JP2002059189A - Aeration method and device - Google Patents
Aeration method and deviceInfo
- Publication number
- JP2002059189A JP2002059189A JP2000280952A JP2000280952A JP2002059189A JP 2002059189 A JP2002059189 A JP 2002059189A JP 2000280952 A JP2000280952 A JP 2000280952A JP 2000280952 A JP2000280952 A JP 2000280952A JP 2002059189 A JP2002059189 A JP 2002059189A
- Authority
- JP
- Japan
- Prior art keywords
- tank
- aeration
- gas
- oxygen
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、水処理などにお
けるガス(酸素又はオゾン)の曝気方法及び装置に係わ
る。The present invention relates to a method and apparatus for aerating gas (oxygen or ozone) in water treatment or the like.
【0002】[0002]
【従来の技術】水処理では有害な有機塩素化合物の生成
を防ぐために最近酸素やオゾンによる曝気が行われる傾
向があるが、高価なガスの曝気効率を高める必要上、気
液接触面積と曝気槽内の気泡滞留時間を増やす意味で気
泡の微細化が重要となる。従来は、多孔質散気板を通し
て微細化したガス(酸素又はオゾン)を曝気槽底から供
給するなどの方法がとられていたが、気泡の微細化は十
分ではなく、また散気板の微細な孔が目詰まりし易い、
などの問題があった。2. Description of the Related Art In water treatment, aeration with oxygen or ozone has recently been performed in order to prevent formation of harmful organochlorine compounds. However, it is necessary to increase the aeration efficiency of expensive gas. It is important to make the air bubbles finer in order to increase the air bubble residence time. Conventionally, a method of supplying fine gas (oxygen or ozone) from the bottom of the aeration tank through a porous diffuser plate has been adopted. However, the fineness of bubbles is not sufficient, and the fineness of the diffuser plate is also small. Holes are easily clogged,
There was such a problem.
【0003】特に中小規模の酸素曝気の場合には、酸素
源として通常酸素ボンベや液体酸素が用いられるので少
くとも5〜7気圧程度の酸素圧力を利用できるが、従来
この圧力は単に多孔質散気板からのガス押出しに利用さ
れているに過ぎず、エネルギー的にも無駄があった。[0003] In particular, in the case of medium- or small-scale oxygen aeration, an oxygen pressure of at least about 5 to 7 atm can be used because an oxygen cylinder or liquid oxygen is usually used as an oxygen source. It is only used for gas extrusion from a gas plate, and wastes energy.
【0004】[0004]
【発明が解決しようとする課題】以上に鑑み本発明は、
曝気槽中の気液接触面積とガス滞留時間の増大を図るた
めに気泡の微細化を大巾に改善すると共に、少い消費動
力で目詰りなどの支障なく曝気し得るような曝気方法及
び装置を提供することを目的とする。In view of the above, the present invention provides
An aeration method and apparatus capable of significantly improving the fineness of bubbles to increase the gas-liquid contact area and gas residence time in an aeration tank, and performing aeration with little power consumption without trouble such as clogging. The purpose is to provide.
【0005】[0005]
【課題を解決するための手段】上記目的を達成するため
に、請求項1に記載の発明は、タンク内で原水に高圧ガ
ス(酸素又はオゾン)を溶解させて高濃度溶存ガス水を
作った後に、該タンクを曝気槽に連通してタンク内圧を
曝気槽圧まで減圧させてからタンク内に原水を供給する
ことにより、タンク内の高濃度溶存ガス水を曝気槽内に
放出することを特徴とする、曝気方法である。In order to achieve the above object, according to the first aspect of the present invention, a high-pressure gas (oxygen or ozone) is dissolved in raw water in a tank to produce a high-concentration dissolved gas water. After that, the tank is communicated with the aeration tank to reduce the tank internal pressure to the aeration tank pressure and then supply raw water into the tank, thereby discharging high-concentration dissolved gas water in the tank into the aeration tank. It is an aeration method.
【0006】また,請求項2に記載の発明は、複数個の
タンクを、自動弁を介して高圧ガス(酸素又はオゾン)
供給装置、原水循環ポンプ及び曝気槽と接続し、タイマ
ー又はタンク内の溶存ガス濃度検出器の指令によりタン
クへの高圧ガスの供給と原水の供給とを交互に切替える
ことにより、タンク内の高濃度溶存ガス水を曝気槽内に
放出せしめることを特徴とする、曝気装置である。According to a second aspect of the present invention, a plurality of tanks are connected to a high-pressure gas (oxygen or ozone) through an automatic valve.
