) diffuser group 20 is disposed.
Although not described in detail in FIGS. 7 and 8, the air pipe 5 for supplying compressed air to each of the aeration apparatus groups 2 of the high pressure system (high air flow system) of the 10 aeration tanks 1 </ b> A to 1 </ b> J. Each of the aeration tanks is provided with a connecting pipe 13 which is a branch pipe, and each connecting pipe 13 is provided with a valve 14 at a connection portion with a branch pipe 4 of each diffuser group 2 of a high pressure system (high air flow system). Is provided. Each connecting pipe 13 has a tip provided with a valve 14 at a position where it can be connected to a branch pipe 4 in which each aeration device group 2 of a high pressure system (high air flow system) is arranged in 10 aeration tanks 1A to 1J. Has been placed.

低圧系(低風量系)の各散気装置群20は、低圧系(低風量系)のパネル型のメンブレン式散気装置(散気パネル)21を配管22に配置することによって構成されている。配管22には、バルブ14と接続される新設枝配管の一部である枝管22aが設けられている。
低圧系(低風量系)のパネル型のメンブレン式散気装置(散気パネル)21は、平板状を為す金属製又は合成樹脂製のベースプレートの一面に散気膜を配置し、散気膜の四辺縁部とベースプレートの四辺縁部とをパッキンを介して金属製の枠体に固定することによって散気面を構成している。散気膜は多数の小孔を有し、その材質は、ポリウレタン、シリコン、エチレンプロピレンゴムなどの適度の弾性を有する合成樹脂又は合成ゴムから成る。
低圧系(低風量系)のパネル型のメンブレン式散気装置(散気パネル)21は、発生する気泡の直径が、例えば、1mm程度の微細気泡(超微細気泡)を発生することができるので、従来の高圧系(高風量系)の散気装置に比べ小さく、比表面積が大きくなるため、水中への酸素移動効率が高く、同じ酸素移動を水中へ行うための曝気を行うなら好気反応槽への送風量が約1/2となり、電力削減と同時に温室効果ガスの排出量を抑制することが期待できる。
Each low pressure system (low air flow system) air diffuser group 20 is configured by arranging a low pressure system (low air flow system) panel type membrane air diffuser (air diffuser panel) 21 in the pipe 22. . The pipe 22 is provided with a branch pipe 22 a that is a part of a new branch pipe connected to the valve 14.
The low pressure system (low air flow system) panel type membrane diffuser (diffuse panel) 21 has a diffuser film disposed on one surface of a base plate made of metal or synthetic resin. The diffuser surface is configured by fixing the four side edges and the four side edges of the base plate to a metal frame through packing. The diffuser membrane has a large number of small holes, and the material thereof is made of synthetic resin or synthetic rubber having moderate elasticity such as polyurethane, silicon, ethylene propylene rubber and the like.
The low-pressure (low airflow) panel-type membrane diffuser (aeration panel) 21 can generate fine bubbles (ultrafine bubbles) having a diameter of, for example, about 1 mm. Compared to conventional high pressure system (high air flow system) air diffuser, it has small specific surface area, so it has high oxygen transfer efficiency into water, and aerobic reaction when performing aeration to perform the same oxygen transfer into water The amount of air blown into the tank is about ½, and it can be expected to reduce the amount of greenhouse gas emissions at the same time as reducing power.

高圧系(高風量系)の散気装置群2を低圧系(低風量系)のパネル型のメンブレン式散気装置(散気パネル)21を用いる新たな散気装置群20に置き換える作業は、対象の下水処理場の運転に支障を与えないように、曝気槽1A〜1J全てを用いて好気性処理する必要のある原水量とならない原水量の少ない時期を見計らって、定格原水量と実際導入される原水量との差分の一部を受け持つ処理量の一部の曝気槽を閉鎖して水抜きし(例えば、10槽の内2槽を閉鎖できる)、高圧系(高風量系)の散気装置群2を順次低圧系(低風量系)の散気装置群20に更新していくこととなる。
この際に、図8に示す従来の散気システムの更新装置及び更新方法と異なるのは、当初に置き換える低圧系(低風量系)の散気装置群20(図1では10槽の内の最初の2槽1A,1B分)を配置するに際し、送気管である空気配管5に沿って追加送気管である空気配管30を配置し、空気配管30と既設の5つのブロア7a〜7eとの間に更新用のヘッダ43を介して、更に各接続部に分岐配管42a〜42eをバルブ42f〜42eを介して新設配置することである。
The work of replacing the high pressure system (high air flow system) air diffuser group 2 with a new air diffuser group 20 using the low pressure system (low air flow system) panel type membrane diffuser (air diffuser panel) 21 is as follows. In order not to interfere with the operation of the target sewage treatment plant, the estimated amount of raw water and actual introduction are measured in anticipation of the amount of raw water that does not become the amount of raw water that needs to be aerobically treated using all of the aeration tanks 1A to 1J. The aeration tanks with a part of the processing amount responsible for a part of the difference with the raw water amount to be closed are drained (for example, two of the 10 tanks can be closed), and the high pressure system (high air volume system) is scattered The air device group 2 is sequentially updated to a low pressure system (low air volume system) air diffuser group 20.
In this case, the difference from the updating apparatus and the updating method of the conventional aeration system shown in FIG. 8 is that the low-pressure system (low air volume system) aeration apparatus group 20 (the first in 10 tanks in FIG. 1) is replaced. 2 tanks 1A and 1B) are arranged along the air pipe 5 which is an air feed pipe, an air pipe 30 which is an additional air feed pipe, and between the air pipe 30 and the existing five blowers 7a to 7e. In addition, the branch pipes 42a to 42e are newly installed and arranged through the valves 42f to 42e at the respective connection portions through the header 43 for updating.

さらに、更新用のヘッダ43に圧力計16を備え、更新用のヘッダ43内のブロア吐出圧によって既設ブロア7a〜7eの一部に追加したインバータ41a,41bを制御することも、当初に低圧系(低風量系)の散気装置群20を置き換える際に新設配置することである。
低圧系(低風量系)の各散気装置群20を配置するに際し、空気配管5に沿って追加送気管である空気配管30を配置する。追加送気管である空気配管30は、既設の空気配管5の容量に対し40%〜50%の低風量の圧縮空気を供給する容量としてある。
空気配管30には、10槽の曝気槽1A〜1Jの低圧系(低風量系)の各散気装置群20の配管22を取り付けるための新設枝配管である接続管31が曝気槽単位で設けてあり、各接続管31には低圧系(低風量系)の各散気装置群20の配管22との接続部先端にバルブ32が設けてある。各接続管31は、バルブ32を設けた先端部が10槽の曝気槽1A〜1J内で低圧系(低風量系)の各散気装置群20の配管22に接続可能な位置に配置されている。
Furthermore, it is also possible to control the inverters 41 a and 41 b added to a part of the existing blowers 7 a to 7 e with the pressure gauge 16 in the header 43 for updating and to add a part of the existing blowers 7 a to 7 e by the blower discharge pressure in the header 43 for updating. When replacing the diffuser group 20 of the (low air volume system), it is to be newly installed.
When arranging each of the low pressure system (low air volume system) air diffuser groups 20, an air pipe 30 that is an additional air supply pipe is arranged along the air pipe 5. The air pipe 30 that is an additional air supply pipe has a capacity for supplying compressed air having a low air volume of 40% to 50% with respect to the capacity of the existing air pipe 5.
The air pipe 30 is provided with a connection pipe 31 which is a new branch pipe for attaching the pipes 22 of the aeration device groups 20 of the low pressure system (low air flow system) of the 10 aeration tanks 1A to 1J. Each connecting pipe 31 is provided with a valve 32 at the tip of the connecting portion with the pipe 22 of each diffuser group 20 of a low pressure system (low air volume system). Each connecting pipe 31 has a tip provided with a valve 32 disposed in a position where it can be connected to the piping 22 of each of the low pressure system (low air volume system) aeration devices 20 in the 10 aeration tanks 1A to 1J. Yes.

10槽の曝気槽1A〜1Jの高圧系(高風量系)の各散気装置群2及び新たに配置する低圧系(低風量系)の各散気装置群20へ圧縮空気を供給する圧縮空気供給装置40は、既設の5つのブロア7a〜7eから圧縮空気を受入れ空気配管5へ圧縮空気を供給する既設のヘッダ6と、既設の5つのブロア7a〜7eのうち2台のブロア7c,7d(散気装置群20と散気装置群2の新旧風量比=2:1であり、改修前は予備を除くと4台運転なので改修完了時に2台で賄えることとなり、2台を対象。)のモートルと商用供給電源との間にインバータ41a,41bを設け、既設の5つのブロア7a〜7eの吐出側と既設のヘッダ6の間にスタンバイ用として設置されているバルブ8f〜8jの上流側から、途中にバルブ42f〜42jを設ける分岐配管42a〜42eを介して接続される更新用のヘッダ43を備えている。
ここで、既設のブロア7a,7b,7eは、それぞれ高圧系(高風量系)の各散気装置群2に対し、2槽半、つまり全体の1/4の曝気槽に圧縮空気を供給する能力を有し、インバータ41a,41bを設けたブロア7c,7dは、それぞれ低圧系(低風量系)の各散気装置群20の風量が小さいことにより、新設する各散気装置群20に対し、5槽、つまり全体の1/2の曝気槽に圧縮空気を供給する能力を有することとなる。
Compressed air for supplying compressed air to each of the high pressure system (high air flow system) air diffuser groups 2 and 10 newly installed low pressure system (low air volume system) air diffuser groups 20 of the 10 aeration tanks 1A to 1J The supply device 40 includes an existing header 6 that receives compressed air from the existing five blowers 7a to 7e and supplies the compressed air to the air pipe 5, and two blowers 7c and 7d among the existing five blowers 7a to 7e. (The ratio of old and new airflow between the diffuser group 20 and the diffuser group 2 is 2: 1, and before the refurbishment, if 4 units are operated except for spares, 2 units can be covered when the renovation is completed. Inverters 41a and 41b are provided between the motor and the commercial power supply, and upstream of the valves 8f to 8j installed for standby between the discharge sides of the existing five blowers 7a to 7e and the existing header 6 To install valves 42f to 42j on the way Via the branch pipe 42a~42e includes a header 43 for updates that are connected that.
Here, the existing blowers 7a, 7b, and 7e supply compressed air to the aeration tanks of two and a half tanks, that is, a quarter of the entire aeration tank group 2 of the high pressure system (high air volume system). The blowers 7c and 7d having the capacity and provided with the inverters 41a and 41b have a small air volume in each of the low pressure system (low air volume system) air diffuser groups 20, and thus each newly installed air diffuser group 20 It will have the ability to supply compressed air to 5 tanks, that is, 1/2 of the entire aeration tank.

