JP4386409B2 - Pressurized biological wastewater treatment method - Google Patents

Pressurized biological wastewater treatment method Download PDF

Info

Publication number
JP4386409B2
JP4386409B2 JP2003060080A JP2003060080A JP4386409B2 JP 4386409 B2 JP4386409 B2 JP 4386409B2 JP 2003060080 A JP2003060080 A JP 2003060080A JP 2003060080 A JP2003060080 A JP 2003060080A JP 4386409 B2 JP4386409 B2 JP 4386409B2
Authority
JP
Japan
Prior art keywords
gas
liquid
pressurized
reaction
wastewater treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003060080A
Other languages
Japanese (ja)
Other versions
JP2004267869A (en
Inventor
康介 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003060080A priority Critical patent/JP4386409B2/en
Publication of JP2004267869A publication Critical patent/JP2004267869A/en
Application granted granted Critical
Publication of JP4386409B2 publication Critical patent/JP4386409B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Activated Sludge Processes (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、活性汚泥法に代表される生物的排水浄化処理技術分野に属し、さらには生物反応槽中の気体の溶解量を加圧により増大させる技術分野に属する。
【0002】
【従来の技術】
排水を浄化するために、活性汚泥法に代表される生物処理が広く採用されている。活性汚泥法は、微生物と酸素を利用して生物的処理を行い、排水中の有機汚染物質を活性汚泥として固定し、一部を水と炭酸ガスに分解(自己消化)して除去する方法である。
活性汚泥法などの生物的排水浄化処理工程においては、反応系に溶存酸素が不可欠であり、溶存酸素の反応系への供給が律速条件となることが多い。
反応系での生物的反応を促進させるために、空気を散気装置(バブリング)を用いて送給していた。しかし、散気装置によって処理水中に供給されるガス態の気泡粒径は非常に大きく、ガスの多くは処理水中を急速に上昇して水面から散逸してしまい、酸素の利用効率は非常に低いものであった。
【0003】
そのため、標準空気曝気に代えて酸素を富化し、あるいは純酸素曝気を採用したり、大通気量曝気を試みたりされている。従来の曝気技術では、空気などの溶解効率は、通常5〜6%、良くても、10%程度といわれている。
難溶解性の酸素ガス等の反応ガスを溶液中に溶解させる場合、気体の溶解量は、圧力の増加につれて増大することが知られている。従来の反応槽は、大気圧下での生物反応を基本とし、圧力要因は、反応槽の水深圧(通常、有効水深5m、圧力0.05MPa程度)を利用しているに過ぎない。
槽(タンク)の深さを大きくしてその水深圧を利用することも試みられたようである。ディープシャフトの深さが40〜150mに達するものまで検討された例もある。
【0004】
しかし、その深さにまで酸素ガス(空気)気泡を引き込むために、ディープシャフト内を下降させた後上昇させる被処理水の水流の流速を2m/sec以上と大きくすることが必要であって、曝気動力消費量が増大し、また、漏水の心配のない地層(岩盤)の適地の少なさや、反応槽設置の工事費として過大なものが必要とされることから、酸素ガスの利用効率こそ90%を実現できるとされているものの、殆ど普及しなかった。
加圧反応槽の考えは必ずしも無かったわけではないが、通常の反応槽の水深圧である0.1MPaの加圧により発生する荷重は、約10トン/m2となり、流入日量が、数万〜数十万トンに達する公共下水処理場の反応槽を気密・耐圧構造にする費用は莫大であり、現在の曝気技術レベルでの酸素(空気)の利用効率を前提とする限り、加圧による改善効果は、費用対効果の面でも限界があり、採用されていない。
【0005】
また、余剰活性汚泥の減容化対策として、活性汚泥法による排水処理系にオゾンガスを適用することも行われている(特許文献1、特許文献2、特許文献3参照)。そこでも、ガス態の液体中への溶解・分散効率は、従来の曝気技術と大同小異であった。
本発明者は、活性汚泥法による排水浄化に関して、液体中に気体を(超)微細気泡として分散・貯留する発明をなした(特許文献4参照)。
そこでは、撹拌装置(特許文献5参照)等を利用して液体中に気体を(超)微細気泡として分散・貯蔵するので、ガス態の液体中への溶解・貯留機能は飛躍的に改善され、ガス態の利用効率はほぼ100%近くにまで達することができた。しかし、活性汚泥反応系は原則として大気圧下の開放形で行われる方式とされていたので、排水の浄化作用の結果として生ずる余剰汚泥の生成量を削減する面で、更なる改善が望まれている。
【0006】
【特許文献1】
特公平5−85236号公報
【特許文献2】
特開平6−206088号公報
【特許文献3】
特公昭57−19719号公報
【特許文献4】
特願2002−212598
【特許文献5】
特開平7−124577号公報
【0007】
【発明が解決しようとする課題】
生物的排水浄化反応が加圧下で行われれば、ガス態の利用効率の更なる向上と、排水の浄化作用の結果として生ずる余剰汚泥の生成量を削減する面で、更なる改善が期待され得る。
本発明は、気液混合・貯蔵させた液を反応槽中の被処理排水中に導くに際し、反応槽内を加圧状態とし、ガス態の利用効率の向上と余剰汚泥の生成量の更なる削減とを同時に期することができる反応系を提供することを課題とするものである。
【0008】
【課題を解決するための手段】
本発明の加圧式生物的排水処理法は、気体と液体との混合体を送給する気液圧送ポンプと、前記気液圧送ポンプから圧送された前記気体と前記液体を攪拌する攪拌装置と、を有し、気泡径1nm〜1,000nmのキャビテーション超微細気泡を発生する気液混合装置を利用した加圧式生物的排水処理法であって沈殿槽からの汚泥水と酸素及びオゾンからなる反応ガスを前記気液圧送ポンプによって前記攪拌装置に圧送して得た気泡径1nm〜1,000nmの超微細気泡反応ガスの溶存液を、加圧生物反応槽に高圧のまま送り込むことを特徴とする。また、前記1nm〜1,000nmの超微細気泡反応ガスは、前記攪拌装置を通過する時間内溶解することが好ましい。さらに、前記加圧生物反応槽において、微生物の生息密度を高め、微生物を滞留させる手段として、微生物の担体を装備することが好ましい。
【0009】
【発明の実施の形態】
本発明は、特許文献4に詳細に開示されるラインアトマイザーによって酸素を含有するガス体ないしオゾンを含有するガス体を液体中に高濃度に溶解させ、且つ貯留するガス化液体技術を用い、高圧反応槽中の被処理排水を直接ガス化液体とし、又は被処理水に高圧のガス化液体を供給して生物的反応ないし化学的反応を促進し、被処理排水中の有機物を可及的にガスと水とにまで分解することを基本とする。
以下、本発明を詳細に説明する。
本発明で処理対象とする被処理排水は、分解除去すべき有機物を含むものであれば、生活排水、下水、工場排水、ヘドロ等を含む滞留水等、格別問わない。海水系でも可能である。
【0010】
加圧反応槽としては、0.3〜3MPa程度の圧力に耐え得る容器とする。加圧反応槽は、加圧反応タンク、加圧反応塔であってもよい。形状や要領も格別問わないが、例えば、設置する加圧反応槽は、複数でも良く、必要に応じ並列、直列に適宜配置することが出来る。又、反応槽の構造は、一槽式横置式円筒タンクとすることも二槽式以上とすることもできる。
加圧反応槽には、被処理排水原水の入口、ガス化液体の入口、処理済みの排出液体の排出口を設ける。被処理排水原水は気液圧送ポンプでアトマイザーを経由または直接加圧反応槽に供給される。排出口の先で減圧され、反応によって生じるガス(炭酸ガス等)は、減圧に際して排出液体から分離される。
【0011】
排出液体は、通例通り沈殿槽(池)を経由して、またはそのまま系外に放流されて差し支えないが、必要があればさらにその他の所要の処理を施してから系外へ放流される。反応によって生じるガスも、基本的には外部に放出して差し支えないが、温暖化防止の観点その他から必要があれば、二次的に処理されることもあり得る。
本発明で利用することが望ましい気液混合装置(ラインアトマイザーシステム)は、ガスロック、エアロックを起こすことなく気体と液体との混合体を送給することができる気液圧送ポンプと、超音波及びキャビテーションを発生させる機能を備えたアトマイザーと、酸素および/またはオゾンを供給する装置により構成される。
【0012】
アトマイザーとしては、微細(超微細)な気泡に効率的に分散・混合し、液体中に貯留させることができるものであれば、いずれの形態のものも用いられ得る。
アトマイザーとしては、例えば、スタティック型ミキサーを多段、又は機能別に並列に用いるものでも使用可能である。アトマイザーのより好ましい例として、「オゾン反応装置」(特許文献5参照)に用いられている「撹拌装置」を挙げることができる。
【0013】
その撹拌装置(気液ミキサー)は、図1に示すようなものである。図1において、チューブ1の流体流入側に、ほぼ相似形の2枚の半楕円形の翼盤2を配し、翼盤2の弦側側縁3を互いに向き合わせ、チューブの軸心に対して対称的に交差させ、交差部より流体流入側に位置する2枚の翼盤2の弦側側縁3間を、チューブの横断面をほぼ2等分する三角形の仕切板4で閉塞し、翼盤の弧状縁部(翼盤2の弦側側縁3と反対側の縁部)をチューブ1の内周壁6に固着して形成してなる変流部と、該変流部に続くチューブ1の内周壁6に、頭頂部をチューブの軸心方向に向けた半球状の頭部7と、逆載頭円錐台状の脚部8とにより一体成形された1個以上の突起物9を、チューブ1の軸芯に対して放射状に配して形成されてなる反応部とにより構成される。
【0014】
この撹拌装置(OHRラインミキサーとも呼ばれる)によれば、1基で、気体と液体とを気液ミキサーに送給できれば、気液ミキサーを通過するに要する短時間内に、気泡径0.5〜3.0μm程度、さらには1nm〜1,000nmの超微細気泡を液体中に均一に分散混合することができる。
アトマイザーへ気体と液体とを気液圧送ポンプを用いて圧送する。その場合、気体の混合割合が3容積%以上に増加しても圧送能力が低下しないものであることが望ましい。
液体を送給する通常のポンプは、液体に気体が混入していると、ガスロック、エアロックを起こし、送給能力が急激に低下し、混入気体が6〜8容積%に達すると実質的に送給不能に至る。
【0015】
気体が混入した液体を圧送するポンプとして、気体の割合が増加してもその圧送能力が低下しない気液圧送ポンプであればより好ましい。そのようなポンプとして、例えば、兵神装備株式会社より市販されている「モーノポンプ」がある。
「モーノポンプ」は、図2に示すように、断面が長円形である雌ネジ状空間が穿たれたステーター10内の雌ネジ状の空間内を、ピッチの大きな螺旋状で断面が円形で螺旋状をなすローター11が回転することによって、ステーターとローターとにより形成される空隙が順次移動し、その空隙内に存在する物質が移動していくタイプの定量送給ポンプである。なお、図2の下方には、各位置におけるローターとステーターに穿たれた空間との関係が示されている。それによれば、ステーターに穿たれた空間の1ピッチがローターの螺旋の2ピッチに対応していることが判る。
【0016】
「モーノポンプ」によれば、混合される気体が90容積%以下の気液混合流体も、圧送能力の低下なしに圧送が可能であり、気体と液体との混合割合、流量を調整・変動させることが自在にできる。ローターの回転速度によって単位時間当りの送給量が調整できるものである。ローターを逆回転させることによって、逆送も可能である。
酸素および/またはオゾンを供給する装置としては、酸素の供給とオゾン生成とを調節できるオゾン生成機等が利用できる。例えば、誘電体上に電極を形成したオゾン発生素子と、このオゾン発生素子に高周波交流電圧を印加する高周波高電圧電源を有し、オゾン発生素子に酸素含有ガスを供給しつつ、この電源の電圧および/または周波数を調整機で操作することによりオゾンの発生量が調整可能となる。
【0017】
また、酸素を供給することを主とする工程とオゾンによる酸化分解を主とする工程として、供給する酸素およびオゾンの量を調整する酸素・オゾンサイクルジェネレーターとすることが可能である。
供給する酸素を含む反応性ガスは、空気でも良いし、酸素富化空気でも良いし、純酸素でも良い。オゾンの発生量をゼロとして、供給されたガスをそのまま送り出すこともできる。
ラインアトマイザーを通過する液体に圧力を加えることができる。液体にガス体を導入する前に、適宜の加圧器を設けることによって圧力を加えてもよいし、気液圧送ポンプの入口径と出口径、或いは、アトマイザーの入口径と出口径とを異ならせることによっても、圧力を変化させることができる。
【0018】
したがって、一般的には、ガスの溶解度は、高圧下で高くなるため、液体へのガス体の溶解に資することができる。
ガスを混入させる液体としては、排水処理系の沈殿槽(池)からの汚泥水や上澄み水を利用しても良いし、系外の清水を用いても良いし、処理すべき流入排水原水を用いても良い。
ラインアトマイザーによって液体とガスが混合された気液混合流体を、被処理排水原水に導入する。導入する位置は、加圧反応槽へ直接導入する。また、ラインアトマイザーを通して供給されるガスが、主として酸素を含有するガスと、オゾンを含有するガスとで異ならせる場合には、それぞれを導入する管を加圧反応槽に複数設けることもできる。
【0019】
アトマイザー中で、加圧下に溶液と所望のガスを混合し、ガス態を気泡径300μm以下の超微細気泡態化することにより、気体の液体中への溶解速度を高め、溶存ガスとすると共に、残余のガス態を超微細気泡態として、分散・滞留・貯蔵することを可能にして反応槽中に高圧のまま送り込む。
残余のガス態を超微細気泡態として、分散・滞留・貯蔵して送り込むことにより、反応槽中で生物的反応や化学的反応で溶存ガスが費消されると、反応槽中に分散して存在する超微細気泡態から即座に溶存ガス化して補給供給され、溶存ガスの欠乏による反応の遅延を起こすことがない。
【0020】
本発明は、活性汚泥法などの生物的排水処理法として、既存、新設を問わず適用することができる。特に、既設の処理施設に設置する場合は、既設の反応槽に相当する部分の適宜の個所に、小型(既存の反応槽の1/10〜1/100容量程度)の加圧型の反応槽、反応タンク及び、又は反応塔(加圧反応槽により代表させている)を設置することにより、容易に実施できる。すなわち、活性汚泥法などの生物的排水処理施設のフロー中の適宜の個所に、加圧反応槽を設置し、浄化処理する排水と反応に必要な純酸素、空気等の反応ガスを混入させた気液を、反応槽に加圧・送給し、加圧反応槽中に生息・保持された微生物により捕食・分解処理する。
【0021】
本発明は、難溶解性の酸素、空気などの反応性ガスの溶解量を増加させることができるため、急速に微生物の活性化・増殖を促進し、排水中の可溶性有機物を短時間に、捕食・分解することができる。また、加圧反応槽を用いることによって、水深圧(0.05MPa程度)のみを利用する在来の反応槽の容積を1/10〜1/100程度に反応槽、ひいては排水処理施設を大幅に小型化できる。
本発明は、加圧反応槽中に、微生物に必要な酸素などの反応ガスが、高濃度の溶存態で、あるいは超微細気泡態で十二分に供給されることから、微生物の生息密度を高める担体を装備することにより、その効果を著しく高めることができる。加圧反応槽中に、微生物の生息密度を高める担体を装備することにより、加圧反応槽の容積を、担体を装備しない反応槽に比べ、著しく縮減できる。そして、反応に必要な十分な量の微生物は、担体中ないし担体周面に付着・生息するため、微生物は体加圧反応槽中に留まり、流失せず、従来の活性汚泥法のように返送汚泥によって微生物(活性汚泥)を供給する必要もなくなる。
微生物の生息密度を高める担体としては、例えば、PVAを原料とする「クラゲ−ル」等微生物濃度を高め、BOD除去能力を高め、高負荷排水に対応できる担体であればよい。
【0022】
本発明は、必要によって、オゾンを含有するガスを供給することによって、活性汚泥の更なる分解を図ることができる。微生物の自己消化に加えて、オゾンによる活性汚泥の分解が加わることによって、反応槽からの汚泥の発生を大幅に削減することが期され、また、汚泥の発生を見ないことまでが期され得る。
本発明は、加圧反応槽を利用して加圧下で生物的反応ないし化学的反応を行わせるので、オゾン利用効率を100%とすることが可能であり、従って、従来の汚泥オゾン分解プロセスの如き排オゾン処理は一切必要としない。
【0023】
生物的排水処理を採用する公共下水道施設の一般的なプロセスにおいて、本発明を実施する場合を例にとると、
1.従来のタンク水深圧利用曝気槽の水深が5mの場合、水深によるタンク内圧力の平均値は0.25kg/cm2であり、空気曝気を用いた際の気体の溶解効率は約0.2%(気温20度)である。
一方、上記の条件で、本発明において加圧反応槽に5kg/cm2の加圧を行った場合、気体の溶解効率は10%となり約50倍の溶解濃度となる(ヘンリーの法則)。
【0024】
2.上記の条件において空気の代わりに90%の純酸素を用いると、215倍の酸素溶解濃度を達成することが出来る。
3.90%純酸素曝気法の世界特許を有していたUnox法は、表面曝気方法であったため、酸素溶解に長時間を要していたが、本発明では数十倍の速度での溶解が可能となり、反応槽を従来法に比して数十分の一〜数百分の一に小型化することが可能となり、設置スペース、建設コストが大幅に削減される。
4.上記溶解効率の増加は、酸素・オゾン製造動力、曝気動力の節約となり、省エネルギー及びコスト削減効果を実現する。
【0025】
【発明の効果】
本発明によれば、酸素などの超微細気泡化ガス態の混入を、加圧反応槽の利用によって、混入速度及び混入量ともに著しく増進させ、酸素などの反応ガスの生物的反応ないし化学的反応が著しく促進され、その結果として排水処理施設を大幅に小型化でき、排水処理技術に加圧反応槽を採り入れることが現実に可能となった。
【図面の簡単な説明】
【図1】 本発明のアトマイザーとして好適に使用され得る気液ミキサーの一例を示す説明図である。
【図2】 本発明に最適に使用され得る気液圧送ポンプの一例を示す説明図である。
【符号の説明】
1:チューブ
2:翼盤
3:(翼盤の)弦側側縁
4:仕切板
6:(チューブの)内周壁
7:半球状の頭部
8:脚部
9:突起物
10:ステーター
11:ローター
[0001]
BACKGROUND OF THE INVENTION
The present invention belongs to the biological wastewater purification treatment technical field represented by the activated sludge method, and further belongs to the technical field of increasing the dissolved amount of gas in the biological reaction tank by pressurization.
[0002]
[Prior art]
In order to purify the wastewater, biological treatment represented by the activated sludge method is widely adopted. The activated sludge method is a method in which microorganisms and oxygen are used for biological treatment, organic pollutants in the wastewater are fixed as activated sludge, and part of them is decomposed into water and carbon dioxide (self-digestion) and removed. is there.
In biological wastewater purification processes such as the activated sludge method, dissolved oxygen is indispensable in the reaction system, and supply of dissolved oxygen to the reaction system is often the rate-limiting condition.
In order to promote the biological reaction in the reaction system, air was supplied using a bubbling device. However, the bubble size of the gas supplied to the treated water by the diffuser is very large, and most of the gas rapidly rises in the treated water and dissipates from the water surface, so the oxygen utilization efficiency is very low. It was a thing.
[0003]
Therefore, oxygen is enriched instead of standard air aeration, pure oxygen aeration is employed, or a large aeration amount aeration is attempted. In the conventional aeration technique, it is said that the dissolution efficiency of air or the like is usually 5 to 6%, or at most about 10%.
