JP5672472B2 - Fine bubble forming device. - Google Patents
Fine bubble forming device. Download PDFInfo
- Publication number
- JP5672472B2 JP5672472B2 JP2010077138A JP2010077138A JP5672472B2 JP 5672472 B2 JP5672472 B2 JP 5672472B2 JP 2010077138 A JP2010077138 A JP 2010077138A JP 2010077138 A JP2010077138 A JP 2010077138A JP 5672472 B2 JP5672472 B2 JP 5672472B2
- Authority
- JP
- Japan
- Prior art keywords
- liquid
- gas
- bubble
- tank
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000007788 liquid Substances 0.000 claims description 126
- 239000007789 gas Substances 0.000 claims description 70
- 238000007670 refining Methods 0.000 claims description 34
- 238000003860 storage Methods 0.000 claims description 31
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 29
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 28
- 230000004087 circulation Effects 0.000 claims description 19
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 14
- 239000001569 carbon dioxide Substances 0.000 claims description 14
- 239000000446 fuel Substances 0.000 claims description 10
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 6
- 239000000295 fuel oil Substances 0.000 claims description 5
- 238000001514 detection method Methods 0.000 claims description 4
- 238000011144 upstream manufacturing Methods 0.000 claims description 4
- 238000007599 discharging Methods 0.000 claims 1
- 230000000694 effects Effects 0.000 description 14
- 238000000034 method Methods 0.000 description 8
- 239000000839 emulsion Substances 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 238000010008 shearing Methods 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 2
- 230000006837 decompression Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 238000003287 bathing Methods 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000004851 dishwashing Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 238000002407 reforming Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Landscapes
- Degasification And Air Bubble Elimination (AREA)
Description
本発明は主として浴槽や、シャワー、或いは洗浄用途として用いられる微細気泡を含む水の作製方法と作製装置に関するが、液体燃料に水素ガスなどを微細気泡化させて混入させる水素添加装置にも係る。 The present invention relates to a method and an apparatus for producing water containing fine bubbles, which are mainly used for bathtubs, showers, or cleaning applications, but also relates to a hydrogen addition apparatus that makes liquid gas into fine bubbles and mixes them with liquid fuel.
マイクロバブル発生装置についての先行技術には次のものがある。
特許文献1には炭酸ガスや空気をマイクロバブルとして温水に溶解、混合させる気液混合タンクを備えたマイクロバブル・炭酸泉発生装置の発明が開示されている。
特許文献2には水温により決まる空気の溶解量を考慮し、オリフィス固定弁7から吸引される空気のすべてが気液混合タンク内の水に溶解される圧力を保持するようポンプ1の吐出圧力を設定制御することで、過剰空気が大きな泡となって浴槽内などに放出されるのを防止する発明が開示されている。
特許文献3には、貯留槽の水を外部循環路で循環させる循環路の途中に設置した、エゼクタ方式のマイクロバブル発生装置が開示されている。
Prior art on microbubble generators includes the following.
Patent Document 1 discloses an invention of a microbubble / carbonated spring generator provided with a gas-liquid mixing tank in which carbon dioxide gas or air is dissolved and mixed in warm water as microbubbles.
In Patent Document 2, in consideration of the amount of dissolved air determined by the water temperature, the discharge pressure of the pump 1 is set so as to maintain the pressure at which all of the air sucked from the orifice fixed valve 7 is dissolved in the water in the gas-liquid mixing tank. An invention is disclosed in which excessive air is prevented from being discharged into the bathtub or the like by setting and controlling.
Patent Document 3 discloses an ejector-type micro-bubble generator installed in the middle of a circulation path for circulating water in a storage tank through an external circulation path.
特許文献4にはエゼクタ部の気体吸入ポートから気体を引き込んで循環水中に気体を混合させ、混合された気体を更に破砕する気泡破砕部を有するエゼクタ方式のマイクロバブル発生装置が開示されている。
特許文献5には旋回流を発生させる多数の傾斜孔を設けたプレートの発明が開示されており、マイクロバブルを更に微細化する効果があるとされている。
特許文献6は本願発明者の一人の発明であり、水噴流ノズルをオリフィス形状とし、その近傍に気体ノズルを配置した気液二相微細気泡発生装置の発明が開示されている。
Patent Document 4 discloses an ejector-type microbubble generator having a bubble crushing unit that draws gas from a gas suction port of an ejector unit, mixes the gas in circulating water, and further crushes the mixed gas.
Patent Document 5 discloses an invention of a plate provided with a large number of inclined holes for generating a swirling flow, and is said to have an effect of further miniaturizing microbubbles.
Patent Document 6 is an invention of one of the inventors of the present application, and discloses an invention of a gas-liquid two-phase microbubble generator in which a water jet nozzle is formed in an orifice shape and a gas nozzle is arranged in the vicinity thereof.
炭酸ガスをマイクロバブル化して湯に混合して、白濁化させた風呂は、炭酸ガスが温浴効果を高め血行を促進し、疲れ・肩こり・冷え症などに効果のあることが知られている。
炭酸ガスをマイクロバブル化する特許文献1の発明では、密閉容器に水噴射ノズルと二酸化炭素ガス噴射ノズルの噴出部を接続し、噴出効果で密閉容器内が攪拌混合され、二酸化炭酸と空気の一部を水に溶解させ、残る気体部分については攪拌効果でマイクロバブル化するとされている。
しかし、単なる噴射ノズルの噴出効果のみで気体がマイクロバブル化できるとは考え難く、大きな気泡が浴槽内に放される可能性が強い。大きな気泡となって放出される二酸化炭素には温浴効果は無くむしろ、快適な入浴妨げになる。
It is known that in a bath in which carbon dioxide gas is microbubbled and mixed with hot water to make it cloudy, carbon dioxide gas enhances the warm bath effect and promotes blood circulation, and is effective for fatigue, stiff shoulders, coldness and the like.
In the invention of Patent Document 1 in which carbon dioxide gas is converted into microbubbles, a water jet nozzle and a jet part of a carbon dioxide gas jet nozzle are connected to a sealed container, and the inside of the sealed container is agitated and mixed by the jet effect, so that carbon dioxide and air It is said that the part is dissolved in water, and the remaining gas part is microbubbled by the stirring effect.
However, it is difficult to think that the gas can be microbubbled only by the jetting effect of the jet nozzle, and there is a strong possibility that large bubbles are released into the bathtub. Carbon dioxide released as large bubbles does not have a warm bath effect, but rather hinders comfortable bathing.
また、特許文献1の発明では密閉容器内に水位検出センサを配置し、容器内気体体積を所定範囲内に維持はしているが、気体の二酸化炭酸と空気の割合は把握困難である。極端な場合密閉容器内の気体が全て空気になった場合、炭酸ガスの供給が遮断され続けることもあり得る。
本願発明の課題は次の2点である。
第1の課題:貯留層に還流する液体中に大サイズの気泡が含まれると、突沸的現象が起こる。液中に含まれる気泡は全てマイクロバブル(微細気泡)化され、大サイズ気泡を除去する必要がある。
第2の課題:ガスボンベなどを用い空気以外のガスを使用する場合、マイクロバブル化できずに無駄に放出されるガスを減らす。
Further, in the invention of Patent Document 1, a water level detection sensor is arranged in a sealed container and the gas volume in the container is maintained within a predetermined range, but it is difficult to grasp the ratio of carbon dioxide to air. In an extreme case, when all the gas in the sealed container becomes air, the supply of carbon dioxide gas may continue to be shut off.
The problems of the present invention are the following two points.
First problem: When large-sized bubbles are included in the liquid returning to the reservoir, a sudden phenomenon occurs. All the bubbles contained in the liquid are converted into micro bubbles (fine bubbles), and it is necessary to remove large-sized bubbles.
Second problem: When a gas other than air is used by using a gas cylinder or the like, the amount of gas released unnecessarily without being microbubbled is reduced.
請求項1に記載の微細気泡形成装置は、貯留槽と、循環路と、循環ポンプと、圧力調整槽
と、圧力調整部材と、圧力調整槽に設置され、前記圧力調整槽の液面下限検出センサーと、
気体供給手段と、気泡形成手段とから構成される。
ここに、貯留槽は液体を貯留し、循環路は一旦貯留槽から流出させた液体を再び貯留槽に戻す一連の配管経路である。また、液体中への気体供給手段は循環ポンプの上流側、循環ポンプの下流側の何れの部位に設置されてよく、取り込み方法も吸引ノズルを用いるエゼクタ方式、高圧ガスボンベ等による圧入など如何なる方法であってもよい。
またこの循環路の途中には気泡形成手段が設けられるが、気泡形成手段は気体供給手段と一体であっても、別離のものであってもよい。気泡形成手段は循環液中に気泡を混入し、気泡の混入された液体が貯留槽に還流する。
The fine bubble forming apparatus according to claim 1 is installed in a storage tank, a circulation path, a circulation pump, a pressure adjustment tank, a pressure adjustment member, and a pressure adjustment tank, and detects a liquid level lower limit of the pressure adjustment tank. A sensor ,
It is comprised from a gas supply means and a bubble formation means.
Here, the storage tank stores a liquid, and the circulation path is a series of piping paths for returning the liquid once discharged from the storage tank to the storage tank again. Further, the gas supply means into the liquid may be installed at any location upstream of the circulation pump or downstream of the circulation pump, and the intake method may be any method such as an ejector method using a suction nozzle or press-fitting with a high-pressure gas cylinder. There may be.
In addition, a bubble forming means is provided in the middle of the circulation path, but the bubble forming means may be integrated with the gas supply means or may be separated. The bubble forming means mixes bubbles in the circulating liquid, and the liquid mixed with bubbles returns to the storage tank.
また、気泡微細化手段には、加圧手法も含まれてよい。加圧の場合、気体は気泡として混
合されるのでなく液体中に溶解される。なお、溶解した気泡は貯留槽に至るまでの経路の
途中で減圧され、微細気泡として液体中に析出して微細気泡が形成される。
本発明は、上記微細気泡形成装置であって、循環路の途中に少なくとも加圧液体ポンプと、
圧力調整槽と、第1気泡微細化手段と、第2気泡微細化手段と、第3気泡微細化手段とが
配設される。
なお、圧力調整槽には管路抵抗調節弁など、内部圧力調節部材が装着され、加圧液体ポン
プの加圧限界まで槽内圧力を高めることができる。従って、貯留槽に貯留された液体を加
圧ポンプで吸引し、排出側に配置された圧力調整部材の設定圧力まで内圧を高めて気体を
液体中に溶解させ、再度貯留槽に還流させる時点で貯留槽内圧力まで減圧させることで液
体中に微細気泡を析出させることが出来る。
Further, the bubble refining means may include a pressurizing method. In the case of pressurization, the gas is not mixed as bubbles but dissolved in the liquid. The dissolved bubbles are depressurized in the course of reaching the storage tank, and are precipitated in the liquid as fine bubbles to form fine bubbles.
The present invention is the above microbubble forming apparatus, at least a pressurized liquid pump in the middle of the circulation path,
A pressure adjusting tank, a first bubble refining means, a second bubble refining means, and a third bubble refining means are disposed.
In addition, an internal pressure adjusting member such as a pipe resistance adjusting valve is attached to the pressure adjusting tank, and the pressure in the tank can be increased to the pressurization limit of the pressurized liquid pump. Therefore, when the liquid stored in the storage tank is sucked with a pressure pump, the internal pressure is increased to the set pressure of the pressure adjusting member arranged on the discharge side, the gas is dissolved in the liquid, and the liquid is returned to the storage tank again. By reducing the pressure to the internal pressure of the storage tank, fine bubbles can be deposited in the liquid.
前記圧力調整槽は、加圧液体ポンプで圧送される液体中に存在する気泡が圧送中に気泡同
士の接触融合で大サイズ化した場合や、取り込み時点で大サイズであった気泡を、圧力調
整槽内で浮上させ上部空間に気体として回収する。また、圧力調整槽上部には、第1気泡
微細化手段が設置されており、回収した気体を再度微細気泡として液中に混入させる。圧
力調整槽は大サイズの気泡を液中から分離する機能を有しており、圧力調整槽より送出さ
れる液体中には微細気泡のみが含まれる。
また、第3の気泡微細化手段はオリフィスを有する気泡微細化装置であって、圧力調整槽
から送出される前記循環液体圧力を前記貯留槽圧力まで減圧すると伴に、前記循環液に含
まれる微細気泡を更にせん断して微細化し、前記貯留槽に放出する。
このとき、圧力調整槽で液中に溶解した気体は減圧効果により微細気泡として析出し、せ
ん断効果により微細化された微細気泡と混然一体となって貯留槽に放出される。
The pressure adjustment tank is used to adjust the pressure of bubbles in the liquid pumped by a pressurized liquid pump when the bubbles are enlarged by contact fusion between the bubbles during pumping or when the bubbles are large at the time of intake. Float in the tank and collect as gas in the upper space. Moreover, the 1st bubble refinement | miniaturization means is installed in the pressure control tank upper part, and the collect | recovered gas is mixed in a liquid again as a fine bubble. The pressure adjustment tank has a function of separating large-sized bubbles from the liquid, and the liquid delivered from the pressure adjustment tank contains only fine bubbles.
The third bubble refining means is a bubble refining device having an orifice, and is a pressure adjusting tank.
The circulating liquid pressure delivered from the tank is reduced to the storage tank pressure, and is contained in the circulating liquid.
The fine bubbles are further sheared to be refined and discharged into the storage tank.
At this time, the gas dissolved in the liquid in the pressure adjusting tank is precipitated as fine bubbles due to the decompression effect.
The microbubbles refined by the cutting effect are mixed and released into the storage tank.
第1気泡微細化手段と定義する気泡微細化手段は、吸引ノズルのあるエゼクタであり、し
かも吸引ノズルの吸引口が圧力調整槽の上部に開口されていていることを特徴とする。
従って、エゼクタは圧力調整槽の上部空間に存在する気体を逐次吸引し、微細気泡化して、
確実に液体中に混合させることができる。
また、圧力調整槽の圧力調整部を通過した液は、貯留槽内液と略同一の圧力まで減圧され
るので、溶解していた気体は微細気泡として液中に析出し、微細気泡を形成する。従って、
貯留槽に送出される液には第1気泡微細化手段で形成される微細気泡と、減圧過程で析出
される微細気泡の2種類が混然一体に含まれる。
The bubble refining means defined as the first bubble refining means is an ejector having a suction nozzle, and the suction port of the suction nozzle is opened at the upper part of the pressure adjusting tank.
Therefore, the ejector sequentially sucks the gas present in the upper space of the pressure adjustment tank, turns it into fine bubbles,
It can be reliably mixed in the liquid.
In addition, since the liquid that has passed through the pressure adjustment section of the pressure adjustment tank is depressurized to substantially the same pressure as the liquid in the storage tank, the dissolved gas is precipitated in the liquid as fine bubbles, forming fine bubbles. . Therefore,
The liquid delivered to the storage tank includes two types of fine bubbles formed by the first bubble refining means and fine bubbles precipitated during the decompression process.
また、請求項1に記載の微細気泡形成装置は、前記液中への気体取り込み手段として第2
気泡微細化手段を用いる。第2気泡微細化手段は加圧液体ポンプの上流に設置され吸引ノ
ズルで吸引した気体を循環液体に混入させ、オリフィス構造で前記吸引した気体をせん断
して微細化する。本発明の構成は特開2006−212562に記載のマイクロバブル発
生ノズルと同一構成であっても、周知のエゼクタ機構の何れであってもよく、また対象液
体も水に限定されず微細気泡の混入が対象となる液体であれば水、重油燃料など全てが対
象になる。更に、気体についても空気に限定されることなく、炭酸ガス、水素など液体に
混合することが必要とされる気体は全て対象になる。
本発明により循環液体に供給される気体は、液中への導入時点で十分微細化されるので、
加圧液体ポンプの下流に位置する圧力調整槽内まで送出されたとき、上部空間に浮上する
気体量を最小限とすることができる。
また、気泡の微細化効果で気液接触面積が拡大され、加圧液体ポンプの加圧効果による液
中への気体溶解過程を円滑に進行させることができる。
Moreover, the fine bubble forming apparatus according to claim 1 is a second device as a gas intake means into the liquid.
Use bubble miniaturization means. The second bubble refining means is installed upstream of the pressurized liquid pump, mixes the gas sucked by the suction nozzle into the circulating liquid, and shears and refines the sucked gas by the orifice structure. The configuration of the present invention may be the same as the microbubble generating nozzle described in Japanese Patent Application Laid-Open No. 2006-212562, or may be any known ejector mechanism, and the target liquid is not limited to water, and microbubbles are mixed. If it is a target liquid, water, heavy oil fuel, etc. are all targets. Furthermore, the gas is not limited to air, and any gas that needs to be mixed with a liquid such as carbon dioxide or hydrogen is a target.
Since the gas supplied to the circulating liquid according to the present invention is sufficiently refined at the time of introduction into the liquid,
When it is sent into the pressure adjusting tank located downstream of the pressurized liquid pump, the amount of gas floating in the upper space can be minimized.
Further, the gas-liquid contact area is expanded by the effect of refining the bubbles, and the gas dissolution process in the liquid by the pressurizing effect of the pressurized liquid pump can be smoothly advanced.
請求項2に記載の発明は請求項1に記載の微細気泡形成装置であって、前記液体が水であって、前記気体が炭酸ガスまたは空気であることを特徴とする。
水に炭酸ガスを微細気泡化して混入させる用途は、例えば風呂に好適である。また空気を微細化して水に混入させる方法としては風呂以外に洗浄用途などに好適である。
The invention described in claim 2 A fine bubble forming apparatus according to claim 1, wherein the liquid is a water, wherein the gas is carbon dioxide or air.
The use in which carbon dioxide gas is made into fine bubbles and mixed in water is suitable for a bath, for example. Moreover, as a method of making air finer and mixing it into water, it is suitable for washing applications other than baths.
請求項3に記載の発明は請求項1に記載の微細気泡形成装置であって、前記液体が重油を基調とする燃料であって、前記気体が水素ガスであることを特徴とする。
例えばエマルジョン燃料においては一定割合で重油に水が混入されるが、水の混入割合が大きい場合、燃料効率、排ガスなどでの改善効果はあっても、着火性に欠ける場合がある、このような場合、水素ガスを微小気泡化して混入させることで着火性が促進され、水の混入割合を増すことに伴い生じる着火性の問題を克服することができる。
本発明はエマルジョン燃料分野に於いても好適に使用できる。
The invention described in claim 3 A fine bubble forming apparatus according to claim 1, wherein the liquid is a fuel for tones and heavy oil, characterized in that said gas is hydrogen gas.
For example, in emulsion fuel, water is mixed into heavy oil at a constant rate, but when the mixing rate of water is large, there may be an improvement effect in fuel efficiency, exhaust gas, etc., but ignitability may be lacking. In this case, ignitability is promoted by mixing hydrogen gas into microbubbles, and the problem of ignitability caused by increasing the mixing ratio of water can be overcome.
The present invention can be suitably used in the field of emulsion fuel.
本願発明によれば従技術に存在した2課題に対し、それぞれ次ぎの対応が可能である。
(1) 第1の課題について
本発明の微細気泡形成装置では、少なくとも第1気泡微細化手段があって、気体は微細化されて液中に混入される。また微細化されない大サイズの気泡が存在したとしても大サイズの気泡は圧力調整槽に送出され、圧力調整槽内での滞留中に、液中から容易に分離浮上し、貯留層上部空間に放出される。上部空間に放出された気体は、第1気泡微細化手段により再度微細化されて液中に混合されるので、還流する液中に含まれる気泡は全てマイクロバブル(微細気泡)化され、液中には大サイズの気泡は存在しないので突沸的現象は回避され、第一の課題は解決される。
なお、気泡の微細化は第1気泡微細化手段に加え、第2気泡微細化手段や、第3気泡微細化手段を併用することで一層促進される。
According to the present invention, the following measures can be taken for each of the two problems existing in the prior art.
(1) About the first problem In the fine bubble forming apparatus of the present invention, there is at least a first bubble refinement means, and the gas is refined and mixed into the liquid. Even if there are large-sized bubbles that are not miniaturized, the large-sized bubbles are sent to the pressure adjustment tank, and during the stay in the pressure adjustment tank, they are easily separated and floated from the liquid and released into the upper space of the reservoir. Is done. Since the gas released into the upper space is refined again by the first bubble refinement means and mixed in the liquid, all the bubbles contained in the refluxing liquid are converted into microbubbles (fine bubbles). Since there is no large-sized bubble, the sudden phenomenon is avoided and the first problem is solved.
In addition, in addition to the 1st bubble refinement | miniaturization means, the refinement | miniaturization of a bubble is further accelerated | stimulated by using together a 2nd bubble refinement | miniaturization means and a 3rd bubble refinement | miniaturization means.
(2) 第2の課題について
空気以外のガスである炭酸ガスや水素であっても、また使用液体が水以外の例えば重油をベースとするエマルジョン燃料であっても、気体の微細気泡化効果は同じである。また、本発明では液中に存在する大きな気泡は圧力調整槽で分離回収され、再度微細化気泡として液中に戻されるので、無駄に放出される気体はなく、第二の課題も解決される。
(2) Regarding the second problem, even if carbon dioxide gas or hydrogen, which is a gas other than air, is used, or even if the liquid used is an emulsion fuel based on, for example, heavy oil other than water, The same. Further, in the present invention, large bubbles present in the liquid are separated and collected in the pressure adjusting tank and returned to the liquid again as refined bubbles, so that there is no uselessly released gas and the second problem is solved. .
本発明による微細気泡形成装置の第1の実施例を図1を用い説明する。
貯留槽6に液体9が貯留されており液体は加圧液体ポンプ7により循環路8aを経由して吸引される。吸引された液体は加圧液体ポンプ7に至るまでの間に第2気泡微細化手段2により吸引ノズル22から気体を吸引し、吸引した気体を微細気泡化して液体中に混入させる。
気液混合状態の液体は循環路8bを経由して加圧液体ポンプ7に吸引される。加圧液体ポンプ7はロータリー方式のポンプで排出側の管路抵抗に対応する突出圧力を発生させる。加圧液体ポンプ7により加圧状態で送出された液体は循環路8cを経由して第1気泡微細化手段1に至る。
A first embodiment of a fine bubble forming apparatus according to the present invention will be described with reference to FIG.
The liquid 9 is stored in the storage tank 6, and the liquid is sucked by the pressurized liquid pump 7 via the circulation path 8a. The sucked liquid is sucked from the suction nozzle 22 by the second bubble refining means 2 before reaching the pressurized liquid pump 7, and the sucked gas is made into fine bubbles and mixed into the liquid.
The liquid in the gas-liquid mixed state is sucked into the pressurized liquid pump 7 via the circulation path 8b. The pressurized liquid pump 7 is a rotary type pump that generates a protruding pressure corresponding to the pipe line resistance on the discharge side. The liquid delivered in a pressurized state by the pressurized liquid pump 7 reaches the first bubble refining means 1 via the circulation path 8c.
第1気泡微細化手段1の吸気管22の吸気部は圧力調整槽4の上部空間に開放されており、液体送出口も圧力調整槽4の上部に開放されている。第1気泡微細化手段1は吸気管22により圧力調整槽4の上部空間に滞留する気体を吸引し、循環路8c内を圧送される気液混合液体中に微細化して混合させる。気液混合された液体は第1気泡微細化手段1の送出口から圧力調整槽4内に噴出される。圧力調整槽4内は加圧液体ポンプ7の送出圧に対応して高圧に維持されるので、気体の一部は循環路8c内と圧力調整槽4内において液体に溶解する。 The intake part of the intake pipe 22 of the first bubble refining means 1 is opened to the upper space of the pressure adjustment tank 4, and the liquid delivery port is also opened to the upper part of the pressure adjustment tank 4. The first bubble refining means 1 sucks the gas staying in the upper space of the pressure adjusting tank 4 through the intake pipe 22 and makes it finely mixed in the gas-liquid mixed liquid fed in the circulation path 8c. The gas-liquid mixed liquid is ejected from the outlet of the first bubble miniaturizing means 1 into the pressure adjusting tank 4. Since the inside of the pressure adjusting tank 4 is maintained at a high pressure corresponding to the delivery pressure of the pressurized liquid pump 7, a part of the gas is dissolved in the liquid in the circulation path 8 c and the pressure adjusting tank 4.
気液混然となった液体は圧力調整槽4内に一定時間滞留する。滞留時間は圧力調整槽4の容積や上部に形成される空間体積、液体の流速などにより決まる。このとき、微小気泡は第1気泡微細化手段1から送出される液体の攪拌効果で気液混然となって圧力調整槽4内を循環するが、大サイズの気泡は浮上力が大きいので液体表面に浮上分離され、上部空間に放出される。従って内部圧力調整部材5に流出する液中に含まれる気泡は微細気泡のみとなる。
内部圧力調整部材5は例えば弁であり、液体流路を狭めて流路抵抗を増大させ、圧力調整槽4の内部圧力を上昇させたり、逆に液体流路を拡張させ、流路抵抗を低減させ圧力調整槽4内部圧力を降下させることができる。
The liquid that has become a mixture of gas and liquid stays in the pressure adjustment tank 4 for a certain period of time. The residence time is determined by the volume of the pressure adjusting tank 4, the space volume formed in the upper part, the flow rate of the liquid, and the like. At this time, the microbubbles are mixed in the gas and liquid by the stirring effect of the liquid sent out from the first bubble miniaturizing means 1 and circulate in the pressure adjusting tank 4. It floats on the surface and is released into the upper space. Therefore, the bubbles contained in the liquid flowing out to the internal pressure adjusting member 5 are only fine bubbles.
The internal pressure adjusting member 5 is, for example, a valve, and narrows the liquid flow path to increase the flow resistance, thereby increasing the internal pressure of the pressure adjusting tank 4 or conversely expanding the liquid flow path to reduce the flow resistance. Then, the pressure inside the pressure adjusting tank 4 can be lowered.
内部圧力調整部材5を通過した気液混合液体は循環路8dに流出した瞬間内部圧力が一気に貯留槽6内部の液体9と略同一圧力に減圧される。このとき液中に溶解していた気体も一気に微細気泡となって液中に析出する。循環路8dから貯留槽6に放出される液中には第1、2の気泡微細化手段で
液に混入された微細気泡と、加圧液体ポンプにより加圧溶された後、減圧により液中から析出した微細気泡が混然一体に含まれる。
The gas-liquid mixed liquid that has passed through the internal pressure adjusting member 5 is depressurized to the same pressure as the liquid 9 inside the storage tank 6 at once when the instantaneous internal pressure flows out into the circulation path 8d. At this time, the gas dissolved in the liquid also becomes fine bubbles and precipitates in the liquid. In the liquid discharged from the circulation path 8d to the storage tank 6, the fine bubbles mixed in the liquid by the first and second bubble refining means are pressurized and dissolved by the pressurized liquid pump, and then the pressure is reduced. The fine bubbles deposited from are mixed together.
ここで、第1、2の気泡微細化手段の詳細について説明する。
図3、図4にこれら気泡微細化手段の構造を示す。第1と第2の気泡微細化手段に機能上の差異は無い。
まず図3のSタイプノズルの構成について説明する。
Sタイプノズルは本体30とキャップ31で構成され、本体30の中心部に流路21が設けられ液体は矢印方向(図面左から右)に流れる。液体流路の断面積は流路に沿って変化し、また断面積に対応して本体内部の流速も変化する。具体的には流路21に流入した液体はオリフィス23で急激に流路を狭められ、その後拡大流路領域24に至る。このとき吸気管22がノズル内部に開口する部位が負圧になるため吸気管22から気体が吸入される。吸入気体は高速に流れる液体にせん断されて微細気泡となり液体と混然一体となって排出口25から送出される。
Here, the detail of the 1st, 2nd bubble refinement | miniaturization means is demonstrated.
3 and 4 show the structure of these bubble refining means. There is no functional difference between the first and second bubble refining means.
First, the configuration of the S type nozzle of FIG. 3 will be described.
The S type nozzle is composed of a main body 30 and a cap 31, and a flow path 21 is provided at the center of the main body 30, and the liquid flows in the direction of the arrow (from left to right in the drawing). The cross-sectional area of the liquid channel changes along the channel, and the flow velocity inside the main body also changes corresponding to the cross-sectional area. Specifically, the liquid flowing into the flow path 21 is suddenly narrowed by the orifice 23 and then reaches the enlarged flow path region 24. At this time, since the portion where the intake pipe 22 opens inside the nozzle becomes negative pressure, gas is sucked from the intake pipe 22. The suction gas is sheared by the liquid flowing at high speed to become fine bubbles, and is mixed with the liquid and sent out from the discharge port 25.
次に図4を用いRタイプノズルの構成について説明する。
Rタイプノズルは本体30とキャップ31で構成され、本体30の中心部に流路21が設けられて液体は矢印方向(図面左から右)に流れる。RタイプノズルもSタイプノズル以上に内部流路の内径が複雑に変化し、また流路に沿った断面積に対応して本体内部の流速が変化する。
まず、左端の流入路21に接続する吸気路27で流路断面積は急激に狭められ、中間流路26に至り拡大される。中間流路26の先端部にオリフィス23が設けられ、オリフィスの先は逐次流路が拡大され、拡大流路24に至る。拡大流路の先端は噴出口25であり、液体は噴出口から送出される。
なお、吸気流路27の部位は流速が最も早い部位で、この部位に接続する吸気管の開口部は負圧になり吸気管22を介して外部より気体が吸引される。吸引された気体はオリフィス部を通過する高速流体にせん断され、微細気泡となって噴出口25から送出される。
Next, the configuration of the R type nozzle will be described with reference to FIG.
The R type nozzle is composed of a main body 30 and a cap 31, and a flow path 21 is provided at the center of the main body 30 so that the liquid flows in the direction of the arrow (from left to right in the drawing). As for the R type nozzle, the inner diameter of the internal flow path changes more complicatedly than the S type nozzle, and the flow velocity inside the main body changes corresponding to the cross-sectional area along the flow path.
First, in the intake passage 27 connected to the left end inflow passage 21, the flow passage cross-sectional area is abruptly narrowed and reaches the intermediate flow passage 26 to be enlarged. An orifice 23 is provided at the distal end of the intermediate flow path 26, and the flow path is sequentially expanded at the tip of the orifice to reach the expanded flow path 24. The tip of the enlarged flow path is a jet outlet 25, and the liquid is delivered from the jet outlet.
The portion of the intake flow path 27 has the fastest flow velocity, and the opening of the intake pipe connected to this portion has a negative pressure, and gas is sucked from the outside through the intake pipe 22. The sucked gas is sheared by the high-speed fluid passing through the orifice portion, and is sent out from the jet outlet 25 as fine bubbles.
なお、図1に記載は無いが、圧力調整槽4に液面の下限を検出可能なセンサー(例えば図2に示す液面下限検出センサー41、或いはフロート)を配置し、液体量が限界を越えて減少したとき(上部空間体積が限界以上に拡大したとき)第2気泡微細化手段が吸引する気体量を制限させることができる。逆に、圧力調整槽4上部の空間が液体で充填される場合もあり得る。この場合吸気管22が圧力調整槽4内の液体を吸引することになるが、吸気管22が液体を吸引するに至っても何ら機能上の問題は何ら生じない。
Although not shown in FIG. 1, a sensor (for example , the liquid level lower limit detection sensor 41 shown in FIG. 2 or a float) capable of detecting the lower limit of the liquid level is arranged in the pressure adjusting tank 4, and the liquid amount exceeds the limit. The amount of gas sucked by the second bubble refining means can be limited when the upper space volume is expanded beyond the limit. Conversely, the space above the pressure adjustment tank 4 may be filled with liquid. In this case, the intake pipe 22 sucks the liquid in the pressure adjusting tank 4, but no functional problem occurs even if the intake pipe 22 sucks the liquid.
次に第2の構成例について図2を用いて説明する。
図2の基本構成は図1と同じであるが、相違点は循環路8dの先端部に第3気泡微細化手段3が設置され、この気泡微細化手段の先端が貯留槽6に開放されている点である。
図2では第3気泡微細化手段3を追加設置されるので、液中の微細気泡は更に微細化される。
第3気泡微細化手段3の代表例を図5に示す。
Next, a second configuration example will be described with reference to FIG.
The basic configuration of FIG. 2 is the same as that of FIG. 1, except that the third bubble refinement means 3 is installed at the tip of the circulation path 8d, and the tip of the bubble refinement means is opened to the storage tank 6. It is a point.
In FIG. 2, since the third bubble refining means 3 is additionally installed, the fine bubbles in the liquid are further refined.
A representative example of the third bubble refining means 3 is shown in FIG.
図5のAタイプノズルは本体11と、キャップ14と、螺旋流板15と、メッシュ16で構成され、本体11の中心部に断面円形の流路が設けられ、液体は矢印方向(図面左から右)に流れる。本体内部の流路断面積は流れ方向に沿って様々に変化しており、断面積に対応して本体内部の流速は変化する。
まず、左方より流入する液体は螺旋板15で流れ方向が旋回流に変えられる。この旋回効果で気泡はせん断力を受け微細化する。内径D1の流路を旋回しながら流れオリフィス12に至る。オリフィス部において流路は急激に狭まり流速が増す。オリフィス通過後はなだらかに流路断面が拡張され最大内径D2になる。オリフィス部では内径方向の流速勾配が大きく、液中に存在する気泡に大きなせん断力が作用し、液中に存在する微細気泡の更なる微細化が進む。オリフィス通過後流体はメッシュ16に至る。メッシュ通過時流速は局所的に変化するのでこの場合も気泡にせん断力が作用し、微細化は更に促進される。キャップ14の貯留槽6への開放口の内径はD3に狭められるので、液体は微細気泡を含み気液混合状態で勢いよく貯留槽6に放射される。
The A type nozzle of FIG. 5 is composed of a main body 11, a cap 14, a spiral flow plate 15, and a mesh 16. A flow path having a circular cross section is provided at the center of the main body 11, and the liquid is in the direction of the arrow (from the left in the drawing). To the right). The flow path cross-sectional area inside the main body varies in various directions along the flow direction, and the flow velocity inside the main body changes corresponding to the cross-sectional area.
First, the liquid flowing in from the left is changed to a swirl flow by the spiral plate 15. Due to this swirl effect, the bubbles receive a shearing force and become finer. The flow reaches the orifice 12 while swirling the flow path having the inner diameter D1. In the orifice portion, the flow path is rapidly narrowed and the flow velocity is increased. After passing through the orifice, the flow path cross section is gently expanded to the maximum inner diameter D2. In the orifice portion, the flow velocity gradient in the inner diameter direction is large, and a large shearing force acts on the bubbles existing in the liquid, so that the fine bubbles existing in the liquid are further miniaturized. After passing through the orifice, the fluid reaches the mesh 16. Since the flow velocity at the time of passing through the mesh changes locally, a shearing force acts on the bubbles in this case as well, and the miniaturization is further promoted. Since the inner diameter of the opening of the cap 14 to the storage tank 6 is narrowed to D3, the liquid contains fine bubbles and is vigorously radiated to the storage tank 6 in a gas-liquid mixed state.
図1のシステム構成において、液体として水を使用し、水中に空気のマイクロバブル発生させる実験
を行なった。実験装置仕様の概要は次の通りである。
実験しに使用した装置の主要部寸法は次になる。
<ノズル>
D1:9mm D2:18mm D3:6mm D4:2mm
L1:14mm L2:15mm L3:65mm
<圧力調整槽>
内径:70mm 高さ:150mm
<貯留槽>
600×300×360mm
<加圧液体ポンプ>
ロータリーポンプ 24V、50W
<配管>
内径:12mm 外径:18mm
In the system configuration shown in FIG. 1, water was used as a liquid, and an experiment was performed to generate air microbubbles in water. The outline of the experimental equipment specifications is as follows.
The main dimensions of the apparatus used for the experiment are as follows.
<Nozzle>
D1: 9mm D2: 18mm D3: 6mm D4: 2mm
L1: 14mm L2: 15mm L3: 65mm
<Pressure adjustment tank>
Inner diameter: 70 mm Height: 150 mm
<Reservoir>
600x300x360mm
<Pressurized liquid pump>
Rotary pump 24V, 50W
<Piping>
Inner diameter: 12mm Outer diameter: 18mm
実施例1では次の2条件で装置運転をした時のマイクロバブル大きさと、圧力調整槽の空間体積
変化を目視観察した。
条件1:第1気泡微細化手段1を通常条件(吸気管22を「開」にして)で5分間運転。
条件2:第1気泡微細化手段1の吸気管22を「閉」にして5分間運転。
この結果、定性的には次の差異が認められた。
(1)条件1で形成されるマイクロバブルは、条件2で形成されるマイクロバブルに比べ粒度が小さく、水中での滞留が長い。
(2)条件1では吸気管を介して圧力調整槽内の気体が泡状に吸引される状況が観察され、また、圧力調整層内の気体比率は条件2に比べ小さい。
本実験により、圧力調整槽内では、大型サイズの気泡が浮上分離され、これらが上部空間に滞留し
第1気泡微細化手段の吸気管に吸引されてマイクロバブル化されて再び水中に混入されるので、気
泡の微細化が一層促進されることが確認された。
これにより、本発明の請求項1に係る圧力調整槽の気泡分離機能と、請求項2に係る第1気泡微細化手段の圧力調整槽からの気体吸引効果の有効性が確認された。
In Example 1, the microbubble size when the apparatus was operated under the following two conditions and the change in the space volume of the pressure adjusting tank were visually observed.
Condition 1: The first bubble refining means 1 is operated for 5 minutes under normal conditions (the intake pipe 22 is “open”).
Condition 2: Operation is performed for 5 minutes with the intake pipe 22 of the first bubble refining means 1 closed.
As a result, the following differences were recognized qualitatively.
(1) The microbubbles formed under the condition 1 have a smaller particle size than the microbubbles formed under the condition 2, and the residence time in water is long.
(2) In condition 1, a situation is observed in which the gas in the pressure adjusting tank is sucked in a bubble shape through the intake pipe, and the gas ratio in the pressure adjusting layer is smaller than in condition 2.
According to this experiment, large-sized bubbles are floated and separated in the pressure adjusting tank, and these bubbles stay in the upper space, are sucked into the intake pipe of the first bubble refining means, become microbubbles, and are mixed into the water again. Therefore, it was confirmed that the refinement of bubbles was further promoted.
Thereby, the effectiveness of the gas separation function of the pressure adjusting tank according to claim 1 of the present invention and the effect of the gas suction from the pressure adjusting tank of the first bubble refining means according to claim 2 was confirmed.
図2のシステム構成における第3気泡微細化手段について、種々の形状のノズルを作成し、マイク
ロバブル生成特性を評価した。
実験では図5〜図10に示す6種類のノズルを作成し評価した。なお、6種類のノズル構成の特徴はつぎの通りである。
Aタイプノズル(図5):螺旋流板15と、メッシュ16を共に装着
Bタイプノズル(図6):螺旋流板15のみ装着
Cタイプノズル(図7):螺旋流板15、メッシュ16の何れも装着なし
Dタイプノズル(図8):構成はAタイプノズルと同一であるが、流水方向が逆
Eタイプノズル(図9):構成はBタイプノズルと同一であるが、流水方向が逆
Fタイプノズル(図10):構成はCタイプノズルと同一であるが、流水方向が逆
With respect to the third bubble refining means in the system configuration of FIG. 2, nozzles of various shapes were created and the microbubble generation characteristics were evaluated.
In the experiment, six types of nozzles shown in FIGS. 5 to 10 were prepared and evaluated. The characteristics of the six types of nozzle configurations are as follows.
A type nozzle (FIG. 5): Mounts both the spiral flow plate 15 and the mesh 16 B type nozzle (FIG. 6): Mounts only the spiral flow plate 15
C type nozzle (FIG. 7): Neither spiral flow plate 15 nor mesh 16 is mounted D type nozzle (FIG. 8): The configuration is the same as the A type nozzle, but the flowing water direction is the reverse E type nozzle (FIG. 9) : The configuration is the same as the B type nozzle, but the flowing water direction is the reverse F type nozzle (FIG. 10): The configuration is the same as the C type nozzle, but the flowing water direction is reversed.
なお、マイクロバブルの発生量は、照度計を用い図11に示す方法で計測した。
貯留槽6の下部に配置された第3気泡微細化手段3に上記A〜Fの6種類のノズル順次取り付け実験を行う。なお、貯留槽6の右方より光源36(ハロゲンランプ:E17ミニレフ電球100V.40W)で照射を行い、貯留槽6を挟み対向する位置に照度計35(ミノルタ製デジタル照度計T11)を配置する。実験は周囲環境からの光を遮断して暗黒状態で光源を点燈させるので、照度計は貯留槽6を透過する光源36からの光のみを検出する。従って、貯留槽6内に配置された第3気泡微細化手段3で気泡が作られると透過光は気泡の散乱を受け、照度計で検出される光量は低減する。
透過光量の低減はマイクロバブルの発生量にほぼ比例すると思われるので、照度計を用いた透過光量(照度)の測定により、マイクロバブルの発生量の相対評価が可能であると考えた。
A〜Fの6種類のノズルについて、マイクロバブル発生3分後の照度を測定した結果は次の通りであった。なお測定結果はマイクロバブル発生前の照度を100%とした相対値で表している。
Aタイプ: 7% Dタイプ:2%
Bタイプ:10% Eタイプ:5%
Cタイプ:14% Fタイプ:9%
マイクロバブル発生効率はDタイプが最も優れ次いでEタイプ、Aタイプの順となり、最後が
Cタイプであった。これより、マイクロバブル発生にはメッシュ16と、螺旋板15が有効に作用すること、
またノズルの設置方向は、キャップ部を水流の下流側とするよりも上流側に向ける方がマイクロバブル
は効率的に発生することが確認された。
The amount of microbubbles generated was measured by a method shown in FIG. 11 using an illuminometer.
The above-described six types of nozzles A to F are sequentially attached to the third bubble refining means 3 arranged at the lower part of the storage tank 6. In addition, it irradiates with the light source 36 (halogen lamp: E17 miniref electric bulb 100V.40W) from the right side of the storage tank 6, and the illuminance meter 35 (Minolta digital illuminance meter T11) is arrange | positioned in the position which opposes the storage tank 6. . Since the experiment blocks light from the surrounding environment and turns on the light source in the dark state, the illuminometer detects only the light from the light source 36 that passes through the storage tank 6. Therefore, when bubbles are created by the third bubble refining means 3 disposed in the storage tank 6, the transmitted light is scattered by the bubbles, and the amount of light detected by the illuminometer is reduced.
Since the reduction of the amount of transmitted light seems to be almost proportional to the amount of microbubbles generated, it was considered that the amount of generated microbubbles can be evaluated by measuring the amount of transmitted light (illuminance) using an illuminometer.
The results of measuring the illuminance 3 minutes after the generation of microbubbles for the six types of nozzles A to F were as follows. The measurement result is expressed as a relative value with the illuminance before the generation of microbubbles as 100%.
A type: 7% D type: 2%
B type: 10% E type: 5%
C type: 14% F type: 9%
The microbubble generation efficiency was highest for D type, followed by E type and A type, and finally C type. From this, the mesh 16 and the spiral plate 15 effectively act to generate microbubbles,
In addition, it was confirmed that the microbubbles are generated more efficiently when the nozzle is directed toward the upstream side rather than the cap portion at the downstream side of the water flow.
本発明にかかる微細気泡形成装置は浴場施設としてはシャワーを含め、業務用、家庭用何れにも適用可能である。また、生産工場における器具、部品など洗浄用途にも好適で、家庭用食器洗い、洗濯、業務用洗浄機、などにも適用できる。さらには、エマルジョン燃料に水素ガスを添加しエマルジョン燃料の着火特性の改質にも有効に適用できる。 The fine bubble forming apparatus according to the present invention can be applied to both business use and home use including a shower as a bath facility. Further, it is suitable for cleaning use such as appliances and parts in production factories, and can be applied to household dishwashing, washing, and commercial washing machines. Furthermore, it can be effectively applied to reforming the ignition characteristics of emulsion fuel by adding hydrogen gas to the emulsion fuel.
1 第1気泡微細化手段
2 第2気泡微細化手段
3 第3気泡微細化手段
4 圧力調整槽
5 内部圧力調整部材
6 貯留槽
7 加圧液体ポンプ
8a、8b,8c,8d 循環路
9 液体
10 微細気泡
11 ノズル本体
12 オリフィス
14 キャップ
15 螺旋流板
16 メッシュ
22 吸気管
23 オリフィス
30 ノズル本体
31 キャップ
35 照度計
36 光源
41 液面下限検出センサー
1 1st bubble refinement means 2 2nd bubble refinement means
3 Third bubble refining means 4 Pressure adjusting tank 5 Internal pressure adjusting member 6 Storage tank 7 Pressurized liquid pump 8a, 8b, 8c, 8d Circulating path 9 Liquid
10 Fine bubbles 11 Nozzle body 12 Orifice
14 cap 15 spiral flow plate 16 mesh 22 intake pipe 23 orifice
30 nozzle body
31 cap 35 illuminance meter 36 light source 41 liquid level lower limit detection sensor
Claims (3)
少なくとも、加圧液体ポンプと、圧力調整槽と、圧力調整部材と、前記圧力調整槽の液面
下限検出センサーと、第1気泡微細化手段と、第2気泡微細化手段と、第3気泡微細化手段と、を有し、
前記第2気泡微細化手段が前記加圧液体ポンプの上流に設置されて、吸引ノズルを有する
エゼクタ構造とオリフィス構造とを有し、吸引ノズルで吸引した気体を循環液体に混入さ
せ、オリフィス構造で前記吸引した気体をせん断して微細化し、
前記圧力調整槽が前記液体中に含まれる大サイズの気泡を浮上させ、前記圧力調整槽内部
の上部空間に気体として回収し、
前記圧力調整部材が前記圧力調整槽の内圧を調整し、
前記第1気泡微細化手段が吸引ノズルを有するエゼクタ構造とオリフィス構造を有し、吸
引ノズルの吸引口が前記圧力調整槽内上部に開放されており、
前記圧力調整槽から排出される前記循環液体の圧力を減圧すると伴に、前記循環液体に含
まれる微細気泡をオリフィスにより更にせん断して微細化し、
前記第3の気泡微細化手段が螺旋版と、オリフィスと、拡大流路と、メッシュと、流路を
狭められた解放口で構成されて前記貯留槽に放出することを特徴とする微細気泡形成装置。 A storage tank, a circulation path for circulating the liquid stored in the storage tank through an external path, a gas supply means installed in the circulation path, and a bubble miniaturization that mixes gas into a fine bubble A fine bubble forming device for supplying bubbles to the storage tank, comprising:
At least a pressurized liquid pump, a pressure adjustment tank, a pressure adjustment member, a liquid level lower limit detection sensor for the pressure adjustment tank, a first bubble refinement means, a second bubble refinement means, and a third bubble refinement. And means for
The second bubble refining means is installed upstream of the pressurized liquid pump, and has an ejector structure having a suction nozzle and an orifice structure, and the gas sucked by the suction nozzle is mixed into the circulating liquid, The suctioned gas is sheared and refined,
The pressure adjustment tank floats large bubbles contained in the liquid, and is recovered as a gas in the upper space inside the pressure adjustment tank,
The pressure adjusting member adjusts the internal pressure of the pressure adjusting tank;
The first bubble miniaturization means has an ejector structure having a suction nozzle and an orifice structure, and a suction port of the suction nozzle is open to the upper part in the pressure adjustment tank,
While reducing the pressure of the circulating liquid discharged from the pressure adjustment tank, the fine bubbles contained in the circulating liquid are further sheared and refined by an orifice,
The third bubble refining means includes a spiral plate, an orifice, an enlarged flow path, a mesh, and a flow path.
A fine bubble forming apparatus comprising a narrowed opening and discharging into the storage tank.
2. The fine bubble forming apparatus according to claim 1, wherein the liquid is a fuel liquid containing heavy oil, and the gas is hydrogen gas.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010077138A JP5672472B2 (en) | 2010-03-30 | 2010-03-30 | Fine bubble forming device. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010077138A JP5672472B2 (en) | 2010-03-30 | 2010-03-30 | Fine bubble forming device. |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011206689A JP2011206689A (en) | 2011-10-20 |
JP5672472B2 true JP5672472B2 (en) | 2015-02-18 |
Family
ID=44938391
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010077138A Expired - Fee Related JP5672472B2 (en) | 2010-03-30 | 2010-03-30 | Fine bubble forming device. |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5672472B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101842510B1 (en) * | 2017-09-28 | 2018-03-27 | 김일동 | Device for mixing Air and Liquid |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5871588B2 (en) * | 2011-11-25 | 2016-03-01 | 株式会社ガスター | Equipment with fine bubble generation function |
JP5588582B2 (en) * | 2011-12-02 | 2014-09-10 | 株式会社コンタクト | Cleaning device |
JP6032456B2 (en) * | 2011-12-09 | 2016-11-30 | フジデノロ株式会社 | Carbonate spring generator |
JP5985838B2 (en) * | 2012-03-05 | 2016-09-06 | オーニット株式会社 | Gas dissolving method and gas dissolving apparatus |
JP6250267B2 (en) | 2012-06-15 | 2017-12-20 | 猛 大平 | Cleaning liquid and cleaning method |
JP5928215B2 (en) * | 2012-07-19 | 2016-06-01 | 三菱電機株式会社 | Bathtub adapter and water heater using the same |
JP6111029B2 (en) | 2012-07-28 | 2017-04-05 | 猛 大平 | Liquid supply device and biological cleaning device |
JP6118544B2 (en) * | 2012-11-29 | 2017-04-19 | Idec株式会社 | Fine bubble generating nozzle and fine bubble generating device |
JP2015077570A (en) * | 2013-10-18 | 2015-04-23 | 商研株式会社 | Structure of nozzle to be used in gas dissolution liquid manufacturing system |
KR101448280B1 (en) | 2014-06-09 | 2014-10-13 | 김택중 | The mixing fuel production apparatus that mixed the hyperfine bubble of hydrogen or oxyhydrogen |
JP6310359B2 (en) * | 2014-08-07 | 2018-04-11 | 株式会社ワイビーエム | Microbubble generator and method for generating the same |
FR3031099B1 (en) | 2014-12-24 | 2019-08-30 | Veolia Water Solutions & Technologies Support | OPTIMIZED NOZZLE FOR INJECTING PRESSURIZED WATER CONTAINING DISSOLVED GAS. |
JP6032506B2 (en) * | 2015-03-16 | 2016-11-30 | フジデノロ株式会社 | Carbonate spring generator |
JP6637774B2 (en) * | 2016-01-28 | 2020-01-29 | 株式会社ハナダ | Dissolved oxygen increase device |
JP6804855B2 (en) * | 2016-03-28 | 2020-12-23 | ミクニ総業株式会社 | Micro / nano bubble generator and pipe cleaning method |
JP6129390B1 (en) * | 2016-07-28 | 2017-05-17 | 株式会社カクイチ製作所 | Nanobubble generating nozzle and nanobubble generating apparatus |
JP2018075240A (en) * | 2016-11-10 | 2018-05-17 | 国立大学法人 東京大学 | Co2 micro nanobubble water generated in water opened to air by applying several atmospheres for conducting sterilization and bacteriostasis of microorganism or pest control |
JP6961219B2 (en) * | 2017-09-21 | 2021-11-05 | ミクニ総業株式会社 | Micro / nano bubble generator and pipe cleaning method |
JP6472908B2 (en) * | 2018-02-05 | 2019-02-20 | 東芝ライフスタイル株式会社 | Home appliances equipped with a fine bubble generator, a water injection case, and a fine bubble generator |
KR102494395B1 (en) * | 2018-05-01 | 2023-01-31 | 가부시키가이샤 코요 노우샤 | Micro-bubble generator |
EP3804520B1 (en) * | 2018-05-30 | 2023-08-02 | AQUASOLUTION Corporation | Method of controlling powdery mildew |
JP6557871B1 (en) * | 2018-06-12 | 2019-08-14 | 株式会社Okutec | Fluid mixing apparatus and emulsion preparation method |
JP6894130B2 (en) * | 2018-12-27 | 2021-06-23 | 株式会社アンレット | Bubble generator for bathtub |
KR102329429B1 (en) * | 2019-06-25 | 2021-11-22 | 양선희 | Micro bubble generator for faucet with water-save function |
JP2021023910A (en) * | 2019-08-08 | 2021-02-22 | Kyb株式会社 | Air bubble-containing liquid manufacturing apparatus |
CN111792740B (en) * | 2020-08-12 | 2024-05-03 | 福州水研环境科技有限公司 | High-concentration organic wastewater treatment device and treatment method |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001179241A (en) * | 1999-12-22 | 2001-07-03 | Noritz Corp | Fine air bubble generator |
JP2001347145A (en) * | 2000-06-08 | 2001-12-18 | Matsushita Electric Ind Co Ltd | Fine bubble generator |
JP2004066071A (en) * | 2002-08-05 | 2004-03-04 | Noritz Corp | Hydrogen reduction water treatment apparatus |
JP2004313905A (en) * | 2003-04-15 | 2004-11-11 | Matsushita Electric Works Ltd | Structure of gas-liquid dissolving tank |
JP4356558B2 (en) * | 2003-08-26 | 2009-11-04 | パナソニック電工株式会社 | Bubble generator |
JP2007209953A (en) * | 2006-02-13 | 2007-08-23 | Sharp Corp | Microbubble generating system |
JP2007289903A (en) * | 2006-04-27 | 2007-11-08 | Fukushima Mitsuo | Micro-bubble generating device and bath system |
JP4895032B2 (en) * | 2007-04-26 | 2012-03-14 | 朝日興業株式会社 | Microbubble generator |
JP5121323B2 (en) * | 2007-06-18 | 2013-01-16 | リンナイ株式会社 | Microbubble generator |
-
2010
- 2010-03-30 JP JP2010077138A patent/JP5672472B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101842510B1 (en) * | 2017-09-28 | 2018-03-27 | 김일동 | Device for mixing Air and Liquid |
Also Published As
Publication number | Publication date |
---|---|
JP2011206689A (en) | 2011-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5672472B2 (en) | Fine bubble forming device. | |
CN101541690A (en) | Apparatus and method for generating micro bubbles | |
KR101483412B1 (en) | Micro bubble nozzle | |
JP4884693B2 (en) | Micro bubble generator | |
JP2006334556A (en) | Fine bubble generation nozzle and fine bubble generation bath | |
JP2011144584A (en) | Sanitary washing device | |
JP5878344B2 (en) | PRESSURE CONTAINER AND AIR SOLUTION DEVICE USING THE PRESSURE CONTAINER | |
JP2017131839A (en) | Fine hydrogen bubble generator | |
JP6449531B2 (en) | Microbubble generator | |
JP5540298B2 (en) | Fuel supply device mixer and fuel supply system | |
JP2009195882A (en) | Method for producing hydrogen reduction water | |
JP5599597B2 (en) | Gas-liquid dissolution tank | |
JP2011152485A (en) | Charged particulate water-containing fine bubble generator | |
WO2014050521A1 (en) | Gas dissolving device | |
EP2918740A1 (en) | Hygienic cleaning device | |
JP5938794B2 (en) | Microbubble generator | |
JP2005034624A (en) | Micro-bubble bath system and bubble generating nozzle thereof | |
KR101739408B1 (en) | Sanitary washing device | |
JP2009072662A (en) | Microbubble production apparatus | |
JP4887555B2 (en) | Nozzle of fine bubble generator | |
JP2007075674A (en) | Microbubble generator and sanitary washing device equipped with it | |
JP5871588B2 (en) | Equipment with fine bubble generation function | |
KR20120084134A (en) | Micro bubble head and apparatus for generating microbubble including the same | |
JP2008000725A (en) | Oil separation apparatus | |
JP7193365B2 (en) | Electrolyzed hydrogen water generator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111220 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120220 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120320 Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120319 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120426 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121106 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130107 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130205 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130207 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130903 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131101 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20140603 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140901 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140903 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20141021 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20141118 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20141210 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5672472 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |