WO2018117040A1 - Device and system for generating gas-liquid containing microbubbles - Google Patents

Device and system for generating gas-liquid containing microbubbles Download PDF

Info

Publication number
WO2018117040A1
WO2018117040A1 PCT/JP2017/045363 JP2017045363W WO2018117040A1 WO 2018117040 A1 WO2018117040 A1 WO 2018117040A1 JP 2017045363 W JP2017045363 W JP 2017045363W WO 2018117040 A1 WO2018117040 A1 WO 2018117040A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
liquid
wall
bubble
pump
Prior art date
Application number
PCT/JP2017/045363
Other languages
French (fr)
Japanese (ja)
Inventor
神野 浩
太郎 神野
Original Assignee
オオノ開發株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オオノ開發株式会社 filed Critical オオノ開發株式会社
Priority to CN201780083273.9A priority Critical patent/CN110167662A/en
Priority to JP2018557971A priority patent/JP7050304B2/en
Priority to KR1020197018388A priority patent/KR20190095311A/en
Publication of WO2018117040A1 publication Critical patent/WO2018117040A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/60Pump mixers, i.e. mixing within a pump

Definitions

  • the present invention relates to a gas-liquid mixing device, a pump device, a bubble refining device, and a system for generating a gas-liquid containing fine bubbles, and more particularly to refining bubbles in a gas-liquid.
  • Patent Document 1 discloses a swirl type fine bubble generator.
  • a high-speed swirling flow is generated in a gas-liquid two-phase gas-liquid, and a swirling cavity portion made of a negative pressure gas is formed in the swirling flow center by a gas-liquid centrifugal separation action.
  • An object of the present invention is to obtain a compact system for efficiently generating gas-liquid containing fine bubbles capable of performing from the generation of bubbles to the miniaturization of the bubbles by pumping of the liquid.
  • the present inventors have a gas-liquid mixing device having a compact configuration capable of efficiently generating gas-liquid containing fine bubbles, and pumping gas-liquid while miniaturizing bubbles contained in gas-liquid.
  • the present invention has completed a pump device that can perform the operation and a bubble refining device that can refine the bubbles contained in the gas-liquid simply by passing the gas-liquid containing bubbles.
  • a compact system for efficiently generating gas-liquid containing fine bubbles can be realized.
  • the processes from gas intake and bubble generation to bubble miniaturization can be performed by liquid pumping.
  • the present invention provides the following items.
  • a gas-liquid mixing device for generating a gas-liquid containing fine bubbles, A container body having an outer wall and an inner wall; A liquid introduction part for introducing liquid into the container body; A gas introduction part for introducing gas into the container body; A swirl part in the container body for swirling the liquid and the gas to generate the gas-liquid;
  • a gas-liquid mixing device comprising: a gas-liquid discharge unit that discharges the gas-liquid.
  • the gas-liquid mixing device according to any one of Items 1 to 4, wherein the inner wall has a shape that is at least partially reduced in diameter toward the gas-liquid discharge unit.
  • Item 6 Item 6.
  • the gas-liquid mixing device according to any one of Items 1 to 5, wherein the liquid introduction part is connected in a tangential direction to the inner wall.
  • a pump device for generating gas-liquid containing fine bubbles A pump body having an outer wall and an inner wall; A pump suction part for sucking the gas-liquid; A rotating part that rotates so that the inhaled gas-liquid swirls; A driving unit for rotating the rotating unit; A pump device comprising: a gas-liquid discharge unit that discharges the swirled gas-liquid.
  • Item 8 Item 8.
  • Item 9 Item 9.
  • Item 10 Item 10.
  • a bubble refining device for generating gas-liquid containing fine bubbles A bubble refiner main body having an outer wall and an inner wall; A gas-liquid introduction part for introducing the gas-liquid; A swivel unit that swirls the introduced gas and liquid; A bubble miniaturization apparatus comprising: a gas-liquid discharge unit that discharges the gas-liquid.
  • Item 13 Item 13.
  • the bubble miniaturization apparatus according to Item 11 or 12, wherein the inner wall has irregularities arranged at least partially along the substantially axial direction of the inner wall.
  • Item 14 Item 14.
  • the bubble miniaturization device according to Item 13, which is subordinate to Item 12, wherein the unevenness of the swivel part and the unevenness of the inner wall are nested.
  • Item 15 Item 15.
  • the bubble refining device according to Item 14, wherein the unevenness of the swivel portion and the unevenness of the inner wall are provided in a spiral shape.
  • (Item 16) The gas-liquid mixing device according to any one of items 1 to 6, The pump device according to any one of items 7 to 10, A system for generating a gas-liquid containing fine bubbles, comprising the bubble refining device according to any one of items 11 to 15.
  • (Item 17) A gas-liquid mixing method for generating a gas-liquid containing fine bubbles using the fine mixing apparatus according to item 1, A liquid introduction step for introducing liquid into the container body from the liquid introduction section; A gas introduction step of introducing gas into the container body from a gas introduction portion; Producing a gas-liquid by turning the liquid and the gas introduced into the container body by a turning unit in the container body; A gas-liquid mixing method including a step of discharging the gas-liquid by a gas-liquid discharge unit.
  • (Item 18) A method for producing a gas-liquid containing fine bubbles using the pump device according to item 7, Inhaling gas and liquid into the pump suction part; Rotating the gas and liquid sucked into the pump suction part by a rotating part so as to rotate; And a step of discharging the gas-liquid rotated so as to swivel by a gas-liquid discharge unit.
  • (Item 19) A bubble refining method for generating a gas-liquid containing fine bubbles by having the bubble refining apparatus according to item 11, Introducing the gas-liquid into the gas-liquid introduction part; A step of swirling the introduced gas-liquid by a swivel unit; And a step of discharging the swirled gas-liquid by a gas-liquid discharge unit.
  • a gas-liquid mixing device configured to efficiently generate a gas-liquid containing fine bubbles
  • a pump device capable of pumping gas-liquid while miniaturizing bubbles contained in the gas-liquid
  • a bubble refining device or a combination thereof which can refine bubbles contained in a gas / liquid simply by passing the gas / liquid contained therein. Furthermore, by using these apparatuses, a compact system for efficiently generating gas-liquid containing fine bubbles can be realized.
  • FIG. 1 is a view for explaining a cyclone type gas-liquid mixing apparatus according to Embodiment 1 of the present invention.
  • FIG. 1 (a) shows an appearance of the gas-liquid mixing apparatus 100
  • FIG. FIG. 1 (a) shows a cross-sectional structure taken along the line Ib-Ib
  • FIG. 1 (c) shows a cross-sectional structure taken along the line Ic-Ic in FIG. 1 (b).
  • FIG. 2 is a diagram for explaining a pump device according to Embodiment 2 of the present invention.
  • FIG. 2 (a) shows an appearance of the pump device 200
  • FIG. 2 (b) shows a diagram of FIG. 2 (a).
  • FIG. 2C shows a structure taken along the line IIb-IIb
  • FIG. 3 is a view for explaining a bubble miniaturization apparatus 300 according to Embodiment 3 of the present invention.
  • FIG. 3 (a) shows an appearance of the bubble miniaturization apparatus 300
  • FIG. 3 (a) shows the structure of the cross section taken along line IIIb-IIIb
  • FIG. 3 (c) shows an enlarged view of the IIIc portion of FIG. 3 (b).
  • 4 is a diagram for explaining components of the bubble miniaturization apparatus 300 shown in FIG. 3B, and FIG. 4A shows the outer cylindrical body 310 of the bubble miniaturization apparatus 300, and FIG. (B) shows the inner side columnar body 320 which comprises the bubble miniaturization apparatus 300.
  • FIG. 5 is a diagram for explaining a fine bubble generation system 1000 according to Embodiment 4 of the present invention, and schematically shows a configuration of the fine bubble generation system 1000.
  • FIG. 6 is a perspective view for explaining an example of use of the fine bubble generating system 1000 shown in FIG.
  • fine bubbles is a general term for generally called microbubbles and nanobubbles, and generally means bubbles having a diameter of 50 ⁇ m or less.
  • FIG. 1 is a view for explaining a swirl type gas-liquid mixing apparatus according to Embodiment 1 of the present invention.
  • FIG. 1 (a) shows an appearance of the gas-liquid mixing apparatus 100
  • FIG. FIG. 1 (a) shows a cross-sectional structure taken along the line Ib-Ib
  • FIG. 1 (c) shows a cross-sectional structure taken along the line Ic-Ic in FIG. 1 (b).
  • the gas-liquid mixing apparatus 100 includes a mixing container (container body) 101 for mixing liquid and gas having an inner wall and an outer wall, and a swivel portion (substantially cylindrical body for swirling the liquid and gas). (Flow path forming body) 110, a gas introduction part 102 for introducing gas into the mixing container, a liquid introduction part 103 for introducing liquid into the mixing container, and for discharging gas / liquid from the inside of the mixing container 101 Gas-liquid discharge unit 104.
  • the means for introducing the gas into the gas introduction unit 102 may be self-contained or forced.
  • the gas is introduced into the mixing container 101 from the gas introduction unit 102 in a self-contained manner.
  • the self-contained type it is not necessary to provide a separate drive source for the gas supply operation, and the apparatus can be miniaturized.
  • the amount of gas corresponding to the amount of supply liquid introduced into the liquid introduction unit 103 can be varied following the fluctuation of the supply liquid amount, and can always be adjusted to an appropriate amount and stably supplied. .
  • a control valve for adjusting the gas introduction amount may be provided.
  • the gas introduction section may be introduced from the gas introduction section 102 shown in FIG. 1 or a pipe between the pump 200 and the bubble miniaturization apparatus 300 described later. It may be introduced from the road or from both. When a large amount of gas is forcedly introduced, it is preferably introduced from a pipe line between the pump 200 and the bubble refining device 300.
  • the liquid introduced into the liquid introduction unit 103 may be tap water or pressurized water, but is not limited thereto.
  • the gas-liquid mixing apparatus 100 of the present invention may further include a pressure reducing valve for coping with fluctuations in the liquid supply pressure.
  • a plurality of different liquids may be introduced into the liquid introduction part 103 of the gas-liquid mixing apparatus 100 of the present invention.
  • “different liquids” mean not only different types of liquids but also different supply pressures and supply sources.
  • the gas-liquid mixing apparatus 100 of the present invention includes a first conduit for introducing the first liquid, And a second pipe for introducing two liquids.
  • the first liquid is tap water and the second liquid is pressurized water, but is not limited thereto.
  • the shape of the mixing container 101 can take any shape as long as the liquid introduced by the liquid introduction unit 103 does not prevent the swirling unit from turning into a swirling flow.
  • it may be a substantially cylindrical body, a substantially elliptical body, or a substantially spherical body. That is, the shape of the mixing vessel may be any shape as long as the inner wall thereof has a substantially circular cross section (Ic-Ic cross section in FIG. 1B) perpendicular to the swirling central axis of the swirling flow.
  • the mixing container 101 may or may not have a reduced diameter portion 101 b whose inner wall is reduced in diameter toward the gas-liquid discharge portion 104. In a preferred embodiment, as shown in FIG.
  • the mixing container 101 includes a cylindrical portion 101a and a reduced diameter portion 101b.
  • the angular velocity of turning is increased in the reduced diameter portion 101b, thereby increasing the shearing force of the gas-liquid discharged from the discharge portion, thereby achieving bubble division.
  • the shape of the reduced diameter portion 101b may be conical or hemispherical.
  • the reduced diameter portion 101b is conical, but the present invention is not limited to this.
  • a swirl unit 110 is accommodated in the cylindrical portion 101a, and a swirl flow path Rp for flowing liquid and gas while swirling is formed between the inner wall surface of the mixing container 101 and the outer peripheral surface of the swirl unit 110. ing.
  • a gas introduction unit 102 is formed on the upper surface of the swirl unit 110, and a gas passage 111 for guiding the liquid from the gas introduction unit 102 to the swirl passage Rp is formed on the upper part of the swirl unit 110.
  • a liquid introduction part 103 for introducing liquid into the swirl passage Rp is formed on the upper part of the cylindrical part 101a.
  • the shape of the swivel unit 110 is not limited to the substantially cylindrical body in the present embodiment.
  • a substantially elliptic cylinder It may be a substantially spherical body. That is, the shape of the swirling unit 110 may be a shape in which a cross section (Ic-Ic cross section in FIG. 1B) perpendicular to the swirling central axis of the swirling flow is formed in a substantially circular shape.
  • the surface of the swivel unit 110 is provided with at least one groove 121 that is a recess along the circumferential direction in the axial direction.
  • channels 121 may be arbitrary. In the exemplary embodiment, as shown in FIG. 1B, three grooves 121 are formed at regular intervals in the axial direction, but the present invention is not limited to this.
  • the groove 121 may be formed in a spiral shape along the outer peripheral surface of the swivel unit 110. In one embodiment, the shape of the groove 121 can take any shape.
  • the groove 121 has a triangular shape in the cross section including the pivot center axis, but the present invention is not limited to this.
  • a turning part 110 that is, a baffle 110b which is at least one protrusion around the axis of the turning part main body 110a is provided.
  • the interval between the baffles 110b and the baffles 110b and the number of the baffles 110b when the plurality of baffles 110b are provided around the axis of the swivel unit main body 110a may be arbitrary.
  • the interval between the baffles and the number of baffles can be appropriately determined by those skilled in the art based on the diameter of the swivel unit.
  • the distance between the baffle 110b and the baffle 110b is approximately equal to the distance between the tip of the baffle 110b and the inner wall of the swivel body 110a (plus or minus 10%).
  • the spacing between the baffle 110b and the baffle 110b can be about 10 mm to about 50 mm, about 15 mm to about 40 mm, or about 20 mm to about 30 mm.
  • the number of baffles 110b may be 1 to 20, 4 to 16, 6 to 14, or 10 to 12.
  • twelve baffles 110b are arranged at regular intervals around the axis of the swivel unit main body 110a, but the present invention is not limited to this.
  • the shape of the baffle 110b can take any shape as long as it collides with the swirling flow swirled by the swirling unit and the bubbles are decomposed.
  • the cross-sectional shape perpendicular to the axis of the swivel unit main body 110a may be flat or curved.
  • a flat plate is used as the cross-sectional shape perpendicular to the axis of the swivel unit main body 110a.
  • the baffle 110b can be formed by various methods.
  • the baffle 110b may be formed by pouring a material into a mold, or may be formed by machining the material.
  • the orientation of the baffle 110b can take any orientation as long as the liquid introduced by the liquid introduction unit 103 is swirled by the swirl unit.
  • the inclination angle A may be about 90 °, 0 ° to less than 90 ° (inclination in a direction along the turning direction S), or more than 90 ° to less than 180 ° (the turning direction S). It may be inclined in the opposite direction).
  • the tilt angle A is about 30 ° to about 80 °, about 40 ° to about 80 °, about 50 ° to about 80 °, about 30 ° to about 70 °, about 40 ° to about 70 °, Or about 45 ° to about 65 °, with about 45 ° to about 65 ° being preferred for bubble generation and refinement.
  • the inclination angle A may be the same for each baffle or may be different. In the preferred embodiment, as shown in FIG. 1C, the inclination angle A is set to about 60 ° in the direction along the turning direction S, but the present invention is not limited to this.
  • the inside of the reduced diameter portion 101b is a hollow region
  • the reduced diameter portion 101b is a truncated cone-shaped cylindrical body whose diameter decreases toward the gas-liquid discharge portion 104
  • the gas-liquid flowing into the reduced diameter portion 101b is The angular velocity of the turning is increased in the reduced diameter portion 101b.
  • a gas-liquid discharge portion 104 for discharging gas-liquid from the inside of the mixing container 101 is formed at the lower end portion of the reduced diameter portion 101b.
  • the gas Ar supplied to the gas-liquid mixing apparatus 100 is introduced from the gas introduction unit 102 into the swirl passage Rp through the liquid passage 111. Further, the liquid Wa supplied to the gas-liquid mixing apparatus 100 is supplied to the turning passage Rp from the tangential direction of the outer peripheral surface of the turning portion main body 110a via the liquid introduction portion 103. The liquid Wa supplied to the swirl passage Rp is mixed with the gas Ar blown out from the liquid passage 111 at the upper part of the casing cylindrical portion 101a, and the outer periphery of the swivel body 110a as the liquid Wa (gas liquid M1) containing the gas Ar. It flows toward the gas-liquid discharge unit 104 while turning along the surface.
  • the gas-liquid M1 collides with the baffle 110b provided in the groove 121 of the swivel unit main body 110a while flowing along the outer peripheral surface of the swivel unit main body 110a while flowing toward the gas-liquid discharge unit 104.
  • the bubbles contained in the gas-liquid M1 are more finely decomposed.
  • the gas-liquid mixing apparatus 100 swirls the mixing container (container body) 101 for mixing the gas Ar and the liquid Wa and the gas-liquid M1 including the gas Ar and the liquid Wa.
  • a swirl flow path Rp for flowing liquid and gas while swirling is formed between the inner wall surface of the mixing container 101 and the outer peripheral surface of the swirl section 110.
  • grooves 121 along the circumferential direction are formed in the axial direction at regular intervals on the surface of the swivel unit 110, and the baffles 110b are arranged in the grooves 121 around the axis of the swivel unit main body 110a at regular intervals.
  • the gas liquid M1 collides with the baffle 110b provided in the groove 121 of the swivel unit main body 110a while flowing along the outer peripheral surface of the swivel unit main body 110a while flowing toward the gas-liquid discharge unit 104.
  • Gas liquid Bubbles contained in 1 becomes to be more finely divided.
  • the gas-liquid mixing apparatus 100 of the present invention efficiently generates fine bubbles by providing the protruding portion (baffle 110b) in the swivel unit 110, compared to the case where the protruding portion (baffle 110b) is not provided. Therefore, the gas-liquid mixing device and the fine bubble generating system can be downsized.
  • the gas-liquid mixing apparatus of the present invention has a new function of refining bubbles contained in the mixed gas-liquid in addition to the original function of the gas-liquid mixing apparatus that mixes gas and liquid to generate gas-liquid. Can have functions.
  • FIG. 2 is a diagram for explaining a pump device according to Embodiment 2 of the present invention.
  • FIG. 2 (a) shows an appearance of the pump device 200
  • FIG. 2 (b) shows a diagram of FIG. 2 (a).
  • FIG. 2C shows a structure taken along the line IIb-IIb
  • FIG. 2C shows a structure taken along the line IIc-IIc in FIG.
  • the pump device 200 includes a pump body 200a and a pump drive unit 201a that drives the pump body 200a.
  • the pump main body 200a has a cylindrical casing (pump casing) 201.
  • the pump casing 201 has a pump suction portion 202 for sucking gas and liquid into the pump casing 201, and an outside from the pump casing 201.
  • a pump discharge unit 203 for discharging gas and liquid is provided.
  • a fin rotating body (impeller) 211 is provided in the pump housing 201, which is a rotating part that rotates so that the sucked gas-liquid turns.
  • the fin rotating body 211 is attached to a pump driving unit 201a that is a driving unit that rotates the fin rotating unit 211 via a rotating body driving shaft 201b.
  • the fin rotator 211 includes a shaft-side rotating plate 211a fixed to the rotating member drive shaft 201b, an opposing rotating plate 211b disposed so as to face the shaft-side rotating plate 211a, and the shaft-side rotating plate 211a and the counter-rotating plate. 211b and at least one centrifugal fin 211c attached between them.
  • the shape of the centrifugal fins 211c can take any shape as long as it can generate a swirling flow by applying a centrifugal force to the gas-liquid sucked from the pump suction unit 202.
  • the cross-sectional shape perpendicular to the rotating body drive shaft 201b may be a flat plate shape or a curved plate shape having a predetermined radius of curvature.
  • the centrifugal fin 211c is a curved plate having an arc shape as a cross-sectional shape perpendicular to the rotating body drive shaft 201b as shown in FIG. 2C, but the present invention is not limited to this.
  • the shape of the centrifugal fin 211c may be flat along the axial direction of the rotating body drive shaft 201b, or may be a twisted spiral. In a preferred embodiment, the shape of the centrifugal fins 211c is a spiral shape along the axial direction of the rotating body drive shaft 201b.
  • the distance between the centrifugal fins 211c and the centrifugal fins 211c is about 10 mm to about 50 mm, about 15 mm to about 40 mm, or about 20 mm to about 30 mm. It is not limited to. A person skilled in the art can select an appropriate interval according to the size of the pump device 100, the output of the pump device 100, and the like.
  • the number of the centrifugal fins 211c may be 1 to 20, 4 to 16, 6 to 14, or 10 to 12.
  • 10 to 12 centrifugal fins 211c are arranged at regular intervals around the axis of the rotating body drive shaft 201b (12 in the example of FIG. 2 (c)), miniaturization of the bubbles can be achieved effectively.
  • the orientation of the centrifugal fins 211c can take any orientation as long as centrifugal force can be applied to the gas-liquid sucked from the pump suction portion 202.
  • the direction may be perpendicular to the rotation direction of the rotating body drive shaft 201b (inclination angle B is about 90 °), or it may be inclined in the direction along the rotation direction (inclination angle B is more than 0 ° to less than 90 °). Or may be inclined in a direction opposite to the rotation direction (inclination angle B greater than 90 ° to less than 180 °).
  • the tilt angle B is about 120 ° to about 170 °, about 130 ° to about 170 °, about 130 ° to about 160 °, about 120 ° to about 150 °, about 120 ° to about 140, or It can be about 130 ° to about 140 °.
  • the inclination angle B may be the same for each centrifugal fin, or may be different. In the preferred embodiment, as shown in FIG. 2 (c), the inclination angle B is set to about 135 ° in the direction along the direction opposite to the rotation direction X of the rotating body drive shaft 201b, but the present invention is not limited to this. Not.
  • the orientation (inclination angle B) of the centrifugal fin 211c is determined by the radius of curvature when the centrifugal fin 211c is a curved plate having a predetermined radius of curvature. If the radius of curvature (inclination angle B) is increased too much, the fluid pressure increases and the swirl flow velocity increases, so that bubbles can be made finer efficiently. However, the occurrence of cavitation is induced, and stable gas-liquid supply is hindered. There is also. On the other hand, if the radius of curvature (inclination angle B) is too small, the fluid pressure drops and the swirling flow velocity slows down, which may make the bubble miniaturization inefficient. Liquid supply can be performed.
  • the orientation (inclination angle B) of the centrifugal fins 211c can appropriately select the orientation (inclination angle B) of the centrifugal fins 211c based on the required efficiency of fine bubbles and the stability of gas-liquid supply.
  • the radius of curvature of the centrifugal fin 211c is about 1/4 to about 1/1, about 1/3 to about 3/4, or about 1/2 to about 2 / of the outer size of the impeller 212.
  • centrifugal fins 211c it is possible to arrange an arbitrary number of the centrifugal fins 211c at arbitrary positions within a range in which a centrifugal force can be applied to the gas-liquid sucked from the pump suction unit 202 to generate a swirling flow.
  • one centrifugal fin 211c may be arranged, a plurality of centrifugal fins 211c may be arranged at regular intervals in the circumferential direction of the rotating body drive shaft 201b, or the plurality of centrifugal fins 211c may be driven by a rotating body. They may be arranged at different intervals in the circumferential direction of the shaft 201b.
  • centrifugal fins 211c are arranged at regular intervals along the circumferential direction of the rotating body drive shaft 201b, but the present invention is not limited to this. Centrifugal fins 211c are arranged such that when the rotating body drive shaft 201b rotates in the direction of arrow X, the gas-liquid flowing from the pump suction portion 202 into the fin rotating body 211 is converted into arcuate centrifugal fins 211c in the pump housing 201. Along the outer side of the pump housing 201.
  • an impeller (baffle) 212 that is at least one protrusion is disposed on the inner wall of the pump housing 201 along the inner peripheral surface thereof.
  • the shape of the impeller 212 can take any shape as long as the impeller 212 can collide with the gas-liquid swung toward the outside of the pump housing 201 by the centrifugal force of the centrifugal fins 211c.
  • the shape of the impeller 212 may be, for example, a flat plate shape as a cross-sectional shape perpendicular to the axis of the pump housing 201, or may be a curved plate shape having a predetermined radius of curvature. In a preferred embodiment, as shown in FIG.
  • the cross-sectional shape perpendicular to the axis of the pump housing 201 is a flat plate shape, but the present invention is not limited to this.
  • the shape of the centrifugal fin 211c may be flat along the axial direction of the rotating body drive shaft 201b, or may be a twisted spiral.
  • the shape of the centrifugal fins 211c is a spiral shape along the axial direction of the rotating body drive shaft 201b.
  • the orientation of the impeller 212 is arbitrary as long as the impeller 212 can collide with the gas-liquid swung toward the outside of the pump housing 201 by the centrifugal force by the centrifugal fins 211c.
  • the orientation can be taken.
  • the direction may be perpendicular to the rotation direction X (inclination angle C is about 90 °), or may be inclined in the direction along the rotation direction X (inclination angle C is more than 0 ° to less than 90 °).
  • it may be inclined in the direction opposite to the rotation direction X (the inclination angle C is more than 90 ° to less than 180 °).
  • the tilt angle C is about 30 ° to about 80 °, about 40 ° to about 80 °, about 50 ° to about 80 °, about 30 ° to about 70 °, about 40 ° to about 70 °, Or from about 45 ° to about 60 °.
  • the inclination angle C may be the same for each impeller 212 or may be different. In the preferred embodiment, as shown in FIG. 2C, the impeller 212 is oriented along the rotational direction X and has an inclination angle C of about 60 °, but the present invention is not limited to this.
  • the space formed by the pump housing 201 and the impeller 212 becomes too small, and it becomes difficult for the swirling flow swirled by the centrifugal fins 211c to enter the space well. Turbulence cannot be generated.
  • the orientation (inclination angle C) of the impeller 212 is determined by the curvature radius when the impeller 212 has a curved plate shape having a predetermined curvature radius. If the radius of curvature (inclination angle C) is increased too much, the fluid pressure increases and the swirling flow velocity increases, so that bubbles can be made finer efficiently. However, this causes cavitation and hinders stable gas-liquid supply. There is. On the other hand, if the radius of curvature (inclination angle C) is too small, the fluid pressure drops and the swirl flow velocity slows down, which may make the bubble miniaturization inefficient. However, the occurrence of cavitation is suppressed and stable gas-liquid Supply can be made.
  • the size of the radius of curvature of the impeller 212 is approximately 1 / of the size of the outer shape of the impeller 212. It can be from 4 to about 1/1, from about 1/3 to about 3/4, or from about 1/2 to about 2/3.
  • the relationship between the orientation of the centrifugal fins 211c and the orientation of the impeller 212 can be any relationship.
  • the orientations of the centrifugal fins 211c and the impeller 212 may be the same, or the orientations of the centrifugal fins 211c and the impeller 212 may be different.
  • the centrifugal fin 211c and the impeller 212 become substantially straight. In this way, the swirl flow can smoothly flow into the space between the inner wall of the pump casing 201 and the impeller 212.
  • positioning of the impeller 212 can arrange
  • one impeller 212 may be disposed, a plurality of impellers 212 may be disposed at regular intervals along the circumferential direction of the pump housing 201, or a plurality of impellers 212 may be disposed on the pump housing 201. They may be arranged at different intervals along the circumferential direction.
  • ten impellers 212 are arranged at regular intervals along the circumferential direction of the pump housing 201, but the present invention is not limited to this.
  • the small gap (clearance) between the centrifugal fins 211c and the impeller 212 can take any value. If the gap is made too small, the swirling flow rate increases, but the amount of discharged water decreases, and a desired gas-liquid discharge amount cannot be secured. On the other hand, if the gap is too large, a desired gas-liquid discharge amount can be secured, but the swirling flow rate decreases and a desired turbulent flow cannot be obtained between the centrifugal fins 211c and the impeller 212, making it difficult to refine the bubbles. It becomes.
  • a gap between the centrifugal fin 211c and the impeller 212 is selected based on conditions such as the required gas-liquid discharge amount and fine bubble diameter. For example, the gap distance is about 0.5 mm to about 5 mm, about 0.7 mm to about 3 mm, or about 1 mm to about 2 mm.
  • the fin rotating body 211 that is the rotating portion of the pump main body 200a is driven by the pump driving portion 201a, and the gas-liquid M1 containing bubbles is supplied from the pump suction portion 202 into the pump housing 201.
  • the gas / liquid M ⁇ b> 1 in the pump housing 201 is rotated in the pump housing 201 by the rotation of the fin rotator 211.
  • the gas-liquid M1 swirls in the pump casing 201 in this way the gas-liquid M1 in the pump casing 201 is swung in the pump casing 201 by centrifugal force, and the pump casing 201 starts from the center of the pump casing 201.
  • the pump device 200 of the present invention efficiently generates fine bubbles by providing the protrusion (impeller 212) on the inner wall of the pump body 200a, compared to the case where the protrusion (impeller 212) is not provided. Therefore, the pump device and the fine bubble generating system can be downsized. Further, the pump device 200 of the present invention has a new function of refining bubbles contained in the gas and liquid in addition to the original function of the pump for sucking gas and liquid and discharging the gas and liquid to the outside.
  • FIG. 3 is a view for explaining a bubble miniaturization apparatus 300 according to Embodiment 3 of the present invention.
  • FIG. 3 (a) shows an appearance of the bubble miniaturization apparatus 300
  • FIG. 3 (a) shows the structure of the cross section taken along line IIIb-IIIb
  • FIG. 3 (c) shows an enlarged view of the IIIc portion of FIG. 3 (b).
  • the bubble miniaturization apparatus 300 swirls gas and liquid with the outer cylindrical body 310 that is the main body of the bubble miniaturization apparatus and has an inner wall and an outer wall.
  • An inner columnar body 320 that is a revolving part, a gas-liquid introducing part 301 for introducing gas-liquid into the outer cylindrical body 310, and a gas-liquid discharging part for discharging gas-liquid from the outer cylindrical body 310 to the outside 302.
  • the gas-liquid introduction part 301 is provided at one end of the outer cylindrical body 310
  • the gas-liquid discharge part 302 is provided at the other end of the outer cylindrical body 310.
  • the outer cylindrical body 310 and the inner columnar body 320 are formed by fitting the inner columnar body 320 into the outer cylindrical body 310, thereby rotating the gas-liquid M ⁇ b> 2 and turning the outer cylinder.
  • a swirl passage Rp2 for flowing from one end side to the other end side of the shaped body 310 is formed.
  • FIG. 4 is a diagram for explaining components of the bubble miniaturization apparatus 300 shown in FIG. 3B, and FIG. 4A shows the outer cylindrical body 310 of the bubble miniaturization apparatus 300, and FIG. (B) shows the inner side columnar body 320 which comprises the bubble miniaturization apparatus 300.
  • FIG. 4A shows the outer cylindrical body 310 of the bubble miniaturization apparatus 300
  • FIG. (B) shows the inner side columnar body 320 which comprises the bubble miniaturization apparatus 300.
  • the outer cylindrical body 310 includes an introduction-side peripheral wall portion 311 having a gas-liquid introduction portion 301, a discharge-side peripheral wall portion 313 having a gas-liquid discharge portion 302, and an introduction-side peripheral wall portion 311 and a discharge-side peripheral wall portion 313. It has the cylindrical uneven
  • grooved part 312 can take arbitrary shapes.
  • grooved part 312 can be arbitrary.
  • the interval may be constant, or the interval of the unevenness may be varied depending on the place to be arranged, or may be spiral.
  • the axial arrangement interval of the concave and convex outer cylindrical body 310 provided in the cylindrical concave-convex portion 312 is a constant interval of about 0.5 to about 7 mm, about 1 to about 5 mm, about 2 to about 3 mm. In a preferred embodiment, as shown in FIG.
  • the unevenness provided on the cylindrical body uneven portion 312 is a spiral thread groove 312a, and the unevenness provided on the columnar uneven portion described later. Although it arrange
  • the inner columnar body 320 includes an introduction side end 321 fitted to the introduction side peripheral wall 311 of the outer cylindrical body 310, a discharge side end 325 fitted to the discharge side peripheral wall 313 of the outer cylindrical body 310, It has a columnar body uneven portion 323 facing the tubular body uneven portion 312 of the outer tubular body 310.
  • the shape of the unevenness provided in the columnar uneven portion 323 can take any shape.
  • grooved part 323 may be arbitrary.
  • the interval may be constant, or the interval of the unevenness may be varied depending on the place to be arranged, or may be spiral.
  • the axial arrangement interval of the concave and convex outer cylindrical body 310 provided in the cylindrical concave-convex portion 312 is a constant interval of about 0.5 to about 7 mm, about 1 to about 5 mm, about 2 to about 3 mm.
  • the unevenness provided in the columnar uneven portion 323 is a screw thread 323 a having a spiral shape, and a thread groove 312 a provided in the tubular uneven portion 312.
  • the gap distance between the thread 323a provided in the columnar uneven portion 323 and the screw groove 312a provided in the tubular uneven portion 312 can be arbitrary.
  • the interval may be constant, or the interval between the irregularities may be varied depending on the place of arrangement.
  • the distance between the screw thread 323a provided in the columnar uneven portion 323 and the screw groove 312a provided in the cylindrical uneven portion 312 is about 0.5 to about 7 mm, about 1 to about 5 mm, about 1. 5 to about 3 mm.
  • a portion between the introduction side end 321 and the columnar uneven portion 323 of the inner columnar body 320 serves as an introduction side swivel portion 322 that imparts a swirling force to the introduced gas-liquid M2, and the discharge of the inner columnar body 320 is performed.
  • a portion between the side end portion 325 and the columnar uneven portion 323 serves as a discharge side turning portion 324 that applies a turning force to the gas-liquid M3 to be discharged.
  • the outer peripheral surface of the columnar uneven portion 323 is formed on the inner peripheral surface of the cylindrical uneven portion 312.
  • a thread 323a is formed in the thread groove 312a so that the screw advances in the opposite direction so as to be in a nested state.
  • the cylindrical uneven portion 312 of the outer cylindrical body 310 is formed.
  • the gas-liquid M2 flowing from one end side to the other end side of the outer cylindrical body 310 while turning along the thread groove 312a collides with the thread 323a of the columnar uneven portion 323 of the inner columnar body 320.
  • the gas-liquid M2 supplied to the bubble miniaturization apparatus 300 is introduced from the gas-liquid introduction unit 301 into the turning passage Rp2.
  • the gas-liquid M2 introduced into the turning passage Rp2 is moved between the introduction-side peripheral wall portion 311 of the outer cylindrical body 310 and the introduction-side turning portion 322 of the inner columnar body 320 by the force introduced from the gas-liquid introduction portion 301.
  • a turning force is applied.
  • the gas-liquid M2 to which the turning force is applied passes through a portion where the inner peripheral surface of the cylindrical body uneven portion 312 of the outer cylindrical body 310 and the outer peripheral surface of the columnar uneven portion 323 of the inner columnar body 320 face each other.
  • the bubble miniaturization apparatus 300 includes the outer cylindrical body 310 by providing the outer cylindrical body 310 with unevenness (screw groove 312a) and / or the inner columnar body 320 with unevenness (thread 323a).
  • fine bubbles can be efficiently generated as compared with the case where the inner columnar body 320 is not provided with irregularities, it is possible to reduce the size of the bubble refining device and the fine bubble generating system.
  • the bubble miniaturization apparatus 300 may be used by connecting a plurality (for example, three or more) in series based on the required size and amount of fine bubbles.
  • a plurality for example, three or more
  • the introduction of gas is forced and the gas is introduced from the gas introduction unit 102 and / or the pipe between the pump device 200 and the microbubble device 300, it is effective and generates a large amount of microbubbles. It becomes possible.
  • the fine bubble generation system 1000 according to the fourth embodiment includes any one or more of the gas-liquid mixing device 100 according to the first embodiment, the pump device 200 according to the second embodiment, and the bubble refinement device 300 according to the third embodiment.
  • the fine bubble generating system of the present invention includes the gas-liquid mixing device 100 according to the first embodiment and the pump device 200 according to the second embodiment.
  • the fine bubble generation system of the present invention includes a pump device 200 according to the second embodiment and a bubble refinement device 300 according to the third embodiment.
  • the fine bubble generation system of the present invention includes the gas-liquid mixing device 100 according to the first embodiment and the bubble refinement device 300 according to the third embodiment.
  • FIG. 5 is a diagram for explaining a fine bubble generation system 1000 according to Embodiment 4 of the present invention, and schematically shows a configuration of the fine bubble generation system 1000.
  • the fine bubble generation system 1000 according to the fourth embodiment includes the gas-liquid mixing device 100 according to the first embodiment, the pump device 200 according to the second embodiment, and the bubble refinement device 300 according to the third embodiment.
  • the gas-liquid discharge part 104 of the gas-liquid mixing apparatus 100 is connected to the pump housing 201 of the pump apparatus 200 by a pipe (not shown), and the pump discharge part 203 of the pump apparatus 200 is an air bubble refiner. It is connected to 300 gas-liquid introduction parts 301 by piping (not shown).
  • this fine bubble generation system 1000 the supplied gas Ar and liquid Wa are introduced into the gas-liquid mixing device 100 by the pumping force of the pump device 200, and the gas Ar and liquid introduced into the gas-liquid mixing device 100. Wa is mixed in the gas / liquid mixing device 100 by the pumping force of the pump device 200 and supplied to the pump device 200 as gas / liquid M1. Further, in the pump device 200, the bubbles are further refined inside the pump device 200 by the pumping force of the pump device 200, and the gas / liquid M2 including the further refined bubbles is supplied from the pump device 200 to the bubble refinement device 300. Is done.
  • the supplied gas-liquid M2 is sent from the gas-liquid introduction part 301 of the bubble miniaturization apparatus 300 to the gas-liquid discharge part 302 while turning by the pumping force of the pump apparatus 200.
  • a gas-liquid M3 in which bubbles contained in the gas-liquid M2 are further miniaturized is generated.
  • the fine bubble generating system 1000 of the present invention includes the baffle 110b in the gas-liquid mixing device 100, the impeller 212 in the pump device 200, and the thread groove 312a and the screw thread 323a in the bubble miniaturization device 300. Since finer bubbles can be generated more efficiently than when the mixing device 100, the pump device 200, and the bubble refining device 300 are each used alone, it is possible to reduce the size of the fine bubble generation system. . It should also be noted that the fine bubble generation system 1000 of the present invention can efficiently perform water supply and fine bubble generation simultaneously.
  • the gas-liquid M3 generated by the microbubble generation system 1000 of the present invention is discharged from the bubble micronizer 300 and used for various purposes, for example, water supply to a bathtub, water supply to a shower head, or water supply to a washing machine. Needless to say, it is useful not only for small-scale water environments but also for large-scale water environments.
  • FIG. 6 is a perspective view for explaining an example of use of the fine bubble generating system 1000 shown in FIG.
  • the gas-liquid M3 generated in the fine bubble generating system 1000 is supplied to the bathtub 50.
  • the bathtub main body 51 is provided with a bathtub water supply port 52 and a bathtub drainage port 53.
  • the bathtub water supply port 52 is connected to the gas-liquid discharge unit 302 of the fine bubble generating system 1000
  • the bathtub drain port 53 is connected to the liquid introducing unit 103 of the fine bubble generating system 1000.
  • the gas / liquid M3 is circulated between the fine bubble generating system 1000 and the bathtub 50, and in the bathtub 50, the gas / liquid M3 in which the bubbles are miniaturized is always supplied from the fine bubble generating system 1000. Will be.
  • the present invention is useful in the field of gas-liquid generation including fine bubbles.

