JP2004033861A - Apparatus for manufacturing oxygen-enriched water and method for cleaning bottom sediment - Google Patents

Apparatus for manufacturing oxygen-enriched water and method for cleaning bottom sediment Download PDF

Info

Publication number
JP2004033861A
JP2004033861A JP2002192499A JP2002192499A JP2004033861A JP 2004033861 A JP2004033861 A JP 2004033861A JP 2002192499 A JP2002192499 A JP 2002192499A JP 2002192499 A JP2002192499 A JP 2002192499A JP 2004033861 A JP2004033861 A JP 2004033861A
Authority
JP
Japan
Prior art keywords
water
oxygen
pressurized tank
compressor
high oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002192499A
Other languages
Japanese (ja)
Other versions
JP4231249B2 (en
Inventor
Tokuo Katakura
片倉徳男
Hideo Otani
大谷英夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2002192499A priority Critical patent/JP4231249B2/en
Publication of JP2004033861A publication Critical patent/JP2004033861A/en
Application granted granted Critical
Publication of JP4231249B2 publication Critical patent/JP4231249B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)
  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)
  • Accessories For Mixers (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oxygen-enriched water manufacturing apparatus for producing oxygen-enriched water containing oxygen of the concentration equal to or higher than that of oxygen-saturated water, and to provide a bottom sediment cleaning method for cleaning a wide water zone. <P>SOLUTION: The oxygen-enriched water manufacturing apparatus 1 comprises a pressure tank 10 for housing water or oxygen-deficient water 71, a compressor 20 for pressurizing the tank 10 and an agitator 30 arranged in the tank 10 to be rotated freely. The oxygen-enriched water 80 is manufactured by dissolving air in the water or the water 71 in the tank 10 while pressurizing the tank 10 by the compressor 20 and rotating the agitator 30. When bottom sediment is cleaned, water 71 in an oxygen-deficient water zone 70 is pumped up continuously, the pumped-up water 71 is made to pass through the apparatus 1 arranged in the middle of a pipeline and the manufactured water 80 is discharged continuously to the zone 70. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、河川、湖沼、運河、閉鎖性海域などの貧酸素水域に高酸素水を供給する高酸素水製造装置及び底質の浄化方法に関するものである。
【0002】
【従来の技術】
各地の河川、湖沼、運河、閉鎖性海域などでは、生活排水の流入によって水質が富栄養化し、それに伴ってプランクトンなどが大増殖している。
表層で大増殖したプランクトンが死骸となって水底に沈降し、水底では、かかる死骸の有機物分解で多量の酸素が消費され、底質表面付近の水が貧酸素(低濃度の酸素)状態になっている。
貧酸素水の存在により好気的な生物環境が形成されず、さらに嫌気的な腐敗を進行させるという悪循環を繰り返している。嫌気環境下では多様な生物が生息できず、硫化水素の発生(青潮の発生)などを招くことになる。
このような水域環境の改良には好気環境の維持が必要であり、好気環境を維持することにより有機物を酸化分解する多様な生物が生息し、汚濁した底質の浄化が可能となる。
好気的な環境を創り出す手法の一つとして、貧酸素の底質表面付近に高濃度の溶存酸素を注入し、底質表面付近の水を高酸素濃度の状態にする方法がある。高濃度の溶存酸素を注入する方法として、空気気泡を現位置(底質表面)で発生させる曝気方式や、陸上で曝気を行い、溶存酸素濃度を高めた水を現位置に放水する方式などが開発されている。
【0003】
【発明が解決しようとする課題】
ところが、上記した従来の曝気方式では、次のような問題がある。
<イ>大気圧下の飽和濃度までしか酸素を溶存させることができない。
<ロ>飽和濃度程度の溶存酸素では、これを底質表面付近の水域に放流しても速やかに希釈拡散してしまう。このため、底質の改善は放流口周辺となり、浄化水域が狭い水域に限定される。
【0004】
【発明の目的】
本発明は上記したような従来の問題点に鑑みて考えられたもので、飽和濃度以上の高酸素水をつくりだす高酸素水製造装置を提供することを目的とする。
また本発明は、広い水域を浄化することを可能にした底質の浄化方法を提供することを目的とする。
本発明は、上記目的のうち少なくとも一つを達成するようにしたものである。
【0005】
【課題を解決するための手段】
上記のような目的を達成するために、本発明の高酸素水製造装置は、水を収容する加圧タンクと、前記加圧タンクを加圧するコンプレッサと、前記加圧タンク内に回転自在に設けた攪拌翼と、からなり、前記コンプレッサで加圧しながら、攪拌翼を回転して加圧タンク内の空気を水に溶存させて高酸素水を製造することを特徴とする。
【0006】
ここで、貧酸素水を加圧タンクへ揚水する揚水ポンプを設けるとともに、脱気泡装置を有する放水パイプを設けることができる。また、コンプレッサの前段に酸素ボンベを加え、空気あるいは酸素を加圧、溶解することができる。
【0007】
また、本発明の底質の浄化方法は、貧酸素水域に高酸素水を供給して行う底質の浄化方法であって、前記の高酸素水製造装置の加圧タンクに水を収容し、給水バルブを閉塞してコンプレッサで加圧タンクを加圧し、同時に加圧タンク内の攪拌翼を回転して加圧タンク内の空気を水に溶存させて高酸素水を製造し、加圧バルブを閉塞し、放水バルブを開放して高酸素水を貧酸素水域へ放水して行うものである。
【0008】
ここで、揚水ポンプで貧酸素水を連続して揚水し、コンプレッサで加圧タンクを連続して加圧し、同時に加圧タンク内の攪拌翼を回転して加圧タンク内の空気を貧酸素水に溶存させて高酸素水を製造し、残存した気泡を脱気泡装置で除外しながら高酸素水を連続的に貧酸素水域へ放水することができる。
【0009】
【本発明の実施の形態1】
以下図面を参照しながら、本発明に係る一実施の形態について説明する。
図1は高酸素水製造装置の基本構成を示す説明図で、図2は実施例を示す概略図である。
【0010】
<イ>高酸素水製造装置(図1)
高酸素水製造装置1は、水や貧酸素水71を収容する加圧タンク10と、この加圧タンク10を加圧するコンプレッサ20と、加圧タンク10内に回転自在に設けた攪拌翼30とからなる。
コンプレッサ20で加圧しながら、攪拌翼30を回転して加圧タンク10内の空気を水や貧酸素水71に溶存させて溶存酸素濃度の高い高溶存酸素水80(以下、高酸素水80という)を製造する。
【0011】
<ロ>加圧タンク(図1、図2)
加圧タンク10は、鉛直方向に延びる円筒状の本体11と、この本体11の上下端を塞ぐ上蓋12と下蓋13とからなる密閉状の圧力容器である。
上蓋12には給水パイプ40と送気パイプ21が接続しており、下蓋13には放水パイプ50が接続している。また、上蓋12に加圧タンク10内の圧力を測定する圧力計16を取り付けている。
給水パイプ40の先端を河川、湖沼、運河などの貧酸素水域70に設置しており、貧酸素水71を加圧タンク10へ導くことができる。なお、給水パイプ40は水道水を導くようにしてもよい。
加圧タンク10内は、水や貧酸素水71による液相部15と空気による気相部14とが形成される。
【0012】
<ハ>コンプレッサ(図1、図2)
コンプレッサ20はエアコンプレッサなどである。
コンプレッサ20と加圧タンク10との間を送気パイプ21で接続し、コンプレッサ20からの圧縮エアを加圧タンク10に供給する。なお、コンプレッサ20の前段に酸素ボンベ(図示せず)を加え、酸素を加圧、供給してもよい。
送気パイプ21の途中にレギュレータ23を取り付けておく。レギュレータ23を調整して圧縮エアの供給量を調節することで、加圧タンク10に対する加圧力を調整できる。
【0013】
<ニ>バルブ(図1、図2)
バルブには、給水バルブ41、加圧バルブ22及び放水バルブ51がある。
給水バルブ41は給水パイプ40に取り付けてあり、開放することで水や貧酸素水71を加圧タンク10内へ供給する。加圧バルブ22は送気パイプ21に取り付けてあり、開放することで圧縮したエアを加圧タンク10内に供給し、加圧タンク10内を加圧する。
放水バルブ51は放水パイプ50に取り付けてあり、開放することで加圧タンク10内の高酸素水80を放出する。なお、放水パイプ50は途中に流量計52を設け、先端が底質付近の貧酸素水域70に配置されるように設置する。
これらバルブ22、41、51を、例えば電磁弁などで構成すれば、バルブ22、41、51の切り替えを自動的に行うことができる。
【0014】
<ホ>攪拌翼(図1、図2)
攪拌翼30は加圧タンク10内の液相部15を攪拌するもので、例えば複数枚のプロペラ状の攪拌羽根などからなる。
攪拌翼30を先端に取り付けた攪拌棒31を、加圧タンク10の中央に回転自在に設置する。攪拌棒31の後端を上蓋12から突出し、図示していないモータに連結する。
モータを駆動して攪拌翼30を回転させることにより、液相部15を攪拌して内部に渦をつくり、急激に気相部14の空気を加圧状態に応じた飽和濃度まで容易に溶解することができる。
【0015】
<ヘ>高酸素水の製造(図1、図2)
水や貧酸素水71を加圧タンク10内に導き、加圧タンク10内に水や貧酸素水71による液相部15と、空気による気相部14とを形成する。
コンプレッサ20で加圧しながら、攪拌翼30を回転することで内部に渦をつくり、気相14の空気を液相15に加圧状態に応じた飽和濃度まで溶解し、高酸素水80を製造する。溶解濃度は、加圧する圧力と攪拌速度及び攪拌時間によって任意に調整が可能である。
【0016】
一例をあげると、約20リットルの加圧タンク10に水道水を入れ、2気圧の加圧を行いながら攪拌翼30を毎分100回転程度で回転させると、約10秒の回転で溶存酸素濃度は飽和濃度の122%の高酸素水80をつくる。4気圧の加圧では約20秒の回転で飽和濃度の215%以上の高酸素水80をつくる。
従来の曝気方式では大気圧下の飽和濃度までしか酸素を溶存させることができないが、本発明によれば加圧力に応じた飽和濃度まで溶存することができる。
【0017】
次に高酸素水製造装置1を使用して、底質を浄化する方法について説明する。
【0018】
<イ>揚水
底質付近の貧酸素水域70に給水パイプ40を設置する(図1参照)。
給水パイプ40の途中に揚水ポンプ60(図4参照)を設置し、揚水ポンプ60で底質直上の貧酸素水71を揚水し、給水バルブ41を開放して貧酸素水71を陸上の加圧タンク10内に供給する。なお、揚水した貧酸素水71をフィルタ(図示せず)でゴミなどの不要物を除去して加圧タンク10内へ供給するのが好ましい。
このように貧酸素水71を給水パイプ40で加圧タンク10内に導き、加圧タンク10内に貧酸素水71による液相部15と空気による気相部14とを形成する。
【0019】
<ロ>加圧、攪拌
給水バルブ41を閉塞して加圧バルブ22を開放し、コンプレッサ20から圧縮したエアを加圧タンク10内へ供給する。
コンプレッサ20の駆動と同時に、モータ(図示せず)を駆動して攪拌棒31とともに攪拌翼30を回転する。
圧縮したエアによって加圧タンク10内が加圧され、加圧と同時に攪拌翼30で攪拌されて内部に渦をつくるので、急激に気相の空気を液相に加圧状態に応じた飽和濃度まで溶解する。なお、コンプレッサ20の前段に酸素ボンベを加えた場合は、空気あるいは酸素を加圧、溶解する。
このように高酸素水製造装置1で製造された高酸素水80は、加圧タンク10内に蓄えられる。
【0020】
<ハ>放水
加圧バルブ22を閉塞して放水バルブ51を開放し、必要な量の高酸素水80を放水バルブ51、流量計52、放水パイプ50を通して底質付近の貧酸素水域70へ放水する。放水が終了したら、再び揚水し、同様の手順を繰り返して貧酸素の環境を高酸素濃度の環境に改善する。
溶存酸素濃度が飽和濃度の200%以上の高酸素水80とすることができるため、広い水域に対しても少量の高酸素水80を水底に送ることで水質の改善を図り、浄化することが可能となる。
放水パイプ50の途中に冷却器などを取り付けて、高酸素水80を冷却して密度を高めてから水底へ放水してもよい。冷却することによって高酸素水80が水面上に上昇するまでに時間がかかり、水底近くの貧酸素水域70と長時間接触するため、より多くの溶存酸素を貧酸素水域70に供給する。
また、高酸素水製造装置1を船上などに搭載し、移動しながら底質を浄化するようにしてもよい。
【0021】
【発明の実施の形態2】
加圧タンク10を複数設置し、これら加圧タンク10に1台のコンプレッサ20を接続して構成してもよい(図3参照)。
給水パイプ40を分岐して、給水バルブ41を介して夫々の加圧タンク10に接続するとともに、放水パイプ50を途中で合流する。交互に運転することによって高酸素水80の放水流量を一定に保つことができる。
【0022】
【発明の実施の形態3】
貧酸素水71を連続して揚水し、管路(供給パイプ40と放水パイプ50)の中間に高酸素水製造装置1を配置し、高酸素水80を連続的に放水してもよい(図4参照)。
貧酸素水71を揚水ポンプ60で連続的に加圧タンク10へ揚水し、コンプレッサ20で加圧タンク10を連続的に加圧し、同時に加圧タンク10内の攪拌翼30を回転しながら、加圧タンク10内の空気を貧酸素水71に溶存させて高酸素水80を製造する。この場合、コンプレッサ20からは管内水圧より高い圧力に調整したエアを加圧タンク10へ供給する。
放水パイプ50の途中に脱気泡装置53を設け、溶存せずに残存した気泡を脱気泡装置53で除外しながら高酸素水80を連続的に貧酸素水域70へ放水する。
本例によれば連続的に高酸素水80を供給でき、効果的に貧酸素水域70を浄化できる。
【0023】
【本発明の効果】
本発明は、以上説明したようになるから次のような効果を得ることができる。
<イ>従来の曝気方式では大気圧下の飽和濃度までしか酸素を溶存させることができないが、本発明ではコンプレッサで任意に加圧できるので、加圧力に応じた飽和濃度まで溶存させることができる。
<ロ>従来のような飽和濃度程度の溶存酸素水と異なり、溶存酸素濃度が飽和濃度の200%以上の高酸素水とすることができるため、広い水域に対しても少量の高酸素水を水底に送ることで水質の改善を図り、浄化することが可能となる。
<ハ>酸素の溶存濃度は加圧力と攪拌速度、攪拌時間を調整することによって任意の濃度にすることができる。このため、周辺状況や底質の条件に適した浄化を行うことができる。
【図面の簡単な説明】
【図1】本発明の高酸素水製造装置の基本構成を示す説明図。
【図2】高酸素水製造装置の実施例を示す概略図。
【図3】他の実施例を示す説明図。
【図4】他の実施例を示す説明図。
【符号の説明】
1・・・・高酸素水製造装置
10・・・加圧タンク
20・・・コンプレッサ
22・・・加圧バルブ
30・・・攪拌翼
41・・・給水バルブ
51・・・放水バルブ
53・・・脱気泡装置
60・・・揚水ポンプ
70・・・貧酸素水域
71・・・貧酸素水
80・・・高酸素水
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a high-oxygen water producing apparatus for supplying high-oxygen water to low-oxygen water areas such as rivers, lakes, marshes, canals, and closed sea areas, and a method for purifying sediment.
[0002]
[Prior art]
In rivers, lakes, canals, enclosed sea areas, etc., water quality has become eutrophic due to the influx of domestic wastewater, and plankton has proliferated along with it.
The plankton that has proliferated extensively on the surface layer becomes a dead body and sinks to the bottom of the water. At the bottom of the water, a large amount of oxygen is consumed by the decomposition of organic matter in the dead body, and the water near the surface of the sediment becomes poor oxygen (low concentration of oxygen). ing.
An aerobic biological environment is not formed due to the presence of oxygen-depleted water, and a vicious cycle of anaerobic decay progresses repeatedly. In an anaerobic environment, various organisms cannot inhabit, resulting in generation of hydrogen sulfide (generation of blue tide).
In order to improve the water environment, it is necessary to maintain an aerobic environment. By maintaining the aerobic environment, a variety of organisms that oxidatively decompose organic substances inhabit, and polluted sediment can be purified.
As one of the techniques for creating an aerobic environment, there is a method of injecting a high concentration of dissolved oxygen near the surface of anoxic sediment to make the water near the surface of the sediment high oxygen concentration. As a method of injecting a high concentration of dissolved oxygen, there are an aeration method in which air bubbles are generated at the current position (the surface of the sediment) and a method in which aeration is performed on land and water with an increased dissolved oxygen concentration is discharged to the current position. Is being developed.
[0003]
[Problems to be solved by the invention]
However, the above-mentioned conventional aeration method has the following problems.
<A> Oxygen can be dissolved only up to the saturation concentration under atmospheric pressure.
<B> With dissolved oxygen having a saturation concentration, even if it is discharged into a water area near the surface of the sediment, it is quickly diluted and diffused. For this reason, the bottom quality is improved around the discharge port, and the purified water area is limited to a narrow water area.
[0004]
[Object of the invention]
The present invention has been conceived in view of the above-described conventional problems, and has as its object to provide a high-oxygen water production apparatus that produces high-oxygen water having a saturation concentration or higher.
Another object of the present invention is to provide a method for purifying sediment that enables purification of a wide water area.
The present invention achieves at least one of the above objects.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the high oxygen water production apparatus of the present invention is provided with a pressurized tank containing water, a compressor for pressurizing the pressurized tank, and a rotatably provided inside the pressurized tank. A high-oxygen water is produced by rotating the stirring blade while dissolving the air in the pressurized tank in water while pressurizing with the compressor.
[0006]
Here, it is possible to provide a pump for pumping the oxygen-deficient water into the pressurized tank and to provide a water discharge pipe having a defoaming device. In addition, an oxygen cylinder can be added to a stage preceding the compressor to pressurize and dissolve air or oxygen.
[0007]
Further, the method for purifying sediment of the present invention is a method for purifying sediment by supplying high oxygen water to a low oxygen water area, wherein water is stored in a pressurized tank of the high oxygen water producing apparatus, Close the water supply valve and pressurize the pressurized tank with a compressor.At the same time, rotate the stirring blades in the pressurized tank to dissolve the air in the pressurized tank into water to produce high oxygen water, The operation is performed by closing and opening the water discharge valve to discharge the high oxygen water to the low oxygen water area.
[0008]
Here, the oxygen-deficient water is continuously pumped by the pump, the pressurized tank is continuously pressurized by the compressor, and the stirring blades in the pressurized tank are simultaneously rotated to reduce the air in the pressurized tank. To produce high-oxygen water, and the high-oxygen water can be continuously discharged to the anoxic water area while removing the remaining air bubbles with a deaerator.
[0009]
Embodiment 1 of the present invention
An embodiment according to the present invention will be described below with reference to the drawings.
FIG. 1 is an explanatory view showing a basic configuration of a high oxygen water producing apparatus, and FIG. 2 is a schematic view showing an embodiment.
[0010]
<B> High oxygen water production equipment (Fig. 1)
The high-oxygen water producing apparatus 1 includes a pressurized tank 10 containing water or oxygen-deficient water 71, a compressor 20 for pressurizing the pressurized tank 10, and a stirring blade 30 rotatably provided in the pressurized tank 10. Consists of
The air in the pressurized tank 10 is dissolved in the water or the oxygen-deficient water 71 by rotating the stirring blade 30 while pressurizing with the compressor 20, and the high-dissolved oxygen water 80 having a high dissolved oxygen concentration (hereinafter referred to as the high oxygen water 80). ) To manufacture.
[0011]
<B> Pressurized tank (Figs. 1 and 2)
The pressurized tank 10 is a hermetically sealed pressure vessel including a cylindrical main body 11 extending in the vertical direction, and an upper lid 12 and a lower lid 13 for closing upper and lower ends of the main body 11.
A water supply pipe 40 and an air supply pipe 21 are connected to the upper lid 12, and a water discharge pipe 50 is connected to the lower lid 13. A pressure gauge 16 for measuring the pressure in the pressurized tank 10 is attached to the upper lid 12.
The distal end of the water supply pipe 40 is installed in a poor oxygen water area 70 such as a river, a lake, a canal, or a canal, and the poor oxygen water 71 can be guided to the pressurized tank 10. The water supply pipe 40 may guide tap water.
In the pressurized tank 10, a liquid phase part 15 made of water or oxygen-deficient water 71 and a gas phase part 14 made of air are formed.
[0012]
<C> Compressor (Fig.1, Fig.2)
The compressor 20 is an air compressor or the like.
The compressor 20 and the pressurized tank 10 are connected by an air supply pipe 21, and compressed air from the compressor 20 is supplied to the pressurized tank 10. Note that an oxygen cylinder (not shown) may be added to a stage preceding the compressor 20 to pressurize and supply oxygen.