By connecting to the supply device, raw water circulation pump and aeration tank, and switching between high pressure gas supply to the tank and raw water supply alternately by the timer or the command of the dissolved gas concentration detector in the tank, high concentration in the tank This is an aeration apparatus characterized by discharging dissolved gas water into an aeration tank.
【0007】[0007]
【発明の実施の形態】以下、本発明の実施の形態を、図
1の実施例の説明図を参照して説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the explanatory diagram of the embodiment shown in FIG.
【0008】図1に示すように、複数個(図示例では2
個)のタンク1、1’は、高圧ガス供給装置2、原水循
環ポンプ3及び曝気槽4と、それぞれガス自動弁5、
5’、給水自動弁6、6’及び放出自動弁7、7’を介
して接続され、原水循環ポンプ3の出口には逆止弁8、
放出自動弁7、7’には放出管9が接続されている。ま
た、図中10は曝気槽底、11は曝気槽水面、12は放
出された高濃度溶存ガス水をそれぞれ示す。As shown in FIG. 1, a plurality (two in the illustrated example)
) Tank 1, 1 ′ includes a high-pressure gas supply device 2, a raw water circulation pump 3 and an aeration tank 4, and a gas automatic valve 5,
5 ′, connected via automatic water supply valves 6, 6 ′ and automatic discharge valves 7, 7 ′, and at the outlet of the raw water circulation pump 3, a check valve 8,
A discharge pipe 9 is connected to the automatic discharge valves 7, 7 '. In the figure, 10 is the bottom of the aeration tank, 11 is the water surface of the aeration tank, and 12 is the high concentration dissolved gas water released.
【0009】以上の構成において以下に操作方法を説明
する。図1において黒塗りの各自動弁5’6’7’は閉
鎖状態を示しており、高圧ガス供給装置2はガス自動弁
5を介してタンク1’と連通し、高圧ガス(酸素又はオ
ゾン)はタンク1’内の原水に溶解中である。一方、既
にガスが飽和したタンク1については、ガス自動弁5’
を閉じ給水自動弁6、放出自動弁7を開放することによ
って、高濃度溶存ガス水は放出管9を通じてガス圧で曝
気槽4中に放出されるが、この際逆止弁8によって原水
循環ポンプ3側に逆流するおそれはなく、タンク1の圧
力が原水循環ポンプ3の吐出圧力以下に低下した時点で
自動的に原水はタンク1に供給されるので、原水と共に
タンク内部の高濃度溶存ガス水は放出管9を通って曝気
槽底10に向って12のように放出され、曝気槽4中に
拡散する。以上の各自動弁の開閉操作を、タイマー又は
タンク内の溶存ガス濃度検出器(図示せず)の指令によ
り自動操作すれば、タンク1、1’への高圧ガスの供給
と原水の供給とが交互に切替わって、連続的な曝気操作
が可能となる。The operation method of the above configuration will be described below. In FIG. 1, each of the black colored automatic valves 5 ', 6' and 7 'shows a closed state, and the high-pressure gas supply device 2 communicates with the tank 1' via the automatic gas valve 5, and the high-pressure gas (oxygen or ozone) Is being dissolved in the raw water in the tank 1 '. On the other hand, for the tank 1 already saturated with gas, the automatic gas valve 5 '
Is closed and the automatic water supply valve 6 and the automatic discharge valve 7 are opened, whereby the high-concentration dissolved gas water is discharged into the aeration tank 4 by the gas pressure through the discharge pipe 9. There is no danger of backflow to the 3 side, and when the pressure of the tank 1 falls below the discharge pressure of the raw water circulation pump 3, the raw water is automatically supplied to the tank 1, so that the high concentration dissolved gas water inside the tank together with the raw water Is released through the discharge pipe 9 toward the aeration tank bottom 10 as indicated by 12 and diffuses into the aeration tank 4. By automatically operating the opening and closing operation of each automatic valve according to a timer or a command from a dissolved gas concentration detector (not shown) in the tank, the supply of the high-pressure gas to the tanks 1 and 1 ′ and the supply of the raw water can be performed. By switching alternately, a continuous aeration operation becomes possible.
【0010】中小規模の酸素曝気の場合は、通常酸素ボ
ンベ若しくは液体酸素を酸素源とするので5〜7気圧の
圧力を利用できるが、従来この圧力は曝気槽内での多孔
質散気板からの酸素押出しに利用されているだけであっ
たが、本法においては、ヘンリーの法則(水に溶解する
ガス量がガス圧力に比例する)に基ずいて酸素源の有す
る高い圧力を酸素の溶解に有効に利用することができ
る。すなわち、溶解した酸素は圧力降下に伴って一部が
微小気泡となり残部は溶存酸素水のままの状態で曝気槽
中に拡散するので、従来法に比し気泡粒径は著しく小さ
くなり気液接触面積と気泡滞留時間を増やすことができ
高い曝気効率が得られる。[0010] In the case of medium- or small-scale oxygen aeration, a pressure of 5 to 7 atm can be used because an oxygen cylinder or liquid oxygen is used as an oxygen source, but this pressure is conventionally obtained from a porous diffuser plate in an aeration tank. However, in this method, the high pressure of the oxygen source is reduced according to Henry's law (the amount of gas dissolved in water is proportional to the gas pressure). Can be used effectively. In other words, part of the dissolved oxygen becomes microbubbles as the pressure drops, and the remaining part diffuses into the aeration tank while the dissolved oxygen water remains as it is. The area and the bubble residence time can be increased, and high aeration efficiency can be obtained.
【0011】オゾンガス曝気の場合は若干ガスの加圧を
必要とするが、ガスのコストが高価なのでガス加圧に要
する費用を十分補うことができる。尚、本法における原
水循環ポンプの吐出圧は高圧ガスの圧力とは無関係で配
管抵抗のみに依存するので、高圧ポンプを必要とせずポ
ンプ動力消費は少ない。In the case of ozone gas aeration, the gas needs to be slightly pressurized. However, since the gas cost is high, the cost required for gas pressurization can be sufficiently compensated. Since the discharge pressure of the raw water circulation pump in the present method is independent of the pressure of the high-pressure gas and depends only on the pipe resistance, no high-pressure pump is required and the power consumption of the pump is small.
【0012】[0012]
【発明の効果】本発明は以上説明したように構成されて
いるので、以下に記載されるような効果を奏する。Since the present invention is configured as described above, it has the following effects.
【0013】水処理などにおける酸素やオゾンガスの曝
気に際して、少ない消費動力で、曝気槽中の気泡粒径を
小さくでき気液接触面積と気泡滞留時間を大巾に増やす
ことができるので、高価なガスの曝気効率を高めること
ができる。また、従来の散気板法のような微細孔の目詰
りトラブルがない。At the time of aeration of oxygen or ozone gas in water treatment or the like, it is possible to reduce the bubble particle size in the aeration tank and to greatly increase the gas-liquid contact area and the bubble residence time with a small power consumption, so that expensive gas is used. Aeration efficiency can be increased. Further, there is no clogging trouble of the fine holes unlike the conventional diffuser plate method.
【図1】本発明の実施例の説明図である。FIG. 1 is an explanatory diagram of an embodiment of the present invention.
1、1’ タンク 2 高圧ガス供給装置 3 原水循環ポンプ 4 曝気槽 5、5’ ガス自動弁 6、6’ 給水自動弁 7、7’ 放出自動弁 8 逆止弁 9 放出管 10 曝気槽底 11 曝気槽水面 12 高濃度溶存ガス水 1, 1 'tank 2 high-pressure gas supply device 3 raw water circulation pump 4 aeration tank 5, 5' automatic gas valve 6, 6 'automatic water supply valve 7, 7' automatic discharge valve 8 check valve 9 discharge pipe 10 bottom of aeration tank 11 Aeration tank water surface 12 High concentration dissolved gas water
───────────────────────────────────────────────────── フロントページの続き (72)発明者 山中 隆司 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 Fターム(参考) 4D029 AA01 AB05 CC03 DD01 4G035 AA01 AB05 AE02 AE13 ────────────────────────────────────────────────── ─── Continued on front page (72) Inventor Takashi Yamanaka 11-1 Haneda Asahimachi, Ota-ku, Tokyo F-term in Ebara Corporation (reference) 4D029 AA01 AB05 CC03 DD01 4G035 AA01 AB05 AE02 AE13
Claims (2)
ゾン)を溶解させて高濃度溶存ガス水を作った後に、該
タンクを曝気槽に連通してタンク内圧を曝気槽圧まで減
圧させてからタンク内に原水を供給することにより、タ
ンク内の高濃度溶存ガス水を曝気槽内に放出することを
特徴とする、曝気方法。After dissolving high-pressure gas (oxygen or ozone) in raw water in a tank to produce high-concentration dissolved gas water, the tank is connected to an aeration tank to reduce the tank pressure to the aeration tank pressure. An aeration method characterized in that high-concentration dissolved gas water in a tank is discharged into an aeration tank by supplying raw water from the tank to the aeration tank.
ガス(酸素又はオゾン)供給装置、原水循環ポンプ及び
曝気槽と接続し、タイマー又はタンク内の溶存ガス濃度
検出器の指令によりタンクへの高圧ガスの供給と原水の
供給とを交互に切替えることにより、タンク内の高濃度
溶存ガス水を曝気槽内に放出せしめることを特徴とす
る、曝気装置。2. A plurality of tanks are connected to a high-pressure gas (oxygen or ozone) supply device, a raw water circulation pump, and an aeration tank via an automatic valve, and the tank is controlled by a timer or a command from a dissolved gas concentration detector in the tank. An aeration apparatus characterized in that high-concentration dissolved gas water in a tank is discharged into an aeration tank by alternately switching between supply of high-pressure gas to the tank and supply of raw water.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000280952A JP2002059189A (en) | 2000-08-11 | 2000-08-11 | Aeration method and device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000280952A JP2002059189A (en) | 2000-08-11 | 2000-08-11 | Aeration method and device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002059189A true JP2002059189A (en) | 2002-02-26 |
Family
ID=18765691
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000280952A Pending JP2002059189A (en) | 2000-08-11 | 2000-08-11 | Aeration method and device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002059189A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004033861A (en) * | 2002-07-01 | 2004-02-05 | Taisei Corp | Apparatus for manufacturing oxygen-enriched water and method for cleaning bottom sediment |
CN102641668A (en) * | 2012-02-09 | 2012-08-22 | 孙乔良 | Multifunctional phase-variable high-energy water instantaneous making machine set with multiple gas sources |
JP2015188859A (en) * | 2014-03-28 | 2015-11-02 | 三相電機株式会社 | Microbubble generator |
JP2020199445A (en) * | 2019-06-07 | 2020-12-17 | 栗田工業株式会社 | Biological treatment device |
CN114766416A (en) * | 2021-12-06 | 2022-07-22 | 天津农学院 | Atomizing oxygenation device for fishing |
-
2000
- 2000-08-11 JP JP2000280952A patent/JP2002059189A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004033861A (en) * | 2002-07-01 | 2004-02-05 | Taisei Corp | Apparatus for manufacturing oxygen-enriched water and method for cleaning bottom sediment |
CN102641668A (en) * | 2012-02-09 | 2012-08-22 | 孙乔良 | Multifunctional phase-variable high-energy water instantaneous making machine set with multiple gas sources |
JP2015188859A (en) * | 2014-03-28 | 2015-11-02 | 三相電機株式会社 | Microbubble generator |
JP2020199445A (en) * | 2019-06-07 | 2020-12-17 | 栗田工業株式会社 | Biological treatment device |
CN114766416A (en) * | 2021-12-06 | 2022-07-22 | 天津农学院 | Atomizing oxygenation device for fishing |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7874546B2 (en) | Integrated nano-bubble generating apparatus | |
JP2001314888A (en) | Wastewater treatment system | |
JP2002059189A (en) | Aeration method and device | |
JP2006136862A (en) | Apparatus for generating ozone microbubble | |
JPH10230229A (en) | Ozone mixing device and washing device | |
JP2005052773A (en) | Waste water treatment equipment | |
JP2004305794A (en) | Oil-water separator | |
JP2003205287A (en) | Membrane separation type waste water treatment equipment | |
JP2002191949A (en) | Fine air bubble generator | |
JPH11156148A (en) | Wet ozone deodorizing device | |
JP3082430U (en) | Ozone water generator | |
JPH03254890A (en) | Ozone water making apparatus | |
KR200259732Y1 (en) | Apparatus for producing ozone-containing water | |
JPH11169868A (en) | Gaseous carbon dioxide neutralizing device | |
JP2512952B2 (en) | Bubble generator | |
JP2568599Y2 (en) | Ozone dissolution equipment | |
JP2002239359A (en) | Water droplet removing device for ozone water generator and ozone water generator | |
KR100626296B1 (en) | Apparatus for manufacturing Ozone sterilized water | |
JP2976876B2 (en) | Ozone water production equipment | |
JP3092311B2 (en) | Bubble water flow generator | |
JPH0341957A (en) | Minute bubble and carbonated fountain producing device | |
JPH1128481A (en) | Ozone reaction system | |
JPH04100527A (en) | Apparatus for generating minute air bubbles | |
JPS59162999U (en) | water generator | |
JP3141513B2 (en) | Bubble water flow generator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040106 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050502 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070220 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070626 |