JP2005204972A - Bubble generator - Google Patents

Bubble generator Download PDF

Info

Publication number
JP2005204972A
JP2005204972A JP2004015376A JP2004015376A JP2005204972A JP 2005204972 A JP2005204972 A JP 2005204972A JP 2004015376 A JP2004015376 A JP 2004015376A JP 2004015376 A JP2004015376 A JP 2004015376A JP 2005204972 A JP2005204972 A JP 2005204972A
Authority
JP
Japan
Prior art keywords
bubble
gas
pump
pressure reducing
stirring chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004015376A
Other languages
Japanese (ja)
Other versions
JP3826138B2 (en
Inventor
Takeo Onishi
武夫 大西
Kunio Ito
邦夫 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DAISHIN BOEKI KK
HARADA SEISAKUSHO KK
NIPPON SEIMITSU KIKAI KOSAKU K
NIPPON SEIMITSU KIKAI KOSAKU KK
Original Assignee
DAISHIN BOEKI KK
HARADA SEISAKUSHO KK
NIPPON SEIMITSU KIKAI KOSAKU K
NIPPON SEIMITSU KIKAI KOSAKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DAISHIN BOEKI KK, HARADA SEISAKUSHO KK, NIPPON SEIMITSU KIKAI KOSAKU K, NIPPON SEIMITSU KIKAI KOSAKU KK filed Critical DAISHIN BOEKI KK
Priority to JP2004015376A priority Critical patent/JP3826138B2/en
Publication of JP2005204972A publication Critical patent/JP2005204972A/en
Application granted granted Critical
Publication of JP3826138B2 publication Critical patent/JP3826138B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Mixers Of The Rotary Stirring Type (AREA)
  • Percussion Or Vibration Massage (AREA)
  • Devices For Medical Bathing And Washing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bubble generator, making the produced bubbles fine in simple and inexpensive constitution. <P>SOLUTION: This bubble generator includes: a pump 5, a suction inlet of which is connected to a liquid source through a water sucking port 12; an air suction port 14 connected to the inlet side; a stirring chamber 3 connected to a discharge opening 17 of the pump 5; a screw 10 driven to rotate with the pump 5 by a motor, thereby performing stirring operation in the stirring chamber 3; a bubble separating chamber 4 for separating bubbles thorugh a communicating hole 9 and introducing a bubble dissolving solution; and a pressure reducing regulating valve 19 connected to a takeout port 18 to reduce the pressure of the bubble dissolving solution and discharge the same. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、微少な気泡を簡便安価に発生する気泡発生装置に関する。   The present invention relates to a bubble generating device that generates minute bubbles easily and inexpensively.

気泡発生装置は、古くから排水処理工程における浮上分離方式に利用されてきたが、比較的最近では、風呂の湯中に微少気泡を発生させることにより、身体の洗浄やマッサージ、更には各種健康増進策等への用途が広がっている。
この種気泡発生装置は、従来からポンプの吸い込み側で水と共に空気を吸い込み、当該空気を水中に溶解させ気液混合状態として出力するものである。
例えば、特許文献1では、空気吸い込み部の圧力を高めるポンプを追加することにより、空気溶解量の増大を図っている。
また、特許文献2では、ポンプの揚程工程の途中から空気を吸い込むようにすることにより、1台のポンプで空気溶解量の増大を図っている。
更に、特許文献3では、気液混合ポンプの吐出流体に抵抗を付与する抵抗器を設け、この抵抗器を構成する障壁板により肥大化した気泡をこの部分に貯留させ直接出力しない対策が図られている。
Bubble generators have been used for the floatation separation method in wastewater treatment processes for a long time, but relatively recently, by generating minute bubbles in bath water, body washing and massage, as well as various health enhancements Applications for measures are expanding.
This type of bubble generating device conventionally sucks air together with water on the suction side of the pump, dissolves the air in water, and outputs it as a gas-liquid mixed state.
For example, in Patent Document 1, the amount of dissolved air is increased by adding a pump that increases the pressure of the air suction portion.
Further, in Patent Document 2, the amount of dissolved air is increased by one pump by sucking air from the middle of the pump head process.
Further, in Patent Document 3, a resistor is provided that provides resistance to the discharge fluid of the gas-liquid mixing pump, and measures are taken to prevent the bubbles enlarged by the barrier plate that constitutes the resistor from being stored in this portion and directly output. ing.

特開平7−88346号公報(図1等参照)Japanese Patent Laid-Open No. 7-88346 (see FIG. 1 etc.) 特開平10−33961号公報(図1等参照)Japanese Patent Laid-Open No. 10-33961 (see FIG. 1 etc.) 特開2003−117365号公報(図1、4等参照)Japanese Unexamined Patent Publication No. 2003-117365 (see FIG. 1, 4 etc.)

特許文献1のものでは、空気吸い込み側の圧力を高めるためのポンプが別途必要になり、装置がその分、大型化しコストも増大する。また、特許文献2のものでは、ポンプが1台で済むが、その揚程途中に空気の吸い込み口を設ける必要があり、特殊なポンプとなってコスト高にならざるを得ない。また、これら文献ではいずれも、空気の溶解量を増大させることに主眼がおかれており、特に上述した各種健康増進策への適用時に問題となる発生気泡の微少化については殆ど意図されていない。   In the thing of patent document 1, the pump for raising the pressure by the side of air suction is needed separately, and an apparatus is enlarged correspondingly and cost also increases. In addition, in Patent Document 2, only one pump is required, but it is necessary to provide an air suction port in the middle of its head, and the cost becomes high as a special pump. In addition, all of these documents focus on increasing the amount of dissolved air, and in particular, there is little intention about minimization of generated bubbles, which is a problem when applied to the various health promotion measures described above. .

特許文献3では、ポンプから吐出された流れの中に障壁板を設けて一定の体積に肥大化した気泡がそのまま出力されない対策が開示されているが、溶融気泡の微細化を積極的に追求するものではない。   Patent Document 3 discloses a measure for preventing a bubble that has been enlarged to a certain volume by providing a barrier plate in the flow discharged from the pump, but actively pursuing miniaturization of the molten bubble. It is not a thing.

この発明は、以上のような従来の問題点を解決するためになされたもので、簡便安価な構成で発生気泡の微細化を実現することが出来る気泡発生装置を得ることを目的とする。   The present invention has been made to solve the conventional problems as described above, and an object of the present invention is to obtain a bubble generating device that can realize the miniaturization of generated bubbles with a simple and inexpensive configuration.

この発明に係る気泡発生装置は、吸入口が液体源に接続されたポンプと、このポンプの吸入側に接続され所定流量の気体を導入する気体導入部と、上記ポンプの吐出口に接続された攪拌室と、この攪拌室内に設けられ回転駆動されて攪拌動作を行う回転羽根と、上記攪拌室との連通部で気泡を分離して気泡溶解液を導入し上記気泡溶解液を取り出す取出口を備えた気泡分離室と、この気泡分離室の取出口に接続され上記気泡溶解液を減圧して放出する減圧装置とを備えたものである。   The bubble generating device according to the present invention is connected to a pump having a suction port connected to a liquid source, a gas introduction unit that is connected to a suction side of the pump and introduces a predetermined flow rate of gas, and a discharge port of the pump. A stirring chamber, a rotary blade provided in the stirring chamber and driven to rotate and performing a stirring operation, and an outlet for separating bubbles and introducing bubble dissolving liquid and taking out the bubble dissolving liquid at a communicating portion with the stirring chamber A bubble separation chamber provided, and a pressure reducing device connected to an outlet of the bubble separation chamber and depressurizing and discharging the bubble solution.

この発明に係る気泡発生装置においては、ポンプの吸入側から導入された気体は、ポンプにより液体中に攪拌加圧され、更に、攪拌室において高圧力下で回転駆動される回転羽根により液体への溶解作用が促進される。この結果、気体の溶解度合いが高まり、減圧装置による減圧で気化発生する気泡が極めて微少化される。   In the bubble generating device according to the present invention, the gas introduced from the suction side of the pump is stirred and pressurized into the liquid by the pump, and further supplied to the liquid by the rotating blades that are driven to rotate under high pressure in the stirring chamber. The dissolution action is promoted. As a result, the degree of gas dissolution increases, and the bubbles that are vaporized by the decompression by the decompression device are extremely reduced.

ポンプは、本来、所定量の液体流量Qを確保すると同時に所定の揚程H(圧力差)を確保する機能を有するもので、その仕事量Q・Hに応じた出力容量を必要とするものである。従来の気泡発生装置は、既述したとおり、このポンプの吸入側に気体を導入し気液混合流体を吐出する。この過程で気体が液体中に物理溶解し、ポンプによる圧力上昇により、いわゆるヘンリーの法則でその溶解量は増加する。また同じく、この過程で、ポンプのインペラの回転による攪拌作用が生じ気体の液体への溶解が行われるが、この攪拌作用は、本来、ポンプに課された流量Q・揚程Hを実現するための動作であって気体の液体への溶解を目的としたものではない。   The pump originally has a function of securing a predetermined head H (pressure difference) at the same time as securing a predetermined amount of liquid flow rate Q, and requires an output capacity corresponding to the work amount Q · H. . As described above, the conventional bubble generator introduces gas to the suction side of the pump and discharges the gas-liquid mixed fluid. In this process, the gas is physically dissolved in the liquid, and the amount of dissolution increases by the so-called Henry's law due to the pressure increase by the pump. Similarly, in this process, a stirring action is generated by the rotation of the impeller of the pump, and the gas is dissolved in the liquid. This stirring action is originally for realizing the flow rate Q and the head H imposed on the pump. It is an operation and not intended to dissolve the gas into the liquid.

ところで、本願発明者等は、発生気泡の微少化を追求するため、種々の実験を繰り返した結果、次なる現象を発見するに至った。即ち、圧力を高めると、気体の溶解量は、平均的巨視的には増加するが、必ずしも発生気泡の微細化にはつながらないという現象である。後述するように、一定圧力の条件でも攪拌作用を強化すると、発生気泡の微細化が促進されることが判明した。
ポンプは、上述のとおり、その攪拌動作は、流量と揚程を確保するためのもので、気泡微細化のための攪拌作用としては一般に不十分であると考えられる。この攪拌作用の不足をポンプで補充しようとすると、ポンプの出力容量を増やすか台数を増やすことになり、装置の大型化コスト増大が避けられない。しかるに、攪拌動作自体は、攪拌による液体中での摩擦損を補償すればよいので、その駆動動力は極めて僅かで済む。
By the way, as a result of repeating various experiments, the present inventors have found the following phenomenon in order to pursue the miniaturization of generated bubbles. That is, when the pressure is increased, the amount of dissolved gas increases on an average macroscopic scale, but does not necessarily lead to the refinement of the generated bubbles. As will be described later, it has been found that when the stirring action is strengthened even under a constant pressure condition, the refinement of the generated bubbles is promoted.
As described above, the stirring operation of the pump is to ensure the flow rate and the head, and is generally considered to be insufficient as the stirring action for miniaturizing the bubbles. If an attempt is made to replenish this lack of stirring action with a pump, the output capacity of the pump or the number of pumps will be increased, and an increase in the size of the apparatus is inevitable. However, the stirring operation itself needs to compensate for the friction loss in the liquid due to the stirring, so that the driving power is very small.

本願発明は、以上のような現象に創造的に着眼し、高圧下で攪拌作用を行う手段を新たに採用することで、小型簡便安価に発生気泡の微細化を実現したものである。以下、具体例を図面を参照して詳細に説明する。   The present invention creatively focuses on the phenomenon as described above, and newly adopts a means for performing a stirring action under high pressure, thereby realizing miniaturization of generated bubbles in a small size and at a low cost. Hereinafter, specific examples will be described in detail with reference to the drawings.

実施の形態1.
図1は、この発明の実施の形態1における気泡発生装置の構成を示す断面図、図2は、同装置を流体回路で表現して示す構成図である。以下、図1、2を参照して構成を説明する。
全体は、本体容器1とこの本体容器1の上部に取り付けられた駆動源としてのモータ2とからなり、本体容器1は、円筒ケース1aと底蓋1bと上蓋1cとからなる。
本体容器1は、仕切板8により、上方の攪拌室3と下方の気泡分離室4とに区分されている。仕切板8上面にはポンプ5が取り付けられ、その内部に回転軸6を介してモータ2により回転駆動されるインペラ7が収容されている。仕切板8には、攪拌室3と気泡分離室4とを連通する連通部としての連通孔9が設けられている。
Embodiment 1 FIG.
FIG. 1 is a cross-sectional view showing a configuration of a bubble generating device according to Embodiment 1 of the present invention, and FIG. 2 is a configuration diagram showing the device in a fluid circuit. The configuration will be described below with reference to FIGS.
The whole is composed of a main body container 1 and a motor 2 as a drive source attached to the upper part of the main body container 1, and the main body container 1 is composed of a cylindrical case 1a, a bottom cover 1b, and an upper cover 1c.
The main body container 1 is divided into an upper stirring chamber 3 and a lower bubble separation chamber 4 by a partition plate 8. A pump 5 is attached to the upper surface of the partition plate 8, and an impeller 7 that is rotationally driven by the motor 2 via the rotary shaft 6 is accommodated therein. The partition plate 8 is provided with a communication hole 9 as a communication portion for communicating the stirring chamber 3 and the bubble separation chamber 4.

回転軸6には、ほぼその全長に亘って回転羽根としてのスクリュー10が取り付けられ、ポンプ5と同じモータ2により回転駆動されて攪拌室3内で攪拌動作を行う。スクリュー10の下端近傍には、スクリュー10の外周を覆うように空気分散用ドラム11が取り付けられている。
この空気分散用ドラム11には、その側面に多数の小穴が設けられており、スクリュー10の回転で下方へ導かれた気泡は溶解されやすいようにこの小穴で小気泡に分散されて攪拌室3内の水中に放散される。
液体源、例えば、循環式で浴槽に気泡を発生させる場合は、当該浴槽からの水(湯)が液体源となるが、この液体源が水吸い込み口12に接続され、この水吸い込み口12からインジェクタ13を経てポンプ5の外周所定箇所から水が導入される。インジェクタ13では、その狭隘部で一旦水圧が低下した部分に気体導入部としての空気吸い込み口14から大気圧の空気が導入され水と共にポンプ5に導入される。空気の吸い込み流量は空気吸い込み流量調整バルブ15を回すことにより調整する。
A screw 10 as a rotary blade is attached to the rotating shaft 6 over almost the entire length thereof, and is rotated by the same motor 2 as the pump 5 to perform a stirring operation in the stirring chamber 3. An air dispersion drum 11 is attached near the lower end of the screw 10 so as to cover the outer periphery of the screw 10.
The air dispersion drum 11 is provided with a large number of small holes on its side surface, and the bubbles introduced downward by the rotation of the screw 10 are dispersed into the small bubbles through the small holes so that the bubbles are easily dissolved. Dissipated into the water inside.
When bubbles are generated in a liquid source, for example, a tub in a circulation type, water (hot water) from the bathtub becomes a liquid source, and this liquid source is connected to the water suction port 12, and from the water suction port 12 Water is introduced from a predetermined position on the outer periphery of the pump 5 through the injector 13. In the injector 13, atmospheric pressure air is introduced from the air suction port 14 as a gas introduction portion into a portion where the water pressure has once decreased in the narrow portion, and is introduced into the pump 5 together with water. The air suction flow rate is adjusted by turning the air suction flow rate adjustment valve 15.

ポンプ5の外周所定箇所から垂直上方に吐出パイプ16が取り付けられ、ポンプ5からの気液混合水は吐出パイプ16上端のポンプ吐出口17から攪拌室3内に導入される。気泡分離室4の下部には、空気が十分溶解された有圧下の気液混合水を取り出す取出口18が設けられている。そして、この取出口18には減圧装置としての減圧調整バルブ19が接続され、有圧下の気液混合水はこの減圧調整バルブ19で減圧されて気液混合水吐出口20から放出される。圧力計21は、攪拌室3内の圧力を検出する。   A discharge pipe 16 is attached vertically upward from a predetermined position on the outer periphery of the pump 5, and gas-liquid mixed water from the pump 5 is introduced into the stirring chamber 3 from a pump discharge port 17 at the upper end of the discharge pipe 16. At the lower part of the bubble separation chamber 4, an outlet 18 for taking out gas-liquid mixed water under pressure in which air is sufficiently dissolved is provided. The outlet 18 is connected to a decompression adjustment valve 19 as a decompression device, and the gas-liquid mixed water under pressure is decompressed by the decompression adjustment valve 19 and discharged from the gas-liquid mixture water discharge port 20. The pressure gauge 21 detects the pressure in the stirring chamber 3.

気体開閉弁22は、攪拌室3に貯留する空気の量が一定となるように、貯留空気量に応じて外部へ空気を放出する動作を行うが、その構造および動作原理は以下の通りである。
先ず、固定部23が円筒ケース1aを貫通して取り付けられており、その軸中心には排気孔24が形成されている。更に、攪拌室3内に挿入された固定部23の外周には、雄ネジ25が形成されている。次に、揺動部26は、略有底の円筒状でその円筒内面に形成した雌ネジ27が固定部23の雄ネジ25に螺合することにより固定部23に揺動自在に係合する。揺動部26の円筒上部の底に近い部分には吸気孔28が形成されている。また、揺動部26の円筒下部には、水流羽根29が固着されている。
The gas on-off valve 22 performs an operation of releasing air to the outside in accordance with the amount of stored air so that the amount of air stored in the stirring chamber 3 is constant. The structure and operating principle are as follows. .
First, the fixing portion 23 is attached through the cylindrical case 1a, and an exhaust hole 24 is formed in the center of the shaft. Furthermore, a male screw 25 is formed on the outer periphery of the fixing portion 23 inserted into the stirring chamber 3. Next, the oscillating portion 26 has a substantially bottomed cylindrical shape, and a female screw 27 formed on the inner surface of the oscillating portion engages with the male screw 25 of the fixing portion 23 so that the oscillating portion 26 can swing freely. . An intake hole 28 is formed in a portion near the bottom of the upper part of the cylinder of the swinging portion 26. Further, a water flow vane 29 is fixed to the lower portion of the cylinder of the swinging portion 26.

次に、気体開閉弁22の動作原理について説明する。後段の、本装置の気泡発生に係る全体動作の説明でも触れるが、攪拌室3内では、ポンプ吐出口17から導入された、気泡(溶解されていない状態の気泡)混じりの気液混合水がスクリュー10によって攪拌され回転軸6が中心軸となる渦巻き状に流れており、攪拌室3内に貯留する空気量によってその高さが決まる、略すり鉢状の水面が形成されている。   Next, the operation principle of the gas on-off valve 22 will be described. As will be described later in the description of the overall operation relating to the generation of bubbles of the present apparatus, in the agitation chamber 3, gas-liquid mixed water mixed with bubbles (bubbles in an undissolved state) introduced from the pump discharge port 17 is present. A substantially mortar-shaped water surface is formed, which is stirred by the screw 10 and flows in a spiral shape with the rotary shaft 6 serving as the central axis, the height of which is determined by the amount of air stored in the stirring chamber 3.

今、この水面位置が低く、水流羽根29の下端がこの水面に触れない状態では、水流羽根29の自重により、揺動部26はその水流羽根29が垂直の姿勢となる揺動位置を保持することになる。この状態では、図1に示すように、固定部23の右端面と揺動部26の底内面との間に所定の隙間が生じるように、両ネジ25、27の螺合位置を調整しておく。従って、この状態では、揺動部26の吸気孔28から上記隙間、更に固定部23の排気孔24から外気への排気経路が形成され、即ち、気体開閉弁22は開路されており、攪拌室3内の空気が外部に放出されて貯留空気量が減少し、水面位置は次第に上昇していく。
上記水面位置が上昇してくると、やがて、水流羽根29の下端が渦巻き状の水流に当たり、当たる面積に応じて水流羽根29、従って揺動部26が所定角度傾斜揺動し、この傾斜揺動角に応じて両ネジ25、27の螺合により揺動部26が図中左方に移動し、図1に示す状態から上記隙間が次第に狭くなっていく。この結果、揺動部26の吸気孔28から上記隙間、更に固定部23の排気孔24から外気への排気経路の抵抗が増大する。即ち、気体開閉弁22が閉路状態に近づき、攪拌室3内から外部に放出される空気量が減少していく。
Now, when the water surface position is low and the lower end of the water flow blade 29 does not touch the water surface, the swinging portion 26 maintains a swing position where the water flow blade 29 is in a vertical posture due to its own weight. It will be. In this state, as shown in FIG. 1, the screwing positions of the screws 25 and 27 are adjusted so that a predetermined gap is generated between the right end surface of the fixing portion 23 and the bottom inner surface of the swinging portion 26. deep. Therefore, in this state, an exhaust path is formed from the intake hole 28 of the swinging portion 26 to the gap and further from the exhaust hole 24 of the fixed portion 23 to the outside air, that is, the gas on-off valve 22 is opened, and the stirring chamber The air in 3 is discharged to the outside, the amount of stored air decreases, and the water surface position gradually rises.
As the water surface position rises, the lower end of the water flow vane 29 hits a spiral water flow, and the water flow vane 29, and hence the rocking portion 26, rocks at a predetermined angle according to the contact area. Depending on the angle, the oscillating portion 26 moves to the left in the drawing by the screwing of the screws 25 and 27, and the gap gradually becomes narrower from the state shown in FIG. As a result, the resistance of the exhaust path from the intake hole 28 of the swinging part 26 to the gap and the exhaust hole 24 of the fixed part 23 to the outside air is increased. That is, the gas on-off valve 22 approaches a closed state, and the amount of air released from the stirring chamber 3 to the outside decreases.

空気吸い込み口14から吸い込む空気量を、攪拌室3内の圧力と循環水流量とで定まる溶解空気量より若干多目となるよう空気吸い込み流量調整バルブ15を調整しておくことにより、攪拌室3内の水面位置は、揺動部26の水流羽根29の取付位置で決まる高さに保たれることになる。従って、水流羽根29の取付位置、特にその高さをしかるべく設定すれば、攪拌室3の貯留空気量を所望の一定のレベルに保つことが出来、安定した気泡発生動作が実現する。   By adjusting the air suction flow rate adjusting valve 15 so that the amount of air sucked from the air suction port 14 is slightly larger than the dissolved air amount determined by the pressure in the stirring chamber 3 and the flow rate of the circulating water, the stirring chamber 3 The inner water surface position is maintained at a height determined by the mounting position of the water flow blade 29 of the swinging portion 26. Therefore, if the mounting position of the water flow blade 29, particularly its height, is set appropriately, the amount of air stored in the stirring chamber 3 can be maintained at a desired constant level, and a stable bubble generation operation is realized.

次に、気泡発生にかかる全体の動作について説明する。ポンプ5のインペラ7、スクリュー10および空気分散用ドラム11は、回転軸6を介して共通のモータ2によって回転駆動される。水吸い込み口12から導入された水は、インジェクタ13を経てポンプ5に導入される。インジェクタ13では、空気吸い込み流量調整バルブ15によって調整された流量の空気が空気吸い込み口14から吸入され水とともにポンプ5に導入される。
ポンプ5から吐出される気液混合水は吐出パイプ16を経てポンプ吐出口17から攪拌室3の上端近傍に導入される。攪拌室3内では、スクリュー10の回転による攪拌動作により、未溶解状態の気泡の溶解が促進されると共に、上方に貯留するスクリュー羽根近傍の空気は下方の水中に押し下げられ空気分散用ドラム11内に導かれた後、空気分散用ドラム11の周囲に形成された小穴を経る過程で細分化され周囲の水中に放散して溶解される。
Next, the whole operation | movement concerning bubble generation is demonstrated. The impeller 7, the screw 10, and the air dispersion drum 11 of the pump 5 are rotationally driven by the common motor 2 via the rotation shaft 6. Water introduced from the water suction port 12 is introduced into the pump 5 through the injector 13. In the injector 13, air having a flow rate adjusted by the air suction flow rate adjustment valve 15 is sucked from the air suction port 14 and introduced into the pump 5 together with water.
The gas-liquid mixed water discharged from the pump 5 is introduced from the pump discharge port 17 to the vicinity of the upper end of the stirring chamber 3 through the discharge pipe 16. In the stirring chamber 3, dissolution of undissolved bubbles is promoted by the stirring operation by the rotation of the screw 10, and the air in the vicinity of the screw blades stored in the upper part is pushed down into the lower water and is stored in the air dispersion drum 11. Then, it is subdivided in the process of passing through the small holes formed around the air dispersion drum 11 and diffused and dissolved in the surrounding water.

攪拌室3内の水面位置、貯留空気量は、上記で詳述した気体開閉弁22の動作でほぼ一定に保たれる。攪拌室3内で攪拌工程を経た水は、攪拌室3の底部に形成した連通孔9から取り出すことにより、溶解が十分進んだ気泡溶解水のみが選別されて気泡分離室4に導入されることになる。
気泡分離室4内の有圧状態の気泡溶解水は、取出口18から導出され、減圧調整バルブ19で大気圧まで減圧され気液混合水吐出口20から、例えば、浴槽の湯中に放出されミクロ状の微細気泡が霧状に湯中に拡散する。
The water surface position and the amount of stored air in the stirring chamber 3 are kept substantially constant by the operation of the gas on-off valve 22 described in detail above. The water that has undergone the stirring process in the stirring chamber 3 is taken out from the communication hole 9 formed at the bottom of the stirring chamber 3, so that only the bubble dissolved water that has sufficiently dissolved is selected and introduced into the bubble separation chamber 4. become.
The bubble-dissolved water in the bubble separation chamber 4 in a pressurized state is led out from the outlet 18, is decompressed to atmospheric pressure by the decompression adjustment valve 19, and is discharged from the gas-liquid mixed water discharge port 20 into, for example, hot water in the bathtub. Microscopic fine bubbles diffuse into the hot water in the form of mist.

次に、本装置を使って、攪拌動作等が発生気泡の微細化に寄与する程度を実験により検証したので、その結果について説明する。
実験で重要となるのは、発生気泡のサイズ測定であるが、必ずしも簡単ではなく、代表的なケースについては、公立試験所で絶対測定を行った(後述する)が、攪拌動作の効果や後述する減圧調整バルブの形態による影響等を比較検討するための実験は、透視度の経時変化を観察する相対測定を採用した。
実験は、ポンプ5を連続運転し、空気吸い込み量と攪拌室3内の貯留空気量とが一定となる定常状態で行い、気液混合水吐出口20から排出した気液混合水を透視度計(高さ350mm)に、濁度10に相当する高さ(100mm)の量を採取してサンプル液とした。そして、発生気泡の大きさが小さく数が多くなるほど、水中の気泡が消滅して澄んだ状態になるのに時間が掛かると考えられることから、サンプル液を採取した直後から、透視度計の上方から底部を観察し、透明度が次第に上がり底部の標識板が識別できるまでの時間(秒)を測定した。この時間が長いほど、気泡が小さく数が多いと想定されることになる。水温は、21〜23℃、室温は19℃で測定した。
Next, the degree to which the stirring operation or the like contributes to the refinement of the generated bubbles was verified by experiment using this apparatus, and the result will be described.
What is important in the experiment is the measurement of the size of the generated bubbles, but it is not always easy. In typical cases, absolute measurements were performed at public laboratories (described later). In the experiment for comparing and studying the influence of the form of the pressure reducing valve, the relative measurement for observing the temporal change of the transparency was adopted.
The experiment is performed in a steady state in which the pump 5 is continuously operated and the amount of air sucked and the amount of stored air in the stirring chamber 3 is constant, and the gas-liquid mixed water discharged from the gas-liquid mixed water discharge port 20 is measured with a fluorometer. An amount of height (100 mm) corresponding to a turbidity of 10 was sampled at a height of 350 mm to obtain a sample solution. And, as the size of the generated bubbles is small and the number is large, it is considered that it takes time for the bubbles in the water to disappear and become clear, so immediately after collecting the sample liquid, The bottom portion was observed, and the time (seconds) until the transparency gradually increased and the bottom marker plate could be identified was measured. It is assumed that the longer this time, the smaller the bubbles and the greater the number. The water temperature was measured at 21 to 23 ° C. and the room temperature at 19 ° C.

図3は、各種条件を変えた場合の比較実験結果を示す。タンク内の運転形式としては、スクリュー10および空気分散用ドラム11を共に動作させた場合、スクリュー10のみを取り付けた場合、および両者を取り除いて攪拌動作をさせないようにした場合の3通りについて行った。
また、上記各運転形式毎に、減圧調整バルブ19として3種類の減圧弁を取り替え実験を行った。各減圧弁の構造については図4により後述する。
図3の右端欄が、上記で定義した透視度(秒)の結果で、運転形式、減圧弁形式の各組合わせにつき、それぞれ、減圧弁の絞りを調整して圧力を3段階に設定して実験を行った。同表で、秒値が空欄になっているのは、観察を始めた当初から標識板が識別でき気泡の微細化としては良好な結果が得られなかったケースである。
FIG. 3 shows the results of comparative experiments when various conditions are changed. The operation mode in the tank was performed in three ways: when both the screw 10 and the air dispersion drum 11 were operated, when only the screw 10 was attached, and when both were removed and the stirring operation was not performed. .
In addition, for each of the above operation types, an experiment was performed by replacing three types of pressure reducing valves as the pressure reducing adjustment valve 19. The structure of each pressure reducing valve will be described later with reference to FIG.
The rightmost column in FIG. 3 shows the result of the transparency (seconds) defined above. For each combination of operation type and pressure reducing valve type, adjust the pressure reducing valve throttle to set the pressure in three stages. The experiment was conducted. In the table, the second value is blank in the case where the marker plate can be identified from the beginning of the observation, and a favorable result has not been obtained as the bubbles are miniaturized.

減圧弁(減圧調整バルブ19)は、気泡分離室4内の溶解が進んだ有圧の気液混合水を大気圧に開放するものであるが、種々の構造のものについて実験した結果、大気圧下での発生気泡の状態に大きく関与することが確認された。
「減圧弁60゜直線出口」と称している減圧弁が、図3の透視度観察結果から、気泡粒子が最も細かく、大気に開放した水中での寿命が最長である。同じ減圧弁使用の場合で比較した場合、スクリュー+空気分散用ドラムの場合とスクリューのみの場合とでは大差ないが、攪拌無しの場合とは大きく異なり、攪拌室3内における強制攪拌動作が気泡の微細化に大きく寄与していることが判る。他の2種類の減圧弁は、気泡微細化の点では大きく劣ることが判った。
The pressure reducing valve (pressure reducing adjusting valve 19) opens the pressured gas-liquid mixed water in the bubble separation chamber 4 to the atmospheric pressure, and as a result of experiments on various structures, It was confirmed that it was greatly involved in the state of the generated bubbles below.
The pressure reducing valve referred to as the “pressure reducing valve 60 ° linear outlet” has the longest life in water that is the finest in bubble particles and is open to the atmosphere, based on the results of the perspective observation in FIG. When compared using the same pressure reducing valve, there is no significant difference between the case of the screw + air dispersion drum and the case of the screw alone, but the forced stirring operation in the stirring chamber 3 is greatly different from the case without stirring. It can be seen that it greatly contributes to miniaturization. The other two types of pressure reducing valves were found to be greatly inferior in terms of bubble refinement.

次に、図4により各減圧弁の構造について説明する。同図(a)は、上述したとおり、今回の実験では最良と考えられるもので、「A」に、その減圧動作流路部分を拡大して示す。減圧動作は、弁座30に螺合された弁棒32を回転することによりその回転軸方向に進退させ、弁座30に形成したテーパ円筒凹面31と弁棒32の先端に形成したテーパ円筒凸面33とで形成される、該軸に直角な円環形状の流路断面を調節することにより行う。このタイプの減圧弁の場合、その出口側、即ち、減圧側の流路が減圧動作流路部分と同軸(直線出口)に形成されているので、弁棒32の位置(減圧調整位置)に拘わらず、テーパ円筒凹面31とテーパ円筒凸面33とで形成される流路断面が常に軸対称の円環状となり出口側への水の流れが滑らかになって局部的な減圧部分が発生せず、気泡が微少で均一なサイズで発生するものと考えられる。   Next, the structure of each pressure reducing valve will be described with reference to FIG. FIG. 6A is considered to be the best in this experiment as described above, and “A” shows the decompression operation flow path portion in an enlarged manner. In the pressure reducing operation, the valve rod 32 screwed to the valve seat 30 is rotated to advance and retreat in the direction of the rotation axis, and the tapered cylindrical concave surface 31 formed on the valve seat 30 and the tapered cylindrical convex surface formed on the tip of the valve rod 32. This is done by adjusting the annular cross-section of the channel formed perpendicularly to the axis. In the case of this type of pressure reducing valve, the outlet side, that is, the pressure reducing side flow path is formed coaxially with the pressure reducing operation flow path portion (straight exit), and therefore, regardless of the position of the valve rod 32 (pressure reducing adjustment position) The flow path cross section formed by the tapered cylindrical concave surface 31 and the tapered cylindrical convex surface 33 is always an axially symmetric annular shape, the flow of water to the outlet side is smooth, and no local decompression portion is generated. Is considered to occur with a small and uniform size.

図4(b)に示す「減圧弁90゜直角出口」のものは、同図(a)のものと反対に、減圧動作流路部分で減圧された後、直角に曲がって(直角出口)出口に向かう構造で、図3からも、気泡微細化という点で先の「直線出口」の減圧弁より劣っている。これは、気化し易い減圧下で流路が大きく曲がりこの部分で局部的な減圧部分が発生して気泡サイズの拡大につながるものと考えられる。
図3には、ボールバルブの場合も比較している。このタイプのものは、図示は省略するが、多用されている簡便安価なもので、流路断面は弁の操作位置によって大きく変化し、気泡微細化という評価では「直角出口」のものより更に劣る。
The "reducing valve 90 ° right angle outlet" shown in FIG. 4 (b) is opposite to that in FIG. 4 (a), and after being depressurized in the pressure reducing operation flow path portion, it is bent at a right angle (right angle outlet). 3 is also inferior to the previous “straight outlet” pressure reducing valve in terms of bubble miniaturization. It is considered that this is because the flow path is greatly bent under reduced pressure that is easily vaporized, and a local reduced pressure portion is generated at this portion, leading to an increase in bubble size.
FIG. 3 also compares the case of a ball valve. Although this type is not shown, it is a simple and inexpensive one that is frequently used, and the cross-section of the flow path varies greatly depending on the valve operating position, and is inferior to that of the “right angle outlet” in the evaluation of bubble miniaturization. .

なお、図3の透視度比較からの実験で最良の結果が得られた、(攪拌運転−減圧弁60゜直線出口−圧力2.5Kg/cm)に近い条件で、発生気泡のサイズ絶対値の測定を行ったので以下に紹介する。 測定は、兵庫県立工業技術センター繊維工業技術支援センターにおいて、レーザ回折/散乱式粒度分布測定装置を使用して行われた。測定結果は、メジアン径:0.220μm、平均径:0.237μm、標準偏差:0.093μm、%粒子径(10%):0.352μm、粒子径%:0.050μmというものであり、従前の各種気泡発生装置による発生気泡に比較して十分小さいサイズであることを確認した。 In addition, the best result was obtained in the experiment from the perspective comparison of FIG. 3, and the absolute value of the size of the generated bubbles was obtained under a condition close to (stirring operation−pressure reducing valve 60 ° linear outlet−pressure 2.5 kg / cm 2 ). The following is introduced. The measurement was performed using a laser diffraction / scattering type particle size distribution measuring device at the Textile Technology Support Center of Hyogo Prefectural Industrial Technology Center. The measurement results are median diameter: 0.220 μm, average diameter: 0.237 μm, standard deviation: 0.093 μm,% particle diameter (10%): 0.352 μm, particle diameter%: 0.050 μm. It was confirmed that the size was sufficiently small as compared with bubbles generated by various bubble generators.

以上のように、この発明の実施の形態1における気泡発生装置においては、吸入口12が液体源に接続されたポンプ5と、このポンプ5の吸入側に接続され所定流量の気体を導入する気体導入部14と、上記ポンプ5の吐出口17に接続された攪拌室3と、この攪拌室3内に設けられ回転駆動されて攪拌動作を行う回転羽根10と、上記攪拌室3との連通部9で気泡を分離して気泡溶解液を導入し上記気泡溶解液を取り出す取出口18を備えた気泡分離室4と、この気泡分離室4の取出口18に接続され上記気泡溶解液を減圧して放出する減圧装置19とを備えたので、回転羽根10による攪拌動作で、気体の溶解が促進され、気泡分離室4を経て十分溶解が進んだ気泡溶解液のみを抽出して導出でき、発生気泡の微細化が実現する。ここで、回転羽根10による攪拌動作は、攪拌による液体中での摩擦損を補償するだけでよいので、その回転駆動動力は極めて小容量で済み、装置として簡便安価となる利点がある。   As described above, in the bubble generation device according to Embodiment 1 of the present invention, the pump 5 having the suction port 12 connected to the liquid source and the gas that is connected to the suction side of the pump 5 and introduces a gas at a predetermined flow rate. A communication part between the introduction chamber 14, the stirring chamber 3 connected to the discharge port 17 of the pump 5, the rotary blade 10 provided in the stirring chamber 3 to be driven to rotate and perform a stirring operation, and the stirring chamber 3 9, the bubble separation chamber 4 having an outlet 18 for separating the bubbles and introducing the bubble dissolving liquid and taking out the bubble dissolving liquid is connected to the outlet 18 of the bubble separating chamber 4, and the bubble dissolving liquid is decompressed. And the decompression device 19 that discharges the gas, so that the dissolution of the gas is promoted by the stirring operation by the rotary blade 10, and only the bubble dissolved solution that has sufficiently dissolved through the bubble separation chamber 4 can be extracted and derived. Bubble miniaturization is realized. Here, since the stirring operation by the rotary blade 10 only has to compensate for the friction loss in the liquid due to stirring, the rotational drive power is very small, and there is an advantage that the device is simple and inexpensive.

また、ポンプ5と回転羽根10とを共通の駆動源2により回転駆動するようにしたので、装置の駆動機構が一層簡便安価となる。   In addition, since the pump 5 and the rotary blade 10 are rotationally driven by the common drive source 2, the drive mechanism of the apparatus is further simplified and inexpensive.

また、攪拌室3に貯留する気体の体積が一定となるよう貯留気体量に応じて外部との連通部を開閉する気体開閉弁22を備えたので、攪拌室3内での液面が一定となり、常に安定した攪拌動作が得られる。   Moreover, since the gas on-off valve 22 that opens and closes the communication portion with the outside according to the amount of stored gas is provided so that the volume of gas stored in the stirring chamber 3 is constant, the liquid level in the stirring chamber 3 becomes constant. A stable stirring operation is always obtained.

また、減圧装置19は、その減圧動作流路部分が軸対称に形成され、該軸に直角な流路断面が円環形状に形成されているので、減圧動作が滑らかになされ、局部的な減圧部分が発生せず、この部分での発生気泡の粗大化が防止される。   Further, the decompression device 19 has a decompression operation flow path portion formed in an axisymmetric manner, and a flow passage section perpendicular to the axis is formed in an annular shape, so that the decompression operation is smoothly performed and a local decompression operation is performed. No part is generated, and the generated bubbles are prevented from becoming coarse in this part.

また、減圧装置19は、下流側に向かって同軸でテーパ状に径が減少または増大するテーパ円筒凹面31を内部に形成した弁座30と、テーパ円筒凹面31と同軸でテーパ円筒凹面31と接離可能に取り付けられ下流側に向かって同軸でテーパ状に径が減少または増大するテーパ円筒凸面33を形成した弁棒32とを備え、テーパ円筒凹面31とテーパ円筒凸面33とで形成される円環形状の流路で減圧動作を行うようにしたので、減圧動作が一層滑らかになされ、この部分での発生気泡の粗大化が確実に防止される。   In addition, the pressure reducing device 19 includes a valve seat 30 having a tapered cylindrical concave surface 31 that is coaxially tapered toward the downstream side and having a tapered diameter decreasing or increasing therein, and a tapered cylindrical concave surface 31 that is coaxial with the tapered cylindrical concave surface 31. And a valve rod 32 having a tapered cylindrical convex surface 33 coaxially tapered toward the downstream side and having a tapered diameter decreasing or increasing, and formed by the tapered cylindrical concave surface 31 and the tapered cylindrical convex surface 33. Since the decompression operation is performed in the ring-shaped flow path, the decompression operation is performed more smoothly, and the generation of bubbles in the portion is reliably prevented from being coarsened.

なお、以上では、液体源として、浴槽の水(湯)等を利用する場合を例に説明したが、別途タンク等に溜められた水を利用してもよく、また、浴槽ではなく、温度を上げて使用する用途でない場合には、有圧の上水道を液体源として利用することにより、簡便な装置で、溶解量の高い気泡溶解液を得ることが出来る。   In addition, although the case where the water (hot water) etc. of a bathtub is utilized as an example as a liquid source has been described above, water separately stored in a tank or the like may be used. When it is not intended to be used after being used, a bubble dissolved solution having a high dissolution amount can be obtained with a simple apparatus by using a pressurized water supply as a liquid source.

実施の形態2.
先の実施の形態1では、図1に示すように、気泡分離室4の取出口18に直接減圧調整バルブ19を取り付けその気液混合水吐出口20から発生気泡を得るようにしたが、例えば、家庭内の浴槽に微細気泡を発生させたい場合であって、気泡発生装置本体を浴室から離れた別室に設置する必要がある場合等がある。このような場合、図1の減圧調整バルブ19の気液混合水吐出口20に必要な長さのパイプ(ホース)を接続し、その先端を浴槽内に漬けるようにすると、このパイプ内では、減圧された気泡溶解水が流れるので、この部分での気泡化促進が顕著となり、パイプ端からは粗大化した気泡が放出され、気泡状態を維持する寿命も短いものとなる。
Embodiment 2. FIG.
In the first embodiment, as shown in FIG. 1, the decompression adjusting valve 19 is directly attached to the outlet 18 of the bubble separation chamber 4 so as to obtain generated bubbles from the gas-liquid mixed water discharge port 20. In some cases, it is necessary to generate fine bubbles in a bathtub in the home, and the bubble generating device main body needs to be installed in a separate room away from the bathroom. In such a case, when a pipe (hose) having a required length is connected to the gas-liquid mixed water discharge port 20 of the pressure reducing adjustment valve 19 in FIG. 1 and the tip of the pipe is immersed in the bathtub, Since the decompressed bubble-dissolving water flows, the promotion of bubble formation becomes remarkable in this portion, and coarse bubbles are released from the end of the pipe, and the lifetime for maintaining the bubble state is shortened.

そこで、この発明の実施の形態2においては、図示は省略するが、図1の気液混合水吐出口20に浴槽までのパイプを直接接続し、気泡分離室4からの気泡溶解水を有圧のままで浴槽まで送り込むようにする。このパイプ内では、元の高圧状態に保たれているので、気泡の発生は殆どない。そして、パイプの先端には、例えば、図5に示すような、減圧調整バルブを接続し、これを浴槽内に沈めて使用する。
図5に示す減圧弁は、その弁座30に形成したテーパ円筒凹面31と弁棒32に形成したテーパ円筒凸面33とで減圧動作流路を構成することは、先の図4(a)のタイプの減圧弁と同様であるが、ここでは、減圧弁自体を浴槽内に沈めて使用することが出来、図5(b)に示すように、上記減圧動作流路で減圧された気泡溶解水がより円滑に浴槽内に放出され、微少で消滅までの寿命時間の長い発生気泡が得られる。
Therefore, in the second embodiment of the present invention, although not shown, a pipe to the bathtub is directly connected to the gas-liquid mixed water discharge port 20 of FIG. 1, and the bubble dissolved water from the bubble separation chamber 4 is pressurized. Leave it to the bathtub. In this pipe, since the original high pressure state is maintained, there is almost no generation of bubbles. Then, for example, a decompression adjustment valve as shown in FIG. 5 is connected to the tip of the pipe, and this is used by being submerged in the bathtub.
In the pressure reducing valve shown in FIG. 5, the pressure reducing operation flow path is constituted by the tapered cylindrical concave surface 31 formed on the valve seat 30 and the tapered cylindrical convex surface 33 formed on the valve rod 32. This is similar to the type of pressure reducing valve, but here, the pressure reducing valve itself can be used by being submerged in the bathtub, and as shown in FIG. Is discharged more smoothly into the bathtub, and bubbles are generated that are very small and have a long life time until disappearance.

実施の形態3.
先の実施の形態1では、図1に示したように、気体導入部の構成として、空気吸い込み流量調整バルブ15により空気吸い込み口14から導入する空気量を所定値に保つと共に、所定の高さに取り付けた気体開閉弁22の弁開閉動作により攪拌室3内での水面、従って貯留空気量を一定に保つようにした。
しかし、気体導入の方式としては、必ずしもこれに限られるものではない。即ち、例えば、攪拌室とポンプの吸入側とを管路で接続し、この管路の途中に空気を導入するインジェクタを挿入する。この構成を採用すれば、上記管路の出入口の圧力差に応じた流量の空気を導入することになり、攪拌室3内の圧力が一定に保たれ安定した動作が確保される。
Embodiment 3 FIG.
In the first embodiment, as shown in FIG. 1, as a configuration of the gas introduction unit, the amount of air introduced from the air suction port 14 by the air suction flow rate adjustment valve 15 is kept at a predetermined value and has a predetermined height. The water surface in the stirring chamber 3, and hence the amount of stored air, was kept constant by opening and closing the gas on / off valve 22 attached to the tank.
However, the gas introduction method is not necessarily limited to this. That is, for example, the stirring chamber and the suction side of the pump are connected by a pipe, and an injector for introducing air is inserted in the middle of the pipe. If this configuration is adopted, air having a flow rate corresponding to the pressure difference between the inlet and outlet of the pipe line is introduced, so that the pressure in the stirring chamber 3 is kept constant and a stable operation is ensured.

この発明に係る気泡発生装置は、主として健康増進策のために浴槽内を微少気泡で充満させるために使用する場合に限らず、従来からの排水処理工程における浮上分離手段、更には、超微細気泡を応用した各種殺菌処理等にも広く応用されるものである。
また、ここで扱う気体は、空気に限らず、各種の気体を扱うことが出来、かつ、液体についても浴槽の水や水道水に限られるものではないことは勿論である。
The bubble generating device according to the present invention is not limited to the case where it is used mainly for filling the inside of the bathtub with microbubbles for health promotion measures, but is also a floating separation means in a conventional wastewater treatment process, and further, ultrafine bubbles It is also widely applied to various sterilization treatments using the above.
In addition, the gas handled here is not limited to air, and various gases can be handled, and it is needless to say that the liquid is not limited to bathtub water or tap water.

この発明の実施の形態1における気泡発生装置の構成を示す断面図である。It is sectional drawing which shows the structure of the bubble generator in Embodiment 1 of this invention. 図1の装置を流体回路で表現して示す構成図である。It is a block diagram showing the apparatus of FIG. 1 expressed with a fluid circuit. 各種条件における、発生気泡微細化の比較実験を行った結果を示すものである。The result of having performed the comparative experiment of the generation | occurrence | production refinement | miniaturization of the bubble in various conditions is shown. 比較実験に使用した代表的な減圧調整バルブの構造を示す断面図である。It is sectional drawing which shows the structure of the typical pressure reduction adjustment valve used for the comparison experiment. この発明の実施の形態2における気泡発生装置に使用する減圧調整バルブの構造を示す図である。It is a figure which shows the structure of the pressure reduction adjustment valve used for the bubble generator in Embodiment 2 of this invention.

符号の説明Explanation of symbols

1 本体容器、2 モータ、3 攪拌室、4 気泡分離室、5 ポンプ、6 回転軸、7 インペラ、8 仕切板、9 連通孔、10 スクリュー、12 水吸い込み口、13 インジェクタ、14 空気吸い込み口、15 空気吸い込み流量調整バルブ、17 ポンプ吐出口、18 取出口、19 減圧調整バルブ、20 気液混合水吐出口、22 気体開閉弁、30 弁座、31 テーパ円筒凹面、32 弁棒、33 テーパ円筒凸面。   DESCRIPTION OF SYMBOLS 1 Main body container, 2 Motor, 3 Stirring chamber, 4 Bubble separation chamber, 5 Pump, 6 Rotating shaft, 7 Impeller, 8 Partition plate, 9 Communication hole, 10 Screw, 12 Water inlet, 13 Injector, 14 Air inlet, 15 Air suction flow rate adjustment valve, 17 Pump discharge port, 18 outlet, 19 Depressurization adjustment valve, 20 Gas-liquid mixed water discharge port, 22 Gas on-off valve, 30 Valve seat, 31 Tapered cylindrical concave surface, 32 Valve rod, 33 Tapered cylinder convex.

Claims (8)

吸入口が液体源に接続されたポンプと、このポンプの吸入側に接続され所定流量の気体を導入する気体導入部と、上記ポンプの吐出口に接続された攪拌室と、この攪拌室内に設けられ回転駆動されて攪拌動作を行う回転羽根と、上記攪拌室との連通部で気泡を分離して気泡溶解液を導入し上記気泡溶解液を取り出す取出口を備えた気泡分離室と、この気泡分離室の取出口に接続され上記気泡溶解液を減圧して放出する減圧装置とを備えた気泡発生装置。 A pump having a suction port connected to a liquid source, a gas introduction unit connected to the suction side of the pump for introducing a gas at a predetermined flow rate, a stirring chamber connected to the discharge port of the pump, and a stirring chamber A rotary blade that is driven to rotate and performs a stirring operation, a bubble separation chamber having an outlet for separating the bubbles at a communicating portion with the stirring chamber and introducing the bubble-dissolved liquid and taking out the bubble-dissolved liquid; A bubble generating apparatus comprising: a decompression device connected to an outlet of the separation chamber and decompressing and discharging the bubble solution. 上記ポンプと回転羽根とを共通の駆動源により回転駆動するようにしたことを特徴とする請求項1記載の気泡発生装置。 2. The bubble generating apparatus according to claim 1, wherein the pump and the rotary blade are rotationally driven by a common drive source. 上記攪拌室に貯留する気体の体積が一定となるよう上記貯留気体量に応じて外部との連通部を開閉する気体開閉弁を備えたことを特徴とする請求項1または2に記載の気泡発生装置。 The bubble generation according to claim 1 or 2, further comprising a gas on-off valve that opens and closes a communication portion with the outside according to the amount of stored gas so that the volume of gas stored in the stirring chamber is constant. apparatus. 上記気体導入部は、管路の入口側が上記攪拌室に接続され出口側が上記ポンプの吸入側に接続され上記管路の途中が気体源に接続され、上記入口側出口側の圧力差に応じた流量の気体を上記気体源から導入する構成としたことを特徴とする請求項1または2に記載の気泡発生装置。 The gas inlet has an inlet side connected to the stirring chamber, an outlet side connected to the suction side of the pump, and a gas source connected to a gas source in accordance with the pressure difference on the inlet side outlet side. The bubble generating device according to claim 1 or 2, wherein a gas having a flow rate is introduced from the gas source. 上記減圧装置は、その減圧動作流路部分が軸対称に形成され、該軸に直角な流路断面が円環形状に形成されていることを特徴とする請求項1ないし3のいずれかに記載の気泡発生装置。 4. The pressure reducing device according to claim 1, wherein a pressure reducing operation flow path portion is formed in an axial symmetry, and a flow path cross section perpendicular to the axis is formed in an annular shape. Bubble generator. 上記減圧装置は、下流側に向かって同軸でテーパ状に径が減少または増大するテーパ円筒凹面を内部に形成した弁座と、上記テーパ円筒凹面と同軸で上記テーパ円筒凹面と接離可能に取り付けられ上記下流側に向かって同軸でテーパ状に径が減少または増大するテーパ円筒凸面を形成した弁棒とを備え、上記テーパ円筒凹面とテーパ円筒凸面とで形成される円環形状の流路で減圧動作を行うようにしたことを特徴とする請求項5記載の気泡発生装置。 The pressure reducing device is attached to a valve seat having a tapered cylindrical concave surface that is coaxially tapered toward the downstream side and whose diameter decreases or increases in the inside, and is attached coaxially to the tapered cylindrical concave surface so as to be able to contact and separate from the tapered cylindrical concave surface. An annular flow path formed by the tapered cylindrical concave surface and the tapered cylindrical convex surface, and a valve rod having a tapered cylindrical convex surface whose diameter decreases or increases in a tapered manner coaxially toward the downstream side. 6. The bubble generating apparatus according to claim 5, wherein a decompression operation is performed. 上記気泡溶解液を減圧して放出する放出位置が上記気泡分離室の取出口から所定距離離反している場合、
上記減圧装置を上記放出位置に配置し、一端が上記取出口に接続されたパイプを備え、上記パイプの他端に上記減圧装置を接続するようにしたことを特徴とする請求項1ないし6のいずれかに記載の気泡発生装置。
When the discharge position for depressurizing and discharging the bubble lysate is a predetermined distance away from the outlet of the bubble separation chamber,
7. The pressure reducing device according to claim 1, wherein the pressure reducing device is disposed at the discharge position, and includes a pipe having one end connected to the outlet, and the pressure reducing device is connected to the other end of the pipe. The bubble generator in any one.
上記液体源は、有圧の上水道源であることを特徴とする請求項1ないし7のいずれかに記載の気泡発生装置。 The bubble generating apparatus according to claim 1, wherein the liquid source is a pressurized water supply source.
JP2004015376A 2004-01-23 2004-01-23 Bubble generator Expired - Fee Related JP3826138B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004015376A JP3826138B2 (en) 2004-01-23 2004-01-23 Bubble generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004015376A JP3826138B2 (en) 2004-01-23 2004-01-23 Bubble generator

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006149139A Division JP3878657B2 (en) 2006-05-30 2006-05-30 Bubble generator

Publications (2)

Publication Number Publication Date
JP2005204972A true JP2005204972A (en) 2005-08-04
JP3826138B2 JP3826138B2 (en) 2006-09-27

Family

ID=34900863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004015376A Expired - Fee Related JP3826138B2 (en) 2004-01-23 2004-01-23 Bubble generator

Country Status (1)

Country Link
JP (1) JP3826138B2 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06182170A (en) * 1992-12-17 1994-07-05 Shimanishi Kaken Kk Microbubble generation device
JPH0810597A (en) * 1994-06-29 1996-01-16 Fuji Electric Co Ltd Device for transferring mixed gas and liquid
JPH09313908A (en) * 1996-05-23 1997-12-09 Rafuooles Eng Kk Fine foam forming device
JP2001227656A (en) * 2000-02-18 2001-08-24 Nippon Carbureter Co Ltd Pressure reducing valve
JP2002023854A (en) * 2000-07-07 2002-01-25 Fujikura Rubber Ltd Reducing valve for liquid
JP2002023856A (en) * 2000-07-07 2002-01-25 Fujikura Rubber Ltd Reducing valve for liquid
JP2003053373A (en) * 2001-08-17 2003-02-25 Takeshi Nakajima Liquid purification apparatus
JP2003190753A (en) * 2001-12-27 2003-07-08 Tekku Kogyo Kk Fine air bubble feeder
JP3096755U (en) * 2003-03-28 2003-10-03 株式会社栄電社 Microbubble generator
JP2004033861A (en) * 2002-07-01 2004-02-05 Taisei Corp Apparatus for manufacturing oxygen-enriched water and method for cleaning bottom sediment
JP2004105814A (en) * 2002-09-13 2004-04-08 Tekku Kogyo Kk Impeller for mixing gas and liquid

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06182170A (en) * 1992-12-17 1994-07-05 Shimanishi Kaken Kk Microbubble generation device
JPH0810597A (en) * 1994-06-29 1996-01-16 Fuji Electric Co Ltd Device for transferring mixed gas and liquid
JPH09313908A (en) * 1996-05-23 1997-12-09 Rafuooles Eng Kk Fine foam forming device
JP2001227656A (en) * 2000-02-18 2001-08-24 Nippon Carbureter Co Ltd Pressure reducing valve
JP2002023854A (en) * 2000-07-07 2002-01-25 Fujikura Rubber Ltd Reducing valve for liquid
JP2002023856A (en) * 2000-07-07 2002-01-25 Fujikura Rubber Ltd Reducing valve for liquid
JP2003053373A (en) * 2001-08-17 2003-02-25 Takeshi Nakajima Liquid purification apparatus
JP2003190753A (en) * 2001-12-27 2003-07-08 Tekku Kogyo Kk Fine air bubble feeder
JP2004033861A (en) * 2002-07-01 2004-02-05 Taisei Corp Apparatus for manufacturing oxygen-enriched water and method for cleaning bottom sediment
JP2004105814A (en) * 2002-09-13 2004-04-08 Tekku Kogyo Kk Impeller for mixing gas and liquid
JP3096755U (en) * 2003-03-28 2003-10-03 株式会社栄電社 Microbubble generator

Also Published As

Publication number Publication date
JP3826138B2 (en) 2006-09-27

Similar Documents

Publication Publication Date Title
JP6564092B2 (en) Gas-liquid dissolution tank and fine bubble generator
JP5672472B2 (en) Fine bubble forming device.
JP2007021343A (en) Microbubble generator
KR101969772B1 (en) Gas-dissolved water producing device for dissolving air or gas in liquid
WO2016136762A1 (en) Microbubble generation apparatus
WO2018117040A1 (en) Device and system for generating gas-liquid containing microbubbles
KR102220927B1 (en) Micro-bubble generator
JP2018199122A (en) Nano-bubble water generating apparatus containing application gas
US6534023B1 (en) Fluid dynamic ozone generating assembly
CN110891674A (en) Microbubble generating apparatus and microbubble generating method, and shower apparatus and oil-water separating apparatus having the same
JP2005144320A (en) Fluid mixing apparatus
JP3878657B2 (en) Bubble generator
KR101898605B1 (en) Aaeration apparatus with self air suction function
WO2015072461A1 (en) Microbicidal liquid-generating device
JP2003260342A (en) Apparatus and method for mixing ozone
JP3826138B2 (en) Bubble generator
KR102557241B1 (en) Ultra-fine bubble maker and ultra-fine bubble water manufacturing device
KR100650113B1 (en) Micro bubble producing device
KR20170030072A (en) apparatus of generating macro or nano bubble
US20060076696A1 (en) Apparatus for treating a liquid with a gas
JP2012091153A (en) Fine-air-bubble generator
KR100854687B1 (en) Micro bubble system
JP2010029774A (en) Fine bubble generating apparatus
JP4537988B2 (en) Gas dissolved water production mixer and gas dissolved water production apparatus
JP2013081880A (en) Gas dissolving apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050906

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20060214

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20060315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060703

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees