JPH07103460B2 - Method for producing composite film consisting of SiC and Si (3) N (4) and method for producing mask for X-ray lithography - Google Patents

Method for producing composite film consisting of SiC and Si (3) N (4) and method for producing mask for X-ray lithography

Info

Publication number
JPH07103460B2
JPH07103460B2 JP11765790A JP11765790A JPH07103460B2 JP H07103460 B2 JPH07103460 B2 JP H07103460B2 JP 11765790 A JP11765790 A JP 11765790A JP 11765790 A JP11765790 A JP 11765790A JP H07103460 B2 JPH07103460 B2 JP H07103460B2
Authority
JP
Japan
Prior art keywords
sic
film
composite film
mask
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11765790A
Other languages
Japanese (ja)
Other versions
JPH0417661A (en
Inventor
周 樫田
愛彦 永田
芳宏 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP11765790A priority Critical patent/JPH07103460B2/en
Publication of JPH0417661A publication Critical patent/JPH0417661A/en
Publication of JPH07103460B2 publication Critical patent/JPH07103460B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は優れた可視光透過率を有し、耐高エネルギービ
ーム照射性、耐薬品性、耐湿性および平滑で、傷、ピン
ホールのないSiC/Si3N4複合膜の製造方法およびこれを
X線透過膜とするX線リソグラフィー用マスクの製造方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Industrial Field of the Invention The present invention has excellent visible light transmittance, high energy beam irradiation resistance, chemical resistance, moisture resistance and smoothness, and is free from scratches and pinholes. The present invention relates to a method for manufacturing a SiC / Si 3 N 4 composite film and a method for manufacturing an X-ray lithography mask using the same as an X-ray transparent film.

(従来の技術) X線リソグラフィー用マスクのX線透過膜(メンブレ
ン)に要求される重要な性能としては (1)高エネルギー電子線やシンクロトロン放射光の様
な光エネルギービームの照射に耐える材料であること。
(Prior Art) Important performance required for an X-ray transparent film (membrane) of a mask for X-ray lithography is (1) a material that can withstand irradiation of a light energy beam such as a high energy electron beam or synchrotron radiation. To be.

(2)50%以上の高い可視光透過率を有し、高精度なア
ライメント(位置合せ)ができること。
(2) It has a high visible light transmittance of 50% or more and can perform highly accurate alignment.

(3)良好な耐薬品性や耐湿性を有し、エッチング工程
や洗浄工程で損傷されにくいこと。
(3) It has good chemical resistance and moisture resistance and is not easily damaged in the etching process and cleaning process.

(4)メンブレンの表面が平滑で、傷やピンホールが無
いこと。等が挙げられる。
(4) The surface of the membrane is smooth and free from scratches and pinholes. Etc.

従来、X線リソグラフィー用マスクのX線透過膜の素材
としては、BN、Si3N4、SiC等の材料が提案されている
が、いずれも一長一短があり、前記した様な性能を全て
満足するものは得られていない。例えば、BNは良好な可
視光透過率を有するが、耐高エネルギービーム性及び耐
薬品性が不充分であり、Si3N4は耐薬品性及び耐湿性が
充分でなく、SiCの場合は可視光透過率が不充分である
等の欠点を有していた。
Conventionally, materials such as BN, Si 3 N 4 , and SiC have been proposed as materials for the X-ray transparent film of the mask for X-ray lithography, but each has advantages and disadvantages and satisfies all the above-mentioned performances. Things have not been obtained. For example, BN has a good visible light transmittance, but its high energy beam resistance and chemical resistance are insufficient, and Si 3 N 4 has insufficient chemical resistance and moisture resistance. It had a defect that the light transmittance was insufficient.

(発明が解決しようとする課題) 本発明者等は先に特願昭1−19277号および特願平1−3
39094号において、これらの欠点を解決するものとし
て、SiCとSi3N4よりなる2成分系複合膜が優れた諸特性
を有しており、SiCとSi3N4よりなるターゲットを用いて
スパッター法により成膜する方法を提案したが、耐高エ
ネルギービーム性の点では充分満足できるものではなか
った。また、この方法では任意のSiCとSi3N4の組成比の
複合膜を得るためにはそれぞれの組成比のターゲットを
基準する必要があった。一方、他の方法として、シリコ
ンよりなるターゲットを用いて、CH4、C2H6、C3H8、CH2
=CH2、CH3−CH=CH2等の炭素源となるガスと、N2、N
2O、NH3等の窒素源となるガスの同伴気流下でスパッタ
ーを行なう反応性スパッター法がある。しかしこの方法
では水素およびN2Oを用いた場合は酸素が成膜後の膜中
に不純物として含有される。水素や酸素が膜中に存在す
ると高エネルギービームの照射によりこれらの水素や酸
素が膜中より離脱し、その結果ピンホール、歪みの発
生、透明性の低下等の不利、欠陥を引き起こすことがあ
った。従って、本発明が解決しようとする課題は、この
ような不利、欠陥を解決したSiCとSi3N4よりなる複合膜
を基板上に成膜する方法およびこの薄膜をX線透過膜と
した優れた耐高エネルギービーム性を有するX線リソグ
ラフィー用マスクを得ることにある。
(Problems to be Solved by the Invention) The inventors of the present invention previously disclosed Japanese Patent Application No. 1-19277 and Japanese Patent Application No. 1-33.
In 39094, as a solution to these drawbacks, a binary composite film composed of SiC and Si 3 N 4 has excellent characteristics, and sputtering using a target composed of SiC and Si 3 N 4 Although a method of forming a film by the method was proposed, it was not sufficiently satisfactory in terms of high energy beam resistance. Further, in this method, in order to obtain a composite film having an arbitrary composition ratio of SiC and Si 3 N 4 , it was necessary to refer to targets having respective composition ratios. On the other hand, as another method, using a target made of silicon, CH 4 , C 2 H 6 , C 3 H 8 , and CH 2 are used.
= CH 2 , CH 3 -CH = CH 2 and other gases that become carbon sources, and N 2 , N
There is a reactive sputtering method in which sputtering is performed in an entrained air flow of a gas that becomes a nitrogen source such as 2 O and NH 3 . However, in this method, when hydrogen and N 2 O are used, oxygen is contained as an impurity in the formed film. If hydrogen or oxygen is present in the film, these hydrogen and oxygen may be released from the film by irradiation with a high-energy beam, resulting in disadvantages such as pinholes, distortion, and deterioration of transparency, and defects. It was Therefore, the problems to be solved by the present invention include a method of forming a composite film of SiC and Si 3 N 4 on a substrate, which solves such disadvantages and defects, and an excellent method of using this thin film as an X-ray transparent film. Another object is to obtain an X-ray lithography mask having high energy beam resistance.

(課題を解決するための手段) 本発明者等はかヽる課題を解決するためにSi基板上に成
膜するX線透過膜の材料の選択、適性な各種物性を有す
るメンブレンの成膜条件の探索に鋭意検討を重ねた結
果、本発明に到達したもので、その要旨は次の通りであ
る。
(Means for Solving the Problems) In order to solve the above problems, the present inventors have selected a material for an X-ray transparent film to be formed on a Si substrate, and a film forming condition for a membrane having various suitable physical properties. The present invention has been achieved as a result of intensive studies on the search for, and its gist is as follows.

SiCとシリコン(Si)よりなるターゲットを用い、N2
ス気流下でスパッター法にて基板上にSiCとSi3N4よりな
る複合膜を成膜することを特徴とする複合薄膜の製造方
法を第1の発明とし、得られる複合薄膜のSiCとSi3N4
モル比が95:5〜30:70であることを特徴とする複合薄膜
の製造方法を第2の発明とし、次いでこの複合薄膜をX
線透過膜として用いてなるX線リソグラフィー用マスク
の製造方法を第3の発明とするものである。以下、本発
明を詳細に説明する。
A method for producing a composite thin film, which comprises using a target made of SiC and silicon (Si) to form a composite film made of SiC and Si 3 N 4 on a substrate by a sputtering method under an N 2 gas stream. A first invention, a method for producing a composite thin film, characterized in that the obtained composite thin film has a molar ratio of SiC to Si 3 N 4 of 95: 5 to 30:70, and then the second invention. X thin film
A third invention is directed to a method of manufacturing an X-ray lithography mask used as a line-transmissive film. Hereinafter, the present invention will be described in detail.

先ず、X線透過膜の薄膜材料としてはSiCとSi3N4よりな
る2成分系複合膜が1成分系よりも各物性において優れ
た性能を持つことが判り、その成分割合はモル比で95:5
〜30:70の範囲が良い。SiCが95より多くなると、可視光
透過率がSiC単独と同等の低い値を示し、逆に、SiCが30
より少くなると、耐薬品性がSi3N4単独と同等の不充分
な性能を示すので好ましくない。従って、好適なモル比
としては、80:20〜40:60である。生成した薄膜の引張応
力は1×108〜1×1010dyne/cm2であることが必要で、
1×108dyne/cm2以下であるとメンブレン化した時にし
わが発生し易く、また、1×1010dyne/cm2以上になると
メンブレンが破壊しやすい。好適な引張応力としては5
×108〜5×109dyne/cm2である。
First, as a thin film material for the X-ray transparent film, it was found that a binary composite film composed of SiC and Si 3 N 4 has superior performance in each physical property than the single component system, and the ratio of the components is 95% by mole. :Five
A range of ~ 30: 70 is good. When the SiC content exceeds 95, the visible light transmittance is as low as that of SiC alone.
If the amount is smaller, the chemical resistance will be unsatisfactory, equivalent to that of Si 3 N 4 alone, which is not preferable. Therefore, the preferable molar ratio is 80:20 to 40:60. The tensile stress of the produced thin film needs to be 1 × 10 8 to 1 × 10 10 dyne / cm 2 ,
When it is 1 × 10 8 dyne / cm 2 or less, wrinkles are likely to occur when the membrane is formed, and when it is 1 × 10 10 dyne / cm 2 or more, the membrane is easily broken. 5 is a suitable tensile stress
× 10 8 to 5 × 10 9 dyne / cm 2 .

次に、SiC/Si3N4複合膜の造方法について述べる。Next, a method for producing a SiC / Si 3 N 4 composite film will be described.

本発明の反応性スパッター法で成膜を行なうと、N2ガス
の流量を制御することによりSiCとSi3N4の成分比を大巾
に変えることが可能であり、しかも膜中に水素や酸素を
有しない為に高エネルギービームを照射しても、ピンホ
ール、歪み等の発生や透明性の低下等のトラブルがな
い。
When the film is formed by the reactive sputtering method of the present invention, it is possible to drastically change the composition ratio of SiC and Si 3 N 4 by controlling the flow rate of N 2 gas. Since it does not have oxygen, there is no trouble such as generation of pinholes, distortion and deterioration of transparency even when irradiated with a high energy beam.

本発明で採用した反応性スパッター法としては、一般に
使用されているコンベンショナルスパッター法で行なう
が、好ましくは量産性の観点より成膜速度の速いマグネ
トロンスパッター法を用いるのが良い。
As the reactive sputtering method adopted in the present invention, a commonly used conventional sputtering method is used, but it is preferable to use a magnetron sputtering method having a high film forming rate from the viewpoint of mass productivity.

本発明の必須要件であるターゲットはSiCとシリコン(S
i)の2成分からなり、この組成比については、生成す
る複合膜中のSiCとSiとのモル比が95:5〜30:70になる様
に予備試験を行なって決定する。これはスパッターの成
膜条件であるN2ガスの流量、スパッター温度、スパッタ
ー印加電力等により、同一組成比のターゲットを用いて
も得られる複合膜のSiCとSi3N4の組成比が全く同一にな
らないからである。しかし予め設定する値としてはSiC
とSiをモル比で84:16〜12:88とするのが良い。ターゲッ
トの原料であるシリコンは、シリコン単結晶、ポリシリ
コン、アモルファスシリコン等が挙げられるが、SiH等
を含まず、しかも容易に入手可能なシリコン単結晶が好
ましい。
The target, which is an essential requirement of the present invention, is SiC and silicon (S
The composition ratio is determined by conducting a preliminary test so that the molar ratio of SiC to Si in the composite film to be formed is 95: 5 to 30:70. This is because the composition ratio of SiC and Si 3 N 4 of the composite film obtained by using the target of the same composition ratio is completely the same, depending on the N 2 gas flow rate, the sputtering temperature, the power applied to the sputtering, etc. Because it will not be. However, as a preset value, SiC
And Si should be in a molar ratio of 84:16 to 12:88. Examples of silicon that is a raw material of the target include silicon single crystal, polysilicon, and amorphous silicon. However, silicon single crystal that does not contain SiH and is easily available is preferable.

SiCは純度が99%以上、好ましくは99.9%以上のものが
高純度複合薄膜を得る上からは望ましい。この2成分の
他に微量のBやSi3N4を複合膜の性能を損なわない程度
含有していても良い。この2成分系ターゲットはグラフ
ァイトとシリコンを所定量均一に混合してホットプレス
により成形し、焼結して製造すれば良く、また各成分単
独のターゲットを組合せて通常ピンホール型、分割型等
と呼ばれている1つの複合ターゲットとしても良い。基
板は通常シリコンウェハを用いる。Si基板の温度につい
ては特に制限はないが、100〜1,000℃の範囲が生成した
膜の欠陥やピンホールが少ないので好ましい。ターゲッ
トに印加する電力は、5W/cm2以上ならば、得られる膜の
応力が引張応力となるので好ましい。印加電力が高い
程、成膜速度は増加するので有利である。
SiC having a purity of 99% or higher, preferably 99.9% or higher is desirable in order to obtain a high-purity composite thin film. In addition to these two components, a slight amount of B or Si 3 N 4 may be contained to the extent that the performance of the composite film is not impaired. This two-component target may be manufactured by uniformly mixing a predetermined amount of graphite and silicon, molding by hot pressing, and sintering, and by combining targets of each component individually, a normal pinhole type, a split type, etc. It may be one composite target that is called. A silicon wafer is usually used as the substrate. The temperature of the Si substrate is not particularly limited, but a range of 100 to 1,000 ° C. is preferable because the number of defects and pinholes in the generated film is small. When the power applied to the target is 5 W / cm 2 or more, the stress of the obtained film becomes tensile stress, which is preferable. It is advantageous that the higher the applied power, the higher the film formation rate.

スパッター時に使用するガスは純度99%以上、好ましく
は99.9%以上のN2ガスが望ましく、安定なプラズマ状態
を保つ目的でアルゴンやキセノンなどの不活性ガスを同
伴することが望ましい。スパッター圧力は、特に制限は
ないが、1×10-2〜1×10-1トールが好ましい。なお、
スパッター圧力は成膜後の膜の応力値に大きな影響を及
ぼすため、ターゲットの組成も含めたスパッターの条件
下で、所定の引張応力となるようなスパッター圧力を設
定することが必要である。以下、実施例と比較列によっ
て本発明の具体的態様を説明するが、本発明はこれらに
よって限定されるものではない。尚、得られた複合薄膜
の物性測定、評価方法は次の通りである。
The gas used at the time of spattering is preferably N 2 gas having a purity of 99% or more, preferably 99.9% or more, and it is desirable to carry an inert gas such as argon or xenon for the purpose of maintaining a stable plasma state. The sputter pressure is not particularly limited, but 1 × 10 -2 to 1 × 10 -1 torr is preferable. In addition,
Since the sputter pressure has a great influence on the stress value of the film after film formation, it is necessary to set the sputter pressure such that a predetermined tensile stress is obtained under the sputtering conditions including the composition of the target. Hereinafter, specific embodiments of the present invention will be described with reference to examples and comparative columns, but the present invention is not limited thereto. The methods for measuring and evaluating the physical properties of the obtained composite thin film are as follows.

(複合薄膜物性測定、評価方法) 成膜速度:シリコン基板の表面の1部をステンレス板
でマスクして、一定時間スパッターを行なって成膜後、
該ステンレスマスクを取り除き、未成膜面と成膜面の境
界の段差をサーフコーダSE−30C(小坂研究所製商品
名)にて測定して膜厚を求め、成膜速度を算出した。
(Measurement and evaluation method of physical properties of composite thin film) Film formation speed: After masking a part of the surface of a silicon substrate with a stainless plate and performing sputtering for a certain period of time,
The stainless mask was removed, and the level difference at the boundary between the non-film-formed surface and the film-formed surface was measured by Surfcoder SE-30C (trade name, manufactured by Kosaka Laboratory) to obtain the film thickness, and the film-forming speed was calculated.

引張応力:シリコンウェハの成膜前と成膜後のそりの
変化量より応力値を算出した。
Tensile stress: The stress value was calculated from the amount of change in warpage before and after film formation of a silicon wafer.

可視光透過率:フォトマスク用石英基板3WAF525(信
越化学製商品名)に前述の方法で成膜後、この石英基板
をマルチフォトスペクトルメーターMPS−5000(島津製
作所製商品名)で波長633nm位置の透過率を測定した。
この時、ディファレンス側の試料として成膜をしていな
い石英基板を用いた。
Visible light transmittance: After forming a film on the quartz substrate 3WAF525 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.) for photomasks by the above-mentioned method, this quartz substrate was measured with a multi-photospectrometer MPS-5000 (trade name, manufactured by Shimadzu Corporation) at a wavelength of 633 nm. The transmittance was measured.
At this time, a quartz substrate on which no film was formed was used as a sample on the difference side.

耐高エネルギービーム性:高エネルギーとして10KeV
の高エネルギー電子線を500MJ/cm3照射し、照射による
膜の応力変化率を求めて、耐高エネルギービーム性の目
安とした。
High energy beam resistance: 10 KeV as high energy
Was irradiated with 500 MJ / cm 3 of high energy electron beam and the rate of stress change of the film due to irradiation was determined and used as a guide for high energy beam resistance.

耐薬品性;90℃の30%KOH熱水中に24時間浸漬し、浸漬
後の応力変化率を求めて耐薬品性の目安とした。
Chemical resistance: It was immersed in 30% KOH hot water at 90 ° C for 24 hours, and the stress change rate after immersion was obtained to be used as a guideline for chemical resistance.

耐湿性;90℃の熱水に7日間浸漬し、浸漬後の応力変
化率を求めて耐湿性の目安とした。
Moisture resistance: Immersed in hot water at 90 ° C. for 7 days, and the rate of change in stress after immersion was determined and used as a measure of moisture resistance.

メンブレン化適性:成膜後の基板の裏面にプラズマCV
D法でアモルファスBN膜(以下、a−BN膜とする)を1.0
μm成膜し、この膜をKOHエッチング液の保護膜とし
た。a−BN膜の上にステンレス製ドーナツ状マスク板を
セットし、CF4ガスにてドライエッチングして露出して
いるa−BN膜を除去後、30%KOHにて露出したシリコン
面をウェットエッチングで溶出し、メンブレン化した。
メンブレン化適性として、仕上げたメンブレンが、傷や
ピンホールが無く平滑と認められる場合を良好、その他
を不良と判定した。
Membrane suitability: Plasma CV on the back surface of the substrate after film formation
Amorphous BN film (hereinafter a-BN film) is 1.0 by D method
A film having a thickness of μm was formed, and this film was used as a protective film for the KOH etching solution. Set a stainless donut-shaped mask plate on the a-BN film, dry-etch it with CF 4 gas to remove the exposed a-BN film, and then wet-etch the exposed silicon surface with 30% KOH. It was eluted with to form a membrane.
As the suitability for membrane formation, when the finished membrane was recognized as smooth without any scratches or pinholes, the others were judged as good, and the others were judged as bad.

(実施例1) 高周波マグネトロンスパッター装置SPF−332H型(日電
アネルバ社製商品名)を用いて、カソード側に純度が9
9.9%のSiC粉末400重量部と、シリコン単結晶の粉末840
重量部を均一に混合してホットプレスにて焼結して得ら
れた直径3インチで厚みが5mmのターゲットをセットし
た。
(Example 1) A high frequency magnetron sputtering device SPF-332H (trade name, manufactured by Nichiden Anelva Co., Ltd.) was used, and the purity was 9 on the cathode side.
400 parts by weight of 9.9% SiC powder and 840 silicon single crystal powder
A target having a diameter of 3 inches and a thickness of 5 mm obtained by uniformly mixing the parts by weight and sintering by hot pressing was set.

このターゲットのSiCとシリコンのモル比は計数上、1:3
である。
The target has a molar ratio of SiC to silicon of 1: 3.
Is.

基板として、直径3インチで厚みが、600μmの両面研
磨シリコンウェハを用いて、250℃に加熱した状態でN2
ガスとアルゴンガスを各々10cc/分と5cc/分の流量で流
しつつ、パワー密度を12W/cm2、反応圧力を5.0×10-2To
rr下で所定時間スパッターを行ない、SiCとSi3N4よりな
る膜厚1.0μmの薄膜を作製した。
Using a double-sided polished silicon wafer with a diameter of 3 inches and a thickness of 600 μm as a substrate, N 2 in a state of being heated to 250 ° C.
Gas and argon gas at a flow rate of 10 cc / min and 5 cc / min, respectively, power density of 12 W / cm 2 , reaction pressure of 5.0 × 10 -2 To
Sputtering was performed for a predetermined time under rr to prepare a thin film of SiC and Si 3 N 4 with a thickness of 1.0 μm.

得られた薄膜をESCA法による元素分析に行なった結果、
Si49.2%、N255%、C25.3%となりSiCとSi3N4のモル比
がおよそ1:1であることが判明した。
As a result of performing elemental analysis by ESCA method on the obtained thin film,
Si49.2%, N255%, molar ratio of C25.3% next SiC and Si 3 N 4 is about 1: was found to be 1.

次にこの膜の主な物性について前述の方法で測定したと
ころ、成膜速度は0.14μm/分、引張応力は1.8×109dyne
/cm2、可視光透過率は73%、耐高エネルギービーム性、
耐薬品性及び耐湿性はいずれも1%以下であり、メンブ
レン化適性は良好であった。
Next, the main physical properties of this film were measured by the methods described above. The film formation rate was 0.14 μm / min, and the tensile stress was 1.8 × 10 9 dyne.
/ cm 2 , visible light transmittance 73%, high energy beam resistance,
Both the chemical resistance and the humidity resistance were 1% or less, and the suitability for membrane formation was good.

(実施例2、3および比較例1、2) SiC粉末とシリコン単結晶の粉末の混合比を種々変え
て、各種組成のターゲットを作製し、実施例1と同様の
方法でSiCとSi3N4の複合膜を作製し、ESCAにて組成比を
求め、各物性について測定した(実施例2、3)。
(Examples 2 and 3 and Comparative Examples 1 and 2) Targets having various compositions were prepared by variously changing the mixing ratio of the SiC powder and the powder of silicon single crystal, and SiC and Si 3 N were prepared in the same manner as in Example 1. The composite film of 4 was prepared, the composition ratio was determined by ESCA, and each physical property was measured (Examples 2 and 3).

また、比較例として、SiCとSi3N4のモル比が本発明の組
成範囲外のものについても同様にターゲットを作製し、
実施例1と同様の方法でSiCとSi3N4の複合膜を作製しES
CAにて組成比を求め各物性について測定した(比較例
1、2)。これらの膜組成、成膜条件および膜物性を第
1表に示した。
Further, as a comparative example, a target was similarly prepared for those having a molar ratio of SiC and Si 3 N 4 outside the composition range of the present invention.
A composite film of SiC and Si 3 N 4 was prepared in the same manner as in Example 1 and ES
The composition ratio was determined by CA and each physical property was measured (Comparative Examples 1 and 2). Table 1 shows the film composition, film forming conditions and film properties.

(発明の効果) 第1表の結果より、本発明の方法により成膜した薄膜
は、可視光透過率が50%以上を有し、耐高エネルギービ
ーム性、耐薬品性、耐湿性、メンブレン化適正の各性能
も優れていることが判る。一方、比較例の結果より、タ
ーゲットの組成において、SiCとSi3N4のモル比が95:5よ
りSiCが多く なると、可視光透過率が30%以下となり実用に適さない
(比較例1)。また、SiCとSi3N4のモル比が30:70よりS
i3N4が多くなっても、耐薬品性及び耐湿性が悪化して実
用上使用出来ない(比較例2)。
(Effects of the invention) From the results of Table 1, the thin film formed by the method of the present invention has a visible light transmittance of 50% or more, high energy beam resistance, chemical resistance, moisture resistance, and membrane formation. It can be seen that each proper performance is also excellent. On the other hand, from the results of Comparative Example, in the composition of the target, the SiC and Si 3 N 4 molar ratio is more than 95: 5 Then, the visible light transmittance becomes 30% or less, which is not suitable for practical use (Comparative Example 1). Moreover, since the molar ratio of SiC and Si 3 N 4 is 30:70, S
Even if the amount of i 3 N 4 increases, the chemical resistance and moisture resistance deteriorate, and it cannot be practically used (Comparative Example 2).

以上の様に本発明の製造方法によれば、X線リソグラフ
ィー用マスクとしての性能を極めて高く、工業上有用で
ある。
As described above, the production method of the present invention has extremely high performance as an X-ray lithography mask and is industrially useful.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // B32B 9/00 A 9349−4F ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location // B32B 9/00 A 9349-4F

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】SiCとシリコン(Si)よりなるターゲット
を用い、N2ガス気流下でスパッター法にて基板上にSiC
とSi3N4よりなる複合膜を成膜することを特徴とするSiC
とSi3N4よりなる複合膜の製造方法。
1. A target made of SiC and silicon (Si) is used, and SiC is sputtered on a substrate by a sputtering method under N 2 gas flow.
SiC, which comprises forming a composite membrane to consist Si 3 N 4
A Si 3 N 4 composite film manufacturing method of consisting of.
【請求項2】該複合膜の組成において、SiCとSi3N4のモ
ル比が95:5〜30:70であることを特徴とする請求項1に
記載のSiCとSi3N4よりなる複合膜の製造方法。
In the composition according to claim 2 wherein said composite film, the molar ratio of SiC and Si 3 N 4 95: 5-30: consisting of SiC and Si 3 N 4 according to claim 1, characterized in that the 70 Method for manufacturing composite membrane.
【請求項3】請求項1または2に記載の方法で得られた
SiCとSi3N4よりなる複合膜をX線透過膜として用いるこ
とを特徴とするX線リソグラフィー用マスクの製造方
法。
3. Obtained by the method according to claim 1 or 2.
A method of manufacturing a mask for X-ray lithography, which comprises using a composite film of SiC and Si 3 N 4 as an X-ray transparent film.
【請求項4】請求項3に記載のX線透過膜の引張応力が
1×108〜1×1010dyne/cm2であるであることを特徴と
するX線リソグラフィー用マスクの製造方法。
4. A method for manufacturing an X-ray lithography mask, wherein the X-ray transparent film according to claim 3 has a tensile stress of 1 × 10 8 to 1 × 10 10 dyne / cm 2 .
JP11765790A 1990-05-09 1990-05-09 Method for producing composite film consisting of SiC and Si (3) N (4) and method for producing mask for X-ray lithography Expired - Fee Related JPH07103460B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11765790A JPH07103460B2 (en) 1990-05-09 1990-05-09 Method for producing composite film consisting of SiC and Si (3) N (4) and method for producing mask for X-ray lithography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11765790A JPH07103460B2 (en) 1990-05-09 1990-05-09 Method for producing composite film consisting of SiC and Si (3) N (4) and method for producing mask for X-ray lithography

Publications (2)

Publication Number Publication Date
JPH0417661A JPH0417661A (en) 1992-01-22
JPH07103460B2 true JPH07103460B2 (en) 1995-11-08

Family

ID=14717077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11765790A Expired - Fee Related JPH07103460B2 (en) 1990-05-09 1990-05-09 Method for producing composite film consisting of SiC and Si (3) N (4) and method for producing mask for X-ray lithography

Country Status (1)

Country Link
JP (1) JPH07103460B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000239827A (en) * 1998-12-22 2000-09-05 Bridgestone Corp Laminated structural body and its production
JP5746573B2 (en) * 2011-06-29 2015-07-08 日本ファインセラミックス株式会社 Sputtering target
KR102181727B1 (en) 2019-04-17 2020-11-24 주식회사 티씨케이 Manufacturing method of silicon carbide-silicon nitride composite material and silicon carbide-silicon nitride composite material thereby

Also Published As

Publication number Publication date
JPH0417661A (en) 1992-01-22

Similar Documents

Publication Publication Date Title
US4436797A (en) X-Ray mask
KR100424853B1 (en) Photomask blank, photomask, methods of manufacturing the same, and method of forming micropattern
Tay et al. The effect of deposition conditions on the properties of TiN thin films prepared by filtered cathodic vacuum-arc technique
Kola et al. Stress relaxation in Mo/Si multilayer structures
JPWO2013111631A1 (en) NANOIMPRINT MOLD BLANK, NANOIMPRINT MOLD, AND METHOD FOR PRODUCING THEM
JPH07116588B2 (en) Method for manufacturing transparent body of mask for X-ray lithography
US5209996A (en) Membrane consisting of silicon carbide and silicon nitride, method for the preparation thereof and mask for X-ray lithography utilizing the same
JPH07103460B2 (en) Method for producing composite film consisting of SiC and Si (3) N (4) and method for producing mask for X-ray lithography
JP2790900B2 (en) Method for manufacturing a composite film composed of SiC and Si <3> N <4> and method for manufacturing a mask for X-ray lithography
JPH0712017B2 (en) SiC / Si for X-ray lithography Lower 3 Lower N 4 Film forming method
JPH0762231B2 (en) A thin film made of SiC and Si (3) N (4) N (4), manufacturing method thereof, and mask for X-ray lithography
JPH04299515A (en) X-ray transmission film for x-ray lithography mask and manufacture thereof
JPS60184672A (en) Manufacture of chromium compound layer
JPH0828324B2 (en) X-ray transparent film used as a mask for X-ray lithography
JPS6033557A (en) Manufacture of material of electron beam mask
TW408226B (en) Optical composite film
JPH03196147A (en) Sic film for x-ray lithography and production thereof and mask for x-ray lithography
JP2740607B2 (en) Glass forming mold and manufacturing method thereof
JP2892240B2 (en) Glass forming mold and method for producing the same
JPH03281613A (en) Composition
Borók et al. Investigation of Plasma Etching Rates of a Methacrylate Resin
JPH0712016B2 (en) Method for forming SiC film for X-ray lithography
JPS62183463A (en) Production of photomask blank
JP2636577B2 (en) Method of forming titanium nitride film
JP3029328B2 (en) Method of forming optical reflection film

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071108

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081108

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees