JP2014133206A - Waste water treatment apparatus, and update/modification method thereof - Google Patents

Waste water treatment apparatus, and update/modification method thereof Download PDF

Info

Publication number
JP2014133206A
JP2014133206A JP2013002611A JP2013002611A JP2014133206A JP 2014133206 A JP2014133206 A JP 2014133206A JP 2013002611 A JP2013002611 A JP 2013002611A JP 2013002611 A JP2013002611 A JP 2013002611A JP 2014133206 A JP2014133206 A JP 2014133206A
Authority
JP
Japan
Prior art keywords
sludge
tank
membrane
aeration
treatment apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013002611A
Other languages
Japanese (ja)
Inventor
Atsushi Kitanaka
敦 北中
Masahiro Kihara
正浩 木原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2013002611A priority Critical patent/JP2014133206A/en
Publication of JP2014133206A publication Critical patent/JP2014133206A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PROBLEM TO BE SOLVED: To provide a waste water treatment apparatus in which, when facilities of an activated sludge process are updated or reconstructed, the surface of a membrane can be cleaned stably and water treatment using activated sludge can be stabilized even in the case that a membrane separation unit is installed in a precipitation tank, and to provide an update/modification method of the waste water treatment apparatus.SOLUTION: The waste water treatment apparatus is characterized in that organic sewage and activated sludge are aerated and mixed with each other in an aeration tank, an obtained liquid mixture is subjected to solid-liquid separation in the precipitation tank, the concentrated sludge obtained by the solid-liquid separation is returned to the aeration tank as return sludge, and the membrane separation unit, in the lower part of which an aeration device for cleaning the surface of the membrane is arranged, is installed in the precipitation tank so that flow rate of the return sludge is made higher than that of the return sludge of the existing activated sludge process. The update/modification method of the waste water treatment apparatus is also provided.

Description

本発明は、有機性汚水と活性汚泥を曝気混合するための曝気槽およびその混合液を固液分離する沈殿槽を備えた廃水処理装置の更新方法において、既設廃水処理装置の処理効率の改善を図ることが可能な更新・改善方法に関するものである。   The present invention provides an aeration tank for aeration mixing of organic sewage and activated sludge and a method for updating a wastewater treatment apparatus equipped with a sedimentation tank for solid-liquid separation of the mixed liquid, thereby improving the treatment efficiency of the existing wastewater treatment apparatus. It relates to an update / improvement method that can be implemented.

微生物を利用して汚水を処理する方法のうち一般的なものとして標準活性汚泥法が知られている。標準活性汚泥法では、有機性汚水は活性汚泥が収容された曝気槽に導入され、曝気・攪拌される。その後、微生物により処理された水は沈殿槽にて固液分離され、上澄みは処理水として放流等される。分離された濃縮汚泥は返送汚泥として曝気槽に返送され、一部は余剰汚泥として活性汚泥系外に引き抜かれる。   A standard activated sludge method is known as a general method for treating sewage using microorganisms. In the standard activated sludge method, organic sewage is introduced into an aeration tank containing activated sludge and aerated and stirred. Thereafter, the water treated with the microorganisms is solid-liquid separated in a sedimentation tank, and the supernatant is discharged as treated water. The separated concentrated sludge is returned to the aeration tank as return sludge, and a part thereof is drawn out of the activated sludge system as surplus sludge.

膜分離活性汚泥法(以下、MBR)では、流入してきた有機性汚水は、微細目スクリーンにより、し渣等の夾雑物が除かれた後、曝気槽に導入される。曝気槽内には、膜分離モジュールが設置されており、これにより固液分離が行われ処理水を得ることができる。曝気槽内の活性汚泥浮遊物(以下、MLSS)濃度を一定にするために、汚泥引抜ポンプにより、余剰汚泥が適量引き抜かれる。   In the membrane separation activated sludge method (hereinafter referred to as MBR), inflowing organic sewage is introduced into an aeration tank after contaminants such as residue are removed by a fine screen. A membrane separation module is installed in the aeration tank, whereby solid-liquid separation is performed and treated water can be obtained. In order to make the concentration of activated sludge suspended matter (hereinafter referred to as MLSS) in the aeration tank constant, an excess amount of excess sludge is extracted by a sludge extraction pump.

膜分離活性汚泥法を活用し、既存の廃水処理装置を更新する方法として、例えば、特許文献1では、下水と活性汚泥を混合・曝気することにより下水を処理する生物反応槽にろ過膜を設置することによって同時に固液分離を行い、これにより使用しなくなった最終沈殿槽を最初沈殿槽として利用する発明が開示されている。また、特許文献2では、反応槽内の汚泥微生物により有機性汚水を生物処理するオキシデーションディッチにおいて、沈殿槽内に浸漬するようにして膜分離装置を設置したことを特徴とする発明が開示されている。   For example, in Patent Document 1, a filtration membrane is installed in a biological reaction tank that treats sewage by mixing and aeration of sewage and activated sludge. Thus, an invention is disclosed in which solid-liquid separation is simultaneously performed, and the final sedimentation tank that is no longer used is used as the initial sedimentation tank. Patent Document 2 discloses an invention characterized in that in an oxidation ditch in which organic sewage is biologically treated by sludge microorganisms in a reaction tank, a membrane separation device is installed so as to be immersed in a settling tank. ing.

特開2004−321862号公報JP 2004-321862 A 特開2004−188255号公報JP 2004-188255 A

一般的な既存廃水処理手法である標準活性汚泥法の更新に膜分離活性汚泥法を適用するためには、膜モジュールが適切に洗浄されるようにレイアウトが考慮されたり、曝気槽内のMLSS濃度(MLSS濃度の単位は、一般にmg/Lで示される)は適切な範囲に設定される必要がある。しかしながら、いずれの特許文献においても、これらの課題について解決策を提供できる技術を十分に開示しているとはいえない。   In order to apply the membrane separation activated sludge method to the renewal of the standard activated sludge method, which is a general existing wastewater treatment method, the layout is considered so that the membrane module is properly washed, and the MLSS concentration in the aeration tank (The unit of MLSS concentration is generally expressed in mg / L) needs to be set to an appropriate range. However, none of the patent documents fully discloses a technique that can provide a solution to these problems.

本発明の目的は、活性汚泥法の装置を更新や改築するに際し、膜分離装置を沈殿槽内に装填した場合において、安定した膜面洗浄が行え、活性汚泥による水処理を安定させることが可能となる、廃水処理装置および廃水処理装置の更新・改造方法を提供するものである。   The purpose of the present invention is to perform stable membrane cleaning and to stabilize water treatment with activated sludge when a membrane separation device is loaded in a settling tank when the activated sludge process equipment is updated or remodeled. The present invention provides a wastewater treatment apparatus and a method for updating and remodeling the wastewater treatment apparatus.

前記目的を達成するための本発明の廃水処理装置および既存の廃水処理装置の更新・改造方法は以下の特徴を有するものである。
(1)有機性汚水と活性汚泥を曝気混合するための曝気槽と、前記曝気槽で混合された混合液を固液分離する沈殿槽と、前記固液分離により得られた濃縮汚泥を返送汚泥として前記曝気槽に移送する返送配管とを備え、前記沈殿槽内に、下部に膜面を洗浄するための曝気装置を具備する膜分離装置を装填し、且つ前記返送配管に返送汚泥ポンプを備えたことを特徴とする廃水処理装置。
(2)前記沈殿槽に、前記膜分離装置の水平度を保つためのレール状の器具を備えることを特徴とする上記(1)に記載の廃水処理装置。
(3)有機性汚水と活性汚泥を曝気槽で曝気混合し、前記曝気槽で混合された混合液を沈殿槽で固液分離し、固液分離した濃縮汚泥を返送汚泥として前記曝気槽にもどす廃水処理装置の更新・改造方法であって、前記沈殿槽内に、下部に膜面を洗浄するための曝気装置を具備する膜分離装置を装填し、かつ前記返送汚泥の流量を前記有機性汚水の流入量の100%から500%の範囲とすることを特徴とする廃水処理装置の更新・改造方法。
(4)前記返送汚泥を移送する配管にエアリフトポンプを備え、前記エアリフトポンプにより前記返送汚泥の流量を調整することを特徴とする上記(3)に記載の廃水処理装置の更新・改造方法。
(5)前記沈殿槽における前記膜分離装置の中心線の傾きを、鉛直方向に対して5%以内に抑制することを特徴とする上記(3)または(4)に記載の廃水処理装置の更新・改造方法。
(6)前記沈殿槽に、前記膜分離装置の水平度を保つためのレール状の器具を設置することを特徴とする上記(5)に記載の廃水処理装置の更新・改造方法。
In order to achieve the above object, the wastewater treatment apparatus of the present invention and the update / modification method of the existing wastewater treatment apparatus have the following characteristics.
(1) An aeration tank for aeration mixing organic sludge and activated sludge, a precipitation tank for solid-liquid separation of the mixed liquid mixed in the aeration tank, and a sludge for returning concentrated sludge obtained by the solid-liquid separation And a return pipe for transferring to the aeration tank, a membrane separation device having an aeration device for washing the membrane surface in the lower part is loaded in the settling tank, and a return sludge pump is provided in the return pipe. A wastewater treatment apparatus characterized by that.
(2) The wastewater treatment apparatus according to (1), wherein the sedimentation tank includes a rail-like instrument for maintaining the level of the membrane separation device.
(3) Organic sewage and activated sludge are aerated and mixed in an aeration tank, the mixed liquid mixed in the aeration tank is solid-liquid separated in a precipitation tank, and the solid-liquid separated concentrated sludge is returned to the aeration tank as return sludge. A method for renewing and remodeling a wastewater treatment apparatus, wherein a membrane separation device having an aeration device for washing a membrane surface is loaded in the settling tank, and the flow rate of the return sludge is changed to the organic wastewater. A method for renewing or remodeling a wastewater treatment apparatus, characterized in that the inflow amount is in the range of 100% to 500%.
(4) The method for updating and remodeling a wastewater treatment apparatus according to (3), wherein an air lift pump is provided in a pipe for transferring the return sludge, and the flow rate of the return sludge is adjusted by the air lift pump.
(5) The update of the wastewater treatment apparatus according to (3) or (4) above, wherein the inclination of the center line of the membrane separation device in the settling tank is suppressed to within 5% with respect to the vertical direction. -Remodeling method.
(6) The method for updating and remodeling a wastewater treatment apparatus according to (5) above, wherein a rail-like instrument for maintaining the level of the membrane separation device is installed in the sedimentation tank.

本発明により、曝気槽および沈殿槽内に滞留するMLSS濃度を安定させることができる。また、沈殿槽内の設置に伴う曝気の偏りを抑制することにより、膜分離装置の膜面の曝気洗浄を均一にかつ効果的に行うことが可能となる。その他、膜分離活性汚泥法が適用可能となることから、既存の活性汚泥処理と比較し、高い容積負荷での運転が可能であり、分離膜で固液分離を行うことから沈殿分離と比較して清浄の処理水を得ることができる。   According to the present invention, the MLSS concentration staying in the aeration tank and the precipitation tank can be stabilized. In addition, by suppressing the bias of aeration accompanying the installation in the settling tank, it becomes possible to perform aeration cleaning of the membrane surface of the membrane separation device uniformly and effectively. In addition, since the membrane separation activated sludge method can be applied, operation at a higher volume load is possible compared to existing activated sludge treatment, and solid-liquid separation is performed with a separation membrane, so compared with precipitation separation. Clean treated water can be obtained.

標準的な活性汚泥法のフローを示す図である。It is a figure which shows the flow of a standard activated sludge method. 本発明に係る廃水処理装置の更新・改造方法の実施形態を示すフロー図である。It is a flowchart which shows embodiment of the update / remodeling method of the wastewater treatment apparatus which concerns on this invention. 各汚泥返送率における沈殿槽内のMLSS濃度に対する活性汚泥処理槽内のMLSS濃度の割合を示す図である。It is a figure which shows the ratio of the MLSS density | concentration in an activated sludge processing tank with respect to the MLSS density | concentration in a sedimentation tank in each sludge return rate. 本発明の実施の形態を示す図であり、(a)は膜分離装置10をそのままの状態で沈殿槽5に設置した図、(b)は膜分離装置10をレール部材15を用いて沈殿槽5に設置した図である。It is a figure which shows embodiment of this invention, (a) is the figure which installed the membrane separator 10 in the precipitation tank 5 as it is, (b) is a precipitation tank using the rail member 15 for the membrane separator 10 FIG.

以下、本発明の実施形態を図面に基づいて説明する。図1は、更新・改造前の標準活性汚泥法のフロー図である。下水や工場廃水などの有機性汚濁物質を含む廃水すなわち、有機性汚水1は、活性汚泥処理槽2に導入され、活性汚泥処理槽2内で活性汚泥処理される。有機性汚水1の活性汚泥処理槽2内での滞留時間は通常1時間〜24時間程度であるが、有機性汚水1の濃度等に応じて最適な時間を採択される。また、活性汚泥処理槽2内でのMLSS濃度は概ね1,500mg/L〜4,000mg/L程度である。MLSS濃度を高くすると活性汚泥処理槽の容積あたりの処理効率は向上するが、後段の固液分離工程において分離が困難になるため適正なMLSS濃度に保つことが重要である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a flow chart of the standard activated sludge method before renewal / modification. Waste water containing organic pollutants such as sewage and factory waste water, that is, organic sludge 1 is introduced into the activated sludge treatment tank 2 and activated sludge treatment in the activated sludge treatment tank 2. The residence time of the organic sewage 1 in the activated sludge treatment tank 2 is usually about 1 to 24 hours, but an optimum time is selected according to the concentration of the organic sewage 1 and the like. Moreover, the MLSS concentration in the activated sludge treatment tank 2 is approximately 1,500 mg / L to 4,000 mg / L. When the MLSS concentration is increased, the processing efficiency per volume of the activated sludge treatment tank is improved. However, since separation becomes difficult in the subsequent solid-liquid separation step, it is important to maintain an appropriate MLSS concentration.

活性汚泥処理槽2内には、送風機4から供給されるエアを散気させるための散気ユニット3が取り付けられている。散気ユニット3から散気されるエアは、活性汚泥混合液に供給され有機物の分解に利用される。処理後の活性汚泥混合液は、沈殿槽5に導入される。   In the activated sludge treatment tank 2, an air diffusion unit 3 for diffusing air supplied from the blower 4 is attached. The air diffused from the air diffusion unit 3 is supplied to the activated sludge mixed liquid and used for the decomposition of the organic matter. The activated sludge mixed solution after the treatment is introduced into the settling tank 5.

沈殿槽5では、活性汚泥(微生物)と処理水の沈殿分離が行われ、沈殿槽越流水が活性汚泥法における処理水9として環境中へ放流等される。沈殿槽5は、活性汚泥の性状に適した水面積負荷で設計がなされ、活性汚泥は沈殿槽5の底部に貯まる。沈殿槽に貯まった汚泥は返送汚泥6として、返送汚泥ポンプ7を介して活性汚泥処理槽2に返送される。返送汚泥6の一部は、余剰汚泥8として系外に適宜引き抜かれる。なお、標準的な活性汚泥法における汚泥返送率はおおよそ30%程度である。なお、汚泥返送率は下記で計算される。
汚泥返送率=(返送汚泥量/日)÷(有機性汚水流入汚水量/日)×100
In the settling tank 5, activated sludge (microorganisms) and treated water are separated by precipitation, and the settling tank overflow water is discharged into the environment as treated water 9 in the activated sludge method. The settling tank 5 is designed with a water area load suitable for the properties of the activated sludge, and the activated sludge is stored at the bottom of the settling tank 5. The sludge accumulated in the sedimentation tank is returned to the activated sludge treatment tank 2 via the return sludge pump 7 as the return sludge 6. A part of the returned sludge 6 is appropriately extracted out of the system as surplus sludge 8. The sludge return rate in the standard activated sludge method is approximately 30%. The sludge return rate is calculated as follows.
Sludge return rate = (Return sludge volume / day) ÷ (Organic sewage inflow sewage volume / day) x 100

本発明の廃水処理設備では、膜分離装置を沈殿槽5内に装填し、沈殿槽5から活性汚泥処理槽2への返送汚泥6の量を増加させることを特徴とする。   The wastewater treatment facility of the present invention is characterized in that a membrane separator is loaded in the sedimentation tank 5 and the amount of the returned sludge 6 from the sedimentation tank 5 to the activated sludge treatment tank 2 is increased.

図2に示したように、本発明の廃水処理装置において、沈殿槽5の中に膜分離装置10が浸漬される。膜分離装置10の下部には、曝気装置としての膜面洗浄散気ユニット12が設置され、膜面洗浄用送風機11から供給されるエアが膜面洗浄散気ユニット12から散気され、膜分離装置10の膜面の洗浄が行われる。膜分離装置10には膜ろ過吸引ポンプ13が接続されており、膜ろ過された水は膜ろ過水14として放流等される。   As shown in FIG. 2, in the wastewater treatment apparatus of the present invention, the membrane separation device 10 is immersed in the precipitation tank 5. A membrane surface cleaning aeration unit 12 as an aeration device is installed at the lower part of the membrane separation device 10, and the air supplied from the membrane surface cleaning air blower 11 is diffused from the membrane surface cleaning aeration unit 12 to perform membrane separation. The film surface of the apparatus 10 is cleaned. A membrane filtration suction pump 13 is connected to the membrane separation device 10, and the water subjected to membrane filtration is discharged as membrane filtrate 14.

なお、既設の活性汚泥法と同様、沈殿槽5で固液分離された濃縮汚泥(返送汚泥6)は、返送汚泥ポンプ7を介して、活性汚泥処理槽2に返送される。本発明において、返送汚泥ポンプ7の流量は、有機性汚水1の流入量の100%から500%程度の範囲で運転することが望ましく、200%から400%の範囲がより好ましい。通常の活性汚泥法における返送率が前述のとおり30%程度であるから、膜分離装置10を導入することにより約3倍から16倍にまで増強することが必要となる。増強の方法としては、返送汚泥ポンプを大型のポンプに交換したり、既存設備の返送汚泥ポンプを流用しつつ新しいポンプを併設して、設備を増強する方法がある。特に、ランニングコストで有利となるエアリフトポンプを利用してもよい。   Similar to the existing activated sludge method, the concentrated sludge (return sludge 6) separated in the solid-liquid separation in the settling tank 5 is returned to the activated sludge treatment tank 2 via the return sludge pump 7. In the present invention, the flow rate of the return sludge pump 7 is desirably operated in the range of about 100% to 500% of the inflow amount of the organic sewage 1, and more preferably in the range of 200% to 400%. Since the return rate in the normal activated sludge method is about 30% as described above, it is necessary to increase the rate from about 3 times to 16 times by introducing the membrane separation device 10. As a method of augmentation, there is a method of replacing the return sludge pump with a large pump or adding a new pump while diverting the return sludge pump of the existing equipment to enhance the equipment. In particular, an air lift pump that is advantageous in running cost may be used.

ここで、汚泥返送率の違いが、活性汚泥処理槽、沈殿槽内のMLSS濃度に与える影響について説明する。図3は、各汚泥返送率における沈殿槽内のMLSS濃度に対する活性汚泥処理槽内のMLSS濃度の割合(MLSS濃度(活性汚泥処理槽)/MLSS濃度(沈殿槽))を示す。この値が低ければ、活性汚泥処理槽と沈殿槽のMLSS濃度差が大きくなる。
例えば、従来の活性汚泥法と同様、汚泥返送率が30%であれば、MLSS濃度(活性汚泥処理槽)/MLSS濃度(沈殿槽)の値は0.23となる。仮に運転時における沈殿槽内のMLSS濃度を10,000mg/Lとすれば、活性汚泥処理槽内のMLSSは2,300mg/Lとなる。これでは、活性汚泥処理槽のMLSS濃度が低すぎ、単位容積あたりの処理効率を高くできる膜分離活性汚泥法におけるメリットを見出せない。一方、汚泥返送率を高くすれば、MLSS濃度(活性汚泥処理槽)/MLSS濃度(沈殿槽)の値も高くなる。ここで、図3に示すとおり、増加曲線は漸近線状であるため、経済性を考慮すれば汚泥返送率は100〜500%程度に設定することが望ましい。従って、汚泥返送率を前記範囲とすれば、MBRで処理するメリットが引き出せる。
Here, the influence which the difference in the sludge return rate has on the MLSS concentration in the activated sludge treatment tank and the sedimentation tank will be described. FIG. 3 shows the ratio of the MLSS concentration in the activated sludge treatment tank to the MLSS concentration in the sedimentation tank at each sludge return rate (MLSS concentration (activated sludge treatment tank) / MLSS concentration (precipitation tank)). If this value is low, the MLSS concentration difference between the activated sludge treatment tank and the sedimentation tank becomes large.
For example, as in the conventional activated sludge method, if the sludge return rate is 30%, the MLSS concentration (activated sludge treatment tank) / MLSS concentration (precipitation tank) value is 0.23. If the MLSS concentration in the sedimentation tank during operation is 10,000 mg / L, the MLSS in the activated sludge treatment tank is 2,300 mg / L. With this, the MLSS concentration in the activated sludge treatment tank is too low, and the merit in the membrane separation activated sludge method that can increase the treatment efficiency per unit volume cannot be found. On the other hand, if the sludge return rate is increased, the value of MLSS concentration (activated sludge treatment tank) / MLSS concentration (precipitation tank) also increases. Here, as shown in FIG. 3, since the increase curve is asymptotic, it is desirable to set the sludge return rate to about 100 to 500% in consideration of economy. Therefore, if the sludge return rate is within the above range, the merit of processing by MBR can be brought out.

ここで、膜分離装置10は、ろ過膜の取り扱い性や物理的耐久性を向上させるために、例えば、フレームの両面にろ過水流路材を挟んだ上にろ過膜を接着した平膜エレメント構造や中空糸状の膜を束ねた中空糸型構造等が含まれ、膜分離活性汚泥法に使用される浸漬型の膜ユニットのことを指す。ろ過膜の膜構造としては、多孔質膜や、多孔質膜に機能層を複合化した複合膜などが挙げられるが、特に限定されるものではない。   Here, in order to improve the handleability and physical durability of the filtration membrane, the membrane separation device 10 has, for example, a flat membrane element structure in which a filtration membrane is bonded to both sides of a frame and a filtration membrane is bonded. A hollow fiber structure in which hollow fiber membranes are bundled is included, and refers to a submerged membrane unit used in a membrane separation activated sludge method. Examples of the membrane structure of the filtration membrane include, but are not limited to, a porous membrane and a composite membrane in which a functional layer is combined with the porous membrane.

これらの膜の具体例としては、ポリアクリロニトリル多孔質膜、ポリイミド多孔質膜、ポリエーテルスルホン多孔質膜、ポリフェニレンスルフィドスルホン多孔質膜、ポリテトラフルオロエチレン多孔質膜、ポリフッ化ビニリデン多孔質膜、ポリプロピレン多孔質膜、ポリエチレン多孔質膜等の多孔質膜などが挙げられるが、ポリフッ化ビニリデン多孔質膜やポリテトラフルオロエチレン多孔質膜は耐薬品性が高いため、特に好ましい。さらに、これら多孔質膜に機能層として架橋型シリコーン、ポリブタジエン、ポリアクリロニトリルブタジエン、エチレンプロピレンラバー、ネオプレンゴム等のゴム状高分子を複合化した複合膜も、膜分離装置10に用いることができる。ここでいうろ過膜とは、孔径が0.01μmから10μm程度のものをいい、一般的に分子ふるいによる分離が行われる限外ろ過膜より目が粗く、通常操作圧は減圧状態から200kPa以下で運転される。   Specific examples of these membranes include polyacrylonitrile porous membrane, polyimide porous membrane, polyethersulfone porous membrane, polyphenylene sulfide sulfone porous membrane, polytetrafluoroethylene porous membrane, polyvinylidene fluoride porous membrane, polypropylene Examples of the porous film include a porous film and a porous film such as a polyethylene porous film, and a polyvinylidene fluoride porous film and a polytetrafluoroethylene porous film are particularly preferable because of high chemical resistance. Furthermore, a composite membrane in which a rubbery polymer such as cross-linked silicone, polybutadiene, polyacrylonitrile butadiene, ethylene propylene rubber, or neoprene rubber is combined as a functional layer with these porous membranes can also be used in the membrane separation apparatus 10. The filtration membrane here refers to one having a pore size of about 0.01 μm to 10 μm, generally coarser than an ultrafiltration membrane in which separation by molecular sieve is performed, and a normal operating pressure is 200 kPa or less from a reduced pressure state. Driven.

膜面洗浄散気ユニット12は膜分離装置10の底部に配置されている。通常は粗大気泡を発生する散気装置で散気するが、微細気泡タイプ(例えばEPDM(エチレン−プロピレン−ジエンゴム))のメンブレンディフューザーを用いることも可能である。膜面洗浄散気ユニット12には膜面洗浄用送風機11が接続されている。膜面洗浄用の散気は連続あるいは間欠で行うことも可能である。なおこの散気によって、膜面の洗浄を行うとともに、活性汚泥に必要な酸素も供給することができる。   The membrane surface cleaning air diffusion unit 12 is disposed at the bottom of the membrane separation device 10. Usually, the air is diffused by an air diffuser that generates coarse bubbles, but it is also possible to use a fine bubble type (for example, EPDM (ethylene-propylene-diene rubber)) membrane diffuser. A membrane surface cleaning blower 11 is connected to the membrane surface cleaning air diffusion unit 12. Aeration for cleaning the membrane surface can be performed continuously or intermittently. In addition, this air diffuser can clean the membrane surface and supply oxygen necessary for the activated sludge.

膜面洗浄散気ユニット12は、膜分離装置10全体に向けて散気する構造のものであればよく、管に孔をあけた構造のものや、セラミック製の散気板などが用いられるが特に限定するものではない。膜面洗浄用送風機11とは圧縮空気を送風する送風機のことで、設備の規模、水深などに応じて最適なものを選定するのが良い。   The membrane surface cleaning diffuser unit 12 may be of any structure that diffuses toward the entire membrane separation apparatus 10, and may have a structure in which a hole is formed in a tube, a ceramic diffuser plate, or the like. There is no particular limitation. The membrane surface cleaning blower 11 is a blower that blows compressed air, and it is preferable to select an optimum blower according to the scale of the equipment, the water depth, and the like.

活性汚泥と処理水の分離は、膜分離装置10によって行われる。ろ過の動力として、膜ろ過吸引ポンプ13が用いられ、膜ろ過水は放流あるいは再利用などに供される。膜ろ過吸引ポンプ13としては、膜分離装置10から処理水を得ることができるポンプであれば特に問題はなく、渦巻ポンプ、ディフューザーポンプ、渦巻斜流ポンプ、斜流ポンプ、ピストンポンプ、プランジャポンプ、ダイアフラムポンプ、歯車ポンプ、スクリューポンプ、ベーンポンプ、カスケードポンプ、ジェットポンプなどが用いられる。   Separation of activated sludge and treated water is performed by the membrane separation device 10. A membrane filtration suction pump 13 is used as the motive power for filtration, and the membrane filtrate is used for discharge or reuse. The membrane filtration suction pump 13 is not particularly limited as long as it can obtain treated water from the membrane separation device 10, and is a centrifugal pump, diffuser pump, spiral mixed flow pump, mixed flow pump, piston pump, plunger pump, Diaphragm pumps, gear pumps, screw pumps, vane pumps, cascade pumps, jet pumps, and the like are used.

前述のとおり、返送汚泥6は活性汚泥処理槽2および沈殿槽5の中に貯留できる活性汚泥の濃度を適切に保持するために重要な役割を担う。返送汚泥ポンプ7としては、槽外に設置するもの、槽内に設置するものどちらの形状でもよく、ポンプの型式も活性汚泥が送液できるものであれば特に限定されるものではない。なお、ランニングコストの低減のため、エアリフトポンプを使用することが可能である。エアリフトポンプとは、水中の立管の中に圧縮空気を吹き込み,管内外の液体に比重差をつくり,そのとき上昇する気泡とともに汚水・汚物を揚水するポンプをいい、通常のポンプを使用するのに比して電力量を低減することが可能となる。   As described above, the return sludge 6 plays an important role in appropriately maintaining the concentration of the activated sludge that can be stored in the activated sludge treatment tank 2 and the settling tank 5. The return sludge pump 7 may have either a shape installed outside the tank or a shape installed inside the tank, and the type of the pump is not particularly limited as long as activated sludge can be fed. Note that an air lift pump can be used to reduce running costs. An air lift pump is a pump that blows compressed air into an underwater vertical pipe, creates a specific gravity difference between the liquid inside and outside the pipe, and pumps up sewage and filth with bubbles that rise at that time. It is possible to reduce the amount of electric power compared to.

なお、本発明において、膜分離装置10は、鉛直方向に対してその中心線の傾きが5%以下であることが好ましい。活性汚泥処理設備においては、沈殿槽5は沈降した濃縮汚泥を底部中央に集積するようにするため勾配をつけている(図2、図4参照)。このため、図4(a)に示したように、膜分離装置10とその下部にある膜面洗浄散気ユニット12をそのままの状態で沈殿槽5の底部に設置すると、その勾配に併せて膜分離装置10および膜面洗浄散気ユニット12も斜めに設置されてしまい、特に膜面洗浄にかかる洗浄が十分に行われない場合がある。膜面洗浄散気ユニット12から噴出されるエアは鉛直方向に上昇するため、傾倒した膜分離装置の傾倒側(すなわち、図4(a)に示す膜分離装置の左側)に、洗浄が十分でない部分ができることとなる。さらに、膜分離装置10周辺を流れる旋回流が左右対称とならないため、膜面の洗浄性も均一でなくなってしまう。   In the present invention, the membrane separator 10 preferably has an inclination of the center line of 5% or less with respect to the vertical direction. In the activated sludge treatment facility, the sedimentation tank 5 is provided with a gradient so that the concentrated sludge that has settled is accumulated at the center of the bottom (see FIGS. 2 and 4). Therefore, as shown in FIG. 4 (a), when the membrane separation device 10 and the membrane surface cleaning air diffuser unit 12 at the lower part thereof are installed as they are at the bottom of the settling tank 5, the membrane is combined with the gradient. Separation apparatus 10 and membrane surface cleaning air diffusion unit 12 are also installed obliquely, and cleaning for membrane surface cleaning may not be performed sufficiently. Since the air ejected from the membrane surface cleaning air diffusion unit 12 rises in the vertical direction, the cleaning is not sufficient on the tilted side of the tilted membrane separator (that is, the left side of the membrane separator shown in FIG. 4A). A part will be made. Furthermore, since the swirling flow flowing around the membrane separation device 10 is not symmetrical, the cleaning performance of the membrane surface is not uniform.

このため、本発明の廃水処理装置では、沈殿槽5における膜分離装置10の中心線の傾きを、鉛直方向に対して5%以下となるように調整して設置することが望ましい。膜分離装置10の傾きを抑制する手段は、沈殿槽5の内部全体にアングルを組む方法や底部全体にコンクリート等を補充し水平度を確保する方法等があり、現地の状況やコストなどから適当なものを選定すればよく特に限定するものではない。ただし、可能な限り使用する部材を削減し現地での工事を最小限にするためには、図4(b)に示したように、勾配の低い箇所にレール部材15を設置することが考えられる。レール部材15の設置は工事が簡便であり、かつ膜分離装置を水平に保つことができるため、散気が膜分離装置10全体に均一に行きわたり膜表面が清浄に保て、膜分離装置10の安定運転に資する。レール部材15としては、腐食性を考慮しステンレスや樹脂部材が想定されるが特に限定されるものではない。また形状としては、膜モジュールの形状と沈殿槽の勾配に合わせた形状を設計、選択すればよい。   For this reason, in the wastewater treatment apparatus of the present invention, it is desirable that the inclination of the center line of the membrane separation device 10 in the settling tank 5 is adjusted to be 5% or less with respect to the vertical direction. Means for suppressing the inclination of the membrane separator 10 include a method of forming an angle in the entire interior of the sedimentation tank 5 and a method of ensuring the levelness by replenishing the entire bottom with concrete or the like. There is no particular limitation as long as it is selected. However, in order to reduce the number of members to be used as much as possible and minimize the construction at the site, as shown in FIG. 4B, it is conceivable to install the rail member 15 at a location with a low gradient. . The installation of the rail member 15 is simple in construction and the membrane separation apparatus can be kept horizontal, so that the air diffuses uniformly over the entire membrane separation apparatus 10 and the membrane surface is kept clean. Contributes to stable operation. As the rail member 15, stainless steel or a resin member is assumed in consideration of corrosiveness, but is not particularly limited. Moreover, what is necessary is just to design and select the shape according to the shape of the membrane module and the gradient of a sedimentation tank as a shape.

以下、有機性汚水を処理する標準活性汚泥処理設備の更新・改造を検討した例を示す。既存処理設備の処理条件を表1に示す。原水(被処理水)は、化学工場の廃水(水量:4,000m/day、BOD=200mg/L)であり、化学工場の生産の関係で、原水の有機物濃度が増加したため設備の増強が必要になった例である。 The following is an example of renewal and modification of standard activated sludge treatment equipment for treating organic sewage. Table 1 shows the processing conditions of the existing processing equipment. The raw water (treated water) is the waste water from the chemical factory (water volume: 4,000 m 3 / day, BOD = 200 mg / L). This is an example that became necessary.

実施例1として、図2に示したように、沈殿槽5に膜分離装置10(東レ株式会社製 TMR−140−100s)を装填した廃水処理装置を用いた。なお、実施例1では汚泥返送率を300%とした。比較例1として、同じく図2に示した廃水処理装置を用い、汚泥返送率として、既存の活性汚泥処理設備の現状と同等の30%とした。表2に、実施例1および比較例1についてその処理性能を示し、参考例1として図1に示した廃水処理装置を用いた既存の活性汚泥法による処理性能を合わせて示す。   As Example 1, as shown in FIG. 2, a wastewater treatment apparatus in which a sedimentation tank 5 was loaded with a membrane separation device 10 (TMR-140-100s manufactured by Toray Industries, Inc.) was used. In Example 1, the sludge return rate was 300%. As Comparative Example 1, the wastewater treatment apparatus shown in FIG. 2 was also used, and the sludge return rate was set to 30%, equivalent to the current state of existing activated sludge treatment equipment. Table 2 shows the treatment performance of Example 1 and Comparative Example 1, and also shows the treatment performance by the existing activated sludge method using the wastewater treatment apparatus shown in FIG.

Figure 2014133206
Figure 2014133206

Figure 2014133206
Figure 2014133206

表2の結果より、参考例1の既存の活性汚泥法では、活性汚泥処理槽に貯留される活性汚泥のみが生物処理に寄与するが、実施例1のように膜分離装置を導入し、かつ返送汚泥の流量を増加させて汚泥返送率を上げることにより、5倍量の微生物が活性汚泥処理槽および沈殿槽に保持され、これらの両方が生物処理に寄与することとなった。このため原水許容BOD濃度が大幅に上昇した。このように膜分離装置を導入し、かつ返送汚泥の流量を増加させて汚泥返送率を上げることによりBOD−SS負荷(曝気槽内の単位MLSS量[kg]当たりに加えられる1日の汚水中のBODの量[kg/日])の向上が図れることがわかった。一方、返送汚泥率を既存設備と同等に設定した比較例1は、活性汚泥処理槽の混合液と沈殿槽の混合液のMLSS濃度に大きな差異がでてくるため、原水許容BOD濃度は実施例1と比較して低くなった。このように処理の安定性や原水許容BOD濃度等を考慮し、返送汚泥率を適当な値に増強することが有効であることが示された。   From the results of Table 2, in the existing activated sludge method of Reference Example 1, only activated sludge stored in the activated sludge treatment tank contributes to biological treatment, but a membrane separation apparatus is introduced as in Example 1, and By increasing the flow rate of the returned sludge and increasing the sludge return rate, five times the amount of microorganisms was retained in the activated sludge treatment tank and the sedimentation tank, and both of these contributed to the biological treatment. For this reason, the raw water allowable BOD concentration increased significantly. In this way, by introducing a membrane separator and increasing the sludge return rate by increasing the return sludge flow rate, the BOD-SS load (daily sewage added per unit MLSS amount [kg] in the aeration tank) It was found that the amount of BOD [kg / day] can be improved. On the other hand, in Comparative Example 1 in which the return sludge rate is set to be equal to that of the existing equipment, the MLSS concentration of the mixed liquid in the activated sludge treatment tank and the mixed liquid in the sedimentation tank is greatly different. Low compared to 1. In this way, it has been shown that it is effective to increase the return sludge rate to an appropriate value in consideration of the stability of treatment and the BOD concentration of raw water.

本発明は、有機性汚水等を処理する既存の活性汚泥処理装置を膜分離活性汚泥処理装置に更新・改造に利用することができる。   INDUSTRIAL APPLICATION This invention can utilize the existing activated sludge processing apparatus which processes organic sewage etc. to a membrane separation activated sludge processing apparatus for renewal and remodeling.

1. 有機性汚水
2. 活性汚泥処理槽
3. 散気ユニット
4. 送風機
5. 沈殿槽
6. 返送汚泥
7. 返送汚泥ポンプ
8. 余剰汚泥
9. 処理水(沈殿槽越流水)
10.膜分離装置
11.膜面洗浄用送風機
12.膜面洗浄散気ユニット
13.膜ろ過吸引ポンプ
14.処理水(膜ろ過水)
15.レール部材
1. Organic wastewater2. 2. Activated sludge treatment tank Air diffuser unit4. Blower 5 5. Settling tank Return sludge Return sludge pump8. Surplus sludge9. Treated water (settling tank overflow water)
10. Membrane separator 11. 11. Membrane surface cleaning fan 12. Membrane surface cleaning aeration unit Membrane filtration suction pump 14. Treated water (membrane filtered water)
15. Rail member

Claims (6)

有機性汚水と活性汚泥を曝気混合するための曝気槽と、前記曝気槽で混合された混合液を固液分離する沈殿槽と、前記固液分離により得られた濃縮汚泥を返送汚泥として前記曝気槽に移送する返送配管とを備え、
前記沈殿槽内に、下部に膜面を洗浄するための曝気装置を具備する膜分離装置を装填し、且つ前記返送配管に返送汚泥ポンプを備えたことを特徴とする廃水処理装置。
An aeration tank for aeration mixing organic sludge and activated sludge, a precipitation tank for solid-liquid separation of the mixed liquid mixed in the aeration tank, and the aeration using the concentrated sludge obtained by the solid-liquid separation as return sludge A return pipe for transfer to the tank,
A wastewater treatment apparatus, wherein a membrane separation device having an aeration device for cleaning the membrane surface is loaded in the sedimentation tank, and a return sludge pump is provided in the return pipe.
前記沈殿槽に、前記膜分離装置の水平度を保つためのレール状の器具を備えることを特徴とする請求項1に記載の廃水処理装置。   The wastewater treatment apparatus according to claim 1, wherein the sedimentation tank includes a rail-like instrument for maintaining the level of the membrane separation device. 有機性汚水と活性汚泥を曝気槽で曝気混合し、前記曝気槽で混合された混合液を沈殿槽で固液分離し、固液分離した濃縮汚泥を返送汚泥として前記曝気槽に戻す廃水処理装置の更新・改造方法であって、
前記沈殿槽内に、下部に膜面を洗浄するための曝気装置を具備する膜分離装置を装填し、かつ前記返送汚泥の流量を前記有機性汚水の流入量の100%から500%の範囲とすることを特徴とする廃水処理装置の更新・改造方法。
Wastewater treatment equipment that mixes organic sludge and activated sludge in an aeration tank, separates the liquid mixture mixed in the aeration tank into a solid-liquid separation in a sedimentation tank, and returns the solid-liquid separated concentrated sludge to the aeration tank as return sludge Renewal / remodeling method,
The sedimentation tank is loaded with a membrane separation device having an aeration device for washing the membrane surface at the bottom, and the flow rate of the return sludge is in the range of 100% to 500% of the inflow amount of the organic wastewater. A method for renewing or remodeling a wastewater treatment apparatus.
前記返送汚泥を移送する配管にエアリフトポンプを備え、前記エアリフトポンプにより前記返送汚泥の流量を調整することを特徴とする請求項3に記載の廃水処理装置の更新・改造方法。   The method for updating and remodeling a wastewater treatment apparatus according to claim 3, wherein an air lift pump is provided in a pipe for transferring the return sludge, and the flow rate of the return sludge is adjusted by the air lift pump. 前記沈殿槽における前記膜分離装置の中心線の傾きを、鉛直方向に対して5%以内に抑制することを特徴とする請求項3または請求項4に記載の廃水処理装置の更新・改造方法。   The method for renewing or remodeling a wastewater treatment apparatus according to claim 3 or 4, wherein an inclination of a center line of the membrane separation device in the sedimentation tank is suppressed within 5% with respect to a vertical direction. 前記沈殿槽に、前記膜分離装置の水平度を保つためのレール状の器具を設置することを特徴とする請求項5に記載の廃水処理装置の更新・改造方法。   The method for updating and remodeling a wastewater treatment apparatus according to claim 5, wherein a rail-like instrument for maintaining the level of the membrane separation apparatus is installed in the sedimentation tank.
JP2013002611A 2013-01-10 2013-01-10 Waste water treatment apparatus, and update/modification method thereof Pending JP2014133206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013002611A JP2014133206A (en) 2013-01-10 2013-01-10 Waste water treatment apparatus, and update/modification method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013002611A JP2014133206A (en) 2013-01-10 2013-01-10 Waste water treatment apparatus, and update/modification method thereof

Publications (1)

Publication Number Publication Date
JP2014133206A true JP2014133206A (en) 2014-07-24

Family

ID=51411934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013002611A Pending JP2014133206A (en) 2013-01-10 2013-01-10 Waste water treatment apparatus, and update/modification method thereof

Country Status (1)

Country Link
JP (1) JP2014133206A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104763644A (en) * 2014-09-11 2015-07-08 北京城市排水集团有限责任公司 Optimized operation control device and method of excess sludge pump of sewage treatment plant under dynamic condition
US9333464B1 (en) 2014-10-22 2016-05-10 Koch Membrane Systems, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
USD779631S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Gasification device
JP7422182B2 (en) 2018-03-12 2024-01-25 住友重機械エンバイロメント株式会社 How to update water treatment tank

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104763644A (en) * 2014-09-11 2015-07-08 北京城市排水集团有限责任公司 Optimized operation control device and method of excess sludge pump of sewage treatment plant under dynamic condition
US9333464B1 (en) 2014-10-22 2016-05-10 Koch Membrane Systems, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
US9956530B2 (en) 2014-10-22 2018-05-01 Koch Membrane Systems, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
US10702831B2 (en) 2014-10-22 2020-07-07 Koch Separation Solutions, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
USD779631S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Gasification device
USD779632S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Bundle body
JP7422182B2 (en) 2018-03-12 2024-01-25 住友重機械エンバイロメント株式会社 How to update water treatment tank

Similar Documents

Publication Publication Date Title
JP6198029B2 (en) Waste water treatment system and waste water treatment method
KR100785044B1 (en) Method for remodeling of the existing wastewater treatment facilities into advanced treatment facilities and operating method using the advanced treatment facilities
JP2014133206A (en) Waste water treatment apparatus, and update/modification method thereof
JP2010247120A (en) Operation method of immersion type membrane separator
JP2004261711A (en) Membrane separation activated sludge treatment apparatus and membrane separation activated sludge treatment method
WO2014034836A1 (en) Membrane surface washing method in membrane separation activated sludge method
JP6181003B2 (en) Membrane separation activated sludge treatment apparatus and operation method thereof
WO2011136043A1 (en) Wastewater treatment device and wastewater treatment method
JP2006205155A (en) Anaerobic tank and waste water treatment system including the same
JP2009061349A (en) Sewage treatment method by membrane separation activated sludge process
JP2007098368A (en) Immersed-membrane separation apparatus and method therefor
KR101367229B1 (en) Operating method of advanced treatment process use of submerged membrane and advanced treatment apparatus thereof
KR100948807B1 (en) High class treatment used flotation system having ultrasonic waves
EP2222608A1 (en) Improvements relating to water treatment
KR20130009347A (en) The mbr possible effective advanced treatment for load fluctuation
JP2017104780A (en) Conversion method and renewal method of biological treatment apparatus
JP2008000705A (en) Sewage treatment apparatus of satellite treatment plant
JP2005246308A (en) Method for bio-treating wastewater
JP5456238B2 (en) Membrane separator
KR101580265B1 (en) Dissolved air floatation apparatus equipped with nonpowered and auto air supply unit
JP4925403B2 (en) Waste water treatment apparatus and waste water treatment method
KR102059988B1 (en) Membrane water treatment apparatus using micro-bubble
JP2011194305A (en) Membrane-separation activated sludge treatment method and apparatus for sewage
JP4307275B2 (en) Wastewater treatment method
KR20030039038A (en) A Device For Wastewater Treatment Used Membrane Bio-Reactor

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150123