Abstract

The problem addressed by the present invention is to provide a gas-liquid mixing device, a pump device, a device for microbubble formation, and a system that can efficiently generate a gas-liquid containing microbubbles and can be made compact. This gas-liquid mixing device 100 for generating a gas-liquid containing microbubbles is provided with: a container main body 101 having an outer wall and an inner wall; a liquid introducing unit 103 for introducing a liquid into the container main body 101; a gas introducing unit 102 for introducing a gas into the container main body 101; a swirling unit 110 inside the container main body 101 for generating the gas-liquid by swirling the liquid and the gas; and a gas-liquid discharge unit 104 for discharging the gas-liquid.

Description

微細気泡を含む気液を生成するための装置およびシステムApparatus and system for generating gas-liquid containing fine bubbles
 本発明は、微細気泡を含む気液体を生成するための気液混合装置、ポンプ装置、気泡微細化装置、およびシステムに関し、特に、気液中の気泡の微細化に関するものである。 The present invention relates to a gas-liquid mixing device, a pump device, a bubble refining device, and a system for generating a gas-liquid containing fine bubbles, and more particularly to refining bubbles in a gas-liquid.
 従来から、空気、ガスなどの気体を水、その他の液体などに効率的に溶解して、たとえば水質を浄化して水環境を蘇生するための微細気泡発生装置が知られている。微細気泡発生装置は、湖沼や池、河川などの大規模な水環境の他、最近では浴槽や水道などの小規模な水環境にも適用することが求められている。たとえば、特許文献1には、旋回方式の微細気泡発生装置が開示されている。特許文献1に記載の微細気泡発生装置では、気液二相の気液中に高速旋回流を発生させ、気液の遠心分離作用により旋回流中心部に負圧の気体からなる旋回空洞部を形成し、気液の高速旋回流と負圧空洞部との旋回速度差によって気体をせん断して微細気泡化するものである。そのため、微細気泡を発生させるために気液を高速に旋回させる必要があるため、液体を高い圧力で容器内に圧送するための大きなポンプや旋回半径を大きくするために大きな容器などが必要であった。そのため、特許文献1に記載の微細気泡発生装置は、大規模な水環境に用いることは可能であったが、家庭用の浄水器やシャワーヘッド、浴槽などへの組み込みなど、小規模な水環境への適用が難しいという問題があった。 2. Description of the Related Art Conventionally, there are known micro-bubble generating devices for efficiently dissolving a gas such as air or gas in water or other liquids, for example, purifying water quality and reviving a water environment. In addition to large-scale water environments such as lakes, ponds, and rivers, microbubble generators have recently been required to be applied to small-scale water environments such as bathtubs and waterworks. For example, Patent Document 1 discloses a swirl type fine bubble generator. In the fine bubble generating device described in Patent Document 1, a high-speed swirling flow is generated in a gas-liquid two-phase gas-liquid, and a swirling cavity portion made of a negative pressure gas is formed in the swirling flow center by a gas-liquid centrifugal separation action. The gas is sheared by the difference in swirling speed between the high-speed swirling flow of gas and liquid and the negative pressure cavity, and the bubbles are made into fine bubbles. Therefore, since it is necessary to swirl the gas and liquid at high speed to generate fine bubbles, a large pump for pumping the liquid into the container at a high pressure and a large container for increasing the swirl radius are necessary. It was. Therefore, although the fine bubble generating device described in Patent Document 1 can be used in a large-scale water environment, it can be used in a small-scale water environment such as a home water purifier, a shower head, or a bathtub. There was a problem that it was difficult to apply to.
特開2012-239953号公報JP 2012-239953 A
 本発明は、気泡の発生から気泡の微細化までを液体の圧送により行うことができる微細気泡を含む気液を効率よく生成するためのコンパクトなシステムを得ることを課題とする。 An object of the present invention is to obtain a compact system for efficiently generating gas-liquid containing fine bubbles capable of performing from the generation of bubbles to the miniaturization of the bubbles by pumping of the liquid.
 本発明者らは、研究開発の結果、微細気泡を含む気液を効率よく生成することができるコンパクトな構成の気液混合装置と、気液に含まれる気泡を微細化しつつ気液を圧送することができるポンプ装置と、気泡を含む気液を通過させるだけで気液に含まれる気泡を微細化することができる気泡微細化装置とを完成させた。これらの装置の1つまたは複数を用いることによって、微細気泡を含む気液を効率よく生成するためのコンパクトなシステムを実現することができる。本発明のシステムでは、気体の取り込み、気泡の発生から気泡の微細化までを液体の圧送により行うことができる。 As a result of research and development, the present inventors have a gas-liquid mixing device having a compact configuration capable of efficiently generating gas-liquid containing fine bubbles, and pumping gas-liquid while miniaturizing bubbles contained in gas-liquid. The present invention has completed a pump device that can perform the operation and a bubble refining device that can refine the bubbles contained in the gas-liquid simply by passing the gas-liquid containing bubbles. By using one or more of these devices, a compact system for efficiently generating gas-liquid containing fine bubbles can be realized. In the system of the present invention, the processes from gas intake and bubble generation to bubble miniaturization can be performed by liquid pumping.
 本発明は、例えば以下の項目を提供する。
(項目1)
微細気泡を含む気液を生成するための気液混合装置であって、
 外壁および内壁を有する容器本体と、
 液体を前記容器本体内に導入するための液体導入部と、
 気体を前記容器本体内に導入するための気体導入部と、
 前記液体と前記気体とを旋回させて前記気液を生成するための、前記容器本体内の旋回部と、
 前記気液を吐出する気液吐出部と
を備える、気液混合装置。
(項目2)
前記旋回部は略円柱体であり、前記旋回部の表面の少なくとも一部は、前記旋回部の円周方向に沿った凹部を略軸方向に沿って少なくとも1つ有する、項目1に記載の気液混合装置。
(項目3)
前記少なくも1つの凹部は、前記旋回部の軸周りに内壁に向かって突出する少なくとも1つの突出部を有する、項目2に記載の気液混合装置。
(項目4)
前記少なくとも1つの突出部は、前記旋回部の径方向に対して傾斜している、項目3に記載の気液混合装置。
(項目5)
前記内壁が、少なくとも部分的に、前記気液吐出部に向かって縮径する形状を有する、項目1~4のいずれか1項に記載の気液混合装置。
(項目6)
前記液体導入部は前記内壁に対して接線方向に接続されている、項目1~5のいずれか1項に記載の気液混合装置。
(項目7)
微細気泡を含む気液を生成するためのポンプ装置であって、
 外壁および内壁を有するポンプ本体と、
 前記気液を吸入するポンプ吸入部と、
 吸入された前記気液が旋回するように回転する回転部と、
 前記回転部を回転させる駆動部と、
 前記旋回された気液を吐出する気液吐出部と
を備える、ポンプ装置。
(項目8)
前記回転部は、少なくとも1つの遠心フィンを有する、項目7に記載のポンプ装置。
(項目9)
前記内壁は、前記内壁の円周方向に配置された少なくとも1つの突出部を有する、項目7または8に記載のポンプ装置。
(項目10)
前記遠心フィンの配向と前記突出部の配向とが異なる、項目8に従属する項目9に記載のポンプ装置。
(項目11)
微細気泡を含む気液を生成するための気泡微細化装置であって、
 外壁および内壁を有する気泡微細化装置本体と、
 前記気液を導入する気液導入部と、
 導入された前記気液を旋回させる旋回部と、
 前記気液を吐出する気液吐出部と
を備える、気泡微細化装置。
(項目12)
前記旋回部は、略円柱体であり、表面の少なくとも一部に略軸方向に沿って配列された凹凸を有する、項目11に記載の気泡微細化装置。
(項目13)
前記内壁が、少なくとも一部に前記内壁の略軸方向に沿って配列された凹凸を有する、項目11または12に記載の気泡微細化装置。
(項目14)
前記旋回部の凹凸と、前記内壁の凹凸とが、互いに入れ子状である、項目12に従属する項目13に記載の気泡微細化装置。
(項目15)
前記旋回部の凹凸と、前記内壁の凹凸とが、らせん状に設けられている、項目14に記載の気泡微細化装置。
(項目16)
 項目1~6のいずれか1項に記載の気液混合装置と、
 項目7~10のいずれか1項に記載のポンプ装置と、
 項目11~15のいずれか1項に記載の気泡微細化装置と
を備える、微細気泡を含む気液を生成するためのシステム。
(項目17)
項目1に記載の微細混合装置を用いて微細気泡を含む気液を生成するための気液混合方法であって、
 液体を液体導入部から容器本体内に導入する液体導入工程と、
 気体を気体導入部から前記容器本体内に導入する気体導入工程と、
 前記容器本体内に導入された前記液体と前記気体とを前記容器本体内の旋回部によって旋回させて気液を生成する工程と、
 気液吐出部によって前記気液を吐出する工程と
を含む、気液混合方法。
(項目18)
項目7記載のポンプ装置を用いて微細気泡を含む気液を生成するための方法であって、
 気液をポンプ吸入部に吸入する工程と、
 回転部によって前記ポンプ吸入部に吸入された前記気液を旋回するように回転させる工程と、
 旋回するように回転させた前記気液を気液吐出部によって吐出する工程と
を含む、方法。
(項目19)
項目11記載の気泡微細化装置を持ちいて微細気泡を含む気液を生成するための気泡微細化方法であって、
 気液を気液導入部に導入する工程と、
 導入された前記気液を旋回部によって旋回させる工程と、
 旋回された前記気液を気液吐出部によって吐出する工程と
を含む、気泡微細化方法。
(項目20)
項目17記載の気液混合方法における各工程と、
項目18記載の方法における各工程と、
項目19記載の気泡微細化方法における各工程と
を含む、微細気泡を含む気液を生成する方法。
For example, the present invention provides the following items.
(Item 1)
A gas-liquid mixing device for generating a gas-liquid containing fine bubbles,
A container body having an outer wall and an inner wall;
A liquid introduction part for introducing liquid into the container body;
A gas introduction part for introducing gas into the container body;
A swirl part in the container body for swirling the liquid and the gas to generate the gas-liquid;
A gas-liquid mixing device comprising: a gas-liquid discharge unit that discharges the gas-liquid.
(Item 2)
The air according to item 1, wherein the swivel portion is a substantially cylindrical body, and at least a part of the surface of the swivel portion has at least one concave portion along a circumferential direction of the swivel portion along a substantially axial direction. Liquid mixing device.
(Item 3)
The gas-liquid mixing device according to item 2, wherein the at least one recess has at least one protrusion protruding toward an inner wall around an axis of the swivel part.
(Item 4)
The gas-liquid mixing device according to item 3, wherein the at least one projecting portion is inclined with respect to a radial direction of the swivel portion.
(Item 5)
Item 5. The gas-liquid mixing device according to any one of Items 1 to 4, wherein the inner wall has a shape that is at least partially reduced in diameter toward the gas-liquid discharge unit.
(Item 6)
Item 6. The gas-liquid mixing device according to any one of Items 1 to 5, wherein the liquid introduction part is connected in a tangential direction to the inner wall.
(Item 7)
A pump device for generating gas-liquid containing fine bubbles,
A pump body having an outer wall and an inner wall;
A pump suction part for sucking the gas-liquid;
A rotating part that rotates so that the inhaled gas-liquid swirls;
A driving unit for rotating the rotating unit;
A pump device comprising: a gas-liquid discharge unit that discharges the swirled gas-liquid.
(Item 8)
Item 8. The pump device according to Item 7, wherein the rotating unit has at least one centrifugal fin.
(Item 9)
Item 9. The pump device according to Item 7 or 8, wherein the inner wall has at least one protrusion disposed in a circumferential direction of the inner wall.
(Item 10)
Item 10. The pump device according to Item 9, which is subordinate to Item 8, wherein the orientation of the centrifugal fins is different from the orientation of the protrusions.
(Item 11)
A bubble refining device for generating gas-liquid containing fine bubbles,
A bubble refiner main body having an outer wall and an inner wall;
A gas-liquid introduction part for introducing the gas-liquid;
A swivel unit that swirls the introduced gas and liquid;
A bubble miniaturization apparatus comprising: a gas-liquid discharge unit that discharges the gas-liquid.
(Item 12)
Item 12. The bubble miniaturizing apparatus according to Item 11, wherein the swivel portion is a substantially cylindrical body and has irregularities arranged along at least a part of a surface along a substantially axial direction.
(Item 13)
Item 13. The bubble miniaturization apparatus according to Item 11 or 12, wherein the inner wall has irregularities arranged at least partially along the substantially axial direction of the inner wall.
(Item 14)
Item 14. The bubble miniaturization device according to Item 13, which is subordinate to Item 12, wherein the unevenness of the swivel part and the unevenness of the inner wall are nested.
(Item 15)
Item 15. The bubble refining device according to Item 14, wherein the unevenness of the swivel portion and the unevenness of the inner wall are provided in a spiral shape.
(Item 16)
The gas-liquid mixing device according to any one of items 1 to 6,
The pump device according to any one of items 7 to 10,
A system for generating a gas-liquid containing fine bubbles, comprising the bubble refining device according to any one of items 11 to 15.
(Item 17)
A gas-liquid mixing method for generating a gas-liquid containing fine bubbles using the fine mixing apparatus according to item 1,
A liquid introduction step for introducing liquid into the container body from the liquid introduction section;
A gas introduction step of introducing gas into the container body from a gas introduction portion;
Producing a gas-liquid by turning the liquid and the gas introduced into the container body by a turning unit in the container body;
A gas-liquid mixing method including a step of discharging the gas-liquid by a gas-liquid discharge unit.
(Item 18)
A method for producing a gas-liquid containing fine bubbles using the pump device according to item 7,
Inhaling gas and liquid into the pump suction part;
Rotating the gas and liquid sucked into the pump suction part by a rotating part so as to rotate;
And a step of discharging the gas-liquid rotated so as to swivel by a gas-liquid discharge unit.
(Item 19)
A bubble refining method for generating a gas-liquid containing fine bubbles by having the bubble refining apparatus according to item 11,
Introducing the gas-liquid into the gas-liquid introduction part;
A step of swirling the introduced gas-liquid by a swivel unit;
And a step of discharging the swirled gas-liquid by a gas-liquid discharge unit.
(Item 20)
Each step in the gas-liquid mixing method according to Item 17,
Each step in the method of item 18,
Item 20. A method for generating a gas-liquid containing fine bubbles, comprising the steps of the method for reducing bubbles according to Item 19.
 本発明によれば、微細気泡を含む気液を効率よく生成することができる構成の気液混合装置、気液に含まれる気泡を微細化しつつ気液を圧送することができるポンプ装置、気泡を含む気液を通過させるだけで気液に含まれる気泡を微細化することができる気泡微細化装置、またはこれらの組み合わせが提供される。さらに、これらの装置を用いることによって、微細気泡を含む気液を効率よく生成するためのコンパクトなシステムを実現することができる。 According to the present invention, a gas-liquid mixing device configured to efficiently generate a gas-liquid containing fine bubbles, a pump device capable of pumping gas-liquid while miniaturizing bubbles contained in the gas-liquid, Provided is a bubble refining device or a combination thereof, which can refine bubbles contained in a gas / liquid simply by passing the gas / liquid contained therein. Furthermore, by using these apparatuses, a compact system for efficiently generating gas-liquid containing fine bubbles can be realized.
図1は、本発明の実施形態1によるサイクロン方式の気液混合装置を説明するための図であり、図1(a)は、気液混合装置100の外観を示し、図1(b)は、図1(a)のIb-Ib線断面の構造を示し、図1(c)は、図1(b)のIc-Ic断面の構造を示す。FIG. 1 is a view for explaining a cyclone type gas-liquid mixing apparatus according to Embodiment 1 of the present invention. FIG. 1 (a) shows an appearance of the gas-liquid mixing apparatus 100, and FIG. FIG. 1 (a) shows a cross-sectional structure taken along the line Ib-Ib, and FIG. 1 (c) shows a cross-sectional structure taken along the line Ic-Ic in FIG. 1 (b). 図2は、本発明の実施形態2によるポンプ装置を説明するための図であり、図2(a)は、ポンプ装置200の外観を示し、図2(b)は、図2(a)のIIb-IIb線断面の構造を示し、図2(c)は、図2(b)のIIc-IIc線断面の構造を示す。FIG. 2 is a diagram for explaining a pump device according to Embodiment 2 of the present invention. FIG. 2 (a) shows an appearance of the pump device 200, and FIG. 2 (b) shows a diagram of FIG. 2 (a). FIG. 2C shows a structure taken along the line IIb-IIb, and FIG. 2C shows a structure taken along the line IIc-IIc in FIG. 図3は、本発明の実施形態3による気泡微細化装置300を説明するための図であり、図3(a)は、気泡微細化装置300の外観を示し、図3(b)は、図3(a)のIIIb-IIIb線断面の構造を示し、図3(c)は、図3(b)のIIIc部分を拡大して示す。FIG. 3 is a view for explaining a bubble miniaturization apparatus 300 according to Embodiment 3 of the present invention. FIG. 3 (a) shows an appearance of the bubble miniaturization apparatus 300, and FIG. 3 (a) shows the structure of the cross section taken along line IIIb-IIIb, and FIG. 3 (c) shows an enlarged view of the IIIc portion of FIG. 3 (b). 図4は、図3(b)に示す気泡微細化装置300の部品を説明するための図であり、図4(a)は、気泡微細化装置300の外側筒状体310を示し、図4(b)は、気泡微細化装置300を構成する内側柱状体320を示す。4 is a diagram for explaining components of the bubble miniaturization apparatus 300 shown in FIG. 3B, and FIG. 4A shows the outer cylindrical body 310 of the bubble miniaturization apparatus 300, and FIG. (B) shows the inner side columnar body 320 which comprises the bubble miniaturization apparatus 300. FIG. 図5は、本発明の実施形態4による微細気泡発生システム1000を説明するための図であり、この微細気泡発生システム1000の構成を模式的に示している。FIG. 5 is a diagram for explaining a fine bubble generation system 1000 according to Embodiment 4 of the present invention, and schematically shows a configuration of the fine bubble generation system 1000. 図6は、図5に示す微細気泡発生システム1000の使用例を説明するための斜視図である。FIG. 6 is a perspective view for explaining an example of use of the fine bubble generating system 1000 shown in FIG.
 本明細書において、「微細気泡」とは、一般に呼称されるマイクロバブルおよびナノバブルを総称したものであり、概ね直径50μm以下の気泡を意味する。 In the present specification, “fine bubbles” is a general term for generally called microbubbles and nanobubbles, and generally means bubbles having a diameter of 50 μm or less.
 本発明における「約」とは、後に続く数字のプラスマイナス10%の範囲内をいう。 In the present invention, “about” refers to a range of plus or minus 10% of the following number.
 以下、本発明の実施形態について図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 (実施形態1-気液混合装置)
 図1は、本発明の実施形態1による旋回方式の気液混合装置を説明するための図であり、図1(a)は、気液混合装置100の外観を示し、図1(b)は、図1(a)のIb-Ib線断面の構造を示し、図1(c)は、図1(b)のIc-Ic断面の構造を示す。
Embodiment 1 Gas-Liquid Mixing Device
FIG. 1 is a view for explaining a swirl type gas-liquid mixing apparatus according to Embodiment 1 of the present invention. FIG. 1 (a) shows an appearance of the gas-liquid mixing apparatus 100, and FIG. FIG. 1 (a) shows a cross-sectional structure taken along the line Ib-Ib, and FIG. 1 (c) shows a cross-sectional structure taken along the line Ic-Ic in FIG. 1 (b).
 この気液混合装置100は、内壁と外壁とを有する液体と気体との混合を行うための混合容器(容器本体)101と、液体と気体とを旋回させるための略円柱体である旋回部(流路形成体)110と、気体を混合容器に導入するための気体導入部102と、液体を混合容器に導入するための液体導入部103と、混合容器101の内部から気液を排出するための気液吐出部104とを有する。 The gas-liquid mixing apparatus 100 includes a mixing container (container body) 101 for mixing liquid and gas having an inner wall and an outer wall, and a swivel portion (substantially cylindrical body for swirling the liquid and gas). (Flow path forming body) 110, a gas introduction part 102 for introducing gas into the mixing container, a liquid introduction part 103 for introducing liquid into the mixing container, and for discharging gas / liquid from the inside of the mixing container 101 Gas-liquid discharge unit 104.
 気体を気体導入部102に導入する手段は自給式であっても、強制式であってもよい。好ましい実施形態においては、気体は混合容器101の内部に自給式で気体導入部102から導入される。自給式の場合には、気体の供給動作に別途駆動源を持たせる必要がなく、装置の小型化が可能である。さらに、自給式の場合では、液体導入部103に導入される供給液体量に応じた気体量が供給液体量の変動に追従して可変しながら、常に適量に調整されて安定供給することができる。さらに、気体導入量を調整する制御弁を設けてもよい。 The means for introducing the gas into the gas introduction unit 102 may be self-contained or forced. In a preferred embodiment, the gas is introduced into the mixing container 101 from the gas introduction unit 102 in a self-contained manner. In the case of the self-contained type, it is not necessary to provide a separate drive source for the gas supply operation, and the apparatus can be miniaturized. Furthermore, in the case of the self-contained type, the amount of gas corresponding to the amount of supply liquid introduced into the liquid introduction unit 103 can be varied following the fluctuation of the supply liquid amount, and can always be adjusted to an appropriate amount and stably supplied. . Further, a control valve for adjusting the gas introduction amount may be provided.
 気体を導入する手段を強制式とする場合には、気体の導入部を図1に示す気体導入部102から導入してもよいし、後述するポンプ200と気泡微細化装置300との間の管路から導入してもよいし、その両方から導入してもよい。大量の気体を強制式で導入する場合には、ポンプ200と気泡微細化装置300との間の管路から導入するのが好ましい。 When the gas introduction means is forced, the gas introduction section may be introduced from the gas introduction section 102 shown in FIG. 1 or a pipe between the pump 200 and the bubble miniaturization apparatus 300 described later. It may be introduced from the road or from both. When a large amount of gas is forcedly introduced, it is preferably introduced from a pipe line between the pump 200 and the bubble refining device 300.
 代表的な実施形態において、液体導入部103に導入される液体は水道水または加圧水であり得るが、これらに限定されない。本発明の気液混合装置100は、液体の供給圧力の変動に対応するための減圧弁をさらに備えてもよい。 In a typical embodiment, the liquid introduced into the liquid introduction unit 103 may be tap water or pressurized water, but is not limited thereto. The gas-liquid mixing apparatus 100 of the present invention may further include a pressure reducing valve for coping with fluctuations in the liquid supply pressure.
 本発明の気液混合装置100の液体導入部103には、複数の異なる液体が導入されてもよい。ここで、「異なる液体」とは、液体の種類が異なることだけでなく、供給圧力や供給源が異なることを意味する。第1の液体と第2の液体とが液体導入部103に導入される実施形態において、本発明の気液混合装置100は、第1の液体を導入するための第1の管路と、第2の液体を導入するための第2の管路とを備えてもよい。このように別々の管路を設け、さらに減圧弁で個々の圧力を調整することによって、効率的に微細気泡を発生させることができる。例えば、第1の液体は水道水であり、第2の液体は加圧水であるが、これに限定されない。 A plurality of different liquids may be introduced into the liquid introduction part 103 of the gas-liquid mixing apparatus 100 of the present invention. Here, “different liquids” mean not only different types of liquids but also different supply pressures and supply sources. In the embodiment in which the first liquid and the second liquid are introduced into the liquid introduction unit 103, the gas-liquid mixing apparatus 100 of the present invention includes a first conduit for introducing the first liquid, And a second pipe for introducing two liquids. Thus, by providing separate pipe lines and further adjusting individual pressures with the pressure reducing valves, fine bubbles can be generated efficiently. For example, the first liquid is tap water and the second liquid is pressurized water, but is not limited thereto.
 混合容器101の形状は、液体導入部103によって導入された液体が旋回部によって旋回流となるのを妨げない範囲で任意の形状を取り得る。例えば、略円筒体であってもよいし、略楕円体であってもよいし、略球体であってもよい。すなわち、混合容器の形状は、その内壁が、旋回流の旋回中心軸に直交する断面(図1(b)のIc-Ic断面)が略円形状であるものであればよい。また、混合容器101は一部に気液吐出部104に向けて内壁が縮径する縮径部101bを有していてもよいし、有さなくてもよい。好ましい実施形態において、図1(a)に示すように、混合容器101は、円筒部101aと縮径部101bとを有する。こうすることによって、縮径部101bにおいて旋回の角速度が増大され、それによって吐出部から吐出される気液のせん断力が大きくなるため、気泡の分割が達成されるからである。1つの実施形態において、縮径部101bの形状は、円錐状であってもよいし、半球状であってもよい。好ましい実施形態において、図1(a)に示すように、縮径部101bは円錐状であるが、本発明はこれに限定されない。 The shape of the mixing container 101 can take any shape as long as the liquid introduced by the liquid introduction unit 103 does not prevent the swirling unit from turning into a swirling flow. For example, it may be a substantially cylindrical body, a substantially elliptical body, or a substantially spherical body. That is, the shape of the mixing vessel may be any shape as long as the inner wall thereof has a substantially circular cross section (Ic-Ic cross section in FIG. 1B) perpendicular to the swirling central axis of the swirling flow. Further, the mixing container 101 may or may not have a reduced diameter portion 101 b whose inner wall is reduced in diameter toward the gas-liquid discharge portion 104. In a preferred embodiment, as shown in FIG. 1A, the mixing container 101 includes a cylindrical portion 101a and a reduced diameter portion 101b. By doing so, the angular velocity of turning is increased in the reduced diameter portion 101b, thereby increasing the shearing force of the gas-liquid discharged from the discharge portion, thereby achieving bubble division. In one embodiment, the shape of the reduced diameter portion 101b may be conical or hemispherical. In a preferred embodiment, as shown in FIG. 1A, the reduced diameter portion 101b is conical, but the present invention is not limited to this.
 円筒部101aには旋回部110が収容されており、混合容器101の内壁面と旋回部110の外周面との間には、液体および気体を旋回させながら流すための旋回流路Rpが形成されている。旋回部110の上面上には気体導入部102が形成されており、旋回部110の上部には液体を気体導入部102から旋回通路Rpに導くための気体通路111が形成されている。円筒部101aの上部には液体を旋回通路Rpに導入するための液体導入部103が形成されている。旋回部110の形状は、本実施形態における略円柱体に限定されるものではなく、液体導入部103によって導入された液体が旋回部によって旋回流となる形状であれば、例えば、略楕円柱体であってもよいし、略球体であってもよい。すなわち、旋回部110の形状は、旋回流の旋回中心軸に直交する断面(図1(b)のIc-Ic断面)が略円形状に形成された形状であればよい。 A swirl unit 110 is accommodated in the cylindrical portion 101a, and a swirl flow path Rp for flowing liquid and gas while swirling is formed between the inner wall surface of the mixing container 101 and the outer peripheral surface of the swirl unit 110. ing. A gas introduction unit 102 is formed on the upper surface of the swirl unit 110, and a gas passage 111 for guiding the liquid from the gas introduction unit 102 to the swirl passage Rp is formed on the upper part of the swirl unit 110. A liquid introduction part 103 for introducing liquid into the swirl passage Rp is formed on the upper part of the cylindrical part 101a. The shape of the swivel unit 110 is not limited to the substantially cylindrical body in the present embodiment. For example, if the liquid introduced by the liquid introduction unit 103 is swirled by the swirl unit, for example, a substantially elliptic cylinder It may be a substantially spherical body. That is, the shape of the swirling unit 110 may be a shape in which a cross section (Ic-Ic cross section in FIG. 1B) perpendicular to the swirling central axis of the swirling flow is formed in a substantially circular shape.
 旋回部110の表面には、円周方向に沿った凹部である溝121を軸方向に少なくとも1つ備える。溝121を複数備える際の溝121と溝121との間隔や溝121の数は任意であってよい。例示的な実施形態において、図1(b)に示すように、溝121が軸方向に一定間隔で3つ形成されているが、本発明はこれに限定されない。なお、溝121は、旋回部110の外周面に沿ってらせん状に形成されていてもよい。1つの実施形態において、溝121の形状は、任意の形状を取り得る。例えば、旋回中心軸を含む断面において、例えば、四角状であってもよいし、三角状であってもよいし、半円状であってもよい。好ましい実施形態において、図1(b)に示すように、溝121は旋回中心軸を含む断面において、三角状であるが、本発明はこれに限定されない。 The surface of the swivel unit 110 is provided with at least one groove 121 that is a recess along the circumferential direction in the axial direction. The space | interval of the groove | channel 121 at the time of providing the groove | channel 121 with two or more, and the number of the groove | channels 121 may be arbitrary. In the exemplary embodiment, as shown in FIG. 1B, three grooves 121 are formed at regular intervals in the axial direction, but the present invention is not limited to this. The groove 121 may be formed in a spiral shape along the outer peripheral surface of the swivel unit 110. In one embodiment, the shape of the groove 121 can take any shape. For example, in the cross section including the turning center axis, for example, a square shape, a triangular shape, or a semicircular shape may be used. In the preferred embodiment, as shown in FIG. 1B, the groove 121 has a triangular shape in the cross section including the pivot center axis, but the present invention is not limited to this.
 溝121内には旋回部110、すなわち旋回部本体110aの軸周りに少なくとも1つの突出部であるバッフル110bを備える。旋回部本体110aの軸周りに複数のバッフル110bを備える際のバッフル110bとバッフル110bとの間隔やバッフル110bの枚数は任意であってよい。複数のバッフル110bを設ける実施形態において、バッフル間の間隔やバッフルの枚数は、旋回部の径に基づいて当業者は適切に決定することができる。供給する液体の水圧が一定の場合、旋回部の径は小さすぎると周速が速くなりすぎ、遠心力の作用によりバッフルに衝突する液体の流れが多く旋回流が起こりにくくなる。また、気体は軽いため、旋回部の中心部に集まりやすく気泡を微細泡にする攪拌能力が低下してしまう。逆に、旋回部の径が大きくなりすぎると周速が遅くなり、旋回流は起きやすくなるが、バッフルに衝突する流れが弱くなり、旋回流との圧力差が小さいため、気体と液体との混合能力が低下しやすい。旋回部の径の大きさは、求められる水圧や気液の流量に基づいて当業者が適切に選択することができる。好ましい実施形態において、バッフル110bとバッフル110bとの間隔は、バッフル110bの先端と旋回部本体110aの内壁との間の距離にほぼ等しい(プラスマイナス10%)。 In the groove 121, a turning part 110, that is, a baffle 110b which is at least one protrusion around the axis of the turning part main body 110a is provided. The interval between the baffles 110b and the baffles 110b and the number of the baffles 110b when the plurality of baffles 110b are provided around the axis of the swivel unit main body 110a may be arbitrary. In the embodiment in which a plurality of baffles 110b are provided, the interval between the baffles and the number of baffles can be appropriately determined by those skilled in the art based on the diameter of the swivel unit. When the water pressure of the liquid to be supplied is constant, if the diameter of the swirling portion is too small, the peripheral speed becomes too fast, and the flow of the liquid that collides with the baffle is increased due to the centrifugal force, and the swirling flow hardly occurs. Moreover, since the gas is light, it is easy to collect at the center part of the swivel part, and the stirring ability to make the bubbles into fine bubbles is reduced. On the other hand, if the diameter of the swirling part becomes too large, the peripheral speed becomes slow and swirl flow tends to occur, but the flow that collides with the baffle becomes weak and the pressure difference with the swirl flow is small. Mixing capacity tends to decrease. A person skilled in the art can appropriately select the size of the diameter of the swivel unit based on the required water pressure and gas-liquid flow rate. In the preferred embodiment, the distance between the baffle 110b and the baffle 110b is approximately equal to the distance between the tip of the baffle 110b and the inner wall of the swivel body 110a (plus or minus 10%).
 1つの実施形態において、バッフル110bとバッフル110bとの間隔は、約10mm~約50mm、約15mm~約40mm、または、約20mm~約30mmであり得る。 In one embodiment, the spacing between the baffle 110b and the baffle 110b can be about 10 mm to about 50 mm, about 15 mm to about 40 mm, or about 20 mm to about 30 mm.
 1つの実施形態において、バッフル110bの枚数は、1枚~20枚、4枚~16枚、6枚~14枚、または10枚~12枚であり得る。 In one embodiment, the number of baffles 110b may be 1 to 20, 4 to 16, 6 to 14, or 10 to 12.
 好ましい実施形態において、図1(c)に示すように、バッフル110bは旋回部本体110aの軸周りに一定の間隔で12枚配置されているが、本発明はこれに限定されない。 In a preferred embodiment, as shown in FIG. 1 (c), twelve baffles 110b are arranged at regular intervals around the axis of the swivel unit main body 110a, but the present invention is not limited to this.
 1つの実施形態において、バッフル110bの形状は、旋回部によって旋回された旋回流と衝突して気泡が分解される形状であれば任意の形状を取り得る。例えば、旋回部本体110aの軸に垂直な断面形状において、平板状であってもよいし、湾曲していてもよい。好ましい実施形態において、図1(c)に示すように、旋回部本体110aの軸に垂直な断面形状として平板である。バッフル110bは、様々な方法で成形可能であって、例えば鋳型に材料を流し込んで成形してもよいし、材料を機械加工して成形してもよい。 In one embodiment, the shape of the baffle 110b can take any shape as long as it collides with the swirling flow swirled by the swirling unit and the bubbles are decomposed. For example, the cross-sectional shape perpendicular to the axis of the swivel unit main body 110a may be flat or curved. In a preferred embodiment, as shown in FIG. 1C, a flat plate is used as the cross-sectional shape perpendicular to the axis of the swivel unit main body 110a. The baffle 110b can be formed by various methods. For example, the baffle 110b may be formed by pouring a material into a mold, or may be formed by machining the material.
 また、バッフル110bの配向(図1(c)で示す傾斜角度A)は、液体導入部103によって導入された液体が旋回部によって旋回流となる形状であれば任意の配向を取り得る。例えば、傾斜角度Aを約90°としてもよいし、0°~90°未満(旋回方向Sに沿った向きに傾斜する)としてもよいし、90°超~180°未満(旋回方向Sとは逆の向きに傾斜する)としてもよい。1つの実施形態において、傾斜角度Aは約30°~約80°、約40°~約80°、約50°~約80°、約30°~約70°、約40°~約70°、または約45°~約65°であり得、気泡の発生および微細化のためには約45°~約65°が好ましい。傾斜角度Aは、バッフルごとに同一であってもよいし、異なっていてもよい。好ましい実施形態において、図1(c)に示すように、旋回方向Sに沿った向きで傾斜角度Aを約60°としているが、本発明はこれに限定されない。 Also, the orientation of the baffle 110b (inclination angle A shown in FIG. 1C) can take any orientation as long as the liquid introduced by the liquid introduction unit 103 is swirled by the swirl unit. For example, the inclination angle A may be about 90 °, 0 ° to less than 90 ° (inclination in a direction along the turning direction S), or more than 90 ° to less than 180 ° (the turning direction S). It may be inclined in the opposite direction). In one embodiment, the tilt angle A is about 30 ° to about 80 °, about 40 ° to about 80 °, about 50 ° to about 80 °, about 30 ° to about 70 °, about 40 ° to about 70 °, Or about 45 ° to about 65 °, with about 45 ° to about 65 ° being preferred for bubble generation and refinement. The inclination angle A may be the same for each baffle or may be different. In the preferred embodiment, as shown in FIG. 1C, the inclination angle A is set to about 60 ° in the direction along the turning direction S, but the present invention is not limited to this.
 縮径部101bの内部は中空領域であり、縮径部101bは気液吐出部104に向かうほど直径が小さくなる円錐台形状の筒状体であり、縮径部101bに流れ込んだ気液は、縮径部101b内でその旋回の角速度を増大させていく。縮径部101bの下端部には、混合容器101の内部から気液を排出するための気液吐出部104が形成されている。 The inside of the reduced diameter portion 101b is a hollow region, the reduced diameter portion 101b is a truncated cone-shaped cylindrical body whose diameter decreases toward the gas-liquid discharge portion 104, and the gas-liquid flowing into the reduced diameter portion 101b is The angular velocity of the turning is increased in the reduced diameter portion 101b. A gas-liquid discharge portion 104 for discharging gas-liquid from the inside of the mixing container 101 is formed at the lower end portion of the reduced diameter portion 101b.
 次に動作について説明する。 Next, the operation will be described.
 気液混合装置100に供給された気体Arは気体導入部102から液体通路111を介して旋回通路Rpに導入される。また、気液混合装置100に供給された液体Waは、液体導入部103を介して旋回部本体110aの外周面の接線方向から旋回通路Rpに供給される。旋回通路Rpに供給された液体Waは、筐体円筒部101aの上部で液体通路111から吹き出される気体Arと混合され、気体Arを含む液体Wa(気液M1)として旋回部本体110aの外周面に沿って旋回しながら、気液吐出部104に向かって流れていく。 The gas Ar supplied to the gas-liquid mixing apparatus 100 is introduced from the gas introduction unit 102 into the swirl passage Rp through the liquid passage 111. Further, the liquid Wa supplied to the gas-liquid mixing apparatus 100 is supplied to the turning passage Rp from the tangential direction of the outer peripheral surface of the turning portion main body 110a via the liquid introduction portion 103. The liquid Wa supplied to the swirl passage Rp is mixed with the gas Ar blown out from the liquid passage 111 at the upper part of the casing cylindrical portion 101a, and the outer periphery of the swivel body 110a as the liquid Wa (gas liquid M1) containing the gas Ar. It flows toward the gas-liquid discharge unit 104 while turning along the surface.
 このように気液M1が旋回部本体110aの外周面に沿って旋回しながら気液吐出部104に向かって流れていく途中で、旋回部本体110aの溝121に設けられているバッフル110bに衝突することとなり、気液M1に含まれる気泡はより細かく分解されることとなる。 In this way, the gas-liquid M1 collides with the baffle 110b provided in the groove 121 of the swivel unit main body 110a while flowing along the outer peripheral surface of the swivel unit main body 110a while flowing toward the gas-liquid discharge unit 104. As a result, the bubbles contained in the gas-liquid M1 are more finely decomposed.
 筐体円筒部101aの旋回通路Rpを通過した気液M1は筐体円錐台部(縮径部)101bに至ると、筐体円錐台部101bでは、内径が気液吐出部104に向かって小さくなっていることから、旋回角速度が増大し、気液M1は縮径部101bの内周面に引き寄せられ、縮径101bの中央部分に負圧が発生する。気液M1が気液吐出部104から吐出される際に、縮径部101bによって旋回角速度が増大された気液M1の流れによって大きなせん断力が発生するため、そのせん断力によって気液M1に含まれる気泡は、より細かく分解される。 When the gas-liquid M1 that has passed through the turning passage Rp of the casing cylindrical portion 101a reaches the casing truncated cone portion (reduced diameter portion) 101b, the inner diameter of the casing truncated cone portion 101b decreases toward the gas-liquid discharge portion 104. Therefore, the turning angular velocity is increased, the gas-liquid M1 is attracted to the inner peripheral surface of the reduced diameter portion 101b, and a negative pressure is generated at the central portion of the reduced diameter 101b. When the gas-liquid M1 is discharged from the gas-liquid discharge unit 104, a large shearing force is generated by the flow of the gas-liquid M1 whose swirling angular velocity is increased by the reduced diameter portion 101b, and therefore included in the gas-liquid M1 by the shearing force. Bubbles broken down are broken down more finely.
 本実施形態1によれば、気液混合装置100は、気体Arと液体Waとの混合を行うための混合容器(容器本体)101と、気体Arと液体Waとを含む気液M1を旋回させるための旋回部(流路形成体)110とを備え、混合容器101の内壁面と旋回部110の外周面との間には、液体および気体を旋回させながら流すための旋回流路Rpを形成し、旋回部110の表面には、円周方向に沿った溝121を軸方向に一定間隔で形成し、溝121内に旋回部本体110aの軸周りに一定の間隔でバッフル110bを配置したので、気液M1が旋回部本体110aの外周面に沿って旋回しながら気液吐出部104に向かって流れていく途中で、旋回部本体110aの溝121に設けられているバッフル110bに衝突することとなり、気液M1に含まれる気泡はより細かく分割されることとなる。このように、本発明の気液混合装置100は、旋回部110に突出部(バッフル110b)を備えることにより、突出部(バッフル110b)を備えない場合に比べて微細な気泡を効率的に生成することができるため、気液混合装置および微細気泡発生システムの小型化を図ることが可能となる。また、本発明の気液混合装置は気体と液体とを混合し気液を生成するという気液混合装置本来の機能に加えて、混合された気液に含まれる気泡を微細化するという新たな機能を有することができる。 According to the first embodiment, the gas-liquid mixing apparatus 100 swirls the mixing container (container body) 101 for mixing the gas Ar and the liquid Wa and the gas-liquid M1 including the gas Ar and the liquid Wa. And a swirl flow path Rp for flowing liquid and gas while swirling is formed between the inner wall surface of the mixing container 101 and the outer peripheral surface of the swirl section 110. In addition, grooves 121 along the circumferential direction are formed in the axial direction at regular intervals on the surface of the swivel unit 110, and the baffles 110b are arranged in the grooves 121 around the axis of the swivel unit main body 110a at regular intervals. The gas liquid M1 collides with the baffle 110b provided in the groove 121 of the swivel unit main body 110a while flowing along the outer peripheral surface of the swivel unit main body 110a while flowing toward the gas-liquid discharge unit 104. Gas liquid Bubbles contained in 1 becomes to be more finely divided. Thus, the gas-liquid mixing apparatus 100 of the present invention efficiently generates fine bubbles by providing the protruding portion (baffle 110b) in the swivel unit 110, compared to the case where the protruding portion (baffle 110b) is not provided. Therefore, the gas-liquid mixing device and the fine bubble generating system can be downsized. Further, the gas-liquid mixing apparatus of the present invention has a new function of refining bubbles contained in the mixed gas-liquid in addition to the original function of the gas-liquid mixing apparatus that mixes gas and liquid to generate gas-liquid. Can have functions.
 (実施形態2-ポンプ装置)
 図2は、本発明の実施形態2によるポンプ装置を説明するための図であり、図2(a)は、ポンプ装置200の外観を示し、図2(b)は、図2(a)のIIb-IIb線断面の構造を示し、図2(c)は、図2(b)のIIc-IIc線断面の構造を示す。
(Embodiment 2-Pump device)
FIG. 2 is a diagram for explaining a pump device according to Embodiment 2 of the present invention. FIG. 2 (a) shows an appearance of the pump device 200, and FIG. 2 (b) shows a diagram of FIG. 2 (a). FIG. 2C shows a structure taken along the line IIb-IIb, and FIG. 2C shows a structure taken along the line IIc-IIc in FIG.
 この実施形態2によるポンプ装置200は、図2(a)に示すように、ポンプ本体200aと、ポンプ本体200aを駆動するポンプ駆動部201aとを有する。ポンプ本体200aは円筒状の筐体(ポンプ筐体)201を有し、ポンプ筐体201には気液をポンプ筐体201内に吸入するためのポンプ吸入部202およびポンプ筐体201内から外部に気液を吐出するポンプ吐出部203が設けられている。 As shown in FIG. 2A, the pump device 200 according to the second embodiment includes a pump body 200a and a pump drive unit 201a that drives the pump body 200a. The pump main body 200a has a cylindrical casing (pump casing) 201. The pump casing 201 has a pump suction portion 202 for sucking gas and liquid into the pump casing 201, and an outside from the pump casing 201. A pump discharge unit 203 for discharging gas and liquid is provided.
 図2(b)および図2(c)に示すように、ポンプ筐体201内には、吸入された気液が旋回するように回転する回転部であるフィン回転体(羽根車)211が設けられており、フィン回転体211は、フィン回転部211を回転させる駆動部であるポンプ駆動部201aに回転体駆動軸201bを介して取り付けられている。 2 (b) and 2 (c), a fin rotating body (impeller) 211 is provided in the pump housing 201, which is a rotating part that rotates so that the sucked gas-liquid turns. The fin rotating body 211 is attached to a pump driving unit 201a that is a driving unit that rotates the fin rotating unit 211 via a rotating body driving shaft 201b.
 フィン回転体211は、回転体駆動軸201bに固定された軸側回転板211aと、軸側回転板211aに対向するように配置された対向回転板211bと、軸側回転板211aと対向回転板211bとの間に取り付けられた少なくとも1つの遠心フィン211cとを有する。 The fin rotator 211 includes a shaft-side rotating plate 211a fixed to the rotating member drive shaft 201b, an opposing rotating plate 211b disposed so as to face the shaft-side rotating plate 211a, and the shaft-side rotating plate 211a and the counter-rotating plate. 211b and at least one centrifugal fin 211c attached between them.
 1つの実施形態において、遠心フィン211cの形状は、ポンプ吸入部202から吸入された気液に遠心力を与えて旋回流を生成できる範囲で任意の形状を取り得る。例えば、回転体駆動軸201bに垂直な断面形状において、平板状であってもよいし、所定の曲率半径を有する湾曲板状であってもよい。好ましい実施形態において、遠心フィン211cは、図2(c)に示すように、回転体駆動軸201bに垂直な断面形状として円弧状である湾曲板であるが、本発明はこれに限定されない。また、1つの実施形態において、遠心フィン211cの形状は、回転体駆動軸201bの軸方向に沿ってフラットであってもよいし、捻じれたらせん状であってもよい。好ましい実施形態において、遠心フィン211cの形状は、回転体駆動軸201bの軸方向に沿ってらせん状である。このようにすることで、ポンプ装置100による気液の吸引力をさらに向上させることができる。 In one embodiment, the shape of the centrifugal fins 211c can take any shape as long as it can generate a swirling flow by applying a centrifugal force to the gas-liquid sucked from the pump suction unit 202. For example, the cross-sectional shape perpendicular to the rotating body drive shaft 201b may be a flat plate shape or a curved plate shape having a predetermined radius of curvature. In the preferred embodiment, the centrifugal fin 211c is a curved plate having an arc shape as a cross-sectional shape perpendicular to the rotating body drive shaft 201b as shown in FIG. 2C, but the present invention is not limited to this. In one embodiment, the shape of the centrifugal fin 211c may be flat along the axial direction of the rotating body drive shaft 201b, or may be a twisted spiral. In a preferred embodiment, the shape of the centrifugal fins 211c is a spiral shape along the axial direction of the rotating body drive shaft 201b. By doing in this way, the attraction | suction power of the gas-liquid by the pump apparatus 100 can further be improved.
 複数の遠心フィン211cを設ける実施形態において、遠心フィン211cと遠心フィン211cとの間隔は、約10mm~約50mm、約15mm~約40mm、または、約20mm~約30mmであるが、本発明はこれに限定されない。当業者は、ポンプ装置100の大きさ、ポンプ装置100の出力などにより適切な間隔を選択することができる。 In the embodiment in which the plurality of centrifugal fins 211c are provided, the distance between the centrifugal fins 211c and the centrifugal fins 211c is about 10 mm to about 50 mm, about 15 mm to about 40 mm, or about 20 mm to about 30 mm. It is not limited to. A person skilled in the art can select an appropriate interval according to the size of the pump device 100, the output of the pump device 100, and the like.
 1つの実施形態において、遠心フィン211cの枚数は、1枚~20枚、4枚~16枚、6枚~14枚、または10枚~12枚であり得る。遠心フィン211cを回転体駆動軸201bの軸周りに一定の間隔で10~12枚(図2(c)の例では12枚)配置すると、効果的に気泡の微細化が達成できた。 In one embodiment, the number of the centrifugal fins 211c may be 1 to 20, 4 to 16, 6 to 14, or 10 to 12. When 10 to 12 centrifugal fins 211c are arranged at regular intervals around the axis of the rotating body drive shaft 201b (12 in the example of FIG. 2 (c)), miniaturization of the bubbles can be achieved effectively.
 また、遠心フィン211cの配向(図2(c)で示す傾斜角度B)はポンプ吸入部202から吸入された気液に遠心力を与えることができる範囲で任意の配向を取り得る。例えば、回転体駆動軸201bの回転方向と垂直(傾斜角度Bが約90°)の向きであってもよいし、回転方向に沿った向きに傾斜(傾斜角度Bが0°超~90°未満)させてもよいし、回転方向とは逆の向きに傾斜(傾斜角度Bを90°超~180°未満)させてもよい。1つの実施形態において、傾斜角度Bは約120°~約170°、約130°~約170°、約130°~約160°、約120°~約150°、約120°~約140、または約130°~約140°であり得る。傾斜角度Bは、遠心フィンごとに同一であってもよいし、異なっていてもよい。好ましい実施形態において、図2(c)に示すように、回転体駆動軸201bの回転方向Xとは逆方向に沿った向きで傾斜角度Bを約135°としているが、本発明はこれに限定されない。 Further, the orientation of the centrifugal fins 211c (inclination angle B shown in FIG. 2C) can take any orientation as long as centrifugal force can be applied to the gas-liquid sucked from the pump suction portion 202. For example, the direction may be perpendicular to the rotation direction of the rotating body drive shaft 201b (inclination angle B is about 90 °), or it may be inclined in the direction along the rotation direction (inclination angle B is more than 0 ° to less than 90 °). Or may be inclined in a direction opposite to the rotation direction (inclination angle B greater than 90 ° to less than 180 °). In one embodiment, the tilt angle B is about 120 ° to about 170 °, about 130 ° to about 170 °, about 130 ° to about 160 °, about 120 ° to about 150 °, about 120 ° to about 140, or It can be about 130 ° to about 140 °. The inclination angle B may be the same for each centrifugal fin, or may be different. In the preferred embodiment, as shown in FIG. 2 (c), the inclination angle B is set to about 135 ° in the direction along the direction opposite to the rotation direction X of the rotating body drive shaft 201b, but the present invention is not limited to this. Not.
 遠心フィン211cの配向(傾斜角度B)は、遠心フィン211cが所定の曲率半径を有する湾曲板状であった場合、その曲率半径によって決まる。曲率半径(傾斜角度B)を大きくしすぎると流体圧力が上がり旋回流速は早くなるため効率的に気泡の微細化は図れるが、キャビテーションの発生を誘因し、安定した気液供給の妨げになることもある。また曲率半径(傾斜角度B)を小さくしすぎると逆に流体圧力は下がって旋回流速が遅くなるため気泡の微細化が非効率となることがあるが、キャビテーションの発生は抑制され、安定した気液供給を行うことができる。当業者は、求められる微細気泡の効率性および気液供給の安定性に基づいて、遠心フィン211cの配向(傾斜角度B)を適切に選択することができる。例えば、遠心フィン211cの曲率半径の大きさは、インペラ212の外形の大きさの約1/4~約1/1、約1/3~約3/4、または約1/2~約2/3であり得る。 The orientation (inclination angle B) of the centrifugal fin 211c is determined by the radius of curvature when the centrifugal fin 211c is a curved plate having a predetermined radius of curvature. If the radius of curvature (inclination angle B) is increased too much, the fluid pressure increases and the swirl flow velocity increases, so that bubbles can be made finer efficiently. However, the occurrence of cavitation is induced, and stable gas-liquid supply is hindered. There is also. On the other hand, if the radius of curvature (inclination angle B) is too small, the fluid pressure drops and the swirling flow velocity slows down, which may make the bubble miniaturization inefficient. Liquid supply can be performed. Those skilled in the art can appropriately select the orientation (inclination angle B) of the centrifugal fins 211c based on the required efficiency of fine bubbles and the stability of gas-liquid supply. For example, the radius of curvature of the centrifugal fin 211c is about 1/4 to about 1/1, about 1/3 to about 3/4, or about 1/2 to about 2 / of the outer size of the impeller 212. Can be 3.
 遠心フィン211cの配置は、ポンプ吸入部202から吸入された気液に遠心力を与えて旋回流を生成することができる範囲で任意の位置に任意の数を配置することが可能である。たとえば、1つの遠心フィン211cを配置してもよいし、複数の遠心フィン211cを回転体駆動軸201bの円周方向に一定間隔で配置してもよいし、複数の遠心フィン211cを回転体駆動軸201bの円周方向にそれぞれ異なる間隔で配置してもよい。好ましい実施形態において、図2(c)に示すように、回転体駆動軸201bの円周方向に沿って4つの遠心フィン211cを一定間隔で配置しているが、本発明はこれに限定されない。遠心フィン211cは、回転体駆動軸201bが矢印Xの方向に回転したとき、ポンプ吸入部202からフィン回転体211内に流れ込んだ気液を、ポンプ筐体201内を円弧状の遠心フィン211cに沿ってポンプ筐体201の外側に向かって移動させる。 As for the arrangement of the centrifugal fins 211c, it is possible to arrange an arbitrary number of the centrifugal fins 211c at arbitrary positions within a range in which a centrifugal force can be applied to the gas-liquid sucked from the pump suction unit 202 to generate a swirling flow. For example, one centrifugal fin 211c may be arranged, a plurality of centrifugal fins 211c may be arranged at regular intervals in the circumferential direction of the rotating body drive shaft 201b, or the plurality of centrifugal fins 211c may be driven by a rotating body. They may be arranged at different intervals in the circumferential direction of the shaft 201b. In the preferred embodiment, as shown in FIG. 2C, four centrifugal fins 211c are arranged at regular intervals along the circumferential direction of the rotating body drive shaft 201b, but the present invention is not limited to this. Centrifugal fins 211c are arranged such that when the rotating body drive shaft 201b rotates in the direction of arrow X, the gas-liquid flowing from the pump suction portion 202 into the fin rotating body 211 is converted into arcuate centrifugal fins 211c in the pump housing 201. Along the outer side of the pump housing 201.
 さらに、ポンプ筐体201の内壁にはその内周面に沿って少なくとも1つの突出部であるインペラ(バッフル)212が配置されている。インペラ212の形状は、遠心フィン211cによる遠心力によってポンプ筐体201の外側に向かって旋回された気液と衝突することができる範囲で任意の形状を取り得る。インペラ212の形状は、例えば、ポンプ筐体201の軸に垂直な断面形状として、平板状であってもよいし、所定の曲率半径を有する湾曲板状であってもよい。好ましい実施形態において、図2(c)に示すように、ポンプ筐体201の軸に垂直な断面形状として平板状であるが、本発明はこれに限定されない。また、1つの実施形態において、遠心フィン211cの形状は、回転体駆動軸201bの軸方向に沿ってフラットであってもよいし、捻じれたらせん状であってもよい。好ましい実施形態において、遠心フィン211cの形状は、回転体駆動軸201bの軸方向に沿ってらせん状である。このようにすることで、ポンプ装置100による気液の吸引力をさらに向上させることができる。 Furthermore, an impeller (baffle) 212 that is at least one protrusion is disposed on the inner wall of the pump housing 201 along the inner peripheral surface thereof. The shape of the impeller 212 can take any shape as long as the impeller 212 can collide with the gas-liquid swung toward the outside of the pump housing 201 by the centrifugal force of the centrifugal fins 211c. The shape of the impeller 212 may be, for example, a flat plate shape as a cross-sectional shape perpendicular to the axis of the pump housing 201, or may be a curved plate shape having a predetermined radius of curvature. In a preferred embodiment, as shown in FIG. 2C, the cross-sectional shape perpendicular to the axis of the pump housing 201 is a flat plate shape, but the present invention is not limited to this. In one embodiment, the shape of the centrifugal fin 211c may be flat along the axial direction of the rotating body drive shaft 201b, or may be a twisted spiral. In a preferred embodiment, the shape of the centrifugal fins 211c is a spiral shape along the axial direction of the rotating body drive shaft 201b. By doing in this way, the attraction | suction power of the gas-liquid by the pump apparatus 100 can further be improved.
 また、インペラ212の配向(図2(c)に示す傾斜角度C)は、遠心フィン211cによる遠心力によってポンプ筐体201の外側に向かって旋回された気液と衝突することができる範囲で任意の配向を取り得る。例えば、回転方向Xと垂直(傾斜角度Cが約90°)の向きであってもよいし、回転方向Xに沿った向きに傾斜(傾斜角度Cが0°超~90°未満)させてもよいし、回転方向Xとは逆の向きに傾斜(傾斜角度Cを90°超~180°未満)させてもよい。1つの実施形態において、傾斜角度Cは約30°~約80°、約40°~約80°、約50°~約80°、約30°~約70°、約40°~約70°、または約45°~約60°であり得る。傾斜角度Cは、インペラ212ごとに同一であってもよいし、異なっていてもよい。好ましい実施形態において、図2(c)に示すように、インペラ212は回転方向Xに沿った向きで傾斜角度Cを約60°としているが、本発明はこれに限定されない。傾斜角度Cが約30°以下になると、ポンプ筐体201とインペラ212により形成されるスペースが小さくなりすぎて、遠心フィン211cにより旋回された旋回流が良好にスペースに入り込むことが困難となり所望の乱流の発生が行えなくなる。 Further, the orientation of the impeller 212 (inclination angle C shown in FIG. 2C) is arbitrary as long as the impeller 212 can collide with the gas-liquid swung toward the outside of the pump housing 201 by the centrifugal force by the centrifugal fins 211c. The orientation can be taken. For example, the direction may be perpendicular to the rotation direction X (inclination angle C is about 90 °), or may be inclined in the direction along the rotation direction X (inclination angle C is more than 0 ° to less than 90 °). Alternatively, it may be inclined in the direction opposite to the rotation direction X (the inclination angle C is more than 90 ° to less than 180 °). In one embodiment, the tilt angle C is about 30 ° to about 80 °, about 40 ° to about 80 °, about 50 ° to about 80 °, about 30 ° to about 70 °, about 40 ° to about 70 °, Or from about 45 ° to about 60 °. The inclination angle C may be the same for each impeller 212 or may be different. In the preferred embodiment, as shown in FIG. 2C, the impeller 212 is oriented along the rotational direction X and has an inclination angle C of about 60 °, but the present invention is not limited to this. If the inclination angle C is about 30 ° or less, the space formed by the pump housing 201 and the impeller 212 becomes too small, and it becomes difficult for the swirling flow swirled by the centrifugal fins 211c to enter the space well. Turbulence cannot be generated.
 インペラ212の配向(傾斜角度C)は、インペラ212が所定の曲率半径を有する湾曲板状であった場合、その曲率半径によって決まる。曲率半径(傾斜角度C)を大きくしすぎると流体圧力が上がり旋回流速は早くなるため効率的に気泡の微細化は図れるが、キャビテーションの発生を誘因し、安定した気液供給の妨げになることがある。また曲率半径(傾斜角度C)小さくしすぎると逆に流体圧力は下がって旋回流速が遅くなるため気泡の微細化が非効率となることもあるが、キャビテーションの発生は抑制され、安定した気液供給を行うことができる。求められる微細気泡の効率性および気液供給の安定性に基づいて、当業者は、インペラ212の配向(傾斜角度C)を適切に選択することができる。例えば、インペラ212の曲率半径の大きさは、インペラ212の外形の大きさの約1/
4~約1/1、約1/3~約3/4、または約1/2~約2/3でありえる。
The orientation (inclination angle C) of the impeller 212 is determined by the curvature radius when the impeller 212 has a curved plate shape having a predetermined curvature radius. If the radius of curvature (inclination angle C) is increased too much, the fluid pressure increases and the swirling flow velocity increases, so that bubbles can be made finer efficiently. However, this causes cavitation and hinders stable gas-liquid supply. There is. On the other hand, if the radius of curvature (inclination angle C) is too small, the fluid pressure drops and the swirl flow velocity slows down, which may make the bubble miniaturization inefficient. However, the occurrence of cavitation is suppressed and stable gas-liquid Supply can be made. A person skilled in the art can appropriately select the orientation (inclination angle C) of the impeller 212 based on the required efficiency of the fine bubbles and the stability of the gas-liquid supply. For example, the size of the radius of curvature of the impeller 212 is approximately 1 / of the size of the outer shape of the impeller 212.
It can be from 4 to about 1/1, from about 1/3 to about 3/4, or from about 1/2 to about 2/3.
 1つの実施形態において、遠心フィン211cの配向とインペラ212の配向との関係は任意の関係を取り得る。たとえば、遠心フィン211cとインペラ212との配向が同じであってもよいし、遠心フィン211cとインペラ212との配向が異なっていてもよい。好ましい実施形態において、遠心フィン211cが回転し、遠心フィン211cの先端とインペラ212の先端とが向かい合ったときに、遠心フィン211cとインペラ212が略直線となる。このように直線とすることにより、ポンプ筐体201の内壁とインペラ212のスペースに円滑に旋回流が流れ込むことができる。 In one embodiment, the relationship between the orientation of the centrifugal fins 211c and the orientation of the impeller 212 can be any relationship. For example, the orientations of the centrifugal fins 211c and the impeller 212 may be the same, or the orientations of the centrifugal fins 211c and the impeller 212 may be different. In a preferred embodiment, when the centrifugal fin 211c rotates and the tip of the centrifugal fin 211c and the tip of the impeller 212 face each other, the centrifugal fin 211c and the impeller 212 become substantially straight. In this way, the swirl flow can smoothly flow into the space between the inner wall of the pump casing 201 and the impeller 212.
 インペラ212の配置は、遠心フィン211cによる遠心力によってポンプ筐体201の外側に向かって旋回された気液と衝突することができる範囲で任意の位置に任意の数を配置することが可能である。たとえば、1つのインペラ212を配置してもよいし、複数のインペラ212をポンプ筐体201の円周方向に沿って一定間隔で配置してもよいし、複数のインペラ212をポンプ筐体201の円周方向に沿ってそれぞれ異なる間隔で配置してもよい。好ましい実施形態において、図2(c)に示すように、ポンプ筐体201の円周方向に沿って10枚のインペラ212を一定間隔で配置しているが、本発明はこれに限定されない。 Arrangement | positioning of the impeller 212 can arrange | position arbitrary numbers in arbitrary positions in the range which can collide with the gas-liquid swirled toward the outer side of the pump housing | casing 201 with the centrifugal force by the centrifugal fin 211c. . For example, one impeller 212 may be disposed, a plurality of impellers 212 may be disposed at regular intervals along the circumferential direction of the pump housing 201, or a plurality of impellers 212 may be disposed on the pump housing 201. They may be arranged at different intervals along the circumferential direction. In the preferred embodiment, as shown in FIG. 2 (c), ten impellers 212 are arranged at regular intervals along the circumferential direction of the pump housing 201, but the present invention is not limited to this.
 1つの実施形態において、遠心フィン211cとインペラ212との間の小さな隙間(クリアランス)は、任意の値を取り得る。隙間を小さくしすぎると旋回流速は上がるが吐出水量が低下し、所望の気液吐出量を確保できなくなる。逆に隙間を大きくしすぎると所望の気液吐出量を確保することはできるが、旋回流速が下がり遠心フィン211cとインペラ212との間で所望の乱流が得られず気泡の微細化が困難となる。求められる気液吐出量および微細気泡径などの条件に基づいて、遠心フィン211cとインペラ212との間の隙間を選択する。たとえば、隙間の距離は約0.5mm~約5mm、約0.7mm~約3mm、または約1mm~約2mmである。 In one embodiment, the small gap (clearance) between the centrifugal fins 211c and the impeller 212 can take any value. If the gap is made too small, the swirling flow rate increases, but the amount of discharged water decreases, and a desired gas-liquid discharge amount cannot be secured. On the other hand, if the gap is too large, a desired gas-liquid discharge amount can be secured, but the swirling flow rate decreases and a desired turbulent flow cannot be obtained between the centrifugal fins 211c and the impeller 212, making it difficult to refine the bubbles. It becomes. A gap between the centrifugal fin 211c and the impeller 212 is selected based on conditions such as the required gas-liquid discharge amount and fine bubble diameter. For example, the gap distance is about 0.5 mm to about 5 mm, about 0.7 mm to about 3 mm, or about 1 mm to about 2 mm.
 このような構造のポンプ装置200では、ポンプ駆動部201aによりポンプ本体200aの回転部であるフィン回転体211が駆動され、気泡を含む気液M1がポンプ吸入部202からポンプ筐体201内に供給されている状態では、フィン回転体211の回転によりポンプ筐体201内の気液M1は、ポンプ筐体201内で旋回する。このように気液M1がポンプ筐体201内で旋回すると、遠心力によりポンプ筐体201内の気液M1は、ポンプ筐体201内を旋回しながら、ポンプ筐体201の中心からポンプ筐体201の内壁面側に引き寄せられ、ポンプ筐体201の内壁に設けられているインペラ212に衝突することとなる。このように気液M1がインペラ212に衝突することで、気液M1に含まれる気泡はより細かく分割されることとなる。また、遠心フィン211cとインペラ212との間の小さな隙間に存在する気液は遠心フィン211cによる遠心力をせん断力として受けることにより、気泡がより細かく分解されることとなる。このように、本発明のポンプ装置200は、ポンプ本体200aの内壁に突出部(インペラ212)を設けることにより、突出部(インペラ212)を設けない場合に比べて微細な気泡を効率的に生成することができるため、ポンプ装置および微細気泡発生システムの小型化を図ることが可能となる。また、本発明のポンプ装置200は、気液を吸入し、外部に気液を吐出するポンプ本来の機能に加えて、気液に含まれる気泡を微細化するという新たな機能を有する。 In the pump device 200 having such a structure, the fin rotating body 211 that is the rotating portion of the pump main body 200a is driven by the pump driving portion 201a, and the gas-liquid M1 containing bubbles is supplied from the pump suction portion 202 into the pump housing 201. In this state, the gas / liquid M <b> 1 in the pump housing 201 is rotated in the pump housing 201 by the rotation of the fin rotator 211. When the gas-liquid M1 swirls in the pump casing 201 in this way, the gas-liquid M1 in the pump casing 201 is swung in the pump casing 201 by centrifugal force, and the pump casing 201 starts from the center of the pump casing 201. It is attracted to the inner wall surface side of 201 and collides with the impeller 212 provided on the inner wall of the pump housing 201. Thus, when the gas-liquid M1 collides with the impeller 212, the bubbles contained in the gas-liquid M1 are more finely divided. Further, the gas-liquid present in the small gap between the centrifugal fins 211c and the impeller 212 receives the centrifugal force by the centrifugal fins 211c as a shearing force, so that the bubbles are more finely decomposed. Thus, the pump device 200 of the present invention efficiently generates fine bubbles by providing the protrusion (impeller 212) on the inner wall of the pump body 200a, compared to the case where the protrusion (impeller 212) is not provided. Therefore, the pump device and the fine bubble generating system can be downsized. Further, the pump device 200 of the present invention has a new function of refining bubbles contained in the gas and liquid in addition to the original function of the pump for sucking gas and liquid and discharging the gas and liquid to the outside.
 (実施形態3-気泡微細化装置)
 図3は、本発明の実施形態3による気泡微細化装置300を説明するための図であり、図3(a)は、気泡微細化装置300の外観を示し、図3(b)は、図3(a)のIIIb-IIIb線断面の構造を示し、図3(c)は、図3(b)のIIIc部分を拡大して示す。
(Embodiment 3-Bubble micronizer)
FIG. 3 is a view for explaining a bubble miniaturization apparatus 300 according to Embodiment 3 of the present invention. FIG. 3 (a) shows an appearance of the bubble miniaturization apparatus 300, and FIG. 3 (a) shows the structure of the cross section taken along line IIIb-IIIb, and FIG. 3 (c) shows an enlarged view of the IIIc portion of FIG. 3 (b).
 この実施形態3による気泡微細化装置300は、図3(a)および図3(b)に示すように、気泡微細化装置本体であり内壁と外壁を有する外側筒状体310と気液を旋回させる旋回部である内側柱状体320と気液を外側筒状体310内部に導入するための気液導入部301と外側筒状体310内部から気液を外部に吐出するための気液吐出部302とを有する。ここで、気液導入部301は、外側筒状体310の一端に設けられており、気液吐出部302は、外側筒状体310の他端に設けられている。 As shown in FIGS. 3 (a) and 3 (b), the bubble miniaturization apparatus 300 according to Embodiment 3 swirls gas and liquid with the outer cylindrical body 310 that is the main body of the bubble miniaturization apparatus and has an inner wall and an outer wall. An inner columnar body 320 that is a revolving part, a gas-liquid introducing part 301 for introducing gas-liquid into the outer cylindrical body 310, and a gas-liquid discharging part for discharging gas-liquid from the outer cylindrical body 310 to the outside 302. Here, the gas-liquid introduction part 301 is provided at one end of the outer cylindrical body 310, and the gas-liquid discharge part 302 is provided at the other end of the outer cylindrical body 310.
 外側筒状体310と内側柱状体320とは、図3(b)に示すように、外側筒状体310内に内側柱状体320が嵌合することにより、気液M2を旋回させながら外側筒状体310の一端側から他端側へ流すための旋回通路Rp2を形成している。 As shown in FIG. 3B, the outer cylindrical body 310 and the inner columnar body 320 are formed by fitting the inner columnar body 320 into the outer cylindrical body 310, thereby rotating the gas-liquid M <b> 2 and turning the outer cylinder. A swirl passage Rp2 for flowing from one end side to the other end side of the shaped body 310 is formed.
 図4は、図3(b)に示す気泡微細化装置300の部品を説明するための図であり、図4(a)は、気泡微細化装置300の外側筒状体310を示し、図4(b)は、気泡微細化装置300を構成する内側柱状体320を示す。 4 is a diagram for explaining components of the bubble miniaturization apparatus 300 shown in FIG. 3B, and FIG. 4A shows the outer cylindrical body 310 of the bubble miniaturization apparatus 300, and FIG. (B) shows the inner side columnar body 320 which comprises the bubble miniaturization apparatus 300. FIG.
 外側筒状体310は、気液導入部301を有する導入側周壁部311と、気液吐出部302を有する吐出側周壁部313と、導入側周壁部311と吐出側周壁部313との間に位置する外側筒状体310の略軸方向に沿って配列された筒状体凹凸部312とを有する。1つの実施形態において、筒状体凹凸部312に設けられる凹凸の形状は、任意の形状を取り得る。例えば、外側筒状体310の軸方向の断面(図4(a)に示す断面)において、例えば、四角状であってもよいし、三角状であってもよいし、半円状であってもよい。1つの実施形態において、筒状体凹凸部312に設けられる凹凸の外側筒状体310の軸方向の配置間隔は任意であり得る。例えば、一定間隔であってもよいし、配置する場所によって凹凸の間隔を異ならせてもよいし、らせん状であってもよい。例えば、筒状体凹凸部312に設けられる凹凸の外側筒状体310の軸方向の配置間隔は、一定間隔であって、約0.5~約7mm、約1~約5mm、約2~約3mmである。好ましい実施形態において、図3(c)に示すように、筒状体凹凸部312に設けられる凹凸は、らせん状であるねじ溝312aであって、後述される柱状体凹凸部に設けられる凹凸と入れ子状態となるように配置されているが、本発明はこれに限定されない。 The outer cylindrical body 310 includes an introduction-side peripheral wall portion 311 having a gas-liquid introduction portion 301, a discharge-side peripheral wall portion 313 having a gas-liquid discharge portion 302, and an introduction-side peripheral wall portion 311 and a discharge-side peripheral wall portion 313. It has the cylindrical uneven | corrugated | grooved part 312 arranged along the substantially axial direction of the outer cylindrical body 310 located. In one embodiment, the uneven | corrugated shape provided in the cylindrical body uneven | corrugated | grooved part 312 can take arbitrary shapes. For example, in the axial cross section of the outer cylindrical body 310 (the cross section shown in FIG. 4A), for example, it may be a square shape, a triangular shape, or a semicircular shape. Also good. In one embodiment, the arrangement | positioning space | interval of the axial direction of the uneven | corrugated outer cylindrical body 310 provided in the cylindrical body uneven | corrugated | grooved part 312 can be arbitrary. For example, the interval may be constant, or the interval of the unevenness may be varied depending on the place to be arranged, or may be spiral. For example, the axial arrangement interval of the concave and convex outer cylindrical body 310 provided in the cylindrical concave-convex portion 312 is a constant interval of about 0.5 to about 7 mm, about 1 to about 5 mm, about 2 to about 3 mm. In a preferred embodiment, as shown in FIG. 3C, the unevenness provided on the cylindrical body uneven portion 312 is a spiral thread groove 312a, and the unevenness provided on the columnar uneven portion described later. Although it arrange | positions so that it may become a nested state, this invention is not limited to this.
 内側柱状体320は、外側筒状体310の導入側周壁部311に嵌合する導入側端部321と、外側筒状体310の吐出側周壁部313に嵌合する吐出側端部325と、外側筒状体310の筒状体凹凸部312に対向する柱状体凹凸部323とを有する。 The inner columnar body 320 includes an introduction side end 321 fitted to the introduction side peripheral wall 311 of the outer cylindrical body 310, a discharge side end 325 fitted to the discharge side peripheral wall 313 of the outer cylindrical body 310, It has a columnar body uneven portion 323 facing the tubular body uneven portion 312 of the outer tubular body 310.
 1つの実施形態において、柱状体凹凸部323に設けられる凹凸の形状は、任意の形状を取り得る。例えば、内側柱状体320の軸方向の断面(図4(b)に示す断面)において、例えば、四角状であってもよいし、三角状であってもよいし、半円状であってもよい。1つの実施形態において、柱状体凹凸部323に設けられる凹凸の内側柱状体320の軸方向の配置間隔は任意であり得る。例えば、一定間隔であってもよいし、配置する場所によって凹凸の間隔を異ならせてもよいし、らせん状であってもよい。 In one embodiment, the shape of the unevenness provided in the columnar uneven portion 323 can take any shape. For example, in the axial cross section of the inner columnar body 320 (the cross section shown in FIG. 4B), for example, it may be a square shape, a triangular shape, or a semicircular shape. Good. In one embodiment, the arrangement | positioning space | interval of the axial direction of the uneven | corrugated inner side columnar body 320 provided in the columnar body uneven | corrugated | grooved part 323 may be arbitrary. For example, the interval may be constant, or the interval of the unevenness may be varied depending on the place to be arranged, or may be spiral.
 例えば、筒状体凹凸部312に設けられる凹凸の外側筒状体310の軸方向の配置間隔は、一定間隔であって、約0.5~約7mm、約1~約5mm、約2~約3mmである。好ましい実施形態において、図3(c)に示すように、柱状体凹凸部323に設けられる凹凸は、らせん状であるねじ山323aであって、筒状体凹凸部312に設けられるねじ溝312aと入れ子状態となるように配置されているが、本発明はこれに限定されない。 For example, the axial arrangement interval of the concave and convex outer cylindrical body 310 provided in the cylindrical concave-convex portion 312 is a constant interval of about 0.5 to about 7 mm, about 1 to about 5 mm, about 2 to about 3 mm. In a preferred embodiment, as shown in FIG. 3 (c), the unevenness provided in the columnar uneven portion 323 is a screw thread 323 a having a spiral shape, and a thread groove 312 a provided in the tubular uneven portion 312. Although it arrange | positions so that it may become a nested state, this invention is not limited to this.
 1つの実施形態において、柱状体凹凸部323に設けられるねじ山323aと筒状体凹凸部312に設けられるねじ溝312aとの隙間の距離は任意であり得る。例えば、一定間隔であってもよいし、配置する場所によって凹凸の間隔を異ならせてもよい。例えば、柱状体凹凸部323に設けられるねじ山323aと筒状体凹凸部312に設けられるねじ溝312aとの隙間の距離は、約0.5~約7mm、約1~約5mm、約1.5~約3mmである。 In one embodiment, the gap distance between the thread 323a provided in the columnar uneven portion 323 and the screw groove 312a provided in the tubular uneven portion 312 can be arbitrary. For example, the interval may be constant, or the interval between the irregularities may be varied depending on the place of arrangement. For example, the distance between the screw thread 323a provided in the columnar uneven portion 323 and the screw groove 312a provided in the cylindrical uneven portion 312 is about 0.5 to about 7 mm, about 1 to about 5 mm, about 1. 5 to about 3 mm.
 内側柱状体320の導入側端部321と柱状体凹凸部323との間の部分は、導入された気液M2に旋回力を与える導入側旋回部322となっており、内側柱状体320の吐出側端部325と柱状体凹凸部323との間の部分は、吐出する気液M3に旋回力を与える吐出側旋回部324となっている。 A portion between the introduction side end 321 and the columnar uneven portion 323 of the inner columnar body 320 serves as an introduction side swivel portion 322 that imparts a swirling force to the introduced gas-liquid M2, and the discharge of the inner columnar body 320 is performed. A portion between the side end portion 325 and the columnar uneven portion 323 serves as a discharge side turning portion 324 that applies a turning force to the gas-liquid M3 to be discharged.
 ここで、図3(c)、図4(a)、図4(b)に示すように、柱状体凹凸部323の外周面には、筒状体凹凸部312の内周面に形成されたねじ溝312aとは、入れ子状態となるようにねじの進む方向が逆の関係にねじ山323aが形成されている。外側筒状体310の筒状体凹凸部312の内周面と内側柱状体320の柱状体凹凸部323の外周面とが対向する部分では、外側筒状体310の筒状体凹凸部312のねじ溝312aに沿って旋回しながら外側筒状体310の一端側から他端側に流れる気液M2が、内側柱状体320の柱状体凹凸部323のねじ山323aに衝突するようになっている。 Here, as shown in FIGS. 3C, 4 </ b> A, and 4 </ b> B, the outer peripheral surface of the columnar uneven portion 323 is formed on the inner peripheral surface of the cylindrical uneven portion 312. A thread 323a is formed in the thread groove 312a so that the screw advances in the opposite direction so as to be in a nested state. In a portion where the inner peripheral surface of the cylindrical body uneven portion 312 of the outer cylindrical body 310 and the outer peripheral surface of the columnar uneven portion 323 of the inner columnar body 320 face each other, the cylindrical uneven portion 312 of the outer cylindrical body 310 is formed. The gas-liquid M2 flowing from one end side to the other end side of the outer cylindrical body 310 while turning along the thread groove 312a collides with the thread 323a of the columnar uneven portion 323 of the inner columnar body 320. .
 このような構成の実施形態3による気泡微細化装置300では、気泡微細化装置300に供給された気液M2が、気液導入部301から旋回通路Rp2に導入される。旋回通路Rp2に導入された気液M2は、気液導入部301から導入された勢いによって、外側筒状体310の導入側周壁部311と内側柱状体320の導入側旋回部322との間で旋回力が与えられる。旋回力が与えられた気液M2は、外側筒状体310の筒状体凹凸部312の内周面と内側柱状体320の柱状体凹凸部323の外周面とが対向する部分を通過して、外側筒状体310の吐出側周壁部313と内側柱状体320の吐出側旋回部324との間の部分へ流れ込む。気液M2が、外側筒状体310の筒状体凹凸部312の内周面と内側柱状体320の柱状体凹凸部323の外周面とが対向する部分を通過する際、外側筒状体310の筒状体凹凸部312のねじ溝312aに沿って旋回しながら外側筒状体310の一端側から他端側に流れるので、気液M2は、内側柱状体320の柱状体凹凸部323のねじ山323aに衝突する。この衝突により、気液M2に含まれる気泡はより細かく分割されることとなる。その後、気泡が微細化された気液M3は、外側筒状体310の吐出側周壁部313と内側柱状体320の吐出側旋回部324との間の部分で旋回力が与えられ、気液吐出部302から気泡微細化装置300の外部に排出される。このように、本発明の気泡微細化装置300は、外側筒状体310に凹凸(ねじ溝312a)および/または内側柱状体320に凹凸(ねじ山323a)を備えることにより、外側筒状体310および/または内側柱状体320に凹凸を備えない場合に比べて微細な気泡を効率的に生成することができるため、気泡微細化装置および微細気泡発生システムの小型化を図ることが可能となる。 In the bubble miniaturization apparatus 300 according to the third embodiment having such a configuration, the gas-liquid M2 supplied to the bubble miniaturization apparatus 300 is introduced from the gas-liquid introduction unit 301 into the turning passage Rp2. The gas-liquid M2 introduced into the turning passage Rp2 is moved between the introduction-side peripheral wall portion 311 of the outer cylindrical body 310 and the introduction-side turning portion 322 of the inner columnar body 320 by the force introduced from the gas-liquid introduction portion 301. A turning force is applied. The gas-liquid M2 to which the turning force is applied passes through a portion where the inner peripheral surface of the cylindrical body uneven portion 312 of the outer cylindrical body 310 and the outer peripheral surface of the columnar uneven portion 323 of the inner columnar body 320 face each other. Then, it flows into a portion between the discharge side peripheral wall portion 313 of the outer cylindrical body 310 and the discharge side turning portion 324 of the inner columnar body 320. When the gas-liquid M2 passes through a portion where the inner peripheral surface of the cylindrical uneven portion 312 of the outer cylindrical body 310 and the outer peripheral surface of the columnar concave and convex portion 323 of the inner column 320 are opposed to each other, the outer cylindrical member 310 is passed. Since the gas flows from the one end side of the outer cylindrical body 310 to the other end side while turning along the screw groove 312a of the cylindrical body uneven portion 312, the gas-liquid M2 is screwed into the columnar body uneven portion 323 of the inner columnar body 320. Collide with mountain 323a. Due to this collision, the bubbles contained in the gas-liquid M2 are more finely divided. Thereafter, the gas-liquid M3 in which the bubbles are refined is given a turning force at a portion between the discharge side peripheral wall portion 313 of the outer cylindrical body 310 and the discharge side turning portion 324 of the inner columnar body 320, and the gas-liquid discharge is performed. It is discharged from the part 302 to the outside of the bubble miniaturization apparatus 300. As described above, the bubble miniaturization apparatus 300 according to the present invention includes the outer cylindrical body 310 by providing the outer cylindrical body 310 with unevenness (screw groove 312a) and / or the inner columnar body 320 with unevenness (thread 323a). In addition, since fine bubbles can be efficiently generated as compared with the case where the inner columnar body 320 is not provided with irregularities, it is possible to reduce the size of the bubble refining device and the fine bubble generating system.
 気泡微細化装置300は、求められる微細気泡の大きさや量に基づき、必要に応じて複数個(例えば、3個以上)を直列的に連結して用いてもよい。特に、気体の導入を強制式とし、気体導入部102および/またはポンプ装置200と微細気泡化装置300との間の管路から導入する場合には、有効であって多量の微細気泡を発生することが可能となる。 The bubble miniaturization apparatus 300 may be used by connecting a plurality (for example, three or more) in series based on the required size and amount of fine bubbles. In particular, when the introduction of gas is forced and the gas is introduced from the gas introduction unit 102 and / or the pipe between the pump device 200 and the microbubble device 300, it is effective and generates a large amount of microbubbles. It becomes possible.
 (実施形態4-微細気泡発生システム)
 本実施形態4による微細気泡発生システム1000は、実施形態1による気液混合装置100と、実施形態2によるポンプ装置200と、実施形態3による気泡微細化装置300とのいずれか1つ以上を備える。1つの実施形態において、本発明の微細気泡発生システムは、実施形態1による気液混合装置100と、実施形態2によるポンプ装置200とを備える。別の実施形態において、本発明の微細気泡発生システムは、実施形態2によるポンプ装置200と、実施形態3による気泡微細化装置300とを備える。別の実施形態において、本発明の微細気泡発生システムは、実施形態1による気液混合装置100と実施形態3による気泡微細化装置300とを備える。
(Embodiment 4-Microbubble generation system)
The fine bubble generation system 1000 according to the fourth embodiment includes any one or more of the gas-liquid mixing device 100 according to the first embodiment, the pump device 200 according to the second embodiment, and the bubble refinement device 300 according to the third embodiment. . In one embodiment, the fine bubble generating system of the present invention includes the gas-liquid mixing device 100 according to the first embodiment and the pump device 200 according to the second embodiment. In another embodiment, the fine bubble generation system of the present invention includes a pump device 200 according to the second embodiment and a bubble refinement device 300 according to the third embodiment. In another embodiment, the fine bubble generation system of the present invention includes the gas-liquid mixing device 100 according to the first embodiment and the bubble refinement device 300 according to the third embodiment.
 図5は、本発明の実施形態4による微細気泡発生システム1000を説明するための図であり、この微細気泡発生システム1000の構成を模式的に示している。本実施形態4による微細気泡発生システム1000は、実施形態1による気液混合装置100と、実施形態2によるポンプ装置200と、実施形態3による気泡微細化装置300とを備えている。ここで、気液混合装置100の気液吐出部104は、ポンプ装置200のポンプ筐体201に配管(図示せず)により接続されており、ポンプ装置200のポンプ吐出部203は気泡微細化装置300の気液導入部301に配管(図示せず)により接続されている。これにより、この微細気泡発生システム1000では、供給された気体Arと液体Waとはポンプ装置200の圧送力により気液混合装置100に導入され、気液混合装置100に導入された気体Arと液体Waとは、ポンプ装置200の圧送力により気液混合装置100で混合されて気液M1としてポンプ装置200に供給される。さらに、ポンプ装置200では、ポンプ装置200の圧送力によりポンプ装置200内部でさらに気泡の微細化がなされ、さらに微細化された気泡を含む気液M2がポンプ装置200から気泡微細化装置300に供給される。気泡微細化装置300では、供給された気液M2がポンプ装置200の圧送力により旋回しながら、気泡微細化装置300の気液導入部301から気液吐出部302へ送られ、その際に、気液M2に含まれる気泡がさらに微細化された気液M3が生成される。 FIG. 5 is a diagram for explaining a fine bubble generation system 1000 according to Embodiment 4 of the present invention, and schematically shows a configuration of the fine bubble generation system 1000. The fine bubble generation system 1000 according to the fourth embodiment includes the gas-liquid mixing device 100 according to the first embodiment, the pump device 200 according to the second embodiment, and the bubble refinement device 300 according to the third embodiment. Here, the gas-liquid discharge part 104 of the gas-liquid mixing apparatus 100 is connected to the pump housing 201 of the pump apparatus 200 by a pipe (not shown), and the pump discharge part 203 of the pump apparatus 200 is an air bubble refiner. It is connected to 300 gas-liquid introduction parts 301 by piping (not shown). As a result, in this fine bubble generation system 1000, the supplied gas Ar and liquid Wa are introduced into the gas-liquid mixing device 100 by the pumping force of the pump device 200, and the gas Ar and liquid introduced into the gas-liquid mixing device 100. Wa is mixed in the gas / liquid mixing device 100 by the pumping force of the pump device 200 and supplied to the pump device 200 as gas / liquid M1. Further, in the pump device 200, the bubbles are further refined inside the pump device 200 by the pumping force of the pump device 200, and the gas / liquid M2 including the further refined bubbles is supplied from the pump device 200 to the bubble refinement device 300. Is done. In the bubble miniaturization apparatus 300, the supplied gas-liquid M2 is sent from the gas-liquid introduction part 301 of the bubble miniaturization apparatus 300 to the gas-liquid discharge part 302 while turning by the pumping force of the pump apparatus 200. A gas-liquid M3 in which bubbles contained in the gas-liquid M2 are further miniaturized is generated.
 このように、本発明の微細気泡発生システム1000は、気液混合装置100にバッフル110b、ポンプ装置200にインペラ212および気泡微細化装置300にねじ溝312a、ねじ山323aを備えることにより、気液混合装置100、ポンプ装置200ならびに気泡微細化装置300をそれぞれ単体で用いるよりも、さらに微細な気泡を効率的に生成することができるため、微細気泡発生システムの小型化を図ることが可能となる。また、本発明の微細気泡発生システム1000は、送水と微細気泡生成とを同時に効率的に行うことができる点にも留意されたい。 Thus, the fine bubble generating system 1000 of the present invention includes the baffle 110b in the gas-liquid mixing device 100, the impeller 212 in the pump device 200, and the thread groove 312a and the screw thread 323a in the bubble miniaturization device 300. Since finer bubbles can be generated more efficiently than when the mixing device 100, the pump device 200, and the bubble refining device 300 are each used alone, it is possible to reduce the size of the fine bubble generation system. . It should also be noted that the fine bubble generation system 1000 of the present invention can efficiently perform water supply and fine bubble generation simultaneously.
 本発明の微細気泡発生システム1000で生成された気液M3は、気泡微細化装置300から排出されて種々の用途、例えば、浴槽への給水、シャワーヘッドへの給水、あるいは洗濯機への給水など小規模の水環境に有用である他、大規模の水環境にも利用可能であることはいうまでもない。 The gas-liquid M3 generated by the microbubble generation system 1000 of the present invention is discharged from the bubble micronizer 300 and used for various purposes, for example, water supply to a bathtub, water supply to a shower head, or water supply to a washing machine. Needless to say, it is useful not only for small-scale water environments but also for large-scale water environments.
 図6は、図5に示す微細気泡発生システム1000の使用例を説明するための斜視図である。 FIG. 6 is a perspective view for explaining an example of use of the fine bubble generating system 1000 shown in FIG.
 図6に示す微細気泡発生システム1000の使用例では、微細気泡発生システム1000で発生した気液M3は浴槽50へ供給される。ここで、浴槽本体51には浴槽給水口52と浴槽排水口53とが設けられている。浴槽給水口52は、微細気泡発生システム1000の気液吐出部302に接続され、浴槽排水口53は、微細気泡発生システム1000の液体導入部103に接続されている。 In the usage example of the fine bubble generating system 1000 shown in FIG. 6, the gas-liquid M3 generated in the fine bubble generating system 1000 is supplied to the bathtub 50. Here, the bathtub main body 51 is provided with a bathtub water supply port 52 and a bathtub drainage port 53. The bathtub water supply port 52 is connected to the gas-liquid discharge unit 302 of the fine bubble generating system 1000, and the bathtub drain port 53 is connected to the liquid introducing unit 103 of the fine bubble generating system 1000.
 このような構成では、微細気泡発生システム1000と浴槽50との間で気液M3が循環されることとなり、浴槽50では、気泡が微細化された気液M3が常に微細気泡発生システム1000から供給されることとなる。 In such a configuration, the gas / liquid M3 is circulated between the fine bubble generating system 1000 and the bathtub 50, and in the bathtub 50, the gas / liquid M3 in which the bubbles are miniaturized is always supplied from the fine bubble generating system 1000. Will be.
 以上のように、本発明の好ましい実施形態を用いて本発明を例示してきたが、本発明は、この実施形態に限定して解釈されるべきものではない。本発明は、特許請求の範囲によってのみその範囲が解釈されるべきであることが理解される。当業者は、本発明の具体的な好ましい実施形態の記載から、本発明の記載および技術常識に基づいて等価な範囲を実施することができることが理解される。本明細書において引用した文献は、その内容自体が具体的に本明細書に記載されているのと同様にその内容が本明細書に対する参考として援用されるべきであることが理解される。 As described above, the present invention has been exemplified using the preferred embodiment of the present invention, but the present invention should not be construed as being limited to this embodiment. It is understood that the scope of the present invention should be construed only by the claims. It is understood that those skilled in the art can implement an equivalent range based on the description of the present invention and the common general technical knowledge from the description of specific preferred embodiments of the present invention. It is understood that the documents cited in the present specification should be incorporated by reference into the present specification in the same manner as the content itself is specifically described in the present specification.
 本発明は、微細気泡を含む気液生成の分野において有用である。 The present invention is useful in the field of gas-liquid generation including fine bubbles.
 50 浴槽
 51 浴槽本体
 52 浴槽入口
 53 浴槽出口
 100 気液混合装置
 101 混合容器(容器本体)
 101a 円筒部
 101b 縮径部
 102 気体導入部
 103 液体導入部
 104 気液吐出部
 110 旋回部
 110a 旋回部本体
 110b バッフル
 111 気体通路
 200 ポンプ装置
 200a ポンプ本体
 201 ポンプ筐体
 201a ポンプ駆動部
 201b 回転体駆動軸
 202 ポンプ吸入部
 203 ポンプ吐出部
 211 フィン回転体
 211a 軸側回転板
 211b 対向回転板
 211c 遠心フィン
 212 インペラ
 300 気泡微細化装置
 301 気液導入部
 302 気液吐出部
 310 外側筒状体
 311 導入側周壁部
 312 筒状体凹凸部
 313 吐出側周壁部
 320 内側柱状体
 321 導入側端部
 322 導入側旋回部
 323 柱状体凹凸部
 324 吐出側旋回部
 325 吐出側端部
 Ba 気泡
 Wb 液体
50 Bathtub 51 Bathtub Body 52 Bathtub Inlet 53 Bathtub Outlet 100 Gas-Liquid Mixing Device 101 Mixing Container (Container Body)
101a Cylindrical part 101b Reduced diameter part 102 Gas introduction part 103 Liquid introduction part 104 Gas-liquid discharge part 110 Turning part 110a Turning part body 110b Baffle 111 Gas passage 200 Pump device 200a Pump body 201 Pump housing 201a Pump drive part 201b Rotating body drive Shaft 202 Pump suction part 203 Pump discharge part 211 Fin rotating body 211a Shaft side rotating plate 211b Opposing rotating plate 211c Centrifugal fin 212 Impeller 300 Bubble refining device 301 Gas liquid introducing part 302 Gas liquid discharging part 310 Outer cylindrical body 311 Introducing side Peripheral wall part 312 Cylindrical uneven part 313 Discharge side peripheral wall part 320 Inner columnar body 321 Introduction side end part 322 Introduction side turning part 323 Columnar object uneven part 324 Discharge side turning part 325 Discharge side end part Ba Bubble Wb Liquid

Claims (20)

  1. 微細気泡を含む気液を生成するための気液混合装置であって、
     外壁および内壁を有する容器本体と、
     液体を前記容器本体内に導入するための液体導入部と、
     気体を前記容器本体内に導入するための気体導入部と、
     前記液体と前記気体とを旋回させて前記気液を生成するための、前記容器本体内の旋回部と、
     前記気液を吐出する気液吐出部と
    を備える、気液混合装置。
    A gas-liquid mixing device for generating a gas-liquid containing fine bubbles,
    A container body having an outer wall and an inner wall;
    A liquid introduction part for introducing liquid into the container body;
    A gas introduction part for introducing gas into the container body;
    A swirl part in the container body for swirling the liquid and the gas to generate the gas-liquid;
    A gas-liquid mixing device comprising: a gas-liquid discharge unit that discharges the gas-liquid.
  2. 前記旋回部は略円柱体であり、前記旋回部の表面の少なくとも一部は、前記旋回部の円周方向に沿った凹部を略軸方向に沿って少なくとも1つ有する、請求項1に記載の気液混合装置。 The said turning part is a substantially cylindrical body, At least one part of the surface of the said turning part has at least one recessed part along the circumferential direction of the said turning part along a substantially axial direction. Gas-liquid mixing device.
  3. 前記少なくも1つの凹部は、前記旋回部の軸周りに内壁に向かって突出する少なくとも1つの突出部を有する、請求項2に記載の気液混合装置。 The gas-liquid mixing device according to claim 2, wherein the at least one recess has at least one protrusion that protrudes toward an inner wall around an axis of the swivel part.
  4. 前記少なくとも1つの突出部は、前記旋回部の径方向に対して傾斜している、請求項3に記載の気液混合装置。 The gas-liquid mixing device according to claim 3, wherein the at least one protrusion is inclined with respect to a radial direction of the swivel unit.
  5. 前記内壁が、少なくとも部分的に、前記気液吐出部に向かって縮径する形状を有する、請求項1~4のいずれか1項に記載の気液混合装置。 The gas-liquid mixing apparatus according to any one of claims 1 to 4, wherein the inner wall has a shape that is at least partially reduced in diameter toward the gas-liquid discharge part.
  6. 前記液体導入部は前記内壁に対して接線方向に接続されている、請求項1~5のいずれか1項に記載の気液混合装置。 The gas-liquid mixing device according to any one of claims 1 to 5, wherein the liquid introduction part is connected in a tangential direction to the inner wall.
  7. 微細気泡を含む気液を生成するためのポンプ装置であって、
     外壁および内壁を有するポンプ本体と、
     前記気液を吸入するポンプ吸入部と、
     吸入された前記気液が旋回するように回転する回転部と、
     前記回転部を回転させる駆動部と、
     前記旋回された気液を吐出する気液吐出部と
    を備える、ポンプ装置。
    A pump device for generating gas-liquid containing fine bubbles,
    A pump body having an outer wall and an inner wall;
    A pump suction part for sucking the gas-liquid;
    A rotating part that rotates so that the inhaled gas-liquid swirls;
    A driving unit for rotating the rotating unit;
    A pump device comprising: a gas-liquid discharge unit that discharges the swirled gas-liquid.
  8. 前記回転部は、少なくとも1つの遠心フィンを有する、請求項7に記載のポンプ装置。 The pump device according to claim 7, wherein the rotating unit has at least one centrifugal fin.
  9. 前記内壁は、前記内壁の円周方向に配置された少なくとも1つの突出部を有する、請求項7または8に記載のポンプ装置。 The pump device according to claim 7 or 8, wherein the inner wall has at least one protrusion disposed in a circumferential direction of the inner wall.
  10. 前記遠心フィンの配向と前記突出部の配向とが異なる、請求項8に従属する請求項9に記載のポンプ装置。 The pump device according to claim 9, which is dependent on claim 8, wherein the orientation of the centrifugal fins is different from the orientation of the protrusions.
  11. 微細気泡を含む気液を生成するための気泡微細化装置であって、
     外壁および内壁を有する気泡微細化装置本体と、
     前記気液を導入する気液導入部と、
     導入された前記気液を旋回させる旋回部と、
     前記気液を吐出する気液吐出部と
    を備える、気泡微細化装置。
    A bubble refining device for generating gas-liquid containing fine bubbles,
    A bubble refiner main body having an outer wall and an inner wall;
    A gas-liquid introduction part for introducing the gas-liquid;
    A swivel unit that swirls the introduced gas and liquid;
    A bubble miniaturization apparatus comprising: a gas-liquid discharge unit that discharges the gas-liquid.
  12. 前記旋回部は、略円柱体であり、表面の少なくとも一部に略軸方向に沿って配列された凹凸を有する、請求項11に記載の気泡微細化装置。 The bubble refining device according to claim 11, wherein the swivel portion is a substantially cylindrical body, and has irregularities arranged along at least a part of a surface along a substantially axial direction.
  13. 前記内壁が、少なくとも一部に前記内壁の略軸方向に沿って配列された凹凸を有する、請求項11または12に記載の気泡微細化装置。 The bubble miniaturization device according to claim 11 or 12, wherein the inner wall has irregularities arranged at least partially along a substantially axial direction of the inner wall.
  14. 前記旋回部の凹凸と、前記内壁の凹凸とが、互いに入れ子状である、請求項12に従属する請求項13に記載の気泡微細化装置。 The bubble miniaturization device according to claim 13, which is dependent on claim 12, wherein the unevenness of the swivel portion and the unevenness of the inner wall are nested.
  15. 前記旋回部の凹凸と、前記内壁の凹凸とが、らせん状に設けられている、請求項14に記載の気泡微細化装置。 The bubble refinement device according to claim 14, wherein the unevenness of the swivel portion and the unevenness of the inner wall are provided in a spiral shape.
  16.  請求項1~6のいずれか1項に記載の気液混合装置と、
     請求項7~10のいずれか1項に記載のポンプ装置と、
     請求項11~15のいずれか1項に記載の気泡微細化装置と
    を備える、微細気泡を含む気液を生成するためのシステム。
    A gas-liquid mixing device according to any one of claims 1 to 6,
    The pump device according to any one of claims 7 to 10,
    A system for generating a gas-liquid containing fine bubbles, comprising the bubble refining device according to any one of claims 11 to 15.
  17. 請求項1記載の気液混合装置を用いて微細気泡を含む気液を生成するための気液混合方法であって、
     液体を液体導入部から容器本体内に導入する液体導入工程と、
     気体を気体導入部から前記容器本体内に導入する気体導入工程と、
     前記容器本体内に導入された前記液体と前記気体とを前記容器本体内の旋回部によって旋回させて気液を生成する工程と、
     気液吐出部によって前記気液を吐出する工程と
    を含む、気液混合方法。
    A gas-liquid mixing method for generating a gas-liquid containing fine bubbles using the gas-liquid mixing apparatus according to claim 1,
    A liquid introduction step for introducing liquid into the container body from the liquid introduction section;
    A gas introduction step of introducing gas into the container body from a gas introduction portion;
    Producing a gas-liquid by turning the liquid and the gas introduced into the container body by a turning unit in the container body;
    A gas-liquid mixing method including a step of discharging the gas-liquid by a gas-liquid discharge unit.
  18. 請求項7記載のポンプ装置を用いて微細気泡を含む気液を生成するための方法であって、
     気液をポンプ吸入部に吸入する工程と、
     回転部によって前記ポンプ吸入部に吸入された前記気液を旋回するように回転させる工程と、
     旋回するように回転させた前記気液を気液吐出部によって吐出する工程と
    を含む、方法。
    A method for producing a gas-liquid containing fine bubbles using the pump device according to claim 7,
    Inhaling gas and liquid into the pump suction part;
    Rotating the gas and liquid sucked into the pump suction part by a rotating part so as to rotate;
    And a step of discharging the gas-liquid rotated so as to swivel by a gas-liquid discharge unit.
  19. 請求項11記載の気泡微細化装置を用いて微細気泡を含む気液を生成するための気泡微細化方法であって、
     気液を気液導入部に導入する工程と、
     導入された前記気液を旋回部によって旋回させる工程と、
     旋回された前記気液を気液吐出部によって吐出する工程と
    を含む、気泡微細化方法。
    A bubble refining method for producing a gas-liquid containing fine bubbles using the bubble refining apparatus according to claim 11,
    Introducing the gas-liquid into the gas-liquid introduction part;
    A step of swirling the introduced gas-liquid by a swivel unit;
    And a step of discharging the swirled gas-liquid by a gas-liquid discharge unit.
  20. 請求項17記載の気液混合方法における各工程と、
    請求項18記載の方法における各工程と、
    請求項19記載の気泡微細化方法における各工程と
    を含む、微細気泡を含む気液を生成する方法。
    Each step in the gas-liquid mixing method according to claim 17,
    Each step in the method of claim 18;
    A method for generating a gas-liquid containing fine bubbles, comprising each step in the method for refining bubbles according to claim 19.
PCT/JP2017/045363 2016-12-19 2017-12-18 Device and system for generating gas-liquid containing microbubbles WO2018117040A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780083273.9A CN110167662A (en) 2016-12-19 2017-12-18 For generating the device and system of the gas-liquid comprising microbubble
JP2018557971A JP7050304B2 (en) 2016-12-19 2017-12-18 Equipment and systems for producing gas and liquid containing fine bubbles
KR1020197018388A KR20190095311A (en) 2016-12-19 2017-12-18 Apparatus and System for Producing Vapors Containing Microbubbles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016245683 2016-12-19
JP2016-245683 2016-12-19

Publications (1)

Publication Number Publication Date
WO2018117040A1 true WO2018117040A1 (en) 2018-06-28

Family

ID=62626605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/045363 WO2018117040A1 (en) 2016-12-19 2017-12-18 Device and system for generating gas-liquid containing microbubbles

Country Status (5)

Country Link
JP (1) JP7050304B2 (en)
KR (1) KR20190095311A (en)
CN (1) CN110167662A (en)
TW (1) TW201827121A (en)
WO (1) WO2018117040A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115007010A (en) * 2022-06-14 2022-09-06 江苏惠尔泵业有限公司 Adjustable throttle high-lift gas-liquid mixing pump
JP7142386B1 (en) 2021-06-15 2022-09-27 荒川工業株式会社 fine bubble generator
DE102022120583A1 (en) 2021-08-18 2023-02-23 Drägerwerk AG & Co. KGaA Passive gas mixer with a hollow screw

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN208771227U (en) * 2018-08-02 2019-04-23 上海捷乔纳米科技有限公司 Microbubble generator
JP2021069999A (en) * 2019-10-31 2021-05-06 キヤノン株式会社 Method for generating ultrafine bubble, and device and method for generating ultrafine bubble-containing liquid
CN113522080A (en) * 2020-04-13 2021-10-22 中国石油化工股份有限公司 Micro-nano bubble generating device and harmful gas purification system
CN112316770B (en) * 2020-08-29 2024-02-09 浙江恒盈环境科技有限公司 Bubble spray head and bubble generation method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52134597U (en) * 1976-04-09 1977-10-13
US4389312A (en) * 1981-10-05 1983-06-21 Harold Beard Variable venturi sewerage aerator
JP2004278434A (en) * 2003-03-17 2004-10-07 Torishima Pump Mfg Co Ltd Centrifugal pump
US20130113125A1 (en) * 2010-07-15 2013-05-09 Korea Institute Of Machinery & Materials Rotating unit-based micro-sized bubble generator
JP2013223828A (en) * 2012-04-20 2013-10-31 Bridgestone Corp Agitation mixer
JP2014057926A (en) * 2012-09-19 2014-04-03 Takagi Co Ltd Water purifier and production method of purified water

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4903292B1 (en) 2011-05-17 2012-03-28 修一 石川 Swivel type micro bubble generator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52134597U (en) * 1976-04-09 1977-10-13
US4389312A (en) * 1981-10-05 1983-06-21 Harold Beard Variable venturi sewerage aerator
JP2004278434A (en) * 2003-03-17 2004-10-07 Torishima Pump Mfg Co Ltd Centrifugal pump
US20130113125A1 (en) * 2010-07-15 2013-05-09 Korea Institute Of Machinery & Materials Rotating unit-based micro-sized bubble generator
JP2013223828A (en) * 2012-04-20 2013-10-31 Bridgestone Corp Agitation mixer
JP2014057926A (en) * 2012-09-19 2014-04-03 Takagi Co Ltd Water purifier and production method of purified water

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7142386B1 (en) 2021-06-15 2022-09-27 荒川工業株式会社 fine bubble generator
WO2022264568A1 (en) * 2021-06-15 2022-12-22 荒川工業株式会社 Microbubble generator
JP2022190862A (en) * 2021-06-15 2022-12-27 荒川工業株式会社 fine bubble generator
DE102022120583A1 (en) 2021-08-18 2023-02-23 Drägerwerk AG & Co. KGaA Passive gas mixer with a hollow screw
CN115007010A (en) * 2022-06-14 2022-09-06 江苏惠尔泵业有限公司 Adjustable throttle high-lift gas-liquid mixing pump
CN115007010B (en) * 2022-06-14 2023-08-08 江苏惠尔泵业有限公司 High-lift gas-liquid mixing pump capable of adjusting flow

Also Published As

Publication number Publication date
KR20190095311A (en) 2019-08-14
JPWO2018117040A1 (en) 2019-10-24
TW201827121A (en) 2018-08-01
JP7050304B2 (en) 2022-04-08
CN110167662A (en) 2019-08-23

Similar Documents

Publication Publication Date Title
WO2018117040A1 (en) Device and system for generating gas-liquid containing microbubbles
KR101829734B1 (en) Serve nano micro bubble generator
JP4636420B2 (en) Microbubble generator
EP2254686B1 (en) Device for improved delivery of gas to fluid
CN108704504A (en) Venturi microbubble generator and its application in catalytic ozonation
WO2008038763A1 (en) Swirling flow producing apparatus, method of producing swirling flow, vapor phase generating apparatus, microbubble generating apparatus, fluid mixer and fluid injection nozzle
KR20170104351A (en) Apparatus for generating micro bubbles
CA2723743C (en) Device for mixing gas into a flowing liquid
JP2007111686A (en) Coaxial/cylindrical type micro-nano bubble generating apparatus
KR101667492B1 (en) Apparatus for generating micro bubbles
CN110891674A (en) Microbubble generating apparatus and microbubble generating method, and shower apparatus and oil-water separating apparatus having the same
JP4426612B2 (en) Fine bubble generation nozzle
KR102313214B1 (en) Ultra fine bubble generating system with coil-shaped nozzle
WO2018151171A1 (en) Bubble generating device for sewage purification
US20210213400A1 (en) Gas-liquid mixing device
JP2009166026A (en) Air bubble generating device through mixing gas/liquid
KR101874897B1 (en) swirl type micro buble generating device
JP2012091153A (en) Fine-air-bubble generator
WO2018131714A1 (en) Fluid mixing device, and method for producing mixed fluid using this mixing device
JP2010012454A (en) Rotary microbubble generator
JP2008274394A (en) Pickling apparatus and method
KR20220037313A (en) Connector for nano bubble generator
JPH03143536A (en) Fine bubble generator
RU2809579C1 (en) Vortex hydrodynamic mixer
JP7235364B1 (en) gas dissolver

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17884935

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018557971

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197018388

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17884935

Country of ref document: EP

Kind code of ref document: A1