WO2014050521A1 - Gas dissolving device - Google Patents

Gas dissolving device Download PDF

Info

Publication number
WO2014050521A1
WO2014050521A1 PCT/JP2013/074218 JP2013074218W WO2014050521A1 WO 2014050521 A1 WO2014050521 A1 WO 2014050521A1 JP 2013074218 W JP2013074218 W JP 2013074218W WO 2014050521 A1 WO2014050521 A1 WO 2014050521A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
tank
liquid
liquid mixture
nozzle
Prior art date
Application number
PCT/JP2013/074218
Other languages
French (fr)
Japanese (ja)
Inventor
直人 福原
澤田 善行
中野 聡
Original Assignee
ヒノデホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヒノデホールディングス株式会社 filed Critical ヒノデホールディングス株式会社
Priority to CN201380046020.6A priority Critical patent/CN104602800A/en
Publication of WO2014050521A1 publication Critical patent/WO2014050521A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/232Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles
    • B01F23/2323Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles by circulating the flow in guiding constructions or conduits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/234Surface aerating
    • B01F23/2341Surface aerating by cascading, spraying or projecting a liquid into a gaseous atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/237Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media
    • B01F23/2376Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media characterised by the gas being introduced
    • B01F23/23761Aerating, i.e. introducing oxygen containing gas in liquids
    • B01F23/237613Ozone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/50Circulation mixers, e.g. wherein at least part of the mixture is discharged from and reintroduced into a receptacle
    • B01F25/53Circulation mixers, e.g. wherein at least part of the mixture is discharged from and reintroduced into a receptacle in which the mixture is discharged from and reintroduced into a receptacle through a recirculation tube, into which an additional component is introduced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation
    • B01F35/21Measuring
    • B01F35/211Measuring of the operational parameters
    • B01F35/2112Level of material in a container or the position or shape of the upper surface of the material

Definitions

  • the present invention relates to a gas dissolving apparatus for dissolving a gas such as air, oxygen, ozone, etc. into a liquid.
  • Patent Document 1 discloses a gas-liquid mixing device provided with a liquid discharge means for discharging liquid. According to Patent Document 1, the liquid discharged on the liquid surface expands the contact area between the gas and the liquid, and the gas is likely to be dissolved in the liquid.
  • Patent Document 1 since the apparatus of Patent Document 1 only discharges the liquid toward the liquid surface, the amount of dissolved gas is not sufficient and there is room for improvement.
  • the problem to be solved by the present invention is to provide a gas dissolving apparatus capable of efficiently dissolving a gas in a liquid to a supersaturated state with a relatively simple structure.
  • the gas dissolving apparatus of the present invention comprises an upright columnar tank, and gas-liquid supply means for pressurizing and supplying a gas-liquid mixture obtained by mixing a gas with a liquid in the tank, and an upper part in the tank.
  • the tank is divided into two upper and lower regions by providing a partition plate with a gap between the tank and the inner peripheral surface.
  • the gas-liquid mixture in which the gas is mixed with the liquid is jetted at a high pressure from the upper side of the tank toward the bottom surface, and collides with the partition plate provided in the tank and rebounds.
  • the large bubbles rise above the tank, an upward flow is generated, and the gas-liquid mixture injected into the upward flow collides with it, and the gas-liquid mixture is vigorously stirred and refined into a liquid. Gas dissolution can be promoted.
  • the stirred gas-liquid mixture is rectified by flowing out from the gap between the partition plate and the inner peripheral surface of the tank to the lower region, and the turbulent flow can be calmed down.
  • the gas-liquid mixture injected into the tank is vigorously stirred in the tank, the gas can be efficiently dissolved in the liquid up to the supersaturated state.
  • the apparatus structure it can be set as a comparatively simple structure which only arrange
  • FIG. 1 is a conceptual diagram showing the overall configuration of a gas dissolving apparatus according to an embodiment of the present invention.
  • the gas dissolving apparatus of FIG. 1 mixes ozone with water and dissolves it.
  • Water is pressurized by the pump 10 and flows through the pipe 20.
  • the ozone gas supplied from the ozone generator 30 is mixed, and the gas-liquid mixture is injected into the tank 50 from the nozzle 40 provided at the tip of the pipe 20 while being pressurized.
  • the gas-liquid mixture is stirred in the tank 50, and the gas-liquid mixture (ozone water) in which ozone is dissolved to the supersaturated state by the stirring is taken out from the lower part of the tank 50 and taken out. Is used for sewage treatment and water purification.
  • the pump 10, the pipe 20 and the ozone generator 30 are used as gas-liquid supply means, and ozone is mixed in the middle of the pipe 20, but a two-phase flow gas-liquid mixing pump is used. It is also possible to mix ozone with water before the two-phase flow gas-liquid mixing pump, and pressurize and supply the gas-liquid mixture with the two-phase flow gas-liquid mixing pump.
  • FIG. 2 is a cross-sectional view showing the internal structure of the tank 50 in the gas mixing apparatus of FIG.
  • the tank 50 is standing upright in a columnar shape (cylindrical in the present embodiment), the nozzle 40 is disposed on the top thereof, and the partition plate 60 is disposed in the tank 50.
  • the nozzle 40 injects the gas-liquid mixture supplied via the pipe 20 radially toward the bottom surface side of the tank 50 and in a plan view.
  • the jet angle of the gas-liquid mixture from the nozzle 40 ( ⁇ in FIG. 2: spread angle) is about 0 to 30 degrees, but is not limited thereto, and the tank 50 and the inner cylinder 60 When the diameter is large, the injection angle may be expanded to about 60 degrees.
  • the partition plate 60 is disposed at a position where the gas-liquid mixture injected from the nozzle 40 into the tank 50 collides. For example, it is a position 100 to 200 mm from the tip of the nozzle 40 or a position 1/3 to 1/2 of the height of the tank 50 from the upper end of the tank 50. In addition, the partition plate 60 is disposed so as to have a gap 70 between the inner peripheral surface of the tank 50.
  • the partition plate 60 divides the tank 50 into two upper and lower regions, that is, an upper region 50a and a lower region 50b.
  • the upper region 50a and the lower region 50b communicate with each other through the gap 70.
  • a take-out pipe 51 for taking out the gas-liquid mixture (ozone water) is provided below the lower region 50b.
  • a liquid level adjustment mechanism for adjusting the liquid level in the tank 50.
  • the liquid level adjustment mechanism includes a liquid level gauge 80 that bypasses the tank 50 in the vertical direction, an optical sensor 81 that detects the liquid level of the liquid level gauge 80, and a liquid level detected by the optical sensor 81.
  • a controller 82 is provided for adjusting through an opening / closing valve 83 provided in the middle of a pipeline that bypasses the upper portion of the tank 50 and the extraction pipe 51.
  • the controller 82 adjusts the opening degree of the opening / closing valve 83 and discharges the gas accumulated in the upper part of the tank 50 to the discharge pipe 51, thereby allowing the liquid level in the tank 50, that is, light.
  • the liquid level detected by the sensor 81 is adjusted to be a constant level.
  • the liquid level in the tank 50 is set so as to be adjusted to the position of the partition plate 60.
  • a flow rate adjusting valve is provided in the pipe 20 to adjust the injection amount of the gas-liquid mixture from the nozzle 40, and a flow rate adjusting valve is provided in the connection portion between the lower part of the tank 50 and the take-out pipe 51.
  • the liquid level in the tank 50 may be adjusted by adjusting the amount of ozone water taken out from the tank.
  • the gas-liquid mixture pressurized and supplied via the pipe 20 is ejected radially from the nozzle 40 toward the bottom surface of the tank 50 and in plan view.
  • the gas-liquid mixture collides with the partition plate 60 in the tank 50. By this collision, the gas-liquid mixture rebounds, the bubbles are refined, and a large bubble rises above the tank 50 to generate an upward flow.
  • the gas-liquid mixture injected into the upward flow collides, whereby the gas-liquid mixture is vigorously stirred. Due to this stirring action, dissolution of the gas (ozone) that has been refined into the liquid (water) is promoted, the amount of ozone dissolved increases, and ozone can be efficiently dissolved to a supersaturated state.
  • the dissolution of ozone by stirring described above is performed in the upper region 50a above the partition plate 60, and the obtained ozone water flows out to the lower region 50b through the gap 70.
  • the gas-liquid mixture (ozone water) which was in the turbulent state in the upper region 50a is rectified, and the turbulent state is calmed down. Therefore, large bubbles due to turbulent flow are not caught in the ozone water taken out from the take-out pipe 51.
  • FIG. 3 is a cross-sectional view showing another embodiment of the tank 50 in the gas mixing device of the present invention.
  • the same components as those of the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • an opening 61 is provided in the partition plate 60, and a vortex is generated in the gas-liquid mixture in the lower region 50b.
  • the opening 61 is provided at one location of the partition plate 60, and has a guide portion 62 for generating a vortex along the inner peripheral surface of the tank 50 in the gas-liquid mixture flowing out from the opening 61. .
  • the gas (ozone) that has been refined into the liquid (water) by stirring using the partition plate 60 is dissolved, and from the partition plate 60.
  • Ozone can be dissolved in water more efficiently by stirring by vortex in the lower region 50b below. That is, two types of stirring can be performed with one tank 50, the stirring efficiency can be improved, the installation space of the apparatus can be made compact, and the manufacturing cost can be reduced.
  • a rectifying plate 90 is disposed in the lower region 50b so as to calm the turbulent state of ozone water.
  • the partition plate 60 has a flat plate shape.
  • the gas-liquid mixture rebounds or agitates, such as by curving the upper surface of the partition plate 60, providing irregularities, or providing columnar protrusions. It can also be made into an easy shape.
  • the gas dissolving apparatus can also be used as a water treatment device for decomposing organic matter.
  • ozone is mixed with water, but it goes without saying that the liquid and gas are not limited to water and ozone.

Abstract

The present invention provides a gas dissolving device capable of efficiently dissolving gas in a liquid, until a supersaturated state is reached and by using a comparatively simple structure. This gas dissolving device comprises an upright column-shaped tank (50) and a gas/liquid supply means that pressurizes and supplies a gas-liquid mixture being a gas mixed in a liquid, to inside the tank (50). The gas dissolving device has a nozzle (40) that sprays the gas-liquid mixture towards the bottom surface side of the tank (50), in the upper section inside the tank (50). A partition (60) is provided at a position inside the tank (50) hit by the gas-liquid mixture sprayed inside the tank (50) from the nozzle (40), so as to have a gap (70) between the inner circumferential surface of the tank (50) and the partition, and as a result the tank (50) is partitioned into two upper and lower regions (50a, 50b).

Description

気体溶解装置Gas dissolving device
 本発明は、空気、酸素、オゾン等の気体を液体に溶解させる気体溶解装置に関する。 The present invention relates to a gas dissolving apparatus for dissolving a gas such as air, oxygen, ozone, etc. into a liquid.
 かかる気体溶解装置の一例として、加圧タンクと、加圧タンク内に気体を供給する気体供給手段と、加圧タンク内の液面をコントロールする液面制御手段と、加圧タンクの液面上に液体を放出する液体放出手段とを備えた気液混合装置が特許文献1に開示されている。この特許文献1によれば、液面上に放出された液体が、気体と液体の接触面積を広げ、液体中に気体が溶け込みやすくなるとされている。 As an example of such a gas dissolving device, a pressurized tank, a gas supply means for supplying gas into the pressurized tank, a liquid level control means for controlling the liquid level in the pressurized tank, and the liquid level of the pressurized tank Patent Document 1 discloses a gas-liquid mixing device provided with a liquid discharge means for discharging liquid. According to Patent Document 1, the liquid discharged on the liquid surface expands the contact area between the gas and the liquid, and the gas is likely to be dissolved in the liquid.
 しかしながら、特許文献1の装置は、液体を液面上に向けて放出するだけのものであるため、気体の溶解量は十分ではなく、改良の余地があった。 However, since the apparatus of Patent Document 1 only discharges the liquid toward the liquid surface, the amount of dissolved gas is not sufficient and there is room for improvement.
特開平10-165792号公報Japanese Patent Laid-Open No. 10-165792
 本発明が解決しようとする課題は、比較的簡単な構造で、液体に気体を過飽和状態まで効率よく溶解させることができる気体溶解装置を提供することにある。 The problem to be solved by the present invention is to provide a gas dissolving apparatus capable of efficiently dissolving a gas in a liquid to a supersaturated state with a relatively simple structure.
 本発明の気体溶解装置は、直立した柱状のタンクと、前記タンク内に、液体に気体を混合させた気液混合体を加圧供給する気液供給手段とを備え、前記タンク内の上部に、前記気液混合体を、前記タンクの底面側に向けて噴射させるノズルを有し、前記タンク内において、前記ノズルから前記タンク内に噴射した前記気液混合体が衝突する位置に、且つ、前記タンクの内周面との間に間隙を有するように仕切板を設けることにより、前記タンクを上下2つの領域に区分したことを特徴とするものである。 The gas dissolving apparatus of the present invention comprises an upright columnar tank, and gas-liquid supply means for pressurizing and supplying a gas-liquid mixture obtained by mixing a gas with a liquid in the tank, and an upper part in the tank. A nozzle for injecting the gas-liquid mixture toward the bottom surface of the tank; and in the tank, the gas-liquid mixture injected from the nozzle into the tank collides, and The tank is divided into two upper and lower regions by providing a partition plate with a gap between the tank and the inner peripheral surface.
 このように本発明では、液体に気体を混合させた気液混合体が、タンクの上方から底面側に向けて高圧で噴射され、タンク内に設けた仕切板に衝突して跳ね返ることにより、また、大きな気泡がタンクの上方に上昇することで上昇流が発生し、この上昇流に噴射された気液混合体が衝突することにより、気液混合体が激しく攪拌され、液体への微細化した気体の溶解を促進させることができる。また、攪拌された気液混合体が仕切板とタンクの内周面との間の間隙から下方の領域に流出することで整流され、乱流を沈静化することができる。乱流のままタンクから気液混合体を取り出すと、その気液混合体に乱流による大きな気泡が巻き込まれているおそれがあるが、本発明では、仕切板の下方の領域で乱流を沈静化できるので、タンクから取り出される気液混合体に大きな気泡が巻き込まれることはない。 As described above, in the present invention, the gas-liquid mixture in which the gas is mixed with the liquid is jetted at a high pressure from the upper side of the tank toward the bottom surface, and collides with the partition plate provided in the tank and rebounds. As the large bubbles rise above the tank, an upward flow is generated, and the gas-liquid mixture injected into the upward flow collides with it, and the gas-liquid mixture is vigorously stirred and refined into a liquid. Gas dissolution can be promoted. Further, the stirred gas-liquid mixture is rectified by flowing out from the gap between the partition plate and the inner peripheral surface of the tank to the lower region, and the turbulent flow can be calmed down. If the gas-liquid mixture is taken out of the tank in the turbulent flow, there is a possibility that large bubbles due to the turbulent flow are entrained in the gas-liquid mixture, but in the present invention, the turbulent flow is calmed down in the region below the partition plate. Therefore, large bubbles are not caught in the gas-liquid mixture taken out from the tank.
 このように本発明によれば、タンク内に噴射された気液混合体がタンク内で激しく攪拌されるので、液体に気体を過飽和状態まで効率よく溶解させることができる。また、装置構造としては、タンク内に仕切板を配置するだけの比較的簡単な構造とすることができる。 Thus, according to the present invention, since the gas-liquid mixture injected into the tank is vigorously stirred in the tank, the gas can be efficiently dissolved in the liquid up to the supersaturated state. Moreover, as an apparatus structure, it can be set as a comparatively simple structure which only arrange | positions a partition plate in a tank.
本発明の一実施形態による気体溶解装置の全体構成を示す説明図である。It is explanatory drawing which shows the whole structure of the gas dissolving apparatus by one Embodiment of this invention. 図1の気体溶解装置のタンクの内部構造を示す断面図である。It is sectional drawing which shows the internal structure of the tank of the gas dissolving apparatus of FIG. 本発明の気体溶解装置におけるタンクの他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of the tank in the gas dissolving apparatus of this invention.
 以下、図面を参照して本発明の実施の形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(実施形態1)
 図1は、本発明の一実施形態による気体溶解装置の全体構成を示す概念図である。図1の気体溶解装置は、水にオゾンを混合し溶解させるものである。
(Embodiment 1)
FIG. 1 is a conceptual diagram showing the overall configuration of a gas dissolving apparatus according to an embodiment of the present invention. The gas dissolving apparatus of FIG. 1 mixes ozone with water and dissolves it.
 水はポンプ10によって加圧され配管20を流れる。配管20の途中で、オゾン発生機30から供給されるオゾンガスが混合され、その気液混合体が加圧されたまま配管20の先端に設けられたノズル40からタンク50内に噴射される。後述するが、気液混合体はタンク50内で撹拌され、その撹拌により過飽和状態までオゾンを溶解させた気液混合体(オゾン水)は、タンク50の下部から取り出され、取り出されたオゾン水は、下水処理や浄水処理などに使用される。 Water is pressurized by the pump 10 and flows through the pipe 20. In the middle of the pipe 20, the ozone gas supplied from the ozone generator 30 is mixed, and the gas-liquid mixture is injected into the tank 50 from the nozzle 40 provided at the tip of the pipe 20 while being pressurized. As will be described later, the gas-liquid mixture is stirred in the tank 50, and the gas-liquid mixture (ozone water) in which ozone is dissolved to the supersaturated state by the stirring is taken out from the lower part of the tank 50 and taken out. Is used for sewage treatment and water purification.
 なお、図1の実施形態では、気液供給手段としてポンプ10、配管20およびオゾン発生機30を使用し、配管20の途中でオゾンを混合させたが、二相流気液混合ポンプを使用し、二相流気液混合ポンプの手前で水にオゾンを混合させ、その気液混合体を二相流気液混合ポンプで加圧供給することもできる。 In the embodiment of FIG. 1, the pump 10, the pipe 20 and the ozone generator 30 are used as gas-liquid supply means, and ozone is mixed in the middle of the pipe 20, but a two-phase flow gas-liquid mixing pump is used. It is also possible to mix ozone with water before the two-phase flow gas-liquid mixing pump, and pressurize and supply the gas-liquid mixture with the two-phase flow gas-liquid mixing pump.
 図2は、図1の気体混合装置におけるタンク50の内部構造を示す断面図である。 FIG. 2 is a cross-sectional view showing the internal structure of the tank 50 in the gas mixing apparatus of FIG.
 タンク50は柱状(本実施形態では円筒状)をなして直立しており、その上部にノズル40が配置され、タンク50内に仕切板60が配置されている。ノズル40は配管20を介して供給される気液混合体をタンク50の底面側に向けて、且つ平面視において放射状に噴射する。図2の実施形態では、ノズル40からの気液混合体の噴射角度(図2中のα:拡がり角度)は0~30度程度であるが、それに限定されず、タンク50および内筒体60の直径が大きい場合には、噴射角度を60度程度まで拡げるようにしてもよい。 The tank 50 is standing upright in a columnar shape (cylindrical in the present embodiment), the nozzle 40 is disposed on the top thereof, and the partition plate 60 is disposed in the tank 50. The nozzle 40 injects the gas-liquid mixture supplied via the pipe 20 radially toward the bottom surface side of the tank 50 and in a plan view. In the embodiment of FIG. 2, the jet angle of the gas-liquid mixture from the nozzle 40 (α in FIG. 2: spread angle) is about 0 to 30 degrees, but is not limited thereto, and the tank 50 and the inner cylinder 60 When the diameter is large, the injection angle may be expanded to about 60 degrees.
 仕切板60は、ノズル40からタンク50内に噴射した気液混合体が衝突する位置に配置される。例えば、ノズル40の先端から100~200mmの位置、あるいはタンク50の上端からタンク50の高さの1/3~1/2の位置である。また、仕切板60は、タンク50の内周面との間に間隙70を有するように配置される。 The partition plate 60 is disposed at a position where the gas-liquid mixture injected from the nozzle 40 into the tank 50 collides. For example, it is a position 100 to 200 mm from the tip of the nozzle 40 or a position 1/3 to 1/2 of the height of the tank 50 from the upper end of the tank 50. In addition, the partition plate 60 is disposed so as to have a gap 70 between the inner peripheral surface of the tank 50.
 この仕切板60により、タンク50が上下2つの領域、すなわち上領域50aと下領域50bとに区分される。そして、間隙70によって上領域50aと下領域50bとが連通する。下領域50bの下部には、気液混合体(オゾン水)を取り出すための取出管51が設けられている。 The partition plate 60 divides the tank 50 into two upper and lower regions, that is, an upper region 50a and a lower region 50b. The upper region 50a and the lower region 50b communicate with each other through the gap 70. A take-out pipe 51 for taking out the gas-liquid mixture (ozone water) is provided below the lower region 50b.
 本実施形態では、タンク50内の液面レベルを調整する液面調整機構を設けている。具体的には、液面調整機構は、タンク50を垂直方向にバイパスする液面計80、液面計80の液面レベルを検出する光センサ81、光センサ81で検出される液面レベルを、タンク50の上部と取出管51とをバイパスする管路の途中に設けられた開閉バルブ83を通じて調整するコントローラー82を備えている。この液面調整機構を用いて、コントローラー82により開閉バルブ83の開度を調整し、タンク50の上部に溜まった気体を取出管51に排出させることにより、タンク50内の液面レベル、すなわち光センサ81で検出する液面レベルが一定レベルとなるように調整している。本実施形態では、タンク50内の液面レベルが仕切板60の位置となるように調整するように設定している。 In this embodiment, a liquid level adjustment mechanism for adjusting the liquid level in the tank 50 is provided. Specifically, the liquid level adjustment mechanism includes a liquid level gauge 80 that bypasses the tank 50 in the vertical direction, an optical sensor 81 that detects the liquid level of the liquid level gauge 80, and a liquid level detected by the optical sensor 81. A controller 82 is provided for adjusting through an opening / closing valve 83 provided in the middle of a pipeline that bypasses the upper portion of the tank 50 and the extraction pipe 51. By using this liquid level adjustment mechanism, the controller 82 adjusts the opening degree of the opening / closing valve 83 and discharges the gas accumulated in the upper part of the tank 50 to the discharge pipe 51, thereby allowing the liquid level in the tank 50, that is, light. The liquid level detected by the sensor 81 is adjusted to be a constant level. In the present embodiment, the liquid level in the tank 50 is set so as to be adjusted to the position of the partition plate 60.
 なお、配管20に流量調整バルブを設け、ノズル40からの気液混合体の噴射量を調整したり、また、タンク50下部と取出管51との接続部に流量調整バルブを設け、取出管51からのオゾン水の取り出し量を調整することによりタンク50内の液面レベルを調整するようにしてもよい。 In addition, a flow rate adjusting valve is provided in the pipe 20 to adjust the injection amount of the gas-liquid mixture from the nozzle 40, and a flow rate adjusting valve is provided in the connection portion between the lower part of the tank 50 and the take-out pipe 51. The liquid level in the tank 50 may be adjusted by adjusting the amount of ozone water taken out from the tank.
 以上の構成において、配管20を介して加圧供給される気液混合体は、ノズル40からタンク50の底面側に向けて、且つ平面視において放射状に噴射される。そして、その気液混合体は、タンク50内の仕切板60に衝突する。この衝突により気液混合体は跳ね返り、気泡が微細化され、また、大きな気泡がタンク50の上方に上昇することで上昇流が発生する。さらに、この上昇流に噴射された気液混合体が衝突することにより、気液混合体が激しく攪拌される。この撹拌作用により液体(水)への微細化した気体(オゾン)の溶解が促進され、オゾンの溶解量が増えて、オゾンを過飽和状態まで効率よく溶解させることができる。 In the above configuration, the gas-liquid mixture pressurized and supplied via the pipe 20 is ejected radially from the nozzle 40 toward the bottom surface of the tank 50 and in plan view. The gas-liquid mixture collides with the partition plate 60 in the tank 50. By this collision, the gas-liquid mixture rebounds, the bubbles are refined, and a large bubble rises above the tank 50 to generate an upward flow. Furthermore, the gas-liquid mixture injected into the upward flow collides, whereby the gas-liquid mixture is vigorously stirred. Due to this stirring action, dissolution of the gas (ozone) that has been refined into the liquid (water) is promoted, the amount of ozone dissolved increases, and ozone can be efficiently dissolved to a supersaturated state.
 上述の撹拌によるオゾンの溶解は、仕切板60より上方の上領域50aで行われ、得られたオゾン水は、間隙70を通じて下領域50bに流出する。これにより、上領域50aで乱流状態にあった気液混合体(オゾン水)が整流され、乱流状態が沈静化される。したがって、取出管51から取り出されるオゾン水に、乱流による大きな気泡が巻き込まれることはない。 The dissolution of ozone by stirring described above is performed in the upper region 50a above the partition plate 60, and the obtained ozone water flows out to the lower region 50b through the gap 70. Thereby, the gas-liquid mixture (ozone water) which was in the turbulent state in the upper region 50a is rectified, and the turbulent state is calmed down. Therefore, large bubbles due to turbulent flow are not caught in the ozone water taken out from the take-out pipe 51.
(実施形態2)
 図3は、本発明の気体混合装置におけるタンク50の他の実施形態を示す断面図である。同図において、先の実施形態1と同一の構成には同一の符号を付し、その説明を省略する。
(Embodiment 2)
FIG. 3 is a cross-sectional view showing another embodiment of the tank 50 in the gas mixing device of the present invention. In the figure, the same components as those of the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
 本実施形態は、実施形態1の間隙に相当する構成として、仕切板60に開口部61を設け、下領域50bにおいて気液混合体に渦流を発生させるようにしたものである。開口部61は、仕切板60の1箇所に設けられており、その開口部61から流出する気液混合体にタンク50の内周面に沿った渦流を発生させるために、ガイド部62を有する。 In the present embodiment, as a configuration corresponding to the gap of the first embodiment, an opening 61 is provided in the partition plate 60, and a vortex is generated in the gas-liquid mixture in the lower region 50b. The opening 61 is provided at one location of the partition plate 60, and has a guide portion 62 for generating a vortex along the inner peripheral surface of the tank 50 in the gas-liquid mixture flowing out from the opening 61. .
 このような構成にすることで、仕切板60より上方の上領域50aにおいて仕切板60を利用した攪拌による液体(水)への微細化した気体(オゾン)の溶解を行うとともに、仕切板60より下方の下領域50bにおいて渦流による攪拌により、水へのオゾンの溶解をさらに効率よく行うことができる。すなわち、1個のタンク50で2種類の攪拌を行うことができ、撹拌効率を向上させることができるとともに、装置の設置スペースをコンパクトにでき、製造コストも低減することができる。 With such a configuration, in the upper region 50 a above the partition plate 60, the gas (ozone) that has been refined into the liquid (water) by stirring using the partition plate 60 is dissolved, and from the partition plate 60. Ozone can be dissolved in water more efficiently by stirring by vortex in the lower region 50b below. That is, two types of stirring can be performed with one tank 50, the stirring efficiency can be improved, the installation space of the apparatus can be made compact, and the manufacturing cost can be reduced.
 また、下領域50bには整流板90を配置し、オゾン水の乱流状態を沈静化させるよう
にしている。
Further, a rectifying plate 90 is disposed in the lower region 50b so as to calm the turbulent state of ozone water.
 なお、以上の実施形態では、仕切板60を平板状としたが、仕切板60の上面を湾曲させたり、凹凸を設けたり、柱状突起を設けるなど、気液混合体の跳ね返りや攪拌が発生しやすい形状とすることもできる。 In the above embodiment, the partition plate 60 has a flat plate shape. However, the gas-liquid mixture rebounds or agitates, such as by curving the upper surface of the partition plate 60, providing irregularities, or providing columnar protrusions. It can also be made into an easy shape.
 さらに、有機物が含まれる水(液体)とオゾン(気体)との気液混合体とした場合には、本発明に係る気体溶解装置は有機物を分解する水処理装置として使用することもできる。 Furthermore, when a gas-liquid mixture of water (liquid) containing organic matter and ozone (gas) is used, the gas dissolving apparatus according to the present invention can also be used as a water treatment device for decomposing organic matter.
 なお、以上の実施形態では、水にオゾンを混合させるようにしたが、液体および気体が水およびオゾンに限定されないのは、言うまでもない。 In the above embodiment, ozone is mixed with water, but it goes without saying that the liquid and gas are not limited to water and ozone.
 10 ポンプ
 20 配管
 30 オゾン発生機
 40 ノズル
 50 タンク
 51 取出管
 60 仕切板
 61 開口部
 70 間隙
 80 液面計
 81 光センサ
 82 コントローラー
 83 開閉バルブ
 90 整流板
DESCRIPTION OF SYMBOLS 10 Pump 20 Piping 30 Ozone generator 40 Nozzle 50 Tank 51 Extraction pipe 60 Partition plate 61 Opening part 70 Gap 80 Liquid level meter 81 Optical sensor 82 Controller 83 Opening and closing valve 90 Rectifying plate

Claims (1)

  1.  直立した柱状のタンクと、前記タンク内に、液体に気体を混合させた気液混合体を加圧供給する気液供給手段とを備え、
     前記タンク内の上部に、前記気液混合体を、前記タンクの底面側に向けて噴射させるノズルを有し、
     前記タンク内において、前記ノズルから前記タンク内に噴射した前記気液混合体が衝突する位置に、且つ、前記タンクの内周面との間に間隙を有するように仕切板を設けることにより、前記タンクを上下2つの領域に区分した気体溶解装置。
    An upright columnar tank, and a gas-liquid supply means that pressurizes and supplies a gas-liquid mixture in which gas is mixed with liquid in the tank,
    A nozzle for injecting the gas-liquid mixture toward the bottom side of the tank at an upper portion in the tank;
    In the tank, by providing a partition plate at a position where the gas-liquid mixture injected into the tank from the nozzle collides and having a gap between the tank and the inner peripheral surface, A gas dissolving device that divides the tank into two upper and lower regions.
PCT/JP2013/074218 2012-09-28 2013-09-09 Gas dissolving device WO2014050521A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201380046020.6A CN104602800A (en) 2012-09-28 2013-09-09 Gas dissolving device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-216892 2012-09-28
JP2012216892A JP2014069134A (en) 2012-09-28 2012-09-28 Gas dissolving apparatus

Publications (1)

Publication Number Publication Date
WO2014050521A1 true WO2014050521A1 (en) 2014-04-03

Family

ID=50387929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/074218 WO2014050521A1 (en) 2012-09-28 2013-09-09 Gas dissolving device

Country Status (3)

Country Link
JP (1) JP2014069134A (en)
CN (1) CN104602800A (en)
WO (1) WO2014050521A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10646836B2 (en) 2014-07-31 2020-05-12 Shigenkaihatsukenkyujyo, Inc. Cleaning apparatus
CN107213835A (en) * 2017-06-16 2017-09-29 广东大任生物科技有限责任公司 Device for preparing carbonated spring
CN107158983A (en) * 2017-06-16 2017-09-15 广东大任生物科技有限责任公司 Water-gas mixing device
CN112915826B (en) * 2021-02-05 2023-09-12 芜湖美的厨卫电器制造有限公司 Dissolved air tank and water heater

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003190750A (en) * 2001-12-26 2003-07-08 Yokogawa Electric Corp Gas dissolution apparatus
JP2007289903A (en) * 2006-04-27 2007-11-08 Fukushima Mitsuo Micro-bubble generating device and bath system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4891127B2 (en) * 2007-03-25 2012-03-07 敏夫 宮下 Microbubble / carbonated spring generator
JP4878004B2 (en) * 2007-05-25 2012-02-15 ヤマハリビングテック株式会社 Gas dissolver and bubble generator
JP2009112975A (en) * 2007-11-08 2009-05-28 Sumitomo Chemical Co Ltd Fine bubble generator and fine bubble generating method
JP5599597B2 (en) * 2009-10-22 2014-10-01 オルガノ株式会社 Gas-liquid dissolution tank

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003190750A (en) * 2001-12-26 2003-07-08 Yokogawa Electric Corp Gas dissolution apparatus
JP2007289903A (en) * 2006-04-27 2007-11-08 Fukushima Mitsuo Micro-bubble generating device and bath system

Also Published As

Publication number Publication date
CN104602800A (en) 2015-05-06
JP2014069134A (en) 2014-04-21

Similar Documents

Publication Publication Date Title
JP4759553B2 (en) Gas-liquid dissolution tank in microbubble generator
KR101024658B1 (en) Ozonized Water Generator
JP2007289903A (en) Micro-bubble generating device and bath system
WO2014050521A1 (en) Gas dissolving device
US20100295192A1 (en) Aeration apparatus
JP2007190466A (en) Microbubble generating apparatus and gas-liquid mixing tank
JP5721587B2 (en) Dissolution separation tank and gas-liquid mixing dissolution apparatus
KR20150019299A (en) Module for generating micro bubbles
JP2011183328A (en) Aerator
JP2003190750A (en) Gas dissolution apparatus
KR101166457B1 (en) Apparatus for generating micro bubbles with two stage complex structure including vortex generating part and vortex removing part and method for generating micro bubbles using that
JP5024144B2 (en) Gas dissolver
JP2007313465A (en) Gas dissolving apparatus
RU2553875C2 (en) Device for water saturation with oxygen
JP4919286B2 (en) Microbubble generator
JP4706665B2 (en) Microbubble generator
JP2011235200A (en) Gas-liquid dissolution tank
KR101190788B1 (en) Micro bubble head and apparatus for generating microbubble including the same
JP6025115B2 (en) Gas dissolving device
JP5001327B2 (en) Gas dissolving device
JP4830867B2 (en) Microbubble generator
JP2007313464A (en) Gas dissolving apparatus
JP2010137176A (en) Gas-liquid dissolving tank in microbubble generating apparatus
WO2009091442A1 (en) System and process for forming micro bubbles in liquid
JP2022124122A (en) Jet nozzle and gas dissolution device including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13841902

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13841902

Country of ref document: EP

Kind code of ref document: A1