既設のブロア7a,7b,7eは商用電源による定速で運転され、既設のブロア7c,7dはインバータ制御により運転される。インバータ41a,41bは、既設のブロア7c,7dの駆動モータの周波数を、商用の周波数より低く抑えるように、更新用のヘッダ43の吐出圧に応じた制御を行い、既設のブロア7c,7dは、送気先が新設する各散気装置群20となった場合、定格の40%〜50%の風量を吐出するようになる。既設の各散気装置群2と新設の各散気装置群20の吐出に必要な圧力は異なる場合が多いので、商用周波数の何割になるかはケースバイケースだが、商用周波数よりも低くなる。
既設の5つのブロア7a〜7eは、バルブ8f〜8jを設けた配管8a〜8eを介して1つの既設のヘッダ6に接続されている。既設のヘッダ6には、10槽の曝気槽1A〜1Jの高圧系(高風量系)の各散気装置群2へ圧縮空気を供給するための空気配管5が接続されている。
The existing blowers 7a, 7b, 7e are operated at a constant speed by a commercial power source, and the existing blowers 7c, 7d are operated by inverter control. The inverters 41a and 41b perform control in accordance with the discharge pressure of the header 43 for updating so that the drive motor frequency of the existing blowers 7c and 7d is kept lower than the commercial frequency. The existing blowers 7c and 7d When the air supply destination is each newly installed air diffuser group 20, an air volume of 40% to 50% of the rating is discharged. Since the pressure required for discharge of each existing diffuser group 2 and each newly installed diffuser group 20 is often different, what percentage of the commercial frequency is case-by-case, but lower than the commercial frequency. .
The existing five blowers 7a to 7e are connected to one existing header 6 via pipes 8a to 8e provided with valves 8f to 8j. The existing header 6 is connected with an air pipe 5 for supplying compressed air to each of the aeration device groups 2 of the high pressure system (high air flow system) of the 10 aeration tanks 1A to 1J.

配管8a〜8eには、バルブ8f〜8jと既設の5つのブロア7a〜7eとの間から分岐する分岐配管42a〜42eが設けられている。分岐配管42a〜42eには、バルブ42f〜42jが設けられ、更新用のヘッダ43に接続されている。更新用のヘッダ43には、新たに配置する低圧系(低風量系)の各散気装置群20へ圧縮空気を供給するための追加送気管である空気配管30が接続されている。
既設の5つのブロア7a〜7eには、吸気側に吸気配管15の配管15a〜15eが接続され、吸気配管15には外気導入用の吸気口15fが設けられている。
更新用のヘッダ43には、接続される低圧系(低風量系)の各散気装置群20への吐出圧力を制御するために、更新用のヘッダ43の吐出圧力を圧力計(ΔP)16で検出し、圧力調節計(PIC)17で演算した信号にて、ブロア7c,7dのモータに接続されるインバータ41a,41bの周波数出力を制御してブロア7c,7dの出口圧力を一定に制御する。
The pipes 8a to 8e are provided with branch pipes 42a to 42e that branch from between the valves 8f to 8j and the existing five blowers 7a to 7e. The branch pipes 42 a to 42 e are provided with valves 42 f to 42 j and are connected to the update header 43. The renewal header 43 is connected to an air pipe 30 that is an additional air supply pipe for supplying compressed air to each of the low pressure system (low air volume system) diffuser groups 20 to be newly arranged.
The existing five blowers 7a to 7e are connected to the intake pipe 15a to 15e on the intake side, and the intake pipe 15 is provided with an intake port 15f for introducing outside air.
In order to control the discharge pressure to each diffuser group 20 of the low pressure system (low air volume system) connected to the header 43 for update, the discharge pressure of the header 43 for update is a pressure gauge (ΔP) 16. The frequency output of the inverters 41a and 41b connected to the motors of the blowers 7c and 7d is controlled by the signal detected by the pressure controller (PIC) 17 and the outlet pressure of the blowers 7c and 7d is controlled to be constant. To do.

以下、具体的に図7に示す従来の散気システムにおける10槽の曝気槽1A〜1Eの高圧系(高風量系)の各散気装置群2を曝気槽単位で順次撤去し、新たに低圧系(低風量系)の各散気装置群20を配置する場合について説明する。
図1は、10槽の曝気槽1A〜1Jの内、2槽の曝気槽1A,1Bの高圧系(高風量系)の各散気装置群2を低圧系(低風量系)の各散気装置群20に置き換えた状態を示す。
先ず、ブロア7a,7b,7c,7eの運転を継続し、ブロア7dの運転を停止する。同時に、2つの曝気槽1A,1B内の各バルブ14を閉じる。
この際、圧縮空気供給装置40では、バルブ8f,8g,8i,8jが開かれ、バルブ8h,42f,42g,42i,42jが閉じられ、ブロア7a,7b,7c,7eの運転によって圧縮空気は既設のヘッダ6を介して空気配管5から曝気槽1C〜1J内の高圧系(高風量系)の各散気装置群2へ供給される。
Hereinafter, each aeration device group 2 of the high pressure system (high air volume system) of the 10 aeration tanks 1A to 1E in the conventional aeration system shown in FIG. A case where each air diffuser group 20 of the system (low air flow system) is arranged will be described.
FIG. 1 shows each of the aeration devices 2 of the high pressure system (high air flow system) of the 2 aeration tanks 1A and 1B among the 10 aeration tanks 1A to 1J. The state replaced with the device group 20 is shown.
First, the operation of the blowers 7a, 7b, 7c, and 7e is continued, and the operation of the blower 7d is stopped. At the same time, the valves 14 in the two aeration tanks 1A and 1B are closed.
At this time, in the compressed air supply device 40, the valves 8f, 8g, 8i, 8j are opened, the valves 8h, 42f, 42g, 42i, 42j are closed, and the compressed air is generated by the operation of the blowers 7a, 7b, 7c, 7e. The air is supplied from the air pipe 5 to the air diffuser groups 2 of the high pressure system (high air volume system) in the aeration tanks 1C to 1J through the existing header 6.

ただし、圧縮空気を供給する曝気槽が8個であるため、1台のブロアの圧縮空気の供給量が曝気槽の2槽半であるから、ブロア7a,7b,7c,7eが定速で運転すると、圧縮空気の供給量が2槽分余分になるので、ブロア7dにインバータ41bの追加工事後、原水流入が少ない時期の更に流入の少ない夜間などを見計らって商用電源からインバータ盤電源への切替え工事(モートルは当初からインバータ対応)を、ブロア7cを短時間停止させてブロア7cにインバータ41aの追加工事完了後に行い、ブロア7cを再運転しておくことで、ブロア7cをインバータ41aによる絞り運転として、8槽の曝気槽1C〜1Jへの圧縮空気の供給を調整する。
即ち、10槽の曝気槽1A〜1Jの内、2槽の曝気槽1A,1Bの高圧系(高風量系)の各散気装置群2を低圧系(低風量系)の各散気装置群20に置き換えたので、ブロア4台では高圧系(高風量系)の各散気装置群2の既設ヘッダ6からの吐出流量が過多となり、ブロア7cをインバータ41aにより手動設定にて絞り運転することになる。
However, since there are eight aeration tanks for supplying compressed air, the supply amount of compressed air from one blower is two and a half of the aeration tank, so the blowers 7a, 7b, 7c, 7e are operated at a constant speed. Then, since the supply amount of compressed air becomes two extra tanks, after adding the inverter 41b to the blower 7d, switching from commercial power supply to inverter panel power supply in anticipation of nighttime when there is less inflow of raw water, etc. Construction (Motor is compatible with the inverter from the beginning) is performed after the blower 7c is stopped for a short time after the addition of the inverter 41a to the blower 7c is completed, and the blower 7c is restarted, so that the blower 7c is throttled by the inverter 41a. As described above, supply of compressed air to the eight aeration tanks 1C to 1J is adjusted.
That is, among the 10 aeration tanks 1A to 1J, the aeration apparatus group 2 of the high pressure system (high air flow system) of the 2 aeration tanks 1A and 1B is replaced with each of the aeration apparatus groups of the low pressure system (low air flow system). As a result, the discharge flow rate from the existing header 6 of each of the high-pressure system (high airflow system) air diffuser group 2 becomes excessive, and the blower 7c is throttled manually by the inverter 41a. become.

また、この時点では、ブロア7a,7b,7c,7eは、更新用のヘッダ43に接続されていないので、更新用のヘッダ43へ圧縮空気を供給することはない。
従って、8槽の曝気槽1C〜1Jでは、ブロア7a,7b,7c,7eの運転によって、既設のヘッダ6から圧縮空気が従前通り供給されるので、8槽の曝気槽1C〜1J内の高圧系(高風量系)の各散気装置群2によって返送汚泥と被処理水とを十分混合し、被処理水中に気泡状の空気を吹き込んで曝気し、被処理水中の酸素濃度を高め、活性汚泥に含まれる微生物の代謝作用により有機物を除去する作用が奏される。
即ち、8槽の曝気槽1C〜1Jでは、高圧系(高風量系)の各散気装置群2による被処理水中の有機物を除去する作用を中断することがない。
At this time, the blowers 7 a, 7 b, 7 c, and 7 e are not connected to the update header 43, so that compressed air is not supplied to the update header 43.
Therefore, in the eight aeration tanks 1C to 1J, compressed air is supplied from the existing header 6 as before by the operation of the blowers 7a, 7b, 7c, and 7e. System (high air flow system) each aeration device group 2 thoroughly mixes the returned sludge and the water to be treated, blows air into the water to be treated and aerates it to increase the oxygen concentration in the water to be treated The effect | action which removes organic substance is show | played by the metabolic action of the microorganisms contained in sludge.
That is, in the eight aeration tanks 1 </ b> C to 1 </ b> J, the action of removing organic substances in the water to be treated by each of the high-pressure (high air volume) aeration apparatus groups 2 is not interrupted.

この時点でのブロア7a,7b,7c,7eの吐出圧力とブロア7a,7b,7c,7eの風量との関係は、図5(B)の標準系に示すように、ブロア7dにインバータ41bを最初に付加して低圧系(低風量系)の各散気装置群20へ切り離し、ブロア7cがインバータ41aにより絞り運転を行うので、ブロア7a,7b,7eの3台での並列複合風量−静圧(圧力)にさらに風量と圧力とを積み上げて、8槽分の風量である運転点に所定の圧力で供給できる。これは、4台目の並列ブロアを絞り運転するのに、電力を省けるインバータ制御で行うので最適な省エネルギー制御である。図5(A)に、抵抗曲線とブロア4台の複合吐出圧力が重なる点に運転点としての8槽分の流量が合致するように示すことができる。
次に、2槽の曝気槽1A,1B内に原水が流入しないように、図示しない原水流入配管途中のバルブを閉止したり、原水流入堰を上昇させたり閉鎖したりし、2槽の曝気槽1A,1B内の被処理水を排水して、2槽の曝気槽1A,1B内を空にする。
次に、2槽の曝気槽1A,1B内の改修する高圧系(高風量系)の各散気装置群2を空気配管5の各バルブ14から分離し、散気装置3を配置した枝配管4を撤去する。
以上によって、2槽の曝気槽1A,1B内の改修する高圧系(高風量系)の各散気装置群2の撤去が完了する。
At this time, the relationship between the discharge pressure of the blowers 7a, 7b, 7c, and 7e and the air volume of the blowers 7a, 7b, 7c, and 7e is such that the inverter 41b is connected to the blower 7d as shown in the standard system of FIG. Since the blower 7c performs the throttle operation by the inverter 41a by adding to the air diffuser group 20 of the low pressure system (low airflow system) first, the parallel combined airflow of the three blowers 7a, 7b and 7e-static The air volume and the pressure are further accumulated on the pressure (pressure), and can be supplied at a predetermined pressure to the operating point which is the air volume for 8 tanks. This is the optimum energy saving control because the fourth parallel blower is throttled and operated by inverter control that saves electric power. FIG. 5A shows that the flow rate for the eight tanks as the operating point matches the point where the resistance curve and the combined discharge pressure of the four blowers overlap.
Next, in order to prevent the raw water from flowing into the two aeration tanks 1A and 1B, a valve in the middle of the raw water inflow pipe (not shown) is closed, or the raw water inflow weir is raised or closed, so that the two aeration tanks The treated water in 1A and 1B is drained to empty the two aeration tanks 1A and 1B.
Next, the branch pipes in which the air diffuser group 2 of the high pressure system (high air flow system) to be repaired in the two aeration tanks 1A and 1B are separated from the valves 14 of the air pipe 5 and the air diffuser 3 is arranged. Remove 4
As described above, the removal of each of the diffuser groups 2 of the high pressure system (high air flow system) to be repaired in the two aeration tanks 1A and 1B is completed.

次に、2槽の曝気槽1A,1B内に、低圧系(低風量系)の各散気装置群20を配置し、2槽の曝気槽1A,1Bと対応する更新用の空気配管30の各接続管31の先端部に設けたバルブ32と高圧系(高風量系)の各散気装置群2の各配管22とを接続すると共に、各配管22の枝管22aをバルブ14に接続する。この時点では、バルブ32は閉じられており、更新用の空気配管30の接続管31から圧縮空気が噴出することはない。
次に、各バルブ32と高圧系(高風量系)の各散気装置群2の各配管22との接続が完了すると、各バルブ32を開き、圧縮空気供給装置40のバルブ8iを閉じ、バルブ42iを開いて、停止中に商用電源からインバータ盤電源へ切り替え工事が完了したことで、インバータ41bによって制御されたブロア7dの運転により、圧縮空気を更新用のヘッダ43に接続される更新用の空気配管30を介して各接続管31の先端部に設けたバルブ32へ送り、バルブ32から配管22を介して低圧系(低風量系)の各散気装置群20へ供給する。
次に、図示しない原水流入配管のバルブを開いたり、原水流入堰を下降させたり開放させたりして、原水流入堰から溢出させて原水を導入して、2つの曝気槽1A,1B内に原水を流入する。
Next, in each of the two aeration tanks 1A and 1B, the low-pressure (low air volume) aeration device group 20 is disposed, and the renewal air pipe 30 corresponding to the two aeration tanks 1A and 1B is provided. The valve 32 provided at the tip of each connecting pipe 31 is connected to each pipe 22 of each high-pressure system (high air volume system) air diffuser group 2, and the branch pipe 22 a of each pipe 22 is connected to the valve 14. . At this time, the valve 32 is closed, and compressed air is not ejected from the connection pipe 31 of the renewal air pipe 30.
Next, when the connection between each valve 32 and each pipe 22 of each diffuser group 2 of the high pressure system (high air flow system) is completed, each valve 32 is opened, the valve 8i of the compressed air supply device 40 is closed, and the valve 42i is opened, and the construction for switching from the commercial power supply to the inverter panel power supply is completed during the stoppage, so that the compressed air is connected to the update header 43 by the operation of the blower 7d controlled by the inverter 41b. The air is supplied to a valve 32 provided at the tip of each connecting pipe 31 through the air pipe 30, and is supplied from the valve 32 to each air diffuser group 20 of the low pressure system (low air volume system) through the pipe 22.
Next, the raw water inflow pipe is opened or the raw water inflow weir is lowered or opened to overflow the raw water inflow weir and introduce the raw water into the two aeration tanks 1A and 1B. Inflow.

以上によって、2槽の曝気槽1A,1B内の高圧系(高風量系)の各散気装置群2を低圧系(低風量系)の各散気装置群20に置き換える作業が完了する。
この時点でのブロア7dの吐出圧力と風量は、2槽の曝気槽1A,1B内の低圧系(低風量系)の2群の散気装置群20へ供給されるので、5槽の低圧系(低風量系)の散気装置群20へ供給できる能力を有するブロア7dにとっては、圧力制御による絞り運転となり、低いインバータ周波数での運転によって、図5(B)の低風量系に示す運転点(2槽分の低圧系(低風量系)散気装置群20の必要風量である)の能力を発揮できる。
斯くして、図1に示す当初更新後の散気システムでは、全ての既設のブロア7a〜7eを運転し、8槽の曝気槽1C〜1J内の高圧系(高風量系)の各散気装置群2には既設のブロア7cをそれに新設したインバータ41aにより絞り運転とし、既設のブロア7a〜7c,7eで生成された圧縮空気を既設のヘッダ6から空気配管5を経由して供給し、2槽の曝気槽1A,1B内の低圧系(低風量系)の各散気装置群20には、既設のブロア7dを新設されたインバータ41bにより制御運転して更新用のヘッダ43から更新用の空気配管30を経由して圧縮空気を供給することができる。
As described above, the work of replacing the high pressure system (high air volume system) diffuser group 2 in the two aeration tanks 1A and 1B with the low pressure system (low air volume system) air diffuser group 20 is completed.
At this time, the discharge pressure and the air volume of the blower 7d are supplied to the two groups of air diffusers 20 in the low pressure system (low air volume system) in the two aeration tanks 1A and 1B. For the blower 7d having the ability to supply the air diffuser group 20 of (low air flow system), the throttle operation is performed by pressure control, and the operation point shown in the low air flow system of FIG. The capacity of the low pressure system (low air volume system) diffuser group 20 for two tanks can be exhibited.
Thus, in the diffused system after the initial update shown in FIG. 1, all the existing blowers 7a to 7e are operated, and each diffused air in the high pressure system (high air flow system) in the eight aeration tanks 1C to 1J. In the apparatus group 2, the existing blower 7c is throttled by the newly installed inverter 41a, and the compressed air generated by the existing blowers 7a to 7c, 7e is supplied from the existing header 6 via the air pipe 5, In each of the low pressure system (low air flow system) diffuser groups 20 in the two aeration tanks 1A and 1B, the existing blower 7d is controlled by the newly installed inverter 41b and updated from the header 43 for updating. Compressed air can be supplied via the air pipe 30.

図2は、10槽の曝気槽1A〜1Jの内、5槽の曝気槽1A〜1E内の高圧系(高風量系)の各散気装置群2を低圧系(低風量系)の各散気装置群20に置き換えた状態を示す。
なお、曝気槽1C〜1E内の高圧系(高風量系)の各散気装置群2を低圧系(低風量系)の各散気装置群20に置き換える手順は、図1に示す2槽の曝気槽1A,1B内の高圧系(高風量系)の各散気装置群2を低圧系(低風量系)の各散気装置群20に置き換える作業と同じである。
圧縮空気供給装置40では、ブロア7cに接続する配管8cのバルブ8hを閉じ、分岐配管42cのバルブ42hを開き、ブロア7dに接続する配管8dのバルブ8iを閉じ、分岐配管42dのバルブ42iを開いて、ブロア7c,7dで生成される圧縮空気を更新用のヘッダ43へ供給する。なお、ブロア7eは予備として停止される。
FIG. 2 shows each of the high pressure system (high air flow system) air diffuser groups 2 in the low pressure system (low air flow system) of the 10 aeration tanks 1A to 1J. The state replaced with the air device group 20 is shown.
The procedure for replacing each high-pressure system (high airflow system) air diffuser group 2 in the aeration tanks 1C to 1E with each low-pressure system (low airflow system) air diffuser group 20 is shown in FIG. This is the same as replacing the high pressure system (high air volume system) diffuser group 2 in the aeration tanks 1A and 1B with the low pressure system (low air volume system) diffuser group 20.
In the compressed air supply device 40, the valve 8h of the pipe 8c connected to the blower 7c is closed, the valve 42h of the branch pipe 42c is opened, the valve 8i of the pipe 8d connected to the blower 7d is closed, and the valve 42i of the branch pipe 42d is opened. The compressed air generated by the blowers 7c and 7d is supplied to the header 43 for updating. The blower 7e is stopped as a spare.

ここで、ブロア7d一台の運転でも5槽の曝気槽1A〜1E内の低圧系(低風量系)の各散気装置群20への圧縮空気の供給は可能であるが、ブロア7c,7dのインバータ41a,41bでの制御運転の方が省エネルギーである。そこで、ブロア7cも圧力制御可能なように後述の圧力調節計演算信号をインバータ41aが受入可能に設定し、圧力計(ΔP)16からの信号に基づいて圧力調節計(PIC)17で演算した信号にて、ブロア7c,7dのモータに接続されるインバータ41a,41bの周波数出力を既設のブロアの半分の吐出量となるように制御する。
残りの5槽の曝気槽1F〜1J内の高圧系(高風量系)の各散気装置群2には、ブロア7a,7bによって生成された圧縮空気が既設のヘッダ6から空気配管5を介して供給される。
Here, even if one blower 7d is operated, compressed air can be supplied to each of the low pressure system (low air volume system) diffuser groups 20 in the five aeration tanks 1A to 1E, but the blowers 7c and 7d are provided. The control operation by the inverters 41a and 41b is energy saving. Therefore, the pressure regulator calculation signal described later is set so that the inverter 41a can receive the pressure so that the blower 7c can also control the pressure, and the pressure regulator (PIC) 17 calculates based on the signal from the pressure gauge (ΔP) 16. The frequency output of the inverters 41a and 41b connected to the motors of the blowers 7c and 7d is controlled by the signal so that the discharge amount is half that of the existing blower.
Compressed air generated by the blowers 7 a and 7 b is supplied from the existing header 6 through the air pipe 5 to each of the high pressure system (high air volume system) in the remaining five aeration tanks 1F to 1J. Supplied.

5槽の曝気槽1A〜1E内の低圧系(低風量系)の各散気装置群20には、ブロア7c,7dをインバータ41a,41bによって制御して生成された圧縮空気が更新用のヘッダ43から更新用の空気配管30を介して供給される。
この時点でのブロア7a,7bの吐出圧力と風量との関係は、図5(C)の標準系に示すように、ブロア7a,7bの2台での並列複合風量−静圧(圧力)となり、ちょうど5槽分の風量である運転点に所定の圧力で供給できる。当然、8槽分の図5(B)よりも風量が少ない側に移動する。この場合、ちょうど5槽分を定格2台の複合能力で賄えるので、最適な省エネルギー運転といえる。
また、この時点で、ブロア7c,7dの吐出圧力と風量との関係は、図5(C)の低風量系に示すように、ブロア7eが停止し、ブロア7c,7dがインバータ制御されながら2台での並列複合風量−静圧(圧力)として風量と圧力とを積み上げて、5槽分の風量である運転点に所定の圧力で供給できる。これは、圧力を最適に調整するため2台目とも並列に絞り運転するに際し、電力を省けるインバータ制御で行うので最適な省エネルギー制御である。図5(C)に、抵抗曲線とブロア2台の複合吐出圧力が重なる点に運転点としての5槽分の低圧系(低風量系)の各散気装置群20の流量が合致するように示すことができ、抵抗曲線とブロアの吐出圧力とが重なる運転点が、図5(B)の低風量系に示す運転点に比べて5槽分となるので風量が多い方に移動する。
Compressed air generated by controlling the blowers 7c and 7d by the inverters 41a and 41b is supplied to each of the low-pressure (low airflow) diffuser groups 20 in the five aeration tanks 1A to 1E. 43 through an air pipe 30 for renewal.
At this time, the relationship between the discharge pressure of the blowers 7a and 7b and the air volume is, as shown in the standard system of FIG. 5C, the parallel combined air volume-static pressure (pressure) of the two blowers 7a and 7b. , It can be supplied at a predetermined pressure to the operating point which is the air volume of just 5 tanks. Naturally, it moves to the side with less air volume than FIG. 5 (B) for 8 tanks. In this case, it can be said that it is an optimal energy-saving operation because it can cover just 5 tanks with the combined capacity of 2 units.
At this time, the relationship between the discharge pressure of the blowers 7c and 7d and the air volume is 2 while the blower 7e is stopped and the blowers 7c and 7d are inverter-controlled as shown in the low air volume system of FIG. The air volume and the pressure are accumulated as a parallel composite air volume-static pressure (pressure) at the table, and can be supplied to the operating point, which is the air volume for 5 tanks, at a predetermined pressure. This is the optimum energy saving control because it is performed by inverter control that saves electric power when the throttle operation is performed in parallel with the second unit in order to optimally adjust the pressure. In FIG. 5 (C), the flow rate of each of the diffuser groups 20 in the low pressure system (low air volume system) for five tanks as the operating point coincides with the point where the combined resistance pressure of the resistance curve and the two blowers overlap. The operating point at which the resistance curve and the blower discharge pressure overlap is five tanks as compared to the operating point shown in the low air volume system of FIG.

斯くして、図2に示す更新後の散気システムでは、既設のブロア7eを予備とし、既設のブロア7a〜7dを運転し、5槽の曝気槽1F〜1J内の高圧系(高風量系)の各散気装置群2には既設のブロア7a,7bで生成された圧縮空気を既設のヘッダ6から空気配管5を経由して供給し、5槽の曝気槽1A〜1E内の低圧系(低風量系)の各散気装置群20には、既設のブロア7c,7dを新設されたインバータ41a,41bにより制御運転して更新用のヘッダ43から更新用のヘッダ43を経由して圧縮空気を供給することができる。   Thus, in the diffused air system after the update shown in FIG. 2, the existing blower 7e is used as a backup, the existing blowers 7a to 7d are operated, and the high pressure system (high air flow system) in the five aeration tanks 1F to 1J is used. ) Is supplied to the air diffuser group 2 of the existing blowers 7a and 7b from the existing header 6 through the air pipe 5, and the low pressure system in the five aeration tanks 1A to 1E. In each air diffuser group 20 of (low air volume system), the existing blowers 7c and 7d are controlled and operated by newly installed inverters 41a and 41b and compressed from the update header 43 via the update header 43. Air can be supplied.

図3は、10槽の曝気槽1A〜1Jの内、8槽の曝気槽1A〜1H内の高圧系(高風量系)の各散気装置群2を低圧系(低風量系)の各散気装置群20に置き換えた状態を示す。
なお、曝気槽1F〜1H内の高圧系(高風量系)の各散気装置群2を低圧系(低風量系)の各散気装置群20に置き換える手順は、図1に示す2槽の曝気槽1A,1B内の高圧系(高風量系)の各散気装置群2を低圧系(低風量系)の各散気装置群20に置き換える作業と同じである。
圧縮空気供給装置40では、ブロア7bに接続する配管8bのバルブ8gを開き、分岐配管42bのバルブ42gを閉じて、ブロア7bで生成される圧縮空気を既設のヘッダ6へ供給する。また、図2の合計5槽の低圧系(低風量系)の各散気装置群20と置き換えた際と異なり、ブロア7cに接続する配管8cのバルブ8hを閉じて、分岐配管42cのバルブ42hを開き、ブロア7cで生成される圧縮空気を更新用のヘッダ43へ供給する。さらに、図2の合計5槽の低圧系(低風量系)の各散気装置群20と置き換えた際と同じく、ブロア7dに接続する配管8cのバルブ8iを開いて、分岐配管42dのバルブ42iを閉じ、ブロア7dで生成される圧縮空気を既設のヘッダ6へ供給する。なお、ブロア7a,7eはこの8槽更新時には予備として停止される。
FIG. 3 shows that each of the high pressure system (high air volume system) of the aeration tanks 1A to 1H of the 10 tanks 1A to 1J is divided into each of the low pressure system (low air volume system). The state replaced with the air device group 20 is shown.
The procedure for replacing each high-pressure system (high airflow system) air diffuser group 2 in the aeration tanks 1F to 1H with each low-pressure system (low airflow system) air diffuser group 20 is shown in FIG. This is the same as replacing the high pressure system (high air volume system) diffuser group 2 in the aeration tanks 1A and 1B with the low pressure system (low air volume system) diffuser group 20.
In the compressed air supply device 40, the valve 8g of the pipe 8b connected to the blower 7b is opened, the valve 42g of the branch pipe 42b is closed, and the compressed air generated by the blower 7b is supplied to the existing header 6. Further, unlike the case where each of the low pressure system (low air flow system) diffuser groups 20 in FIG. 2 is replaced, the valve 8h of the pipe 8c connected to the blower 7c is closed and the valve 42h of the branch pipe 42c is closed. And the compressed air generated by the blower 7c is supplied to the header 43 for updating. Further, the valve 8i of the pipe 8c connected to the blower 7d is opened, and the valve 42i of the branch pipe 42d is replaced with the low pressure system (low air flow system) diffuser group 20 of a total of 5 tanks in FIG. And the compressed air generated by the blower 7d is supplied to the existing header 6. The blowers 7a and 7e are stopped as spares when the eight tanks are updated.

8槽の曝気槽1A〜1Hが低圧系(低風量系)の各散気装置群20に置き換えられ、追加送気管である更新用の空気配管30を介して圧縮空気を送風するには配管径が不足するので、送気管の受け持ちを逆転させる。つまり、低圧系(低風量系)の各散気装置群20には、既設のヘッダ6及び空気配管5を介して圧縮空気を供給し、高圧系(高風量系)の各散気装置群2には、更新用のヘッダ43及び更新用の空気配管30を介して圧縮空気を供給する。このために、最後に残る高圧系(高風量系)の各散気装置群2では、枝配管14のバルブ13の下流側を分岐して、新設枝管22a及び先端にバルブ31を設けて更新用の空気配管30から延長する配管32を接続し、枝配管14のバルブ13を閉じ、配管32のバルブ31を開けておく。   The eight aeration tanks 1A to 1H are replaced with low-pressure (low air volume) air diffuser groups 20, and the diameter of the pipe is used to blow compressed air through the renewed air pipe 30 which is an additional air pipe. Because there is a shortage, the responsibility of the air pipe is reversed. That is, compressed air is supplied to each diffuser group 20 of the low pressure system (low air volume system) via the existing header 6 and the air pipe 5, and each diffuser group 2 of the high pressure system (high air volume system). , Compressed air is supplied through the header 43 for updating and the air piping 30 for updating. For this reason, the last remaining high pressure system (high air flow system) air diffuser group 2 branches off the downstream side of the valve 13 of the branch pipe 14, and is updated by providing a new branch pipe 22a and a valve 31 at the tip. A pipe 32 extending from the air pipe 30 is connected, the valve 13 of the branch pipe 14 is closed, and the valve 31 of the pipe 32 is opened.

ここで、ブロア7b,7dは、8槽の曝気槽1A〜1H内の低圧系(低風量系)の各散気装置群20への圧縮空気の供給は可能であるが、2槽の曝気槽分の圧縮空気が余分になるため、ブロア7dのモータに接続されるインバータ41bの周波数出力を手動設定により、定格で運転されるブロア7b、ブロア7dの2台での並列複合風量−静圧(圧力)として風量と圧力とを積み上げて、8槽分の低圧系(低風量系)の散気装置群20の合計風量である運転点に所定の圧力で供給できるように調整する。
残りの2槽の曝気槽1I,1J内の高圧系(高風量系)の各散気装置群2には、更新用の空気配管30を介してブロア7cによって生成された圧縮空気を供給するが、2槽半の高圧系(高風量系)の各散気装置群2への供給能力を有するブロア7cにとっては絞り運転となり、圧力計(ΔP)16からの検出信号に基づき設定圧力値との差分から圧力調節計(PIC)17で演算され出力されるインバータ周波数出力信号にて、インバータ41aの周波数を設定してブロア7cを制御運転する。
Here, the blowers 7b and 7d can supply compressed air to each of the low pressure system (low air flow system) diffuser groups 20 in the eight aeration tanks 1A to 1H. Since the compressed air becomes unnecessary, the frequency output of the inverter 41b connected to the motor of the blower 7d is manually set, and the parallel combined airflow-static pressure (both of the blower 7b and the blower 7d that are operated at a rated value) The air volume and the pressure are accumulated as pressure) and adjusted so that the operating point, which is the total air volume of the low pressure system (low air volume system) diffuser group 20 for 8 tanks, can be supplied at a predetermined pressure.
The remaining two aeration tanks 1 </ b> I and 1 </ b> J are supplied with compressed air generated by the blower 7 c through the renewal air pipe 30 to each of the high pressure system (high air volume system) diffuser group 2. For the blower 7c having a supply capacity to the air diffuser group 2 of the high pressure system (high air flow system) of two and a half tanks, the throttle operation is performed, and the set pressure value is determined based on the detection signal from the pressure gauge (ΔP) 16. The frequency of the inverter 41a is set by the inverter frequency output signal calculated and output by the pressure controller (PIC) 17 from the difference, and the blower 7c is controlled and operated.

この時点でのブロア7cの吐出圧力とブロア7cの風量との関係は、図5(D)の標準系に示すように、残りの2槽の曝気槽1I,1J内の高圧系(高風量系)の各散気装置群2には、2槽半の高圧系(高風量系)の各散気装置群2への供給能力を有するブロア7cにとっては絞り運転となり、圧力計(ΔP)16からの検出信号に基づき設定圧力値との差分から圧力調節計(PIC)17で演算され出力されるインバータ周波数出力信号にて、インバータ41aの周波数を設定してブロア7cを制御運転して、2槽分の高圧系(高風量系)の各散気装置群2への合計供給風量の運転点となる。
また、この時点で、ブロア7b,7dの吐出圧力とブロア7b,7dの風量との関係は、図5(D)の低風量系に示すように、ブロア7a,7eが停止し、ブロア7bを商用電源供給による商用定格運転させ、ブロア7dをインバータ制御による絞り運転させるため、ブロア7bの風量−静圧(圧力)に、さらにブロア7dを加えた2台での並列複合風量−静圧(圧力)として風量と圧力とを積み上げて、8槽分の風量である運転点に所定の圧力で供給できる。これは、2台目の並列ブロアを絞り運転するのに、電力を省けるインバータ制御で行うので最適な省エネルギー制御である。図5(D)に、抵抗曲線とブロア2台の複合吐出圧力が重なる点に運転点としての8槽分の流量が合致するように示すことができる。
The relationship between the discharge pressure of the blower 7c and the air volume of the blower 7c at this time is as shown in the standard system of FIG. 5D. The high pressure system (high air volume system) in the remaining two aeration tanks 1I and 1J In each of the diffuser groups 2), the blower 7 c having a supply capacity to each of the diffuser groups 2 of the high pressure system (high air flow system) of two and a half tanks is throttled, and from the pressure gauge (ΔP) 16 Based on the difference from the set pressure value based on the detected signal, the inverter frequency output signal calculated and output by the pressure controller (PIC) 17 sets the frequency of the inverter 41a and controls the blower 7c to operate the two tanks. It becomes the operating point of the total supply air volume to each air diffuser group 2 of the high-pressure system (high air volume system).
At this time, the relationship between the discharge pressure of the blowers 7b and 7d and the air volume of the blowers 7b and 7d is that the blowers 7a and 7e are stopped and the blower 7b is stopped as shown in the low air volume system of FIG. In order to make commercial blower 7d perform throttle operation by inverter control with commercial power supply, blower 7d is further combined with air flow-static pressure (pressure) of blower 7b and parallel combined air flow-static pressure (pressure). ) And the air volume and pressure can be stacked and supplied to the operating point, which is the air volume for 8 tanks, at a predetermined pressure. This is the optimum energy saving control because the second parallel blower is throttled and operated by inverter control that saves electric power. In FIG. 5D, it can be shown that the flow rate of the eight tanks as the operating point matches the point where the resistance curve and the composite discharge pressure of the two blowers overlap.

斯くして、図3に示す更新後の散気システムでは、既設のブロア7a,7eを予備とし、既設のブロア7b〜7dを運転し、2槽の曝気槽1I,1J内の高圧系(高風量系)の各散気装置群2には既設のブロア7cを新設されたインバータ41aにより、圧力計(ΔP)16からの検出信号に基づき設定圧力値との差分から圧力調節計(PIC)17で演算され出力されるインバータ周波数出力信号にて、インバータ41aの周波数を設定してブロア7cを制御運転して生成された圧縮空気を更新用のヘッダ43から空気配管30を経由して供給し、8槽の曝気槽1A〜1H内の低圧系(低風量系)の各散気装置群20には、既設のブロア7bを商用定格運転し、既設のブロア7dを新設されたインバータ41bにより手動設定運転して既設のヘッダ6から空気配管5を経由して圧縮空気を供給することができる。   Thus, in the air diffuser system after the update shown in FIG. 3, the existing blowers 7a and 7e are used as spares, the existing blowers 7b to 7d are operated, and the high-pressure system (high pressure) in the two aeration tanks 1I and 1J is set. In each air diffuser group 2 of the air volume system), an existing blower 7c is provided with an inverter 41a, and a pressure regulator (PIC) 17 is calculated from a difference from a set pressure value based on a detection signal from the pressure gauge (ΔP) 16. In the inverter frequency output signal that is calculated and output at, the compressed air generated by setting the frequency of the inverter 41a and controlling the blower 7c is supplied from the update header 43 via the air pipe 30; In each of the low pressure system (low air flow system) diffuser groups 20 in the eight aeration tanks 1A to 1H, the existing blower 7b is operated at commercial rating, and the existing blower 7d is manually set by the newly installed inverter 41b. Driving and existing It is possible to supply compressed air via the air pipe 5 from the header 6.

図4は、10槽の曝気槽1A〜1J内の高圧系(高風量系)の全ての散気装置群2を低圧系(低風量系)の散気装置群20に置き換えた状態を示す。
なお、曝気槽1I,1J内の高圧系(高風量系)の各散気装置群2を低圧系(低風量系)の各散気装置群20に置き換える手順は、図1に示す2槽の曝気槽1A,1B内の高圧系(高風量系)の各散気装置群2を低圧系(低風量系)の各散気装置群20に置き換える作業と同じである。
本実施形態では、低圧系(低風量系)の各散気装置群20の各配管22の枝管22aと接続するバルブ14を開いて、既設の空気配管5と更新用の空気配管30とで圧縮空気を供給する。
従って、既設のバルブ14は、運転に際して開にされる。
FIG. 4 shows a state in which all of the high pressure system (high air flow system) air diffuser groups 2 in the 10 aeration tanks 1A to 1J are replaced with the low pressure system (low air flow system) air diffuser group 20.
The procedure for replacing each high-pressure system (high airflow system) air diffuser group 2 in the aeration tanks 1I and 1J with each low-pressure system (low airflow system) air diffuser group 20 is shown in FIG. This is the same as replacing the high pressure system (high air volume system) diffuser group 2 in the aeration tanks 1A and 1B with the low pressure system (low air volume system) diffuser group 20.
In the present embodiment, the valve 14 connected to the branch pipe 22a of each pipe 22 of each diffuser group 20 of the low pressure system (low air volume system) is opened, and the existing air pipe 5 and the air pipe 30 for update are used. Supply compressed air.
Therefore, the existing valve 14 is opened during operation.

圧縮空気供給装置40では、ブロア7cに接続する配管8cのバルブ8h及び分岐配管42cのバルブ42hを開いて、ブロア7cで生成される圧縮空気を既設のヘッダ6とヘッダ更新用のヘッダ43とへ供給する。また、ブロア7dに接続する配管8cのバルブ8i及び分岐配管42dのバルブ42iを開いて、ブロア7dで生成される圧縮空気を既設のヘッダ6と更新用のヘッダ43とへ供給する。なお、ブロア7a,7b,7eは予備として停止される。
10槽の曝気槽1A〜1J内の低圧系(低風量系)の各散気装置群20には、インバータ41a,41bによって制御されるブロア7c,7dで生成された圧縮空気を既設のヘッダ6から既設の空気配管5及び更新用のヘッダ43から更新用の空気配管30を介して供給する。
In the compressed air supply device 40, the valve 8h of the pipe 8c connected to the blower 7c and the valve 42h of the branch pipe 42c are opened, and the compressed air generated by the blower 7c is sent to the existing header 6 and the header 43 for header update. Supply. Further, the valve 8i of the pipe 8c connected to the blower 7d and the valve 42i of the branch pipe 42d are opened, and the compressed air generated by the blower 7d is supplied to the existing header 6 and the update header 43. The blowers 7a, 7b and 7e are stopped as a spare.
Compressed air generated by the blowers 7c and 7d controlled by the inverters 41a and 41b is supplied to each of the low pressure system (low air volume system) diffuser groups 20 in the 10 aeration tanks 1A to 1J. From the existing air pipe 5 and the renewal header 43 through the renewal air pipe 30.

この時点で、ブロア7c,7dの吐出圧力とブロア7c,7dの風量との関係は、図5(E)の低風量系に示すように、ブロア7a,7b,7eが停止し、ブロア7c,7dをインバータ制御による絞り運転させるため、ブロア7cの風量−静圧(圧力)に、さらにブロア7dを加えた2台での並列複合風量−静圧(圧力)として風量と圧力とを積み上げて、10槽分の風量である運転点に所定の圧力で供給できる。これは、並列ブロア2台とも圧力による絞り運転するのに、電力を省けるインバータ制御で行うので最適な省エネルギー制御である。ブロア7c,7dとも5槽分の低圧系(低風量系)の各散気装置群20の合計風量の能力を有するためインバータ周波数は商用に近くなるが、それでも圧力制御するため、散気装置群の初期圧力損失が低い場合は極限の最適省エネルギー制御が行える。図5(E)に、抵抗曲線とブロア2台の複合吐出圧力が重なる点に運転点としての10槽分の流量が合致するように示すことができる。   At this time, the relationship between the discharge pressure of the blowers 7c and 7d and the air volume of the blowers 7c and 7d is that the blowers 7a, 7b and 7e are stopped, as shown in the low air volume system of FIG. In order to perform the throttle operation of the inverter 7d by the inverter control, the air volume and the pressure are accumulated as a parallel combined air volume-static pressure (pressure) in two units in which the blower 7d is further added to the air volume-static pressure (pressure) of the blower 7c. It can be supplied at a predetermined pressure to the operating point which is the air volume for 10 tanks. This is the optimum energy saving control because the two parallel blowers are throttled by pressure and are controlled by inverter control that saves power. Both the blowers 7c and 7d have the capacity of the total air volume of each of the low pressure system (low air volume system) air diffuser groups 20 for five tanks, so that the inverter frequency is close to commercial use. When the initial pressure loss is low, the optimum optimum energy saving control can be performed. FIG. 5E shows that the flow rate of 10 tanks as the operating point matches the point where the resistance curve and the composite discharge pressure of the two blowers overlap.

なお、図5(E)の標準系に示すように、高圧系(高風量系)の各散気装置群2は全て撤去してしまっており、この系統は存在しないので、該当する運転が存在しない。
斯くして、図4に示す全更新後の散気システムでは、既設のブロア7a,7b,7eを予備とできて、例えば2機は撤去可能となり、既設のブロア7c,7dにインバータ41a,41bを新設して制御運転することで、更新前のブロア4台の商用定格運転から、全更新後ブロア2台の絞り可能性のあるインバータ制御運転となり、消費電力は1/2以下としながら、10槽の曝気槽1A〜1J内の低圧系(低風量系)の各散気装置群20に、ブロア7c,7dで生成された圧縮空気を既設のヘッダ6と更新用のヘッダ43とから供給することができる。
As shown in the standard system of FIG. 5 (E), all the diffuser groups 2 of the high-pressure system (high air volume system) have been removed, and this system does not exist, so the corresponding operation exists. do not do.
Thus, in the air diffuser system after all updates shown in FIG. 4, the existing blowers 7a, 7b, 7e can be used as spares, for example, two units can be removed, and the existing blowers 7c, 7d are connected to the inverters 41a, 41b. Newly installed and controlled, the commercial rated operation of the four blowers before the update is changed to the inverter control operation with the possibility of throttling the two blowers after the complete update. Compressed air generated by the blowers 7c and 7d is supplied from the existing header 6 and the updating header 43 to each of the low pressure system (low air volume system) diffuser groups 20 in the tank aeration tanks 1A to 1J. be able to.

本実施形態では、既設の空気配管5と更新用の空気配管30とをともに利用することで1つの低圧系(低風量系)の散気装置群20に2系統で空気を供給することになり、配管系の圧損低減によるブロアの省エネルギーを可能とする。
ただし、流量調整が再度必要であるから、既設のバルブ14の流量調整は手動で行う。
なお、上記実施形態では、10層の曝気槽1A〜1Jの高圧系(高風量系)の各散気装置群2を低圧系(低風量系)の各散気装置群20へ順次置き換える場合について説明したが、本発明ではこれに限らず、曝気槽の数は任意である。
また、圧縮空気供給装置40を5つのブロア7a〜7eとインバータ41a,41bとで構成する場合について説明したが、本発明ではこれに限らず、ブロア及びインバータの数は任意である。
In the present embodiment, by using the existing air pipe 5 and the renewal air pipe 30 together, air is supplied to one low pressure system (low air volume system) diffuser group 20 in two systems. The blower energy can be saved by reducing the pressure loss of the piping system.
However, since the flow rate adjustment is necessary again, the flow rate adjustment of the existing valve 14 is performed manually.
In the above embodiment, each of the high pressure system (high airflow system) air diffuser groups 2 of the 10-layer aeration tanks 1A to 1J is sequentially replaced with each low pressure system (low airflow system) air diffuser group 20. Although demonstrated, this invention is not restricted to this, The number of aeration tanks is arbitrary.
Moreover, although the case where the compressed air supply apparatus 40 was comprised with the five blowers 7a-7e and inverter 41a, 41b was demonstrated, it is not restricted to this in this invention, The number of a blower and an inverter is arbitrary.

1A,1B,1C,1D,1E,1F,1G,1H,1I,1J 曝気槽
2 高圧系(高風量系)の散気装置群
3 高圧系(高風量系)の散気装置
4 枝配管
5 送気管である空気配管
6 既設のヘッダ
7a,7b,7c,7d,7e ブロア
8a,8b,8c,8d,8e 元配管
13 枝配管である接続管
14,32,8f,8g,8i,8j,42f,42g,42h,42i,42j バルブ
15 吸気配管
15a,15b,15c,15d,15e,22 配管
16 圧力計(ΔP)
17 圧力調節計(PIC)
20 低圧系(低風量系)の散気装置群
21 パネル型のメンブレン式散気装置(散気パネル)
22a 枝管
30 追加送気管である空気配管
31 新設枝管である接続管
40 圧縮空気供給装置
41a,41b インバータ
42a,42b,42c,42d,42e 分岐配管
43 更新用のヘッダ
1A, 1B, 1C, 1D, 1E, 1F, 1G, 1H, 1I, 1J Aeration tank 2 High pressure system (high air volume system) air diffuser group 3 High pressure system (high air volume system) air diffuser 4 Branch pipe 5 Air pipe 6 as an air supply pipe Existing headers 7a, 7b, 7c, 7d, 7e Blowers 8a, 8b, 8c, 8d, 8e Main pipe 13 Connection pipes 14, 32, 8f, 8g, 8i, 8j as branch pipes 42f, 42g, 42h, 42i, 42j Valve 15 Intake piping 15a, 15b, 15c, 15d, 15e, 22 Piping 16 Pressure gauge (ΔP)
17 Pressure controller (PIC)
20 Low pressure system (low air flow system) diffuser group 21 Panel type membrane diffuser (diffuse panel)
22a Branch pipe 30 Air pipe 31 which is an additional air pipe 31 Connection pipe 40 which is a new branch pipe Compressed air supply devices 41a and 41b Inverters 42a, 42b, 42c, 42d and 42e Branch pipe 43 Header for updating

Claims (10)

被処理水を収容する複数の好気処理槽と、
バルブを設けた複数の元配管を介して複数のブロアを既設ヘッダに接続して成る圧縮空気供給装置と、
伸縮性や収縮性のない複数の散気エレメントを枝配管で連結した高圧系(高風量系)の散気装置で構成され、前記好気処理槽内に配置される高圧系(高風量系)の散気装置群と、
前記既設ヘッダと前記高圧系(高風量系)の散気装置群の前記枝配管とを連結する1つの送気管とを備える既設の散気システムから、
前記高圧系(高風量系)の散気装置群を、新設する低圧損型のパネル式メンブレン膜で構成され小さな気泡を発生する複数の散気パネルを新設枝配管で連結した低圧系(低風量系)の散気装置で構成される低圧系(低風量系)の散気装置群に置き換える既設の散気システムから改修散気システムへの更新装置において、
前記更新装置は、
前記複数の元配管の前記バルブより前記複数のブロア側に、バルブを設けた複数の分岐元配管を介して接続する1つの更新用のヘッダと、
前記送気管に沿って配置され、前記低圧系(低風量系)の散気装置群と前記新設枝配管を介して接続され且つ前記更新用のヘッダと連結される追加送気管と、
前記ブロアの内一部のブロアに設置されるインバータと
を備え、
前記インバータが最初に設置されたブロアは、半分の前記高圧系(高風量系)の散気装置群を前記低圧系(低風量系)の散気装置群に置き換えるまでは前記低圧系(低風量系)の散気装置専用のブロアとして前記更新用のヘッダに接続され、半分より多くの前記高圧系(高風量系)の散気装置群を前記低圧系(低風量系)の散気装置群に置き換えてからは前記低圧系(低風量系)の散気装置専用のブロアとして前記既設ヘッダに接続され、全ての前記高圧系(高風量系)の散気装置群を前記低圧系(低風量系)の散気装置群に置き換えると、前記既設ヘッダ及び前記更新用のヘッダに接続され、
前記インバータが最初に設置されたブロア以外の前記ブロアの内の一部は、前記低圧系(低風量系)の散気装置群の置き換えに応じて前記既設ヘッダのみ、前記更新用のヘッダのみ、又は前記既設ヘッダと前記更新用のヘッダとの接続に切り換えられる
ことを特徴とする既設の散気システムから改修散気システムへの更新装置。
A plurality of aerobic treatment tanks containing treated water;
A compressed air supply device comprising a plurality of blowers connected to an existing header via a plurality of original pipes provided with valves;
A high-pressure system (high airflow system), which is composed of a high-pressure system (high airflow system) of air diffuser connected with branching pipes and a plurality of non-stretchable and shrinkable elements. A diffuser group of
From an existing air diffuser system comprising the existing header and one air pipe connecting the branch pipe of the high pressure system (high air flow system) air diffuser group,
The high-pressure system (high airflow system) air diffuser group is a low-pressure system (low airflow system) that consists of a newly installed low-pressure-loss panel-type membrane membrane that connects multiple diffused panels that generate small bubbles with new branch pipes. In the update device from the existing diffuser system to the modified diffuser system, which replaces the low-pressure (low airflow) diffuser group consisting of diffuser
The update device
One update header connected to the plurality of blower sides from the valves of the plurality of original pipes via a plurality of branch source pipes provided with valves,
An additional air supply pipe disposed along the air supply pipe, connected to the low-pressure system (low airflow system) air diffuser group via the new branch pipe and connected to the header for updating;
An inverter installed in a part of the blowers, and
The blower in which the inverter is first installed has the low-pressure system (low air volume) until the half of the high-pressure system (high air volume system) diffuser group is replaced with the low-pressure system (low air volume system) air diffuser group. System) as a blower dedicated to the air diffuser, connected to the header for update, and more than half of the air diffuser group of the high pressure system (high air flow system) is connected to the low pressure system (low air flow system) Is replaced with the existing header as a blower dedicated to the low pressure system (low air volume system) air diffuser, and all the high pressure system (high air volume system) air diffuser groups are connected to the low pressure system (low air volume system). When the system is replaced with a group of air diffusers, the existing header and the update header are connected,
A part of the blower other than the blower where the inverter is first installed is only the existing header according to the replacement of the low pressure system (low air flow system) diffuser group, only the header for updating, Alternatively, the apparatus is switched to the connection between the existing header and the update header. The update device from the existing diffuser system to the repair diffuser system.
請求項1記載の既設の散気システムから改修散気システムへの更新装置において、
前記更新用のヘッダ内の圧力を検出する圧力計と、
前記圧力計からの検出信号に基づき設定圧力値との差分から、前記インバータの周波数出力を演算し前記インバータへ出力する圧力調整計とからなる吐出圧制御装置と
を備え、
前記更新用のヘッダに接続された前記ブロアの吐出圧を制御する
ことを特徴とする既設の散気システムから改修散気システムへの更新装置。
In the update device from the existing air diffuser system according to claim 1 to the modified air diffuser system,
A pressure gauge for detecting the pressure in the header for updating;
A discharge pressure control device comprising a pressure regulator that calculates a frequency output of the inverter from a difference from a set pressure value based on a detection signal from the pressure gauge, and outputs the frequency output to the inverter;
An apparatus for updating an existing diffuser system to a modified diffuser system, wherein the discharge pressure of the blower connected to the header for update is controlled.
請求項1又は請求項2記載の既設の散気システムから改修散気システムへの更新装置において、
前記高圧系(高風量系)の散気装置群を前記低圧系(低風量系)の散気装置群への置き換えに際し、前記低圧系(低風量系)の散気装置群の数が、前記高圧系(高風量系)の散気装置群より多くなった際に、前記低圧系(低風量系)の散気装置群への圧縮空気の供給を、前記追加送気管から前記送気管へ切り換えるよう開閉可能に、前記更新用のヘッダに弁が備わる
ことを特徴とする既設の散気システムから改修散気システムへの更新装置。
In the update device from the existing air diffusion system according to claim 1 or claim 2 to the modified air diffusion system,
When replacing the high pressure system (high airflow system) air diffuser group with the low pressure system (low airflow system) air diffuser group, the number of the low pressure system (low airflow system) air diffuser group is When the number of high-pressure (high airflow) air diffusers increases, the supply of compressed air to the low-pressure (low airflow) air diffusers is switched from the additional air supply pipe to the air supply pipe. An update device from an existing diffuser system to a modified diffuser system, wherein the valve for update is provided with a valve that can be opened and closed.
請求項1乃至請求項3の何れか記載の既設の散気システムから改修散気システムへの更新装置において、
前記好気処理槽毎に前記送気管及び前記追加送気管各々にバルブを1つずつ備え、前記バルブの片側を介して前記高圧系(高風量系)の散気装置群の枝配管と前記送気管とが接続され、前記低圧系(低風量系)の散気装置群が設置される毎に前記バルブのもう片側を介し前記低圧系(低風量系)の散気装置群の新設第2枝配管を介して前記追加送気管が接続され、前記低圧系(低風量系)の散気装置群に対する圧縮空気の供給を前記バルブの片側又は前記バルブのもう片側を介して切り換える
ことを特徴とする既設の散気システムから改修散気システムへの更新装置。
In the update apparatus from the existing air diffusion system in any one of Claims 1 thru | or 3 to a repair air diffusion system,
One valve is provided for each of the air supply pipe and the additional air supply pipe for each of the aerobic treatment tanks, and the branch pipe of the high-pressure system (high air volume system) air diffuser group and the supply pipe are provided through one side of the valve. A new second branch of the low pressure system (low air flow system) diffuser group is connected through the other side of the valve every time the low pressure system (low air flow system) air diffuser group is installed. The additional air supply pipe is connected via a pipe, and the supply of compressed air to the low pressure system (low air volume system) air diffuser group is switched via one side of the valve or the other side of the valve. Update device from the existing diffuser system to the modified diffuser system.
請求項1乃至請求項4の何れか記載の既設の散気システムから改修散気システムへの更新装置において、
前記追加送気管の単位長さあたりの配管容量は、前記送気管の単位長さあたりの配管容量の40%以上50%以下である
ことを特徴とする既設の散気システムから改修散気システムへの更新装置。
In the update apparatus from the existing air diffusion system according to any one of claims 1 to 4 to a modified air diffusion system,
The pipe capacity per unit length of the additional air pipe is 40% to 50% of the pipe capacity per unit length of the air pipe from the existing air diffuser system to the modified air diffuser system Update device.
被処理水を収容する複数の好気処理槽と、
バルブを設けた複数の元配管を介して複数のブロアを既設ヘッダに接続して成る圧縮空気供給装置と、
伸縮性や収縮性のない複数の散気エレメントを枝配管で連結した高圧系(高風量系)の散気装置で構成され、前記好気処理槽内に配置される高圧系(高風量系)の散気装置群と、
前記既設ヘッダと前記高圧系(高風量系)の散気装置群の前記枝配管とを連結する1つの送気管とを備える既設の散気システムから、
前記高圧系(高風量系)の散気装置群を、新設する低圧損型パネル式メンブレン膜で構成され小さな気泡を発生する複数の散気パネルを新設枝配管で連結した低圧系(低風量系)の散気装置で構成される低圧系(低風量系)の散気装置群に置き換える既設の散気システムから改修散気システムへの更新方法において、
前記複数の元配管の前記バルブより前記複数のブロア側に、バルブを設けた複数の分岐元配管を介して接続する1つの更新用のヘッダを前記圧縮空気供給装置に設け、
前記更新用のヘッダに接続される追加送気管を、前記送気管に沿って配置し、
更新すべき前記高圧系(高風量系)の散気装置群を所定数の前記好気処理槽毎に順次撤去し、
前記低圧系(低風量系)の散気装置群を、撤去された前記高圧系(高風量系)の散気装置群の位置に配置し、
配置された前記低圧系(低風量系)の散気装置群に前記新設枝配管を介して前記更新用のヘッダを連結するように前記追加送気管を接続し、
前記ブロアの内一部のブロアにインバータを設置し、
前記インバータが最初に設置されたブロアを、全ての前記高圧系(高風量系)の散気装置群を前記低圧系(低風量系)の散気装置群に置き換えるまでは前記低圧系(低風量系)の散気装置専用のブロアとして前記更新用のヘッダ又は前記既設ヘッダに接続し、
全ての前記高圧系(高風量系)の散気装置群を前記低圧系(低風量系)の散気装置群に置き換えると、前記既設ヘッダ及び前記更新用のヘッダに接続し、
前記インバータが最初に設置されたブロア以外の前記ブロアの内の一部にインバータを設置し、前記低圧系(低風量系)の散気装置群の置き換えに応じて前記既設ヘッダのみ、前記更新用のヘッダのみ、又は前記既設ヘッダと前記更新用のヘッダとの接続に切り換える
ことを特徴とする既設の散気システムから改修散気システムへの更新方法。
A plurality of aerobic treatment tanks containing treated water;
A compressed air supply device comprising a plurality of blowers connected to an existing header via a plurality of original pipes provided with valves;
A high-pressure system (high airflow system), which is composed of a high-pressure system (high airflow system) of air diffuser connected with branching pipes and a plurality of non-stretchable and shrinkable elements. A diffuser group of
From an existing air diffuser system comprising the existing header and one air pipe connecting the branch pipe of the high pressure system (high air flow system) air diffuser group,
Low-pressure system (low airflow system) that consists of a low-pressure-loss panel type membrane membrane that connects the high-pressure system (high airflow system) with a plurality of diffuser panels that generate small bubbles and is connected by a new branch pipe In the update method from the existing diffuser system to the modified diffuser system, which is replaced with the low pressure system (low airflow system) diffuser group consisting of
One compressed header connected to the plurality of blower sides from the valves of the plurality of original pipes via a plurality of branch source pipes provided with valves is provided in the compressed air supply device,
An additional air pipe connected to the header for update is disposed along the air pipe,
The aeration device group of the high pressure system (high air flow system) to be updated is sequentially removed for each predetermined number of the aerobic treatment tanks,
The low pressure system (low air flow system) air diffuser group is disposed at the position of the removed high pressure system (high air flow system) air diffuser group,
The additional air supply pipe is connected so as to connect the header for update to the low pressure system (low air flow system) diffuser group disposed through the new branch pipe,
An inverter is installed in a part of the blowers,
The low-pressure system (low air volume) until the blower in which the inverter is first installed is replaced with the low-pressure system (low air volume system) diffuser group in place of all the high-pressure system (high air volume system) air diffuser groups. Connected to the header for update or the existing header as a blower dedicated to the air diffuser of the system),
When replacing all the high-pressure system (high airflow system) diffuser group with the low-pressure system (low airflow system) diffuser group, connect to the existing header and the update header,
An inverter is installed in a part of the blower other than the blower in which the inverter is initially installed, and only the existing header is used for the update according to replacement of the low pressure system (low air flow system) air diffuser group A method of updating from an existing air diffuser system to a modified air diffuser system, characterized in that the connection is switched to only the header or a connection between the existing header and the header for update.
請求項6記載の既設の散気システムから改修散気システムへの更新方法において、
前記更新用のヘッダ内の圧力を検出する圧力計と、
前記圧力計からの検出信号に基づき設定圧力値との差分から、前記インバータの周波数出力を演算し前記インバータへ出力する圧力調整計とからなる吐出圧制御装置と
を備え、
前記更新用のヘッダに接続された前記ブロアの吐出圧を制御する
ことを特徴とする既設の散気システムから改修散気システムへの更新方法。
In the update method from the existing air diffuser system according to claim 6 to the modified air diffuser system,
A pressure gauge for detecting the pressure in the header for updating;
A discharge pressure control device comprising a pressure regulator that calculates a frequency output of the inverter from a difference from a set pressure value based on a detection signal from the pressure gauge, and outputs the frequency output to the inverter;
A method of updating an existing diffuser system to a modified diffuser system, wherein the discharge pressure of the blower connected to the header for update is controlled.
請求項6又は請求項7記載の既設の散気システムから改修散気システムへの更新方法において、
前記高圧系(高風量系)の散気装置群を前記低圧系(低風量系)の散気装置群への置き換えに際し、前記低圧系(低風量系)の散気装置群の数が、前記高圧系(高風量系)の散気装置群より多くなった際に、前記低圧系(低風量系)の散気装置群への圧縮空気の供給を、前記追加送気管から前記送気管へ切り換える
ことを特徴とする既設の散気システムから改修散気システムへの更新方法。
In the update method from the existing air diffuser system according to claim 6 or claim 7 to the modified air diffuser system,
When replacing the high pressure system (high airflow system) air diffuser group with the low pressure system (low airflow system) air diffuser group, the number of the low pressure system (low airflow system) air diffuser group is When the number of high-pressure (high airflow) air diffusers increases, the supply of compressed air to the low-pressure (low airflow) air diffusers is switched from the additional air supply pipe to the air supply pipe. A method for updating an existing air diffuser system to a modified air diffuser system.
請求項6乃至請求項8の何れか記載の既設の散気システムから改修散気システムへの更新方法において、
前記好気処理槽毎に前記送気管及び前記追加送気管各々にバルブを1つずつ備え、前記バルブの片側を介して前記高圧系(高風量系)の散気装置群の枝配管と前記送気管とを接続し、前記低圧系(低風量系)の散気装置群が設置される毎に前記バルブのもう片側を介し前記低圧系(低風量系)の散気装置群の新設第2枝配管を介して前記追加送気管とを接続し、前記低圧系(低風量系)の散気装置群に対する圧縮空気の供給を前記バルブの片側又は前記バルブのもう片側を介して切り換える
ことを特徴とする既設の散気システムから改修散気システムへの更新方法。
In the update method from the existing air diffuser system according to any one of claims 6 to 8 to a modified air diffuser system,
One valve is provided for each of the air supply pipe and the additional air supply pipe for each of the aerobic treatment tanks, and the branch pipe of the high-pressure system (high air volume system) air diffuser group and the supply pipe are provided through one side of the valve. A new second branch of the low pressure system (low air flow system) diffuser group is connected through the other side of the valve every time the low pressure system (low air flow system) air diffuser group is installed. The additional air supply pipe is connected via a pipe, and the supply of compressed air to the low pressure system (low air volume system) air diffuser group is switched via one side of the valve or the other side of the valve. How to update existing diffuser system to repair diffuser system.
請求項乃至請求項の何れか記載の既設の散気システムから改修散気システムへの更新方法において、
前記追加送気管の単位長さあたりの配管容量は、前記送気管の単位長さあたりの配管容量の40%以上50%以下である
ことを特徴とする既設の散気システムから改修散気システムへの更新方法。
In the update method from the existing air diffuser system according to any one of claims 6 to 9 to a modified air diffuser system,
The pipe capacity per unit length of the additional air pipe is 40% to 50% of the pipe capacity per unit length of the air pipe from the existing air diffuser system to the modified air diffuser system Update method.
JP2012288101A 2012-12-28 2012-12-28 Update device from existing diffuser system to modified diffuser system and update method from existing diffuser system to modified diffuser system Active JP6076733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012288101A JP6076733B2 (en) 2012-12-28 2012-12-28 Update device from existing diffuser system to modified diffuser system and update method from existing diffuser system to modified diffuser system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012288101A JP6076733B2 (en) 2012-12-28 2012-12-28 Update device from existing diffuser system to modified diffuser system and update method from existing diffuser system to modified diffuser system

Publications (2)

Publication Number Publication Date
JP2014128765A JP2014128765A (en) 2014-07-10
JP6076733B2 true JP6076733B2 (en) 2017-02-08

Family

ID=51407675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012288101A Active JP6076733B2 (en) 2012-12-28 2012-12-28 Update device from existing diffuser system to modified diffuser system and update method from existing diffuser system to modified diffuser system

Country Status (1)

Country Link
JP (1) JP6076733B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020231767A1 (en) * 2019-05-10 2020-11-19 Xylem Water Solutions U.S.A., Inc. Aeration diffuser system, wastewater treatment system including same, and associated monitoring method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7339726B2 (en) 2018-03-12 2023-09-06 住友重機械エンバイロメント株式会社 Renewal method of water treatment tank

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69108244D1 (en) * 1990-06-23 1995-04-20 Dunlop Ltd DEVICE FOR FLUID SUPPLY.
JP3670463B2 (en) * 1997-11-11 2005-07-13 株式会社東芝 Aeration tank aeration equipment
JPH11165188A (en) * 1997-12-04 1999-06-22 Ryoji Kimura Lifting type aeration device
WO2007045007A1 (en) * 2005-10-18 2007-04-26 Francesco Antonio Martino An apparatus and method for the treatment of sewage
EP2376391A4 (en) * 2008-12-22 2012-09-12 Univ Utah Res Found Submerged system and method for removal of undesirable substances from aqueous media
JP5698025B2 (en) * 2010-03-19 2015-04-08 水ing株式会社 Waste water treatment apparatus and waste water treatment method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020231767A1 (en) * 2019-05-10 2020-11-19 Xylem Water Solutions U.S.A., Inc. Aeration diffuser system, wastewater treatment system including same, and associated monitoring method
US11643347B2 (en) 2019-05-10 2023-05-09 Xylem Water Solutions U.S.A., Inc. Aeration diffuser system, wastewater treatment system including same, and associated monitoring method

Also Published As

Publication number Publication date
JP2014128765A (en) 2014-07-10

Similar Documents

Publication Publication Date Title
JP5038985B2 (en) Aeration-less water treatment system
JP6027474B2 (en) Operation method of organic waste water treatment device and organic waste water treatment device
CN104591374B (en) A kind of new device to oxygenation in water
WO2013146613A1 (en) Dipping-type membrane separation device
JP6076733B2 (en) Update device from existing diffuser system to modified diffuser system and update method from existing diffuser system to modified diffuser system
JP2004313938A (en) Clogging prevention operation method of air diffuser
JP2008246483A (en) Apparatus for biological treatment of waste water
EP2222608B1 (en) Improvements relating to water treatment
CN105016462A (en) Biological aerated filter for automatically and continuously cleaning filter materials
KR20100005419A (en) Pollutant removal system of membrane diffuser for sewage treatment plant
KR101485500B1 (en) Device and method by the membrane separator activated advanced oxidation process
JP2012024647A (en) Immersion type membrane separator and micro bubble diffusing pipe
JP2014133206A (en) Waste water treatment apparatus, and update/modification method thereof
JP5456238B2 (en) Membrane separator
US20030226805A1 (en) Method of wastewater treatment with biological active carbon using recycled oxygen-enriched water and apparatus used therein
JP2006007103A (en) Membrane separation type sewage treatment apparatus and operating method therefor
JP5590926B2 (en) Water transfer pump, water treatment device
CN205556236U (en) Nitrify changeable dual -purpose biological filter of denitrification
KR200380963Y1 (en) Disposal Equipment for dirty or waster water
CN221235398U (en) Novel anti-pollution combined type aeration of MBR device
CN101734787A (en) Upward-flow biological aerated filter
US20220234925A1 (en) System and method for purifying domestic wastewater using one cycle a day
JP2023115286A (en) Aeration system, method for operating aeration system, and method for replacing blower
JP4526980B2 (en) Sewage treatment system
CN201288096Y (en) Cellular aerating biological filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170111

R150 Certificate of patent or registration of utility model

Ref document number: 6076733

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250