When a reaction gas such as a hardly soluble oxygen gas is dissolved in a solution, it is known that the amount of gas dissolved increases as the pressure increases. The conventional reaction tank is based on a biological reaction under atmospheric pressure, and the pressure factor only uses the water depth pressure of the reaction tank (usually an effective water depth of 5 m and a pressure of about 0.05 MPa).
It seems that attempts have been made to increase the depth of the tank (tank) and use the water pressure. There is an example in which the depth of the deep shaft reaches 40 to 150 m.
[0004]
However, in order to draw oxygen gas (air) bubbles to that depth, it is necessary to increase the flow rate of the water to be treated which is raised after being lowered in the deep shaft to 2 m / sec or more, The consumption efficiency of oxygen gas is 90% due to the increased consumption of aeration power, the lack of suitable grounds (bedrock) where there is no risk of water leakage, and excessive construction costs for the reaction tank installation. % Can be realized, but it has hardly spread.
Although the idea of a pressurized reaction tank was not necessarily absent, the load generated by pressurization of 0.1 MPa, which is the water depth pressure of a normal reaction tank, was about 10 tons / m 2 , and the daily flow rate was several tens of thousands. The cost of making a reaction tank in a public sewage treatment plant that reaches tens of thousands of tons is hermetic and pressure resistant is enormous, and as long as the utilization efficiency of oxygen (air) at the current aeration technology level is assumed The improvement effect has a limit in terms of cost effectiveness and is not adopted.
[0005]
In addition, as a measure for reducing the volume of surplus activated sludge, ozone gas is also applied to a wastewater treatment system using an activated sludge method (see Patent Document 1, Patent Document 2, and Patent Document 3). Even here, the dissolution / dispersion efficiency in the gaseous liquid was almost the same as the conventional aeration technology.
The present inventor has invented an invention for dispersing and storing a gas as (ultra) fine bubbles in a liquid with regard to wastewater purification by an activated sludge method (see Patent Document 4).
In this case, since the gas is dispersed and stored as (ultra) fine bubbles in the liquid using a stirrer (see Patent Document 5), the function of dissolving and storing the gas in the liquid is drastically improved. The utilization efficiency of the gas state was able to reach almost 100%. However, since the activated sludge reaction system is generally performed in an open form under atmospheric pressure, further improvement is desired in terms of reducing the amount of excess sludge produced as a result of the purification of wastewater. ing.
[0006]
[Patent Document 1]
Japanese Patent Publication No. 5-85236 [Patent Document 2]
JP-A-6-206088 [Patent Document 3]
Japanese Patent Publication No.57-19719 [Patent Document 4]
Japanese Patent Application No. 2002-212598
[Patent Document 5]
Japanese Patent Laid-Open No. 7-124577
[Problems to be solved by the invention]
If the biological wastewater purification reaction is carried out under pressure, further improvements can be expected in terms of further improving gas utilization efficiency and reducing the amount of excess sludge produced as a result of wastewater purification. .
In the present invention, when introducing the liquid mixed and stored into the wastewater to be treated in the reaction tank, the inside of the reaction tank is brought into a pressurized state to improve the utilization efficiency of the gas state and further increase the amount of surplus sludge produced. It is an object of the present invention to provide a reaction system that can simultaneously achieve reduction.
[0008]
[Means for Solving the Problems]
The pressurized biological wastewater treatment method of the present invention includes a gas-liquid pressure feed pump that feeds a mixture of gas and liquid, a stirring device that stirs the gas and the liquid pumped from the gas-liquid pressure feed pump, Is a pressurized biological wastewater treatment method using a gas-liquid mixing device that generates cavitation ultrafine bubbles with a bubble diameter of 1 nm to 1,000 nm, and is a reaction comprising sludge water from a sedimentation tank, oxygen and ozone A solution of ultrafine bubble reaction gas having a bubble diameter of 1 nm to 1,000 nm obtained by pumping gas to the stirring device by the gas-liquid pump is fed into the pressurized biological reaction tank at a high pressure. . Moreover, it is preferable that the ultrafine bubble reaction gas of 1 nm to 1,000 nm is dissolved within the time for passing through the stirring device . Furthermore, it is preferable to equip the pressurized biological reaction tank with a microorganism carrier as means for increasing the population density of microorganisms and retaining the microorganisms .
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The present invention uses a gasification liquid technique in which a gas body containing oxygen or a gas body containing ozone is dissolved in a liquid at a high concentration and stored by a line atomizer disclosed in detail in Patent Document 4, using a high pressure The treated wastewater in the reaction tank is directly converted into a gasified liquid, or a high-pressure gasified liquid is supplied to the treated water to promote biological or chemical reactions, and the organic matter in the treated wastewater is made as much as possible. Basically, it decomposes into gas and water.
Hereinafter, the present invention will be described in detail.
The treated wastewater to be treated in the present invention is not particularly limited as long as it contains organic matter to be decomposed and removed, such as domestic wastewater, sewage, factory wastewater, and stagnant water containing sludge. It is possible even in a seawater system.
[0010]
The pressurized reaction vessel is a container that can withstand a pressure of about 0.3 to 3 MPa. The pressurized reaction tank may be a pressurized reaction tank or a pressurized reaction tower. But also particularly any shape or manner, for example, pressurized reactor vessel to be installed may be plural, if necessary parallel, may be arranged Yibin suitable for series. Moreover, the structure of the reaction tank can be a single tank type horizontal cylindrical tank or can be two tanks or more.
The pressurized reaction tank is provided with an inlet for raw wastewater to be treated, an inlet for gasified liquid, and an outlet for treated exhaust liquid. The raw wastewater to be treated is supplied to the pressurized reaction tank via an atomizer or directly by a gas-liquid pressure feed pump. A gas (such as carbon dioxide) that is decompressed at the tip of the discharge port and generated by the reaction is separated from the discharge liquid during the pressure reduction.
[0011]
The discharged liquid may be discharged to the outside of the system as usual via a settling tank (pond) or, if necessary, after being subjected to other necessary treatments, discharged to the outside of the system. The gas produced by the reaction may basically be released to the outside, but may be treated secondarily if necessary from the viewpoint of preventing global warming.
A gas-liquid mixing device (line atomizer system) desirably used in the present invention includes a gas-liquid pressure feed pump capable of feeding a gas-liquid mixture without causing a gas lock and an air lock, and an ultrasonic wave. And an atomizer having a function of generating cavitation and a device for supplying oxygen and / or ozone.
[0012]
As the atomizer, any atomizer may be used as long as it can be efficiently dispersed and mixed in fine (ultrafine) bubbles and stored in a liquid.
As the atomizer, for example, a static mixer can be used in multiple stages or in parallel according to function. As a more preferable example of the atomizer, “agitator” used in “ozone reactor” (see Patent Document 5) can be mentioned.
[0013]
The stirring device (gas-liquid mixer) is as shown in FIG. In FIG. 1, two semi-elliptical blades 2 having substantially similar shapes are arranged on the fluid inflow side of the tube 1, the chord side edges 3 of the blades 2 are faced to each other, and the axis of the tube is Crossed symmetrically, and closed between the chord side edges 3 of the two blades 2 located on the fluid inflow side from the intersecting portion with a triangular partition plate 4 that bisects the transverse section of the tube, A current transformation part formed by fixing the arcuate edge of the blade (the edge opposite to the chord side edge 3 of the blade 2) to the inner peripheral wall 6 of the tube 1, and the tube following the current transformation part One or more protrusions 9 integrally formed with a hemispherical head 7 with the top of the inner wall 6 oriented in the axial direction of the tube and a reverse-mounting truncated-conical leg 8 , And a reaction part formed radially with respect to the axis of the tube 1.
[0014]
According to this stirring device (also referred to as an OHR line mixer), if gas and liquid can be fed to the gas-liquid mixer with a single unit, the bubble diameter is 0.5 to within a short time required to pass through the gas-liquid mixer. Ultrafine bubbles of about 3.0 μm, and further 1 nm to 1,000 nm can be uniformly dispersed and mixed in the liquid.
Gas and liquid are pumped to the atomizer using a gas-liquid pump. In that case, it is desirable that the pumping capacity does not decrease even if the gas mixing ratio is increased to 3% by volume or more.
A normal pump for feeding a liquid causes a gas lock and an air lock when a gas is mixed in the liquid, and the feeding capacity is drastically lowered. When the mixed gas reaches 6 to 8% by volume, it is substantially reduced. Can not be delivered to.
[0015]
As the pump for pumping the liquid in which the gas is mixed, it is more preferable if it is a gas-liquid pump that does not decrease the pumping capacity even if the gas ratio increases. As such a pump, for example, there is a “Mono pump” commercially available from Hyojin Equipment Co., Ltd.
As shown in FIG. 2, the “Monopump” has a spiral with a large pitch and a circular cross section in the female screw space in the stator 10 in which a female screw space having an oval cross section is perforated. When the rotor 11 is rotated, the gap formed by the stator and the rotor moves sequentially, and the substance present in the gap moves. In the lower part of FIG. 2, the relationship between the rotor and the space formed in the stator at each position is shown. According to this, it can be seen that one pitch of the space formed in the stator corresponds to two pitches of the spiral of the rotor.
[0016]
According to the “Monopump”, gas-liquid mixed fluid with 90% by volume or less of gas to be mixed can be pumped without lowering the pumping capacity, and the mixing ratio and flow rate of gas and liquid can be adjusted and varied. Can be done freely. The feeding amount per unit time can be adjusted by the rotational speed of the rotor. Reverse feed is also possible by rotating the rotor in reverse.
As an apparatus for supplying oxygen and / or ozone, an ozone generator that can control supply of oxygen and generation of ozone can be used. For example, an ozone generating element having an electrode formed on a dielectric, and a high-frequency high-voltage power source that applies a high-frequency alternating voltage to the ozone generating element, while supplying an oxygen-containing gas to the ozone generating element, And / or the amount of ozone generated can be adjusted by operating the frequency with a regulator.
[0017]
Moreover, it is possible to provide an oxygen / ozone cycle generator that adjusts the amount of oxygen and ozone to be supplied as a process mainly including supplying oxygen and a process mainly including oxidative decomposition with ozone.
The reactive gas containing oxygen to be supplied may be air, oxygen-enriched air, or pure oxygen. It is also possible to send out the supplied gas as it is, with the amount of ozone generated being zero.
Pressure can be applied to the liquid passing through the line atomizer. Before introducing the gas body into the liquid, pressure may be applied by providing an appropriate pressurizer, and the inlet diameter and outlet diameter of the gas-liquid pressure feed pump or the inlet diameter and outlet diameter of the atomizer are made different. Also, the pressure can be changed.
[0018]
Therefore, generally, since the solubility of gas becomes high under high pressure, it can contribute to dissolution of the gas body in the liquid.
As the liquid to be mixed with gas, sludge water and supernatant water from the sedimentation tank (pond) of the wastewater treatment system may be used, fresh water outside the system may be used, or the influent wastewater to be treated It may be used.
A gas-liquid mixed fluid in which liquid and gas are mixed by a line atomizer is introduced into the raw water to be treated. The introduction position is introduced directly into the pressurized reaction vessel. Further, when the gas supplied through the line atomizer is made different between a gas mainly containing oxygen and a gas containing ozone, a plurality of pipes for introducing each of them can be provided in the pressurized reaction tank.
[0019]
In an atomizer, a solution and a desired gas are mixed under pressure, and the gas state is changed to an ultrafine bubble state with a bubble diameter of 300 μm or less, thereby increasing the dissolution rate of the gas into the liquid and making the dissolved gas, The remaining gas state is made into an ultrafine bubble state and can be dispersed, retained and stored, and sent into the reaction vessel at a high pressure.
When the remaining gas state is dispersed, retained, stored, and sent as ultrafine bubbles, when dissolved gas is consumed in biological or chemical reaction, it is dispersed in the reaction vessel. The dissolved gas is instantly converted and replenished from the ultrafine bubble state, and the reaction is not delayed due to the lack of dissolved gas.
[0020]
The present invention can be applied as a biological wastewater treatment method such as an activated sludge method regardless of existing or new establishment. In particular, when installing in an existing treatment facility, a small-sized (about 1/10 to 1/100 capacity of the existing reaction tank) pressurized reaction tank is provided at an appropriate portion corresponding to the existing reaction tank, It can be easily carried out by installing a reaction tank and / or a reaction tower (represented by a pressurized reaction tank). In other words, a pressurized reaction tank was installed at an appropriate location in the flow of a biological wastewater treatment facility such as the activated sludge method, and wastewater to be purified and reaction gases such as pure oxygen and air necessary for the reaction were mixed. Gas-liquid is pressurized and delivered to the reaction tank, and preyed and decomposed by microorganisms that live and are retained in the pressurized reaction tank.
[0021]
The present invention can increase the dissolution amount of reactive gases such as hardly soluble oxygen and air, thus rapidly promoting the activation and growth of microorganisms and precipitating soluble organic matter in wastewater in a short time.・ Can be disassembled. In addition, by using a pressurized reaction tank, the volume of a conventional reaction tank that uses only water depth (about 0.05 MPa) is reduced to about 1/10 to 1/100, and the wastewater treatment facility is greatly increased. Can be downsized.
In the present invention, since the reaction gas such as oxygen necessary for microorganisms is sufficiently supplied in a pressurized reaction tank in a high concentration dissolved state or in an ultrafine bubble state, the population density of microorganisms is reduced. The effect can be remarkably enhanced by equipping the carrier for enhancing. By installing a carrier that increases the population density of microorganisms in the pressurized reaction vessel, the volume of the pressurized reaction vessel can be significantly reduced compared to a reaction vessel that is not equipped with a carrier. And since a sufficient amount of microorganisms necessary for the reaction adheres and inhabits on the carrier or on the periphery of the carrier, the microorganisms remain in the body pressure reaction tank and do not flow away, but are returned as in the conventional activated sludge method. There is no need to supply microorganisms (activated sludge) with sludge.
As a carrier that increases the density of microorganisms, for example, a carrier that can increase the concentration of microorganisms such as “jellyfish” using PVA as a raw material, enhance the BOD removal ability, and can cope with high load drainage.
[0022]
In the present invention, activated sludge can be further decomposed by supplying a gas containing ozone as necessary. In addition to microbial self-digestion, decomposition of activated sludge by ozone is expected to significantly reduce the generation of sludge from the reaction tank, and it can be expected not to see the generation of sludge. .
In the present invention, a biological reaction or a chemical reaction is performed under pressure using a pressurized reaction tank, so that the ozone utilization efficiency can be made 100%. Such exhaust ozone treatment is not required at all.
[0023]
Taking the case of implementing the present invention as an example in the general process of public sewerage facilities adopting biological wastewater treatment,
1. When the water depth of the conventional tank water depth pressure aeration tank is 5 m, the average value of the tank pressure due to the water depth is 0.25 kg / cm 2 , and the gas dissolution efficiency when air aeration is used is about 0.2%. (Temperature 20 degrees).
On the other hand, under the above conditions, when a pressure of 5 kg / cm 2 is applied to the pressurized reaction tank in the present invention, the gas dissolution efficiency is 10%, which is about 50 times the dissolution concentration (Henry's law).
[0024]
2. If 90% pure oxygen is used instead of air under the above conditions, a 215-fold oxygen dissolution concentration can be achieved.
3. The Unox method, which had a world patent for a 90% pure oxygen aeration method, was a surface aeration method, and thus it took a long time to dissolve oxygen. In the present invention, dissolution at a rate several tens of times higher. It is possible to reduce the size of the reaction tank to several tenths to hundreds of the conventional method, and the installation space and the construction cost are greatly reduced.
4). The increase in dissolution efficiency saves oxygen / ozone production power and aeration power, realizing energy saving and cost reduction effects.
[0025]
【The invention's effect】
According to the present invention, the mixing of the ultrafine bubbled gas state such as oxygen is remarkably enhanced by using a pressurized reaction tank, both the mixing speed and the mixing amount, and the biological reaction or chemical reaction of the reaction gas such as oxygen. As a result, the wastewater treatment facility can be greatly downsized, and it has become possible to incorporate a pressurized reaction tank into wastewater treatment technology.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing an example of a gas-liquid mixer that can be suitably used as an atomizer of the present invention.
FIG. 2 is an explanatory diagram showing an example of a gas-liquid pump that can be optimally used in the present invention.
[Explanation of symbols]
1: tube 2: blade 3: chord side edge 4 (of blade) 4: partition plate 6: inner peripheral wall 7: hemispherical head 8: leg 9: projection 10: stator 11: rotor

Claims (3)

気体と液体との混合体を送給する気液圧送ポンプと、前記気液圧送ポンプから圧送された前記気体と前記液体を攪拌する攪拌装置と、を有し、気泡径1nm〜1,000nmのキャビテーション超微細気泡を発生する気液混合装置を利用した加圧式生物的排水処理法であって
沈殿槽からの汚泥水と酸素及びオゾンからなる反応ガスを前記気液圧送ポンプによって前記攪拌装置に圧送して得た気泡径1nm〜1,000nmの超微細気泡反応ガスの溶存液を、加圧生物反応槽に高圧のまま送り込むことを特徴とする加圧式生物的排水処理法。
A gas-liquid pressure-feed pump that feeds a mixture of gas and liquid; and a stirring device that stirs the gas and the liquid pumped from the gas-liquid pressure-feed pump, and has a bubble diameter of 1 nm to 1,000 nm. A pressurized biological wastewater treatment method using a gas-liquid mixing device that generates cavitation ultrafine bubbles ,
Pressurize the dissolved liquid of ultrafine bubble reaction gas with a bubble diameter of 1 nm to 1,000 nm obtained by pumping the reaction gas consisting of sludge water, oxygen and ozone from the settling tank to the stirring device by the gas-liquid pressure pump. A pressurized biological wastewater treatment method characterized by feeding the biological reaction tank with high pressure.
前記1nm〜1,000nmの超微細気泡反応ガスは、前記攪拌装置を通過する時間内溶解することを特徴とする請求項1に記載の加圧式生物的排水処理法。2. The pressurized biological wastewater treatment method according to claim 1, wherein the ultrafine bubbled reaction gas of 1 nm to 1,000 nm is dissolved within a time passing through the stirring device . 前記加圧生物反応槽において、微生物の生息密度を高め、微生物を滞留させる手段として、微生物の担体を装備することを特徴とする請求項1は請求項2に記載の加圧式生物的排水処理法。In the pressurized圧生thereof reactor, increasing the population density of the microorganisms, as a means of retention of the microorganism, or claim 1, characterized in that to equip a carrier microorganisms pressurized biological wastewater treatment according to claim 2 Law.
JP2003060080A 2003-03-06 2003-03-06 Pressurized biological wastewater treatment method Expired - Lifetime JP4386409B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003060080A JP4386409B2 (en) 2003-03-06 2003-03-06 Pressurized biological wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003060080A JP4386409B2 (en) 2003-03-06 2003-03-06 Pressurized biological wastewater treatment method

Publications (2)

Publication Number Publication Date
JP2004267869A JP2004267869A (en) 2004-09-30
JP4386409B2 true JP4386409B2 (en) 2009-12-16

Family

ID=33122732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003060080A Expired - Lifetime JP4386409B2 (en) 2003-03-06 2003-03-06 Pressurized biological wastewater treatment method

Country Status (1)

Country Link
JP (1) JP4386409B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100633856B1 (en) 2005-07-08 2006-10-13 조통래 Diseases and pests control agent of crops dissolved micro-bubbles, containing oxygen and ozone
JP4490904B2 (en) 2005-11-22 2010-06-30 シャープ株式会社 Water treatment equipment
JP3974929B1 (en) * 2006-06-07 2007-09-12 シャープ株式会社 Waste water treatment method and waste water treatment equipment
JP3974928B1 (en) * 2006-06-07 2007-09-12 シャープ株式会社 Waste water treatment method and waste water treatment equipment
JP5283013B2 (en) * 2006-08-21 2013-09-04 信子 萩原 Gas-liquid mixing device
JP5897857B2 (en) * 2011-09-29 2016-04-06 株式会社御池鐵工所 Vacuum fermentation drying equipment

Also Published As

Publication number Publication date
JP2004267869A (en) 2004-09-30

Similar Documents

Publication Publication Date Title
JP4947679B2 (en) CO2 reduction line atomizing wastewater treatment method
WO2010107077A1 (en) Microbubble generator, activated sludge aeration system, and ballast water sterilizing system
JP2009056364A (en) Piping type water treatment apparatus
US10167214B1 (en) System and method for gas-dispersion-return-sludge-based wastewater treatment
CN104710053A (en) Method and device for strengthened ozone treatment of nitrobenzene waste water in high gravity filed
JP3483917B2 (en) Sewage treatment method
JP4386409B2 (en) Pressurized biological wastewater treatment method
US7534351B2 (en) Pressurized biological waste water purification process
JPH1190496A (en) Apparatus and method for ozone treatment of biological sludge
JP4994265B2 (en) Water treatment apparatus and water treatment method
KR20210087699A (en) Wastewater Treatment System Using Cavitation
JP2010029860A (en) Wastewater treating device for reducing co2 and its method
KR100768516B1 (en) The sludge decrease device which uses a ultrasonics
KR100915987B1 (en) Micro bubble diffuser for treatment of wastewater
KR100547199B1 (en) Process and plant for the solubility of gas and sludge mixing
KR102056071B1 (en) Apparatus and Method of Sewage Treatment
CN114735888B (en) Ultrasonic synergistic ozone catalytic oxidation treatment device and method
CN109824217B (en) Fenton's reagent of pesticide waste water and hydrodynamic cavitation combined treatment system
JP2006320777A (en) Waste water treatment apparatus
JPH1085752A (en) Wastewater treatment method
KR20220065115A (en) Mixing apparatus for aeration tank
JP2004243280A (en) Method and apparatus for aerobic digestion process of sludge
KR100352177B1 (en) Wastewater treatment plant for disintegration and separation of pollutants
JP4503248B2 (en) Wastewater treatment method
JP2007117867A (en) Method and equipment for treating organic solid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090827

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090928

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090928

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3