A regulator 23 is attached in the middle of the air supply pipe 21. By adjusting the regulator 23 to adjust the amount of compressed air supplied, the pressure applied to the pressurized tank 10 can be adjusted.
[0013]
<D> Valve (Figs. 1 and 2)
The valves include a water supply valve 41, a pressure valve 22, and a water discharge valve 51.
The water supply valve 41 is attached to the water supply pipe 40, and supplies water or oxygen-deficient water 71 into the pressurized tank 10 when opened. The pressurizing valve 22 is attached to the air supply pipe 21, and supplies compressed air to the pressurizing tank 10 by opening to pressurize the pressurizing tank 10.
The water discharge valve 51 is attached to the water discharge pipe 50, and discharges the high oxygen water 80 in the pressurized tank 10 when opened. In addition, the water discharge pipe 50 is provided with a flow meter 52 in the middle so that the tip is disposed in the oxygen-deficient water area 70 near the bottom.
If these valves 22, 41, 51 are constituted by, for example, electromagnetic valves or the like, the valves 22, 41, 51 can be automatically switched.
[0014]
<E> Stirrer blade (Figs. 1 and 2)
The stirring blade 30 stirs the liquid phase portion 15 in the pressurized tank 10 and includes, for example, a plurality of propeller-shaped stirring blades.
A stirring rod 31 having a stirring blade 30 attached to the tip is rotatably installed at the center of the pressurized tank 10. The rear end of the stirring rod 31 projects from the upper lid 12 and is connected to a motor (not shown).
By driving the motor to rotate the stirring blade 30, the liquid phase portion 15 is stirred to form a vortex therein, and the air in the gas phase portion 14 is rapidly dissolved easily to the saturation concentration according to the pressurized state. be able to.
[0015]
<F> Production of high oxygen water (Fig. 1, Fig. 2)
The water or the oxygen-depleted water 71 is guided into the pressurized tank 10, and a liquid phase part 15 of the water or the deoxygenated water 71 and a gas phase part 14 of the air are formed in the pressure tank 10.
By rotating the stirring blade 30 while pressurizing with the compressor 20, a vortex is formed inside, and the air of the gas phase 14 is dissolved in the liquid phase 15 to a saturation concentration according to the pressurized state, and the high oxygen water 80 is produced. . The dissolution concentration can be arbitrarily adjusted by the pressure applied, the stirring speed and the stirring time.
[0016]
As an example, if tap water is put into a pressurized tank 10 of about 20 liters, and the stirring blade 30 is rotated at about 100 revolutions per minute while pressurizing at 2 atm, the dissolved oxygen concentration is increased by about 10 seconds. Produces highly oxygenated water 80 at 122% of saturation concentration. At a pressure of 4 atm, a high oxygen water 80 having a saturation concentration of 215% or more is produced in about 20 seconds of rotation.
According to the conventional aeration method, oxygen can be dissolved only up to the saturation concentration under the atmospheric pressure, but according to the present invention, it can be dissolved up to the saturation concentration corresponding to the pressure.
[0017]
Next, a method for purifying sediment using the high oxygen water producing apparatus 1 will be described.
[0018]
<A> A water supply pipe 40 is installed in the anoxic water area 70 near the pumped bottom (see FIG. 1).
A pump 60 (see FIG. 4) is installed in the middle of the water supply pipe 40, and the poor oxygen water 71 immediately above the bottom is pumped by the water pump 60, and the water supply valve 41 is opened to pressurize the poor oxygen water 71 on land. It is supplied into the tank 10. In addition, it is preferable that the pumped poor oxygen water 71 is supplied into the pressurized tank 10 after removing unnecessary substances such as dust with a filter (not shown).
In this way, the oxygen-depleted water 71 is guided into the pressurized tank 10 by the water supply pipe 40, and the liquid-phase part 15 by the deoxygenated water 71 and the gas-phase part 14 by air are formed in the pressure tank 10.
[0019]
<B> The pressurizing and stirring water supply valve 41 is closed and the pressurizing valve 22 is opened to supply compressed air from the compressor 20 into the pressurizing tank 10.
At the same time as the compressor 20 is driven, a motor (not shown) is driven to rotate the stirring blade 30 together with the stirring rod 31.
The pressurized tank 10 is pressurized by the compressed air, and is stirred by the stirring blade 30 at the same time as the pressurization to form a vortex therein. Dissolve up to. When an oxygen cylinder is added before the compressor 20, air or oxygen is pressurized and dissolved.
The high oxygen water 80 produced by the high oxygen water production apparatus 1 as described above is stored in the pressurized tank 10.
[0020]
<C> The water discharge pressurizing valve 22 is closed and the water discharge valve 51 is opened, and the required amount of high oxygen water 80 is discharged through the water discharge valve 51, the flow meter 52, and the water discharge pipe 50 to the poor oxygen water area 70 near the bottom. I do. When the water discharge is completed, the water is pumped again, and the same procedure is repeated to improve the poor oxygen environment to a high oxygen concentration environment.
Since the dissolved oxygen concentration can be high oxygen water 80 of 200% or more of the saturation concentration, the water quality can be improved and purified by sending a small amount of high oxygen water 80 to the water bottom even in a wide water area. It becomes possible.
A cooler or the like may be attached in the middle of the water discharge pipe 50 to cool the high oxygen water 80 to increase the density and then discharge the water to the water bottom. It takes time for the high oxygen water 80 to rise above the water surface by cooling, and the oxygenated water area 70 near the water bottom is in contact with the oxygen-deficient water area 70 for a long time, so that more dissolved oxygen is supplied to the oxygen-deficient water area 70.
Alternatively, the high oxygen water producing apparatus 1 may be mounted on a ship or the like, and the sediment may be purified while moving.
[0021]
Embodiment 2 of the present invention
A plurality of pressurized tanks 10 may be provided, and a single compressor 20 may be connected to these pressurized tanks 10 (see FIG. 3).
The water supply pipe 40 is branched and connected to each of the pressurized tanks 10 via a water supply valve 41, and the water discharge pipe 50 is joined on the way. By alternately operating, the discharge flow rate of the high oxygen water 80 can be kept constant.
[0022]
Third Embodiment of the Invention
The oxygen-deficient water 71 may be continuously pumped, and the high oxygen water producing apparatus 1 may be disposed in the middle of the pipeline (the supply pipe 40 and the water discharge pipe 50) to continuously discharge the high oxygen water 80 (FIG. 4).
The oxygen-deficient water 71 is continuously pumped to the pressurized tank 10 by the water pump 60, and the pressurized tank 10 is continuously pressurized by the compressor 20 while simultaneously stirring the impeller 30 in the pressurized tank 10 while rotating. The high oxygen water 80 is produced by dissolving the air in the pressure tank 10 in the poor oxygen water 71. In this case, air adjusted to a pressure higher than the pipe water pressure is supplied from the compressor 20 to the pressurized tank 10.
A defoaming device 53 is provided in the middle of the water discharge pipe 50, and the high oxygen water 80 is continuously discharged to the oxygen-deficient water region 70 while removing bubbles remaining without being dissolved by the defoaming device 53.
According to this embodiment, the high oxygen water 80 can be continuously supplied, and the poor oxygen water area 70 can be effectively purified.
[0023]
[Effects of the present invention]
According to the present invention, as described above, the following effects can be obtained.
<A> In the conventional aeration method, oxygen can be dissolved only up to the saturation concentration under the atmospheric pressure, but in the present invention, since it can be arbitrarily pressurized by the compressor, it can be dissolved up to the saturation concentration according to the applied pressure. .
<B> Unlike the conventional dissolved oxygen water having a saturated concentration, unlike the conventional case, the dissolved oxygen concentration can be 200% or more of the saturated concentration. By sending the water to the bottom, it is possible to improve the water quality and purify it.
<C> The dissolved concentration of oxygen can be adjusted to an arbitrary concentration by adjusting the pressing force, the stirring speed, and the stirring time. For this reason, it is possible to perform purification suitable for surrounding conditions and bottom sediment conditions.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a basic configuration of a high oxygen water producing apparatus of the present invention.
FIG. 2 is a schematic diagram showing an embodiment of a high oxygen water producing apparatus.
FIG. 3 is an explanatory view showing another embodiment.
FIG. 4 is an explanatory view showing another embodiment.
[Explanation of symbols]
1 high oxygen water producing apparatus 10 pressurized tank 20 compressor 22 pressurizing valve 30 stirring blade 41 water supply valve 51 water discharge valve 53 Defoaming device 60 Pumping pump 70 Poor oxygen water area 71 Poor oxygen water 80 High oxygen water

Claims (5)

水を収容する加圧タンクと、
前記加圧タンクを加圧するコンプレッサと、
前記加圧タンク内に回転自在に設けた攪拌翼と、からなり、
前記コンプレッサで加圧しながら、攪拌翼を回転して加圧タンク内の空気を水に溶存させて高酸素水を製造することを特徴とする、
高酸素水製造装置。
A pressurized tank containing water,
A compressor for pressurizing the pressurized tank,
A stirring blade rotatably provided in the pressurized tank,
While pressurizing with the compressor, the air in the pressurized tank is dissolved in water by rotating the stirring blade to produce high oxygen water,
High oxygen water production equipment.
請求項1に記載する高酸素水製造装置において、
前記加圧タンクに接続する給水パイプ、放水パイプ及び送気パイプに夫々給水バルブ、放水バルブ及び加圧バルブを設けてなることを特徴とする、
高酸素水製造装置。
In the high oxygen water production apparatus according to claim 1,
A water supply pipe connected to the pressurized tank, a water discharge pipe and an air supply pipe, each provided with a water supply valve, a water discharge valve, and a pressure valve,
High oxygen water production equipment.
貧酸素水域に高酸素水を供給する高酸素水製造装置であって、
貧酸素水を加圧タンクへ揚水する揚水ポンプと、
貧酸素水を収容する前記加圧タンクと、
前記加圧タンクを加圧するコンプレッサと、
前記加圧タンク内に回転自在に設けた攪拌翼と、
前記加圧タンクに接続し、脱気泡装置を有する放水パイプと、からなり、
貧酸素水を連続的に揚水し、コンプレッサで加圧しながら、攪拌翼を回転して加圧タンク内の空気を貧酸素水に溶存させて高酸素水を製造し、該高酸素水を連続的に放水することを特徴とする、
高酸素水製造装置。
A high-oxygen water producing apparatus that supplies high-oxygen water to a low-oxygen water area,
A pump for pumping oxygen-deficient water into a pressurized tank;
The pressurized tank containing oxygen-deficient water,
A compressor for pressurizing the pressurized tank,
A stirring blade rotatably provided in the pressurized tank,
A water discharge pipe connected to the pressurized tank and having a defoaming device,
While continuously pumping the oxygen-deficient water and pressurizing with a compressor, the stirring blade is rotated to dissolve the air in the pressurized tank into the oxygen-deficient water to produce oxygen-rich water. Characterized by discharging water to
High oxygen water production equipment.
貧酸素水域に高酸素水を供給して行う底質の浄化方法であって、
請求項1または2に記載する高酸素水製造装置の加圧タンクに水を収容し、
給水バルブを閉塞してコンプレッサで加圧タンクを加圧し、
同時に加圧タンク内の攪拌翼を回転して加圧タンク内の空気を水に溶存させて高酸素水を製造し、
加圧バルブを閉塞し、
放水バルブを開放して高酸素水を貧酸素水域へ放水して行う、
底質の浄化方法。
A method for purifying sediment by supplying high oxygen water to a low oxygen water area,
Water is accommodated in the pressurized tank of the high oxygen water producing apparatus according to claim 1 or 2,
Close the water supply valve and pressurize the pressurized tank with a compressor,
At the same time, rotating the stirring blades in the pressurized tank to dissolve the air in the pressurized tank into water to produce high oxygen water,
Close the pressure valve,
Open the water discharge valve to discharge high oxygen water to the low oxygen water area,
How to purify sediment.
貧酸素水域に高酸素水を供給して行う底質の浄化方法であって、
請求項3に記載する高酸素水製造装置の加圧タンクに貧酸素水を揚水ポンプで連続して揚水し、
コンプレッサで加圧タンクを連続して加圧し、
同時に加圧タンク内の攪拌翼を回転して加圧タンク内の空気を貧酸素水に溶存させて高酸素水を製造し、
残存した気泡を脱気泡装置で除外しながら高酸素水を連続的に貧酸素水域へ放水して行う、
底質の浄化方法。
A method for purifying sediment by supplying high oxygen water to a low oxygen water area,
Pumping low-oxygen water continuously into the pressurized tank of the high-oxygen water producing apparatus according to claim 3 with a water pump;
Continuously pressurize the pressurized tank with a compressor,
At the same time, the stirring blades in the pressurized tank are rotated to dissolve the air in the pressurized tank in the oxygen-poor water to produce high oxygen water,
Performing by continuously discharging high oxygen water to the oxygen-deficient water area while removing the remaining air bubbles with a defoaming device,
How to purify sediment.
JP2002192499A 2002-07-01 2002-07-01 High oxygen water production apparatus and bottom purification method Expired - Fee Related JP4231249B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002192499A JP4231249B2 (en) 2002-07-01 2002-07-01 High oxygen water production apparatus and bottom purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002192499A JP4231249B2 (en) 2002-07-01 2002-07-01 High oxygen water production apparatus and bottom purification method

Publications (2)

Publication Number Publication Date
JP2004033861A true JP2004033861A (en) 2004-02-05
JP4231249B2 JP4231249B2 (en) 2009-02-25

Family

ID=31701755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002192499A Expired - Fee Related JP4231249B2 (en) 2002-07-01 2002-07-01 High oxygen water production apparatus and bottom purification method

Country Status (1)

Country Link
JP (1) JP4231249B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004249248A (en) * 2003-02-21 2004-09-09 Yokogawa Electric Corp Water cleaning system
JP2005204972A (en) * 2004-01-23 2005-08-04 Daishin Boeki:Kk Bubble generator
JP2008049261A (en) * 2006-08-24 2008-03-06 Matsushita Electric Ind Co Ltd Oxygen water producing system
WO2010023977A1 (en) * 2008-08-26 2010-03-04 パナソニック電工株式会社 Gas dissolver
JP2010264384A (en) * 2009-05-14 2010-11-25 Matsue Doken Kk Method for removing water bloom
JP2018034148A (en) * 2016-08-29 2018-03-08 株式会社光未来 Hydrogen water production device and hydrogen water production method

Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5030355A (en) * 1973-07-20 1975-03-26
JPS58128196A (en) * 1982-01-27 1983-07-30 C T I Sci Syst:Kk Preventing method of degration in water quality in closed sea area as well as lake and pond
JPS62277130A (en) * 1986-04-07 1987-12-02 ア−テツク インコ−ポレ−テツド Method and apparatus for enriching oxygen content of water
JPS63178833A (en) * 1986-10-21 1988-07-22 ユニオン・カーバイド・コーポレーション Method and apparatus for introducing gas into liquid
JPH0194928A (en) * 1987-10-07 1989-04-13 Reika Kogyo Kk Apparatus for mixing gas with liquid
JPH04260425A (en) * 1990-09-24 1992-09-16 Union Carbide Ind Gases Technol Corp Improved method and device for enriching oxygen
JPH05184894A (en) * 1991-05-01 1993-07-27 Union Carbide Ind Gases Technol Corp Improved method and device for mixing gas and liquid
JPH0788345A (en) * 1990-04-26 1995-04-04 Union Carbide Ind Gases Technol Corp Gas-liquid mixing operation in wide range of liquid level
JPH08281292A (en) * 1995-03-28 1996-10-29 Pub Works Res Inst Ministry Of Constr Treatment of bottom mud layer in water basin
JPH09899A (en) * 1995-06-15 1997-01-07 Yamae:Kk Apparatus for dissolving inert gas in material in liquid state
JPH09253671A (en) * 1996-03-19 1997-09-30 Tokico Ltd Ozone water making apparatus
JPH10216490A (en) * 1997-01-31 1998-08-18 Koa Corp:Kk Rapid mixing and dissolving device of gas into liquid
JPH10230285A (en) * 1997-02-19 1998-09-02 Toshiba Corp High speed ozone reaction system
JPH10309450A (en) * 1997-05-13 1998-11-24 Tsubakimoto Kogyo Kk Gas absorption device
JPH1147785A (en) * 1997-06-02 1999-02-23 Dam Suigenchi Kankyo Seibi Center Method and device for cleaning lake, marsh, pond or the like
JPH11507874A (en) * 1996-01-24 1999-07-13 ライフ インターナショナル プロダクツ,インク. Oxygenator, method of oxygenating water therewith, and applications thereof
JPH11207162A (en) * 1998-01-22 1999-08-03 Yamahiro:Kk Pressure type oxygen dissolving method
JPH11342397A (en) * 1998-05-29 1999-12-14 Mitsubishi Heavy Ind Ltd Sea area purifier
JP2000254696A (en) * 1999-03-10 2000-09-19 Ohbayashi Corp Method for reforming bottom mud and system therefor
JP2001187396A (en) * 1999-12-28 2001-07-10 Shigeto Matsuo Oxygen enrichment system
JP2001205060A (en) * 2000-01-25 2001-07-31 Life Internatl Products Inc Oxygenating apparatus, method for oxygenating liquid therewith, and application thereof
JP2001347146A (en) * 2000-06-08 2001-12-18 Yokogawa Electric Corp Gas dissolving device
JP2002001074A (en) * 2000-06-21 2002-01-08 Toyota Auto Body Co Ltd Device for ozonized water
JP2002059189A (en) * 2000-08-11 2002-02-26 Ebara Corp Aeration method and device
JP2002263691A (en) * 2001-03-09 2002-09-17 Sangaku Renkei Kiko Kyushu:Kk Bottom water cleaning method for cleaning bottom area of eutrophicating closed water area and bottom water cleaning equipment
JP2003019426A (en) * 2001-05-01 2003-01-21 Joho Kagaku Kenkyusho:Kk Method and system for producing gas dissolving liquid medium
JP2003071494A (en) * 2001-09-05 2003-03-11 Yokogawa Electric Corp Apparatus and method for removing water bloom
JP2003126884A (en) * 2001-07-26 2003-05-07 Ryosaku Fujisato Apparatus and method of water treatment

Patent Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5030355A (en) * 1973-07-20 1975-03-26
JPS58128196A (en) * 1982-01-27 1983-07-30 C T I Sci Syst:Kk Preventing method of degration in water quality in closed sea area as well as lake and pond
JPS62277130A (en) * 1986-04-07 1987-12-02 ア−テツク インコ−ポレ−テツド Method and apparatus for enriching oxygen content of water
JPS63178833A (en) * 1986-10-21 1988-07-22 ユニオン・カーバイド・コーポレーション Method and apparatus for introducing gas into liquid
JPH0194928A (en) * 1987-10-07 1989-04-13 Reika Kogyo Kk Apparatus for mixing gas with liquid
JPH0788345A (en) * 1990-04-26 1995-04-04 Union Carbide Ind Gases Technol Corp Gas-liquid mixing operation in wide range of liquid level
JPH04260425A (en) * 1990-09-24 1992-09-16 Union Carbide Ind Gases Technol Corp Improved method and device for enriching oxygen
JPH05184894A (en) * 1991-05-01 1993-07-27 Union Carbide Ind Gases Technol Corp Improved method and device for mixing gas and liquid
JPH08281292A (en) * 1995-03-28 1996-10-29 Pub Works Res Inst Ministry Of Constr Treatment of bottom mud layer in water basin
JPH09899A (en) * 1995-06-15 1997-01-07 Yamae:Kk Apparatus for dissolving inert gas in material in liquid state
JPH11507874A (en) * 1996-01-24 1999-07-13 ライフ インターナショナル プロダクツ,インク. Oxygenator, method of oxygenating water therewith, and applications thereof
JPH09253671A (en) * 1996-03-19 1997-09-30 Tokico Ltd Ozone water making apparatus
JPH10216490A (en) * 1997-01-31 1998-08-18 Koa Corp:Kk Rapid mixing and dissolving device of gas into liquid
JPH10230285A (en) * 1997-02-19 1998-09-02 Toshiba Corp High speed ozone reaction system
JPH10309450A (en) * 1997-05-13 1998-11-24 Tsubakimoto Kogyo Kk Gas absorption device
JPH1147785A (en) * 1997-06-02 1999-02-23 Dam Suigenchi Kankyo Seibi Center Method and device for cleaning lake, marsh, pond or the like
JPH11207162A (en) * 1998-01-22 1999-08-03 Yamahiro:Kk Pressure type oxygen dissolving method
JPH11342397A (en) * 1998-05-29 1999-12-14 Mitsubishi Heavy Ind Ltd Sea area purifier
JP2000254696A (en) * 1999-03-10 2000-09-19 Ohbayashi Corp Method for reforming bottom mud and system therefor
JP2001187396A (en) * 1999-12-28 2001-07-10 Shigeto Matsuo Oxygen enrichment system
JP2001205060A (en) * 2000-01-25 2001-07-31 Life Internatl Products Inc Oxygenating apparatus, method for oxygenating liquid therewith, and application thereof
JP2001347146A (en) * 2000-06-08 2001-12-18 Yokogawa Electric Corp Gas dissolving device
JP2002001074A (en) * 2000-06-21 2002-01-08 Toyota Auto Body Co Ltd Device for ozonized water
JP2002059189A (en) * 2000-08-11 2002-02-26 Ebara Corp Aeration method and device
JP2002263691A (en) * 2001-03-09 2002-09-17 Sangaku Renkei Kiko Kyushu:Kk Bottom water cleaning method for cleaning bottom area of eutrophicating closed water area and bottom water cleaning equipment
JP2003019426A (en) * 2001-05-01 2003-01-21 Joho Kagaku Kenkyusho:Kk Method and system for producing gas dissolving liquid medium
JP2003126884A (en) * 2001-07-26 2003-05-07 Ryosaku Fujisato Apparatus and method of water treatment
JP2003071494A (en) * 2001-09-05 2003-03-11 Yokogawa Electric Corp Apparatus and method for removing water bloom

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
小松利光、長谷部崇、松永崇、井上徹教、藤田和夫、井芹寧、西元誠、稲垣晃: "底層への表層水連続供給による貯水池の水質改善実験", 水工学論文集, vol. 第45巻, JPN4007018024, 10 February 2001 (2001-02-10), JP, pages 1207 - 1212, ISSN: 0000891564 *
小松利光、長谷部崇、松永崇、井上徹教、藤田和夫、井芹寧、西元誠、稲垣晃: "底層への表層水連続供給による貯水池の水質改善実験", 水工学論文集, vol. 第45巻, JPN7008008651, 10 February 2001 (2001-02-10), JP, pages 1207 - 1212, ISSN: 0001195865 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004249248A (en) * 2003-02-21 2004-09-09 Yokogawa Electric Corp Water cleaning system
JP4518235B2 (en) * 2003-02-21 2010-08-04 横河電機株式会社 Water purification system
JP2005204972A (en) * 2004-01-23 2005-08-04 Daishin Boeki:Kk Bubble generator
JP2008049261A (en) * 2006-08-24 2008-03-06 Matsushita Electric Ind Co Ltd Oxygen water producing system
WO2010023977A1 (en) * 2008-08-26 2010-03-04 パナソニック電工株式会社 Gas dissolver
JPWO2010023977A1 (en) * 2008-08-26 2012-01-26 パナソニック電工株式会社 Gas dissolving device
JP2010264384A (en) * 2009-05-14 2010-11-25 Matsue Doken Kk Method for removing water bloom
JP2018034148A (en) * 2016-08-29 2018-03-08 株式会社光未来 Hydrogen water production device and hydrogen water production method

Also Published As

Publication number Publication date
JP4231249B2 (en) 2009-02-25

Similar Documents

Publication Publication Date Title
TW482744B (en) Process for enriching a liquid with oxygen and apparatus for enriching a liquid with oxygen to an oxygen concentration of at least 40 mg/l.
EP1112773B1 (en) System and method for generating gas micro-bubbles in a liquid
US5770062A (en) Device for aiding the solubilization of gases in liquids
US9084973B2 (en) Methods and apparatus for aeration of liquid medium and vectoring flow control
US20130220940A1 (en) Methods and apparatus for aeration of liquid medium and liquid medium treatment system
US6848258B1 (en) Gas transfer energy recovery and effervescence prevention apparatus and method
JP2002052330A (en) Gas and liquid supply device
JP4231249B2 (en) High oxygen water production apparatus and bottom purification method
JP3843361B2 (en) Solution reduction treatment method, oxidation treatment method, and automatic oxidation reduction treatment apparatus
JP4059346B2 (en) Water purification system and water flow generating stirring mixer
JP2002001371A (en) Method and apparatus for cleaning eutrophic water area
CN207276362U (en) A kind of special water remediation integrated machine equipment of river and lake water harnessing
JP2967182B2 (en) Sediment treatment method in water area
JP2006043636A (en) Fine bubble generating apparatus
JP2010158657A (en) Method of controlling water bloom using vibration-wave generator and oxygen/ozone generator
KR101075685B1 (en) Saturated liquid generation apparatus and device manufacturing saturated liquid with it
US6176899B1 (en) Water treatment process for neutralizing gas supersaturation
JP2004267868A (en) System for dissolving/storing/supplying gas with line atomizer
JP4386409B2 (en) Pressurized biological wastewater treatment method
JP2009178702A (en) Gas-liquid mixing equipment
CN109351216A (en) Micro-nano bubble generator and bubble generating system
JP2004148265A (en) Method and equipment for impounded water purification
KR100555594B1 (en) The device of wastewater purification in stream for hydraulic power
JP2003088886A (en) Method and device for increasing dissolved oxygen
KR20110029590A (en) Saturated liquid generation apparatus and device manufacturing saturated liquid with it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081205

R150 Certificate of patent or registration of utility model

Ref document number: 4231249

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees