JP7308973B2 - Method for producing silicon carbide-silicon nitride composite material and silicon carbide-silicon nitride composite material thereby - Google Patents

Method for producing silicon carbide-silicon nitride composite material and silicon carbide-silicon nitride composite material thereby Download PDF

Info

Publication number
JP7308973B2
JP7308973B2 JP2021561698A JP2021561698A JP7308973B2 JP 7308973 B2 JP7308973 B2 JP 7308973B2 JP 2021561698 A JP2021561698 A JP 2021561698A JP 2021561698 A JP2021561698 A JP 2021561698A JP 7308973 B2 JP7308973 B2 JP 7308973B2
Authority
JP
Japan
Prior art keywords
sic
composite material
si3n4
source
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021561698A
Other languages
Japanese (ja)
Other versions
JP2022520899A (en
Inventor
サン チュル イ
Original Assignee
トカイ カーボン コリア カンパニー,リミティド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トカイ カーボン コリア カンパニー,リミティド filed Critical トカイ カーボン コリア カンパニー,リミティド
Publication of JP2022520899A publication Critical patent/JP2022520899A/en
Application granted granted Critical
Publication of JP7308973B2 publication Critical patent/JP7308973B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/46Gases other than oxygen used as reactant, e.g. nitrogen used to make a nitride phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/614Gas infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/045Carbides composed of metals from groups of the periodic table
    • H01L2924/046414th Group
    • H01L2924/04642SiC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/049Nitrides composed of metals from groups of the periodic table
    • H01L2924/050414th Group
    • H01L2924/05042Si3N4

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Products (AREA)
  • Chemical Vapour Deposition (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

本発明は、炭化ケイ素-窒化ケイ素(SiC-Si)複合材料の製造方法及びそれによる炭化ケイ素-窒化ケイ素(SiC-Si)複合材料に関する。 The present invention relates to a method of manufacturing a silicon carbide-silicon nitride (SiC-Si 3 N 4 ) composite material and a silicon carbide-silicon nitride (SiC-Si 3 N 4 ) composite material thereby.

SiC(炭化ケイ素)は、六方晶系の結晶構造を有する高温型(α型)、及び立方晶系の結晶構造を有する低温型(β型)が知られている。SiCは、Siに比べて耐熱性が高いだけではなく、広いバンドギャップを有し、絶縁破壊の電界強度が大きいという特徴がある。そのために、SiC単結晶からなる半導体は、Si半導体に代って次世代パワーデバイスの候補材料として期待されている。特に、α型SiCは、シリコンよりもバンドギャップが広いため、超低電力の損失パワーデバイスの半導体材料として注目を浴びている。 SiC (silicon carbide) is known as a high-temperature type (α-type) having a hexagonal crystal structure and a low-temperature type (β-type) having a cubic crystal structure. SiC not only has higher heat resistance than Si, but also has a wide bandgap and a large electric field strength for dielectric breakdown. Therefore, semiconductors made of SiC single crystals are expected as candidate materials for next-generation power devices in place of Si semiconductors. In particular, α-type SiC is attracting attention as a semiconductor material for ultra-low power loss power devices because it has a wider bandgap than silicon.

最近、ウェハーに直接的な影響を及ぼす半導体製造用部品素材に対する関心が増大しており、既存のSintered-SiC素材よりも高温で耐変形性の高い清浄性及び化学的に耐食性に優れるCVD-SiC素材を用いてプラズマガス制御装置が製造されれば、既存の素材に比べてプラズマガス制御装置の寿命が2~3倍増加するものと予測される。 Recently, there has been an increasing interest in materials for semiconductor manufacturing parts that directly affect wafers. If the material is used to manufacture a plasma gas control device, it is expected that the lifetime of the plasma gas control device will increase two to three times compared to existing materials.

CVD-SiC素材は、CVD(化学的気相蒸着法)を用いてグラファイトにSiCを積層させた後、グラファイトを取り除いた高純度のSiCであり、このように作られたCVD-SiCは、表面平坦度のために研削加工を経てからプラズマガス制御装置の形状に応じる研削加工が行われる。 The CVD-SiC material is high-purity SiC obtained by stacking SiC on graphite using CVD (chemical vapor deposition) and then removing the graphite. After grinding for flatness, grinding according to the shape of the plasma gas control device is performed.

このようなCVD-SiC素材で従来に幅広く使用されていたウェハーはダミーウェハー(dummy wafer)であって、生産工程の初期に安全性を高めるために使用され、大きさ及び厚さが重要な要素として作用する。しかし、前記ダミーウェハーは、熱衝撃強度が450℃程度であり、工程時間を短縮するために急激な昇温及び冷却時に任意にクラックが生じ、Siウェハーの破損及び拡散(diffusion)装備の破損が現れた。 Wafers widely used in the past with such CVD-SiC materials are dummy wafers, which are used to improve safety in the early stage of the production process, and the size and thickness are important factors. acts as However, the dummy wafer has a thermal shock strength of about 450° C., and in order to shorten the process time, cracks are arbitrarily generated during rapid heating and cooling, which may damage the Si wafer and the diffusion equipment. Appeared.

従って、高純度及び高い熱衝撃強度を有する素材が求められている実状であり、単にシリコンカーバイトだけでなく、シリコンナイトライドのようなシリコン窒化物を混合した複合材に対する要求が高まっている。 Accordingly, materials having high purity and high thermal shock strength are in demand, and there is an increasing demand for composite materials containing not only silicon carbide but also silicon nitride such as silicon nitride.

特に、シリコン窒化物及びシリコンカーバイト複合材の高密度化、緻密性の確保などが改善されて機械的物性を改善させるための方法が研究されている。 In particular, methods for increasing the density of silicon nitride and silicon carbide composites, securing compactness, and improving mechanical properties are being investigated.

本発明は上述した問題を解決するためのもので、本発明の目的は 、鋳型を準備するステップ、及び前記鋳型上に1100℃~1600℃でSi、N、及びCを含む原料ガスを導入してSiC-Si複合材料を形成するステップを含むSiC-Si複合材料の製造方法を提供することにある。 An object of the present invention is to solve the above-mentioned problems. It is another object of the present invention to provide a method of manufacturing a SiC--Si 3 N 4 composite material, comprising the step of forming the SiC--Si 3 N 4 composite material.

しかし、本発明が解決しようとする課題は、以上で言及したものなどに制限されず、言及されない他の課題は下記の記載によって当該分野の当業者に明確に理解できるものである。 However, the problems to be solved by the present invention are not limited to those mentioned above, and other problems not mentioned will be clearly understood by those skilled in the art from the following description.

本発明の一実施形態に係るSiC-Si複合材料の製造方法は、鋳型を準備するステップと、前記鋳型上に1100℃~1600℃で、Si、N、及びCを含む原料ガスを導入してSiC-Si複合材料を形成するステップとを含む。 A method for producing a SiC-Si 3 N 4 composite material according to one embodiment of the present invention comprises the steps of preparing a mold, and applying a raw material gas containing Si, N, and C on the mold at 1100°C to 1600°C. introducing to form a SiC—Si 3 N 4 composite.

本発明の一実施形態により、前記導入する原料ガスのうち、窒素(N)と炭素(C)原料ガスの窒素(N)成分と炭素(C)成分が1:1である場合、Nソース/Cソースの比率が0.4~2であってもよい。 According to an embodiment of the present invention, when the nitrogen (N) component and the carbon (C) component of the nitrogen (N) and carbon (C) source gases among the introduced source gases are 1:1, N source/ The ratio of C source may be 0.4-2.

本発明の一実施形態により、前記SiC-Si複合材料のうち前記Siは、10体積%~70体積%であってもよい。 According to one embodiment of the present invention, the Si 3 N 4 in the SiC-Si 3 N 4 composite material may be 10 vol % to 70 vol %.

本発明の一実施形態により、前記SiC-Si複合材料の熱衝撃強度は、500℃~860℃であってもよい。 According to one embodiment of the present invention, the thermal shock strength of said SiC-Si 3 N 4 composite may be between 500°C and 860°C.

本発明の一実施形態により、前記SiC-Si複合材料の熱衝撃強度は、600℃~860℃であり、前記SiC-Si複合材料のうち前記Siは、40体積%~70体積%であってもよい。 According to one embodiment of the present invention, the SiC-Si 3 N 4 composite material has a thermal shock strength of 600° C. to 860° C., and the Si 3 N 4 in the SiC-Si 3 N 4 composite material is 40 It may be from vol % to 70 vol %.

本発明の一実施形態により、前記SiC-Si複合材料を形成するステップはCVD法に基づいてもよい。 According to one embodiment of the present invention, forming the SiC-Si 3 N 4 composite may be based on a CVD method.

本発明の他の一実施形態に係るSiC-Si複合材料は、SiC及びSiを含み、熱衝撃強度が600℃~860℃であってもよい。 A SiC-Si 3 N 4 composite according to another embodiment of the present invention may contain SiC and Si 3 N 4 and have a thermal shock strength of 600°C to 860°C.

本発明の一実施形態により、前記SiC-Si複合材料のうち前記Siは、10体積%~70体積%であってもよい。 According to one embodiment of the present invention, the Si 3 N 4 in the SiC-Si 3 N 4 composite material may be 10 vol % to 70 vol %.

本発明の一実施形態により、前記SiC-Si複合材料は、不定形のSiC結晶粒と針状構造のSi結晶粒が混合されていてもよい。 According to an embodiment of the present invention, the SiC-Si 3 N 4 composite material may be a mixture of amorphous SiC grains and acicular Si 3 N 4 grains.

本発明の一実施形態により、前記SiC-Si複合材料のうち、前記Siの体積比が68体積%~70体積%である場合、Si/SiCメインピークの回折強度比は0.2~1.5であってもよい。 According to one embodiment of the present invention, when the volume ratio of Si 3 N 4 in the SiC-Si 3 N 4 composite material is 68 vol % to 70 vol %, the Si 3 N 4 /SiC main peak diffraction The intensity ratio may be between 0.2 and 1.5.

本発明の一実施形態により、前記SiC-Si複合材料は、前述した一実施形態係る製造方法に基づいて製造されることができる。 According to an embodiment of the present invention, the SiC-Si 3 N 4 composite material can be manufactured according to the manufacturing method according to the embodiment described above.

本発明は、鋳型を準備するステップと、前記鋳型上に1100℃~1600℃でSi、N、及びCを含む原料ガスを導入してSiC-Si複合材料を形成するステップを含むSiC-Si3N4複合材料の製造方法を提供することができる。
より詳細には、CVD方式で熱衝撃強度が高い素材(Δ℃であるSiを共に成長させてSiC素材の熱衝撃強度を高め、半導体工程にも適用可能な高純度のSiC-Si複合材料を提供することができる。
The present invention comprises the steps of preparing a mold and introducing a source gas containing Si, N, and C onto the mold at 1100° C. to 1600° C. to form a SiC—Si 3 N 4 composite material. - A method for manufacturing Si3N4 composites can be provided.
In more detail, a material with high thermal shock strength (Si 3 N 4 with a temperature of Δ°C) is grown together with a CVD method to increase the thermal shock strength of the SiC material, and high-purity SiC-Si that can be applied to the semiconductor process. 3N4 composites can be provided.

従来におけるSiCウェハー(dummy wafer)の断面図である。1 is a cross-sectional view of a conventional SiC wafer (dummy wafer); FIG. 従来におけるSiCウェハー(dummy wafer)の表面微細構造のイメージである。1 is an image of a surface microstructure of a conventional SiC wafer (dummy wafer); 本発明の一実施形態により製造されたSiC-Si複合材料の表面微細構造のイメージである。4 is an image of the surface microstructure of a SiC-Si 3 N 4 composite fabricated according to one embodiment of the present invention; 本発明の一実施形態により製造されたSiC-Si複合材料のN/Cソース比によるSi含量比の変化グラフである。4 is a graph showing changes in Si 3 N 4 content ratio according to the N/C source ratio of a SiC-Si 3 N 4 composite material manufactured according to an embodiment of the present invention ; 本発明の一実施形態により製造されたSiC-Si複合材料のN/Cソース比によるSiの含量比が69%であるとき、2-thetaによる強度値グラフである。FIG. 5 is a graph of strength values according to 2-theta when the content ratio of Si 3 N 4 is 69% according to the N/C source ratio of the SiC—Si 3 N 4 composite material manufactured according to an embodiment of the present invention; FIG. 本発明の一実施形態により製造されたSiC-Si複合材料のSi含量による熱衝撃強度の変化を示したグラフである。4 is a graph showing changes in thermal shock strength according to Si 3 N 4 content of a SiC-Si 3 N 4 composite material manufactured according to an embodiment of the present invention;

以下、添付する図面を参照しながら本発明の実施形態を詳細に説明する。本発明の説明において、関連する公知機能又は構成に対する具体的な説明が本発明の要旨を不要に曖昧にすると判断される場合、その詳細な説明は省略する。また、本明細書で使用される用語は、本発明の好適な実施形態を適切に表現するために使用される用語であって、これはユーザ、運用者の意図又は本発明が属する分野の慣例などによって変わり得る。従って、本用語に対する定義は、本明細書全般にわたった内容に基づいて下されなければならないのであろう。各図面に提示されている同じ参照符号は同じ部材を示す。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the description of the present invention, if it is determined that a detailed description of related known functions or configurations unnecessarily obscures the gist of the present invention, the detailed description will be omitted. Also, the terms used in this specification are terms used to adequately express the preferred embodiments of the present invention, and may not reflect the intentions of the user, the operator, or the conventions of the field to which the present invention belongs. etc., can change. Therefore, the definition of this term should be made based on the general contents of this specification. The same reference numerals appearing in each drawing refer to the same parts.

明細書の全体において、いずれかの部材が他の部材「上に」位置しているとするとき、これはいずれかの部材が他の部材に接している場合だけでなく、2つの部材間に更なる部材が存在する場合も含み、詳細には、構成要素(element)又は層が異なる要素又は層「上(on)」、「に接続された(connected to)」、又は「に結合された(coupled to)」ものとして示すとき、これが直接的に他の構成要素又は層にあるか、接続されるか、又は干渉構成要素又は層(intervening elements and layer)が存在し得ると理解される。 Throughout the specification, when any member is said to be "on" another member, this includes not only when the member is in contact with the other member, but also when the member is between the two members. In particular, an element or layer "on", "connected to" or "coupled to" a different element or layer, including when there are additional members. When indicated as "coupled to", it is understood that this may be directly in or connected to another element or layer, or there may be intervening elements and layers.

明細書全体において、ある部分がある構成要素を「含む」とするとき、これは、他の構成要素を取り除くものではなく、他の構成要素をさらに含むことを意味し、「含む」又は「有する」などの用語は、明細書上に記載された特徴、数字、段階、動作、構成要素、部品又はこれらを組み合わせたものが存在することを指定しようとするものであり、1つ又はそれ以上の異なる特徴や数字、段階、動作、構成要素、部品又はこれらを組み合わせたもの存在又は付加可能性を予め排除しないものと理解すべきである。 Throughout the specification, when a part "includes" a component, it means further including other components, not to the exclusion of other components. are intended to indicate the presence of any feature, figure, step, act, component, part, or combination thereof described in the specification, one or more It should be understood that the possibility of the presence or addition of different features, figures, steps, acts, components, parts or combinations thereof is not precluded.

異なるように定義さがれない限り、技術的であるか又は科学的な用語を含むここで用いる全ての用語は、本実施形態が属する技術分野で通常の知識を有する者によって一般的に理解されるものと同じ意味を有する。一般的に用いられる予め定義された用語は、関連技術の文脈上で有する意味と一致する意味を有するものと解釈すべきであって、本明細書で明白に定義しない限り、理想的又は過度に形式的な意味として解釈されることはない。 Unless defined otherwise, all terms, including technical or scientific terms, used herein are commonly understood by one of ordinary skill in the art to which the embodiments belong. have the same meaning as Commonly used pre-defined terms are to be construed to have a meaning consistent with the meaning they have in the context of the relevant art, and unless expressly defined herein, are ideally or excessively It is not to be interpreted in a formal sense.

また、図面を参照して説明する際に、図面符号に拘わらず同じ構成要素は同じ参照符号を付与し、これに対する重複する説明は省略する。実施形態の説明において関連する公知技術に対する具体的な説明が本発明の要旨を不要に曖昧にすると判断される場合、その詳細な説明は省略する。 In addition, when describing with reference to the drawings, the same constituent elements will be given the same reference numerals regardless of the drawing numerals, and redundant description thereof will be omitted. In the description of the embodiments, when it is determined that a detailed description of related known technology unnecessarily obscures the gist of the present invention, the detailed description will be omitted.

以下、本発明のSiC-Si複合材料の製造方法及びこれによって製造されたSiC-Si複合材料について、実施形態及び図面を参照して具体的に説明する。しかし、本発明がこのような実施形態及び図面に制限されることはない。
以下、実施形態及び比較例により本発明をより詳細に説明する。
Hereinafter, the method for producing a SiC-Si 3 N 4 composite material of the present invention and the SiC-Si 3 N 4 composite material produced by the method will be specifically described with reference to embodiments and drawings. However, the invention is not limited to such embodiments and drawings.
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail with reference to embodiments and comparative examples.

但し、下記の実施形態は、本発明を例示するためのものに過ぎず、本発明の内容が下記の実施形態により限定されることはない。 However, the following embodiments are merely for illustrating the present invention, and the content of the present invention is not limited by the following embodiments.

本発明の一実施形態に係るSiC-Si複合材料の製造方法は、鋳型を準備するステップ、及び前記鋳型上に1100℃~1600℃でSi、N、及びCを含む原料ガスを導入してSiC-Si複合材料を形成するステップを含む。 A method for producing a SiC-Si 3 N 4 composite material according to an embodiment of the present invention comprises the steps of preparing a mold, and introducing a raw material gas containing Si, N, and C at 1100° C. to 1600° C. onto the mold. to form a SiC-Si 3 N 4 composite.

一側面によると、前記SiC-Si複合材料は、SiCに比べて相対的に高い熱衝撃強度を有するSi素材を含んでもよい。 According to one aspect, the SiC-Si 3 N 4 composite material may include a Si 3 N 4 material having relatively high thermal shock strength compared to SiC.

一側面によると、前記SiC-Si複合材料は、CVD方式に基づいて製造し、半導体工程のうち拡散工程のような500℃以上の熱衝撃強度が求められる製品群に適用してもよい。 According to one aspect, the SiC-Si 3 N 4 composite material is manufactured based on a CVD method, and can be applied to a group of products requiring thermal shock strength of 500° C. or higher, such as a diffusion process among semiconductor processes. good.

一側面によると、前記SiC-Si複合材料のSiC-Siは、500℃以上の熱衝撃を繰り返して加えられる過酷な工程で使用可能なもので、熱衝撃強度(ΔT)が1000℃又はそれ以上であってもよい。 According to one aspect, the SiC-Si 3 N 4 of the SiC-Si 3 N 4 composite material can be used in a severe process in which thermal shocks of 500 ° C. or higher are repeatedly applied, and has a thermal shock strength (ΔT) of may be 1000° C. or higher.

一側面によると、前記SiC-Si複合材料を製造するためには、CVD法に基づいて製造されることが好ましい。 According to one aspect, the SiC--Si 3 N 4 composite material is preferably manufactured based on a CVD method.

一側面によると、前記SiC-Si複合材料は、強度、非弾性が高く、優れた高温強度及び熱衝撃に強い性質を有し、それだけでなく、高温酸化雰囲気で酸化問題も改善されたものである。 According to one aspect, the SiC-Si 3 N 4 composite material has high strength, high inelasticity, excellent high-temperature strength and thermal shock resistance properties, as well as improved oxidation problem in high-temperature oxidizing atmosphere. It is a thing.

一側面によると、前記SiCは融点が高く、靭性が良くて耐酸化性及び耐摩耗性に優秀なものであれば、特に制限されることはない。 According to one aspect, SiC is not particularly limited as long as it has a high melting point, good toughness, and excellent oxidation resistance and wear resistance.

一側面によると、前記Siは内部に酸素が存在せず、酸素の拡散係数が極めて低い材料であって、酸素に対するバリア(barrier)の役割を果たして高温における破壊強度、破壊靱性、耐熱衝撃特性に優れ、特に、耐摩耗性の側面でSiCよりも優れる。 According to one aspect, the Si 3 N 4 is a material that does not contain oxygen and has a very low diffusion coefficient of oxygen. It has excellent impact properties, and is superior to SiC in terms of wear resistance.

一側面によると、前記鋳型を準備するステップにおいて、前記鋳型はSiCを含んでもよく、前記SiCを含む鋳型は、焼結法又はCVDを用いて製造されたものであってもよい。当技術分野で幅広く知られたSiC焼結方法又はSiC CVD(化学気相蒸着法)であれば、制限されることなく使用されてSiC素材の鋳型を準備することができる。 According to one aspect, in the step of preparing the mold, the mold may contain SiC, and the mold containing SiC may be manufactured using a sintering method or CVD. Any SiC sintering method or SiC CVD (Chemical Vapor Deposition), which is widely known in the art, can be used without limitation to prepare the SiC material mold.

一側面によると、前記鋳型上に1100℃~1600℃であり、Si、N、及びCを含む原料ガスを導入してSiC-Si複合材料を形成するステップにおいて、前記原料ガスの供給の速度又は種類に応じて、SiC-Si複合材料の物性が変わり得る。 According to one aspect, in the step of forming a SiC—Si 3 N 4 composite material by introducing a source gas having a temperature of 1100° C. to 1600° C. and containing Si, N, and C onto the mold, the source gas is supplied. Depending on the rate or type of , the physical properties of the SiC-Si 3 N 4 composite can vary.

一側面によると、前記Si、N、及びCを含む原料ガスは、ケイ素、窒素、及び炭素を供給できるガスであれば特に制限されないが、その一例として、TCS、MTS、SH、SiCl、N、HN、CH及びCからなる群から選択される1つ以上を含んでもよい。 According to one aspect, the raw material gas containing Si, N, and C is not particularly limited as long as it is a gas capable of supplying silicon, nitrogen , and carbon. It may contain one or more selected from the group consisting of N2 , HN3 , CH4 and C3H8 .

一側面によると、前記Si、N、及びCを含む原料ガスは、ケイ素、窒素、及び炭素を全て含み、一種類のガス供給だけでCVDによる蒸着が行われてもよく、ケイ素、窒素又は炭素をそれぞれ含む各原料ガスの複合的な供給により段階的にCVDによる蒸着が行われてもよい。 According to one aspect, the source gas containing Si, N, and C contains all of silicon, nitrogen, and carbon, and deposition by CVD may be performed by supplying only one type of gas, such as silicon, nitrogen, or carbon. Deposition by CVD may be performed step by step by composite supply of each source gas respectively containing .

一側面によると、前記SiC-Si複合材料を形成するステップは様々な温度で実行されてもよいが、熱的CVDを使用する場合1100℃~1600℃で実行されることが好ましく、1100℃よりも低い温度では蒸着が実行され難く、1600℃よりも高温では蒸着し難いか、鋳型が損傷するという恐れがある。 According to one aspect, the step of forming said SiC-Si 3 N 4 composite may be performed at various temperatures, but is preferably performed between 1100° C. and 1600° C. when using thermal CVD; At temperatures lower than 1100° C., deposition is difficult to perform, and at temperatures higher than 1600° C., deposition is difficult or the mold may be damaged.

一側面によると、前記Si、N、及びCを含む原料ガスを導入してSiC-Si複合材料を形成するステップは、Si、N、及びCを含む原料ガスをCVD蒸着装置の反応チャンバ内に注入するステップを含んでもよく、前記反応チャンバ内に注入されるガスは、Si、N、及びCを含む原料ガスの他にも不活性ガスをさらに含んでもよい。 According to one aspect, the step of introducing the source gas including Si, N, and C to form the SiC—Si 3 N 4 composite material includes reacting the source gas including Si, N, and C in a CVD deposition apparatus. A step of injecting into a chamber may be included, and the gas injected into the reaction chamber may further include an inert gas in addition to source gases containing Si, N, and C.

一側面によると、前記反応チャンバ内の蒸着圧力は400torr~700torrであってもよい。 According to one aspect, the deposition pressure in the reaction chamber may be between 400 torr and 700 torr.

本発明の一実施形態により、前記導入する原料ガスのうち、窒素(N)と炭素(C)原料ガスの窒素(N)成分と炭素(C)成分が1:1である場合、Nソース/Cソースの比率が0.4~2であってもよい。 According to an embodiment of the present invention, when the nitrogen (N) component and the carbon (C) component of the nitrogen (N) and carbon (C) source gases among the introduced source gases are 1:1, N source/ The ratio of C source may be 0.4-2.

一側面によると、前記数値範囲内のNソース/Cソースの比率を有する原料ガスを導入する場合、SiC及びSiの比率が適切に調和され、熱衝撃強度が高くて急激な昇温及び冷却時にもクラックが発生しない、優秀なSiC-Si複合材料を製造することができる。 According to one aspect, when a raw material gas having an N source/C source ratio within the numerical range is introduced, the ratio of SiC and Si 3 N 4 is properly balanced, and the thermal shock strength is high and the temperature rises rapidly. Also, an excellent SiC--Si 3 N 4 composite material, which does not generate cracks even when cooled, can be produced.

図4は、本発明の一実施形態により製造されたSiC-Si複合材料のNソース/Cソース比によるSiの含量比の変化グラフである。図4に示すように、Nソース/Cソース比が0.4~2である場合、Siの含量比が約10%~70%になり、SiC-Si複合材料内で一定の含量比を含み、優秀な熱衝撃強度を確保することができる。 FIG. 4 is a graph showing changes in the content ratio of Si 3 N 4 according to the N source/C source ratio of the SiC—Si 3 N 4 composite material manufactured according to an embodiment of the present invention. As shown in FIG. 4, when the N source/C source ratio is 0.4-2, the content ratio of Si 3 N 4 is about 10%-70%, and the SiC—Si 3 N 4 composite material It contains a certain content ratio and can ensure excellent thermal shock strength.

図5は、本発明の一実施形態により製造されたSiC-Si複合材料のNソース/Cソース比=2によるSiの含量比が69%であれば、2-thetaによる強度値グラフであって、β-SiC及びα-Si結晶構造を意味し、Siの含量比により各 結晶構造のメインピークの回折強度比が変化することになる。図5に示すように、Siの含量比が69%である場合には、Siメインピークの回折強度/SiCメインピークの回折強度比が1.5になる。 FIG. 5 shows the SiC-Si 3 N 4 composite material manufactured according to one embodiment of the present invention, where the N source/C source ratio = 2 and the Si 3 N 4 content ratio is 69%, according to 2-theta In the intensity value graph, it means β-SiC and α-Si 3 N 4 crystal structures, and the diffraction intensity ratio of the main peak of each crystal structure changes according to the content ratio of Si 3 N 4 . As shown in FIG. 5, when the content ratio of Si 3 N 4 is 69%, the ratio of diffraction intensity of Si 3 N 4 main peak/diffraction intensity of SiC main peak is 1.5.

本発明の一実施形態により、前記SiC-Si複合材料のうち前記Siは、10体積%~70体積%であってもよい。 According to one embodiment of the present invention, the Si 3 N 4 in the SiC-Si 3 N 4 composite material may be 10 vol % to 70 vol %.

一側面によると、前記SiC-Si複合材料のうち、Siの体積含量が10体積%未満である複合材料であれば、Siの含量が小さ過ぎて熱衝撃強度が低く、急激な温度変化によりクラックが発生することで拡散装備が破損する一方、Siの体積含量が70体積%超過すれば、Siの含量が高過ぎてSiCの含量が低くなり、CVD蒸着による成長が困難になる。 According to one aspect, among the SiC—Si 3 N 4 composite materials, if the Si 3 N 4 volume content is less than 10% by volume, the Si 3 N 4 content is too small, resulting in poor thermal impact strength. If the Si3N4 volume content exceeds 70% by volume, the Si3N4 content is too high and the SiC content is low . low and difficult to grow by CVD deposition.

本発明の一実施形態により、前記SiC-Si複合材料の熱衝撃強度は、500℃~860℃であってもよい。 According to one embodiment of the present invention, the thermal shock strength of said SiC-Si 3 N 4 composite may be between 500°C and 860°C.

一側面によると、前記熱衝撃強度の測定は、KS L1611測定方法により測定してもよい。 According to one aspect, the thermal shock strength may be measured by KS L1611 measurement method.

一側面によると、前記熱衝撃強度は、急激な昇温及び冷却による温度差に基づいてもクラックが発生することなく耐える物性を意味し、ΔTのように現してもよい。 According to one aspect, the thermal shock strength refers to a physical property that withstands a temperature difference due to rapid heating and cooling without cracking, and may be expressed as ΔT.

一側面によると、前記熱衝撃強度が500℃~860℃であることは、前記SiC-Si複合材料が500℃~860℃の温度差でもクラックが発生することなく、Siウェハーの破損及び拡散装備の破損が生じないことを意味する。 According to one aspect, the thermal shock strength of 500° C. to 860° C. means that the SiC—Si 3 N 4 composite material does not crack even when the temperature difference is 500° C. to 860° C., and the Si wafer breaks. and that no damage to the diffusion equipment will occur.

一側面によると、前記熱衝撃強度が500℃未満であれば、半導体ウェハー工程において、反復的な熱衝撃により頻繁なクラックが発生する恐れがあり、860℃を超過すれば現実的な製造が難しい。 According to one aspect, if the thermal shock strength is less than 500° C., frequent cracks may occur due to repeated thermal shocks in the semiconductor wafer process, and if it exceeds 860° C., practical manufacturing is difficult. .

本発明の一実施形態により、前記SiC-Si複合材料の熱衝撃強度は、600℃~860℃であり、前記SiC-Si複合材料のうち、前記Siは、40体積%~70体積%であってもよい。 According to one embodiment of the present invention, the SiC—Si 3 N 4 composite material has a thermal shock strength of 600° C. to 860° C. In the SiC—Si 3 N 4 composite material, the Si 3 N 4 is It may be 40% to 70% by volume.

一側面によると、前記SiC-Si複合材料の熱衝撃強度は、600℃~860℃であることが好ましい。 According to one aspect, the SiC-Si 3 N 4 composite material preferably has a thermal shock strength of 600°C to 860°C.

一側面によると、前記SiC-Si複合材料のうち、熱衝撃強度を高めるために混合するSiの体積含量は、40体積%~70体積%であることが好ましい。 According to one aspect, the volume content of Si 3 N 4 mixed in the SiC-Si 3 N 4 composite material to increase thermal shock strength is preferably 40 vol % to 70 vol %.

図6は、本発明の一実施形態により製造されたSiC-Si複合材料のSi含量による熱衝撃強度の変化を示したグラフであり、Si含量が40%を超過する時点で熱衝撃強度が600℃以上であり、Si含量が80%未満になるまで、熱衝撃強度が700℃未満まで急速に増加することが確認される。 FIG. 6 is a graph showing changes in thermal shock strength according to Si 3 N 4 content of a SiC-Si 3 N 4 composite material manufactured according to an embodiment of the present invention, where the Si 3 N 4 content is 40%. It is confirmed that the thermal shock strength is 600° C. or higher at the point of excess, and the thermal shock strength rapidly increases to less than 700° C. until the Si 3 N 4 content is less than 80%.

本発明の一実施形態により、前記SiC-Si複合材料を形成するステップはCVD法に基づいてもよい。 According to one embodiment of the present invention, forming the SiC-Si 3 N 4 composite may be based on a CVD method.

一側面によると、前記CVD法は通常使用されるCVD(化学気相蒸着法)であれば特に制限されず、その一例として、誘導結合プラズマ化学蒸着(Inductively Coupled Plasma-ChemicalVapor Deposition;ICP-CVD)、低圧化学蒸着(Low Pressure ChemicalVapor Deposition;LPCVD)、常圧化学蒸着(Atmospheric Pressure ChemicalVapor Deposition;APCVD)及びプラズマ化学蒸着(Plasma-enhanced chemical vapor deposition;PECVD)が含まれてもよい。 According to one aspect, the CVD method is not particularly limited as long as it is a commonly used CVD (Chemical Vapor Deposition) method, and an example thereof is Inductively Coupled Plasma-Chemical Vapor Deposition (ICP-CVD). , Low Pressure Chemical Vapor Deposition (LPCVD), Atmospheric Pressure Chemical Vapor Deposition (APCVD) and Plasma-enhanced chemical vapor deposition. on; PECVD) may be included.

本発明の一実施形態により、前記SiC-Si複合材料は、不浸透性を有してもよい。 According to one embodiment of the present invention, said SiC-Si 3 N 4 composite may be impermeable.

一側面によると、前記SiC-Si複合材料は、従来におけるSiCの透過特性を改善させて不透過特性を示し、高純度及び高い熱衝撃強度を有することができる。 According to one aspect, the SiC-Si 3 N 4 composite material can improve the permeation property of conventional SiC, exhibit non-permeation property, and have high purity and high thermal shock strength.

本発明の更なる一実施形態に係るSiC-Si3N4複合材料は、SiC及びSiを含み、熱衝撃強度が600℃~860℃である。 A further embodiment of the present invention is a SiC-Si3N4 composite comprising SiC and Si 3 N 4 and having a thermal shock strength of 600°C to 860°C.

一側面によると、前記SiC-Si複合材料は、SiC及びSiが混合したもので、600℃~860℃の急激な温度差でもクラックが発生しない。 According to one aspect, the SiC-Si 3 N 4 composite material is a mixture of SiC and Si 3 N 4 , and does not crack even under a sudden temperature difference of 600°C to 860°C.

本発明の一実施形態により、前記SiC-Si複合材料のうち前記Siは、10体積%~70体積%であってもよい。 According to one embodiment of the present invention, the Si 3 N 4 in the SiC-Si 3 N 4 composite material may be 10 vol % to 70 vol %.

一側面によると、前記Siの体積比は、XRD装備(Regaku、DMAX2000)を用いて測定電圧と電流値がそれぞれ40kV、40mAであり、scan speed10、scan step0.05で測定し、測定されたデータ上でJCPDSデータと同じβとα-Siのピークが全て現れ、各SiCとSiの結晶相のピーク面積に総和に対する比率に基づいて分析したものである。 According to one aspect, the Si 3 N 4 volume ratio was measured using an XRD device (Regaku, DMAX2000) at a voltage and current of 40 kV and 40 mA, respectively, at a scan speed of 10 and a scan step of 0.05. β and α-Si 3 N 4 peaks, which are the same as those in the JCPDS data, appear on the data obtained, and are analyzed based on the ratio to the sum of the peak areas of each SiC and Si 3 N 4 crystal phase.

一側面によると、前記SiC-Si複合素材のうち前記Siは、40体積%~70体積%であることが好ましい。 According to one aspect, the Si 3 N 4 in the SiC-Si 3 N 4 composite material is preferably 40 vol % to 70 vol %.

本発明の一実施形態により、前記SiC-Si複合材料は、不定形のSiC結晶粒と針状構造のSi結晶粒が混合したものであってもよい。 According to an embodiment of the present invention, the SiC-Si 3 N 4 composite material may be a mixture of amorphous SiC grains and acicular Si 3 N 4 grains.

一側面によると、前記SiC結晶粒は、不定形の薄い片状であってもよく、前記Si結晶粒は針状構造として互いに混合したものであってもよい。 According to one aspect, the SiC grains may be amorphous thin flakes, and the Si 3 N 4 grains may be mixed with each other as needle-like structures.

図2は、従来におけるSiCウェハーの表面微細構造のイメージであり、図3は、本発明の一実施形態により製造されたSiC-Si複合材料の表面微細構造のイメージである。図2に示すように、従来におけるSiCだけを用いたウェハーの場合、不定形の薄い片状の断面構造のみが示されていることが確認され、本発明の一実施形態により製造されたSiC-Si複合材料の場合、図3において、不定形のSiC結晶粒と針状構造のSi結晶粒とが混合していることが確実に確認される。 FIG. 2 is an image of the surface microstructure of a conventional SiC wafer, and FIG. 3 is an image of the surface microstructure of a SiC—Si 3 N 4 composite fabricated according to one embodiment of the present invention. As shown in FIG. 2, in the case of the conventional wafer using only SiC, it was confirmed that only an irregular thin flake cross-sectional structure was shown. In the case of the Si 3 N 4 composite material, it is definitely confirmed in FIG. 3 that amorphous SiC crystal grains and needle-like Si 3 N 4 crystal grains are mixed.

発明の一実施形態により、前記SiC-Si複合素材のうち前記Siの体積比が68体積%~70体積%である場合、Si/Si Cメインピークの回折強度比は0.2~1.5であってもよい。 According to an embodiment of the invention, when the volume ratio of Si3N4 in the SiC- Si3N4 composite material is 68 % to 70% by volume, the diffraction intensity of Si3N4 /SiC main peak The ratio may be between 0.2 and 1.5.

図4は、本発明の一実施形態により製造されたSiC-Si複合材料のNソース/Cソース比によるSiの含量比の変化グラフである。図4に示すように、Nソース/Cソース比が0.4~2である場合、Siの含量比が約10%~70%になって、SiC-Si複合材料内で一定の含量比を含み、優れる熱衝撃強度を確保することができる。 FIG. 4 is a graph showing changes in the content ratio of Si 3 N 4 according to the N source/C source ratio of the SiC—Si 3 N 4 composite material manufactured according to an embodiment of the present invention. As shown in FIG. 4, when the N source/C source ratio is 0.4 to 2, the content ratio of Si 3 N 4 is about 10% to 70%, and the SiC—Si 3 N 4 composite material contains contains a certain content ratio to ensure excellent thermal shock strength.

図5は、本発明の実施形態により製造されたSiC-Si複合素材のNソース/Cソース比=2によるSiの含量比が69%であるとき、2-thetaによる強度値グラフであって、β-SiC及びα-Si結晶構造を意味し、Siの含量比により各 結晶構造のメインピークの回折強度比が変化する。図5に示すように、Siの含量比が69%である場合、Siメインピークの回折強度/SiCメインピークの回折強度比が1.5になる。 FIG. 5 shows the intensity by 2-theta when the content ratio of Si 3 N 4 is 69% by N source/C source ratio=2 of the SiC-Si 3 N 4 composite material manufactured according to the embodiment of the present invention. It is a value graph, which means β-SiC and α-Si 3 N 4 crystal structures, and the diffraction intensity ratio of the main peak of each crystal structure changes according to the content ratio of Si 3 N 4 . As shown in FIG. 5, when the content ratio of Si 3 N 4 is 69%, the ratio of diffraction intensity of Si 3 N 4 main peak/diffraction intensity of SiC main peak is 1.5.

本発明の一実施形態により、前記SiC-Si複合材料は、不浸透性を有してもよい。 According to one embodiment of the present invention, said SiC-Si 3 N 4 composite may be impermeable.

一側面によると、前記SiC-Si複合材料は、従来におけるSiCの透過特性を改善させて不透過特性を示し、高純度及び高い熱衝撃強度を有し得る。 According to one aspect, the SiC-Si 3 N 4 composite material can improve the permeable property of conventional SiC to exhibit non-permeable property, and have high purity and high thermal shock strength.

本発明の一実施形態により、前記SiC-Si複合材料は、前述した一実施形態に係る製造方法に基づいて製造されることができる。 According to an embodiment of the present invention, the SiC-Si 3 N 4 composite material can be manufactured according to the manufacturing method according to the embodiment described above.

以下、実施形態及び比較例によって本発明をより詳細に説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail with reference to embodiments and comparative examples.

但し、下記の実施形態は本発明を例示するためのもので、本発明の内容が下記の実施形態に限定されることはない。 However, the following embodiments are intended to illustrate the present invention, and the content of the present invention is not limited to the following embodiments.

実施形態:SiC-Si 複合材料の製造
CVD方式に基づいてSiとSiCが形成される温度である1100℃~1600℃においてSi、N、Cソースを投入し、SiC-Si複合素材を製造した。
Embodiment: Production of SiC-Si 3 N 4 composite material SiC-Si by adding Si, N, C sources at 1100 ° C to 1600 ° C, which is the temperature at which Si 3 N 4 and SiC are formed based on the CVD method. A 3N4 composite was fabricated.

この場合、Nソース/Cソース比は窒素(N)と炭素(C)原料ガスの窒素(N)成分と炭素(C)成分が1:1である場合にNソース/Cソース比に関し、0.4~2であり、全体の素材でSiの体積比は13%~70%であった。 In this case, the N source/C source ratio is 0 with respect to the N source/C source ratio when the nitrogen (N) component and the carbon (C) component of the nitrogen (N) and carbon (C) source gas are 1:1. .4 to 2, and the volume ratio of Si 3 N 4 in the entire material was 13% to 70%.

このような複合材料SiC-Si複合材料の熱衝撃強度は、熱衝撃強度測定器で測定した結果、Δ=600℃~860℃で測定された。 The thermal shock strength of such a composite material SiC--Si 3 N 4 composite material was measured at Δ=600° C. to 860° C. as a result of measuring with a thermal shock strength tester.

図1は、従来におけるSiCウェハーの断面図であり、図2は、従来におけるSiCウェハーの表面微細構造のイメージである。 FIG. 1 is a cross-sectional view of a conventional SiC wafer, and FIG. 2 is an image of the surface fine structure of the conventional SiC wafer.

図3は、一実施形態により製造されたSiC-Si複合材料の表面微細構造のイメージであって、図2と比較するとき、針状と不定形の結晶粒が混合したものが確認された。これによって従来の図2に基づいた不定形構造のSiCウェハーと比較するとき、針状構造のSiが含まれていることが確かに確認された。 FIG. 3 is an image of the surface microstructure of a SiC—Si 3 N 4 composite fabricated according to one embodiment, showing a mixture of acicular and amorphous grains when compared to FIG. was done. Thus, it was confirmed that needle-shaped Si 3 N 4 was included when compared with the conventional SiC wafer with an amorphous structure based on FIG. 2 .

図4は、本発明の一実施形態により製造されたSiC-Si複合材料のNソース/Cソース比によるSiの含量比の変化グラフであり、図4に示すように、Nソース/Cソース比が0.4~2である場合、Siの含量比が約10%~70%になり、SiC-Si複合材料のうち一定の含量比を含み、優れる熱衝撃強度を確保できることが確認された。 FIG. 4 is a graph showing changes in the content ratio of Si 3 N 4 according to the N source/C source ratio of the SiC—Si 3 N 4 composite material manufactured according to an embodiment of the present invention. when the N source/C source ratio is 0.4 to 2, the content ratio of Si 3 N 4 is about 10% to 70%, including a certain content ratio in the SiC—Si 3 N 4 composite material; It was confirmed that excellent thermal shock strength can be secured.

図5は、本発明の一実施形態により製造されたSiC-Si複合材料のNソース/Cソース比=2によるSiの含量比が69%であれば、2-thetaによる強度値グラフであり、β-SiCとα-Si結晶構造を意味し、Siの含量比により各 結晶構造のメインピークの回折強度比が変わる。図5に示すように、Siの含量比が69%であれば、Siのメインピーク回折強度/SiCメインピークの回折強度比が1.5になる。 FIG. 5 shows the SiC-Si 3 N 4 composite material manufactured according to one embodiment of the present invention, where the N source/C source ratio = 2 and the Si 3 N 4 content ratio is 69%, according to 2-theta It is an intensity value graph, which means β-SiC and α-Si 3 N 4 crystal structures, and the diffraction intensity ratio of the main peak of each crystal structure changes according to the content ratio of Si 3 N 4 . As shown in FIG. 5, when the Si 3 N 4 content ratio is 69%, the ratio of Si 3 N 4 main peak diffraction intensity/SiC main peak diffraction intensity ratio is 1.5.

図6は、実施形態により製造されたSiC-Si複合材料のSi含量による熱衝撃強度の変化を示したグラフであり、Siの含量が40%を超過する時点で熱衝撃強度が600℃以上であり、Siの含量が80%未満になるときまで、熱衝撃強度が700℃未満まで急速に増加することが確認される。 FIG. 6 is a graph showing changes in thermal shock strength according to the Si 3 N 4 content of the SiC-Si 3 N 4 composite material manufactured according to the embodiment, when the Si 3 N 4 content exceeds 40%. It is confirmed that the thermal shock strength is above 600° C. and increases rapidly to less than 700° C. until the content of Si 3 N 4 is less than 80%.

上述したように実施形態がたとえ限定された実施形態と図面によって説明されたが、当技術分野で通常の知識を有する者であれば前記の基材から様々な修正及び変形が可能である。例えば、説明された技術が説明された方法と異なる順序で実行される、及び/又は説明された構成要素が説明された方法と異なる形態で結合又は組み合せわされる、他の構成要素又は均等物によって代替、置換されても適切な結果が達成されてもよい。従って、他の実現、他の実施形態及び特許請求の範囲と均等のものなども後述する特許請求の範囲の範囲に属する。 Although the embodiments have been described by way of even limited embodiments and drawings as described above, various modifications and variations can be made from the foregoing substrates by those of ordinary skill in the art. For example, other components or equivalents in which the described techniques are performed in a different order than in the manner described and/or the components described are combined or combined differently than in the manner described. may be substituted and achieved with suitable results. Accordingly, other implementations, other embodiments, and equivalents of the claims are within the scope of the following claims.

Claims (7)

鋳型を準備するステップと、
前記鋳型上に1100℃~1600℃で、Si、N、及びCを含む原料ガスを導入してSiC-Si複合材料を形成するステップと、
を含み、
前記SiC-Si複合材料のうちSiは、40体積%~70体積%であり、前記SiC-Si 複合材料を形成するステップはCVD法に基づく、SiC-Si複合材料の製造方法。
preparing a mold;
introducing a raw material gas containing Si, N, and C onto the mold at 1100° C. to 1600° C. to form a SiC—Si 3 N 4 composite material;
including
Si3N4 in the SiC- Si3N4 composite material is 40% by volume to 70% by volume , and the step of forming the SiC- Si3N4 composite material is based on a CVD method , SiC-Si A method for making 3N4 composites.
前記導入する原料ガスのうち、窒素(N)と炭素(C)原料ガスの窒素(N)成分と炭素(C)成分が1:1である場合、Nソース/Cソースの体積比率が0.4~2である、請求項1に記載のSiC-Si複合材料の製造方法。 When the nitrogen (N) component and the carbon (C) component of the nitrogen (N) and carbon (C) source gases of the introduced source gas are 1:1, the volume ratio of the N source/C source is 0.1. 4 to 2, the method for producing a SiC-Si 3 N 4 composite material according to claim 1. 前記SiC-Si複合材料の熱衝撃強度は、500℃~860℃である、請求項1に記載のSiC-Si複合材料の製造方法。 The method for producing a SiC-Si 3 N 4 composite material according to claim 1, wherein the SiC-Si 3 N 4 composite material has a thermal shock strength of 500°C to 860°C. 前記SiC-Si複合材料の熱衝撃強度は、600℃~860℃である、請求項1に記載のSiC-Si複合材料の製造方法。 The method for producing a SiC-Si 3 N 4 composite material according to claim 1, wherein the SiC-Si 3 N 4 composite material has a thermal shock strength of 600°C to 860°C. SiC及びSiを含み、熱衝撃強度が600℃~860℃であるSiC-Si複合材料であって、
前記SiC-Si複合材料のうち前記Siは、40体積%~70体積%であり、前記SiC-Si 複合材料はCVD法に基づいて形成される、SiC-Si複合材料。
A SiC—Si 3 N 4 composite material comprising SiC and Si 3 N 4 and having a thermal shock strength of 600° C. to 860° C.,
The Si3N4 content of the SiC- Si3N4 composite material is 40% by volume to 70% by volume , and the SiC-Si3N4 composite material is formed based on a CVD method . Si3N4 composites .
前記SiC-Si複合材料は、不定形のSiC結晶粒と針状構造のSi結晶粒が混合されている、請求項に記載のSiC-Si複合材料。 The SiC-Si 3 N 4 composite material according to claim 5 , wherein said SiC-Si 3 N 4 composite material is a mixture of amorphous SiC crystal grains and acicular Si 3 N 4 crystal grains. 前記SiC-Si複合材料のうち、前記Siの体積比が68体積%~70体積%である場合、Si/SiCメインピークの回折強度比は0.2~1.5である、請求項に記載のSiC-Si複合材料。 When the volume ratio of Si3N4 in the SiC- Si3N4 composite material is 68% to 70% by volume, the diffraction intensity ratio of the Si3N4 /SiC main peak is 0.2 to 1 . The SiC-Si 3 N 4 composite according to claim 5 , wherein .5.
JP2021561698A 2019-04-17 2020-03-11 Method for producing silicon carbide-silicon nitride composite material and silicon carbide-silicon nitride composite material thereby Active JP7308973B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020190044654A KR102181727B1 (en) 2019-04-17 2019-04-17 Manufacturing method of silicon carbide-silicon nitride composite material and silicon carbide-silicon nitride composite material thereby
KR10-2019-0044654 2019-04-17
PCT/KR2020/003339 WO2020213835A1 (en) 2019-04-17 2020-03-11 Method for preparing silicon-carbide-silicon-nitride composite material, and silicon-carbide-silicon-nitride composite material according to same

Publications (2)

Publication Number Publication Date
JP2022520899A JP2022520899A (en) 2022-04-01
JP7308973B2 true JP7308973B2 (en) 2023-07-14

Family

ID=72837368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021561698A Active JP7308973B2 (en) 2019-04-17 2020-03-11 Method for producing silicon carbide-silicon nitride composite material and silicon carbide-silicon nitride composite material thereby

Country Status (7)

Country Link
US (1) US11697620B2 (en)
JP (1) JP7308973B2 (en)
KR (1) KR102181727B1 (en)
CN (1) CN113748489A (en)
SG (1) SG11202110924UA (en)
TW (1) TWI744867B (en)
WO (1) WO2020213835A1 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5617988A (en) * 1979-07-24 1981-02-20 Toshio Hirai Electroconductive si3n44c type noncrystalline material by chemical gas phase deposition and its manufacture
JPH02129365A (en) * 1988-11-07 1990-05-17 Sumitomo Electric Ind Ltd Coated structural material
JPH07103460B2 (en) 1990-05-09 1995-11-08 信越化学工業株式会社 Method for producing composite film consisting of SiC and Si (3) N (4) and method for producing mask for X-ray lithography
JPH07252662A (en) * 1994-03-16 1995-10-03 Hitachi Ltd High purity composite material and production thereof
JP2003176178A (en) 2001-12-07 2003-06-24 Nhk Spring Co Ltd Wafer support and peripheral part thereof
US20040043888A1 (en) * 2002-08-28 2004-03-04 Noritake Co., Limited Compositions and methods for making microporous ceramic materials
US7446066B1 (en) * 2005-11-07 2008-11-04 Jai-Lin Sun Reverse reaction sintering of Si3N4/SiC composites
TWI410516B (en) 2008-09-11 2013-10-01 Lu Sheng Hong Graphite protective film and manufacturing method thereof
JP5748564B2 (en) 2011-05-27 2015-07-15 東洋炭素株式会社 Method for producing silicon carbide-carbon composite material

Also Published As

Publication number Publication date
KR20200121989A (en) 2020-10-27
US11697620B2 (en) 2023-07-11
TWI744867B (en) 2021-11-01
CN113748489A (en) 2021-12-03
WO2020213835A1 (en) 2020-10-22
TW202102713A (en) 2021-01-16
US20220144710A1 (en) 2022-05-12
SG11202110924UA (en) 2021-10-28
KR102181727B1 (en) 2020-11-24
JP2022520899A (en) 2022-04-01

Similar Documents

Publication Publication Date Title
KR102239607B1 (en) Silicon carbide-tantalum carbide composite and susceptor
US20150115507A1 (en) Method of making high purity polycrystalline aluminum oxynitride bodies useful in semiconductor process chambers
CN110663099A (en) SiC epitaxial wafer and method for producing same
JP7308973B2 (en) Method for producing silicon carbide-silicon nitride composite material and silicon carbide-silicon nitride composite material thereby
KR20230042679A (en) Composite sintered body and method of manufacturing composite sintered body
KR102496031B1 (en) Silicon carbide powder, method of fabrication the same and silicon carbide single crystal
TWI551717B (en) Method for manufacturing diamond-like carbon film
US10214454B2 (en) Structure of micropowder
KR20130072067A (en) Method of fabricating silicon carbide powder
Liu et al. Characterization of nitride layer on 6H-SiC prepared by high-temperature nitridation in NH3
KR101916226B1 (en) Apparatus and method for deposition
TWI811602B (en) Hybrid component of SiC and Si and its manufacturing method
TWI683916B (en) Method for manufacturing ultra-thin graphite film on silicon carbide substrate
TWI697578B (en) SiC member and substrate holding member including the same, and method of manufacturing the same
KR102459473B1 (en) Silicon nitride sintered body substrate and manufacturing method thereof
KR20130070482A (en) Method for fabrication silicon carbide epi wafer
Briggs et al. Realizing 2D materials via MOCVD
CN117164390A (en) Silicon carbide coating on graphite substrate and preparation method thereof
Deng et al. Measurement of Thermal Field Temperature Distribution Inside Reaction Chamber for Epitaxial Growth of Silicon Carbide Layer
Biard et al. Tailored Polycrystalline Substrate for SmartSiCTM Substrates Enabling High Performance Power Devices
KR101283286B1 (en) Reaction container and vacuum heat treatment apparatus having the same
KR20140087342A (en) Seed holder adhesion method, and growing nethod for single crystal using seed holder
US9254589B2 (en) Reaction container and vacuum heat treatment apparatus having the same
Kim et al. Influence of carbonization conditions in hydrogen poor ambient conditions on the growth of 3C-SiC thin films by chemical vapor deposition with a single-source precursor of hexamethyldisilane
Chung et al. Heteroepitaxy of polycrystalline 3C-SiC film on Si substrate using AlN buffer layer

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211217

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211217

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20211217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230704

R150 Certificate of patent or registration of utility model

Ref document number: 7308973

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150