JP7296252B2 - ロボット制御システムおよび方法 - Google Patents

ロボット制御システムおよび方法 Download PDF

Info

Publication number
JP7296252B2
JP7296252B2 JP2019103906A JP2019103906A JP7296252B2 JP 7296252 B2 JP7296252 B2 JP 7296252B2 JP 2019103906 A JP2019103906 A JP 2019103906A JP 2019103906 A JP2019103906 A JP 2019103906A JP 7296252 B2 JP7296252 B2 JP 7296252B2
Authority
JP
Japan
Prior art keywords
arm
information
target
robot
movement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019103906A
Other languages
English (en)
Other versions
JP2020196093A (ja
Inventor
資子 山岸
典子 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2019103906A priority Critical patent/JP7296252B2/ja
Publication of JP2020196093A publication Critical patent/JP2020196093A/ja
Application granted granted Critical
Publication of JP7296252B2 publication Critical patent/JP7296252B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manipulator (AREA)

Description

本発明は、ロボットにより部材などの対象を目標位置まで移動するためのロボット制御システムおよび方法に関するものである。
ロボットを用いて部材の取付作業を実施する場合、多軸関節アームを有するロボットを作業位置の近傍に固定する。そして、多軸関節アームの先端部で部材を把持し、多軸関節アームを作動して把持した部材を移動し、この部材を所定の取付位置に取付ける。このとき、検出器などを用いて多軸関節アームの先端部の位置、把持した部材の位置、取付位置などを検出しながら多軸関節アームを作動制御する。このようなロボット制御システムとしては、例えば、下記特許文献1に記載されたものがある。特許文献1に記載されたロボット制御システムは、レーザートラッカーによりカメラとロボットハンドの3次元位置を取得し、この3次元位置に基づいてカメラに対するロボットハンドの位置を調整し、カメラによるクリップの撮像結果に基づいてクリップの位置や部材の傾きを算出し、ロボットハンドの位置や傾きを調整し、クリップをストリンガーへ移動するようにロボットハンドを制御するものである。
特開2017-226023号公報
特許文献1では、ロボットを作業位置の近傍に固定する必要がある。そのため、ロボットの固定作業が面倒であると共に、固定作業に長時間を要してしまうという課題がある。また、特許文献1では、ロボットハンドの位置や傾きを調整するため、レーザートラッカーだけでなくカメラも必要となり、構造が複雑になるだけでなく制御も複雑になってしまうという課題がある。
また、比較的大型のロボットでは、自重や、材質、構造、先端部の重量によって、動作中のたわみ量が大きくなりがちであり、目標点自体も作業中に徐々に動く場合があるなど、移動させる対象の開始点の座標と目標位置の座標の当初の座標データのみで、目標に向かって移動指示するだけでは、対象の位置や目標位置に誤差が生じ易く、目標位置へ対象部を正確に移動させることが困難になり制御に時間を要するという課題がある。
本発明は、上述した課題を解決するものであり、構造の簡素化を図ると共に作業性の向上を図るロボット制御システムおよび方法を提供することを目的とする。
上記の目的を達成するための本発明のロボット制御システムは、対象を予め設定された目標位置に移動するロボット制御システムにおいて、アームを有して移動可能なロボットと、前記ロボットとは別に配置されて前記アームの基準部の位置情報を検出する位置検出器と、前記位置検出器が検出した前記基準部の位置情報に基づいて前記対象を現在位置から前記目標位置まで移動するための前記アームの移動経路および移動量を算出する算出部と、前記算出部が算出した移動経路および移動量に基づいて前記アームを作動制御する制御部と、を備えることを特徴とする。
ロボットを作業位置に移動し、位置検出器がアームの基準部の位置情報を検出すると、算出部は、基準部の位置情報に基づいてアームの移動経路および移動量を算出し、制御部は、移動経路および移動量に基づいてアームを作動制御する。そのため、ロボットを作業位置に固定する必要がなく、ロボットの配置作業が容易になると共に、配置作業時間を短縮することができ、作業性の向上を図ることができる。また、アームの基準部の位置情報を検出する位置検出器だけを設ければよく、構造および制御の簡素化を図ることができる。
本発明のロボット制御システムでは、前記算出部は、前記基準部と前記基準部に関連する前記対象との位置関連情報を有しており、前記基準部の位置情報と前記位置関連情報に基づいて前記対象の位置情報を算出し、前記対象の位置情報に基づいて前記対象を現在位置から前記目標位置まで移動するための前記アームの移動経路および移動量を算出することを特徴とする。
そのため、算出部は、基準部と対象との位置関連情報を有していることから、基準部の位置情報と位置関連情報に基づいて容易に対象の位置情報を算出することができ、アームの移動経路および移動量を高精度に算出することができる。
本発明のロボット制御システムでは、前記算出部は、前記目標位置の位置情報を有しており、前記基準部の位置情報と前記目標位置の位置情報に基づいて前記対象を現在位置から前記目標位置まで移動するための前記アームの移動経路および移動量を算出することを特徴とする。
そのため、算出部は、目標位置の位置情報を有していることから、基準部の位置情報と目標位置の位置情報に基づいて高精度にアームの移動経路および移動量を算出することができる。
本発明のロボット制御システムでは、前記算出部は、前記基準部の位置情報に基づいて前記アームが配置される基準位置を算出し、前記基準位置に基づいて前記アームの移動経路および移動量を算出することを特徴とする。
そのため、算出部が基準部の位置情報に基づいてアームの基準位置を算出することから、アームの作動誤差が生じても、基準位置と基準部との位置関係が常時適正な位置関係に修正されることとなり、基準位置に基づいてアームの移動経路および移動量を常時高精度に算出することができる。
本発明のロボット制御システムでは、前記算出部は、予め設定された所定周期ごとに前記アームの移動経路および移動量を算出することを特徴とする。
そのため、算出部が所定周期ごとにアームの移動経路および移動量を算出することから、対象が目標位置に移動するとき、常時、最適なアームの移動経路および移動量が算出されることとなり、対象を目標位置に高精度に移動させることができる。
本発明のロボット制御システムでは、前記位置検出器は、所定の位置に配置されるレーザートラッカーと、前記基準部に装着されるプローブとを有し、前記算出部は、前記レーザートラッカーが検出した前記プローブの位置情報と前記目標位置の位置情報と前記基準部の位置情報と前記基準部に関連する前記対象の位置情報に基づいて前記アームの移動経路および移動量を算出することを特徴とする。
そのため、レーザートラッカーがプローブの位置情報を検出しており、算出部は、プローブの位置情報、目標位置の位置情報、基準部の位置情報、対象の位置情報に基づいてアームの移動経路および移動量を高精度に算出することができる。
本発明のロボット制御システムでは、前記アームは、前記基準部を互いに交差する3次元方向と互いに交差する3次元の軸回り方向に移動可能であることを特徴とする。
そのため、アームが6軸方向に移動することで、対象を高精度に目標位置に移動することができる。
本発明のロボット制御システムでは、前記位置検出器は、前記基準部における互いに交差する3次元方向における位置情報と互いに交差する3次元の軸回り方向の姿勢情報を検出することを特徴とする。
そのため、位置検出器が基準部の6軸方向位置情報および姿勢情報を検出することで、アームを高精度に作動することができる。
本発明のロボット制御方法は、対象を予め設定された目標位置に移動するロボット制御方法において、ロボットを作業位置に移動する工程と、前記ロボットにおけるアームの基準部の位置情報を検出する工程と、前記基準部の位置情報に基づいて前記対象の位置情報を算出する工程と、前記対象の位置情報に基づいて前記対象を現在位置から前記目標位置まで移動するための前記アームの移動経路および移動量を算出する工程と、前記移動経路および前記移動量に基づいて前記アームを作動制御する工程と、を有することを特徴とする。
そのため、ロボットを作業位置に固定する必要がなく、ロボットの配置作業が容易になると共に、配置作業時間を短縮することができ、作業性の向上を図ることができる。また、アームの基準部を検出する位置検出器だけを設ければよく、構造および制御の簡素化を図ることができる。
本発明のロボット制御方法では、前記基準部の位置情報に基づいて前記アームが配置される基準位置を算出し、前記基準位置に基づいて前記アームの移動経路および移動量を算出することを特徴とする。
そのため、アームの作動誤差が生じても、基準位置と基準部との位置関係が常時適正な位置関係に修正されることとなり、基準位置に基づいてアームの移動経路および移動量を常時高精度に算出することができる。
本発明のロボット制御方法では、現在位置から前記目標位置までの前記対象の移動中、予め設定された所定周期ごとに前記アームの移動経路および移動量を繰り返し算出することを特徴とする。
そのため、対象が目標位置に移動するとき、常時、最適なアームの移動経路および移動量が算出されることとなり、対象を目標位置に高精度に移動させることができる。
本発明のロボット制御システムおよび方法によれば、構造の簡素化を図ることができると共に、作業性の向上を図ることができる。
図1は、本実施形態のロボット制御システムを表す概略構成図である。 図2は、ロボット制御システムの概略構成を表す斜視図である。 図3は、本実施形態のロボット制御方法を表すフローチャートである。 図4は、ロボット制御方法を説明するためのロボット制御システムの側面図である。 図5は、ロボット制御方法を説明するためのロボット制御システムの平面図である。
以下、添付図面を参照して、本発明の好適な実施形態を詳細に説明する。なお、この実施形態により本発明が限定されるものではなく、また、実施形態が複数ある場合には、各実施形態を組み合わせて構成するものも含むものである。
図1は、本実施形態のロボット制御システムを表す概略構成図、図2は、ロボット制御システムの概略構成を表す斜視図である。
本実施形態において、図1および図2に示すように、ロボット制御システム10は、窓枠(対象)101を予め設定された目標位置Tにある建造物102の開口部103に移動して取付けるものである。ロボット制御システム10は、ロボット11と、位置検出器12と、算出部13と、制御部14とを備える。
ロボット11は、移動台車20上に搭載される。移動台車20は、作業者が手動により移動可能であるが、モータなどの駆動部により自走可能としてもよい。ロボット11は、多軸関節アーム(アーム)21と、多軸関節アームを作動する駆動部22とを有する。多軸関節アーム21は、6個のアーム23,24,25,26,27,28を有する。円板形状をなす基台29は、上部に第1アーム23の一端部が第1軸心O1を中心に回動自在に連結される。第1アーム23は、他端部に連結軸30により第2アーム24の一端部が第2軸心O2を中心に回動自在に連結される。第2アーム24は、他端部に連結軸31により第3アーム25の一端部が第3軸心O3を中心に回動自在に連結される。
第3アーム25は、他端部に第4アーム26の一端部が第4軸心O4を中心に回動自在に連結される。第4アーム26は、他端部に連結軸32により第5アーム27の一端部が第5軸心O5を中心に回動自在に連結される。第5アーム27は、他端部に第6アーム28の一端部が第6軸心O6を中心に回動自在に連結される。第6アーム28は、他端部に把持部33が装着される。把持部33は、窓枠101を把持することができる。
駆動部22は、基台29および5個のアーム23,24,25,26,27に装着されたモータ(図示略)を有する。駆動部22は、6個のアーム23,24,25,26,27,28を各軸心O1,O2,O3,O4,O5,O6回りに回動することができる。
そのため、多軸関節アーム21は、駆動部22により把持部33を互いに交差する3次元方向(軸心O2,O3,O5方向)と、互いに交差する3次元方向(軸心O2,O3,O5)の軸回り方向(軸心O1,O4,O6方向)に移動することができる。
位置検出器12は、ロボット11とは別の場所の床面G上に配置され、基準部としての多軸関節アーム21の把持部33を検出し、把持部33の位置情報を取得する。具体的に、位置検出器12は、所定の位置に配置されるレーザートラッカー41と、把持部33に装着されるプローブ42とを有する。レーザートラッカー41は、プローブ42に向けてレーザ光を照射し、プローブ42がレーザ光を受光することで、プローブ42(把持部33)における互いに交差する3次元方向(軸心O2,O3,O5方向)における位置情報と、互いに交差する3次元の軸回り方向(軸心O1,O4,O6方向)の姿勢情報を取得することができる。ここで、位置情報とは、所定の基準点に対するX方向とY方向とZ方向における位置座標であり、姿勢情報とは、この位置座標に対するX方向とY方向とZ方向における傾きである。
この場合、位置検出器12は、制御装置51に接続される。位置検出器12は、高速無線通信により予め設定された所定周期(例えば、サンプリング周期1msec~2msec)ごとに検出したプローブ42の位置情報および姿勢情報を制御装置51に送信する。
制御装置51は、算出部13と制御部14とを有する。算出部13は、位置検出器12が検出したプローブ42の位置情報および姿勢情報に基づいて窓枠101を現在位置から目標位置Tである開口部103に移動するための多軸関節アーム21の移動経路および移動量を算出する。制御部14は、算出部13が算出した多軸関節アーム21の移動経路および移動量に基づいて駆動部22により多軸関節アーム21を作動制御する。
この場合、目標位置Tである開口部103の位置情報および姿勢情報と、把持部33が把持した窓枠101の位置情報および姿勢情報と、把持部33の位置情報および姿勢情報と、把持部33に装着されたプローブ42の位置情報および姿勢情報とを事前に取得しておく。そして、これらの位置情報および姿勢情報に基づいてプローブ42と把持部33との把持部位置関連情報と、プローブ42と窓枠101との窓枠位置関連情報を算出する。制御装置51は、記憶部52が接続されており、目標位置Tである開口部103の位置情報および姿勢情報と、プローブ42と把持部33との把持部位置関連情報と、プローブ42と窓枠101との窓枠位置関連情報とを記憶部52に記憶しておく。この場合、把持部33が把持した窓枠101の位置情報および姿勢情報と、把持部33の位置情報および姿勢情報と、把持部33に装着されたプローブ42の位置情報および姿勢情報を記憶部52に記憶してもよい。
ここで、目標位置Tである開口部103の位置情報および姿勢情報とは、例えば、開口部103における基準点P1の位置データ(座標)と、基準点P1に対する開口部103の姿勢データ(傾き)である。また、把持部33が把持した窓枠101の位置情報および姿勢情報とは、例えば、窓枠101における基準点P2の位置データと、基準点P2に対する窓枠101の姿勢データである。把持部33の位置情報および姿勢情報とは、例えば、把持部33における基準点P3の位置データと、基準点P3に対する把持部33の姿勢データである。把持部33に装着されたプローブ42の位置情報および姿勢情報とは、例えば、プローブ42における基準点P4の位置データと、基準点P4に対するプローブ42の姿勢データである。
なお、位置データ(座標)とは、上述した位置情報であり、所定の基準点に対するX方向とY方向とZ方向における位置座標(X,Y,Z)である。また、姿勢データ(傾き)とは、上述した姿勢情報であり、位置座標(X,Y,Z)に対するX方向とY方向とZ方向における傾きである。例えば、開口部(目標位置T)103の場合、基準点P1から所定の方向に延出する2つの枠の傾きであり、1つの枠に対してX方向に対する傾きとY方向に対する傾きとZ方向に対する傾きのデータである。すなわち、開口部103の位置情報および姿勢情報により、開口部103がどの位置にあって、どのような形状をなしているかがわかる。把持部33、窓枠101、プローブ42についても同様である。
この場合、開口部103と窓枠101と把持部33とプローブ42の位置情報および姿勢情報は、開口部103と窓枠101と把持部33と位置検出器12(レーザートラッカー41およびプローブ42)が存在する空間における共通の基準点P0に対する絶対座標データ(X,Y,Z)である。
そのため、開口部103と窓枠101と把持部33の位置情報および姿勢情報は、事前に基準点P1,P2,P3にプローブ42を装着し、レーザートラッカー41を用いて計測する。但し、開口部103の位置を表す建造物102の図面などが存在する場合、図面上での基準点P1の座標データを基準点P0に対する絶対座標データ(X,Y,Z)に変換して用いてもよい。また、プローブ42を常に把持部33の特定の位置に装着することができる治具を用いた場合、プローブ42の基準点P4と把持部33の基準点P3とのX,Y,Z方向の位置関係が既知であることから、プローブ42の基準点P4の絶対座標データに基づいて把持部33の基準点P3の絶対座標データを算出してもよい。更に、把持部33を常に窓枠101の特定の位置を把持できるような治具を用いた場合、把持部33の基準点P3と窓枠101の基準点P2とのX,Y,Z方向の位置関係が既知であることから、把持部33の基準点P3の絶対座標データに基づいて窓枠101の基準点P2の絶対座標データを算出してもよい。
そして、算出部13は、レーザートラッカー41が検出したプローブ42の絶対座標データと、開口部103の絶対座標データと、把持部33の絶対座標データと、把持部33が把持した窓枠101の絶対座標データに基づいて、窓枠101を現在位置から開口部103に移動するための多軸関節アーム21の移動経路および移動量を算出する。すなわち、プローブ42の絶対座標データと把持部33の絶対座標データに基づいてプローブ42と把持部33との把持部位置関連情報が算出される。また、プローブ42の絶対座標データと把持部33が把持した窓枠101の絶対座標データに基づいてプローブ42と窓枠101との窓枠位置関連情報が算出される。算出部13は、レーザートラッカー41が検出したプローブ42の絶対座標データと、開口部103の絶対座標データと、把持部位置関連情報と、窓枠位置関連情報とに基づいて多軸関節アーム21の移動経路および移動量を算出する。そして、算出部13は、予め設定された所定周期ごとに多軸関節アーム21の移動経路および移動量を算出しており、窓枠101の移動中に外乱などにより移動経路および移動量の修正が必要な場合、所定周期ごとに移動経路および移動量を補正する。
算出部13が多軸関節アーム21の移動経路および移動量を補正する場合、多軸関節アーム21の作動量、つまり、駆動部22を構成する6個のモータの駆動量を修正する必要がある。多軸関節アーム21は、例えば、基台29と第1アーム23との連結位置を基準位置とし、基準位置に対する把持部33の基準点P3の絶対座標データ(X,Y,Z)上での移動量および移動方向を指令することで作動する。そのため、算出部13は、外乱などにより多軸関節アーム21の移動経路および移動量の修正が必要な場合、把持部33の基準点P3の位置情報に基づいてこの基準位置を算出し直し、修正された基準位置に基づいて多軸関節アーム21の移動経路および移動量を補正する。
ここで、本実施形態のロボット制御方法について具体的に説明する。図3は、本実施形態のロボット制御方法を表すフローチャート、図4は、ロボット制御方法を説明するためのロボット制御システムの側面図、図5は、ロボット制御方法を説明するためのロボット制御システムの平面図である。
本実施形態のロボット制御方法は、ロボット11を作業位置G1に移動する工程と、ロボット11における多軸関節アーム21の把持部33を検出する工程と、把持部33の位置情報に基づいて窓枠101の位置情報を算出する工程と、窓枠101の位置情報に基づいて窓枠101を現在位置から開口部103に移動するための多軸関節アーム21の移動経路および移動量を算出する工程と、移動経路および移動量に基づいて多軸関節アーム21を作動制御する工程とを有する。
このとき、把持部33の位置情報に基づいて多軸関節アーム21が配置される基準位置を算出し、基準位置に基づいて多軸関節アーム21の移動経路および移動量を補正する。また、現在位置から開口部103への窓枠101の移動中、予め設定された所定周期ごとに多軸関節アーム21の移動経路および移動量を繰り返し算出する。
以下、窓枠101を目標位置Tである開口部103まで移動して取付けるためのロボット11の制御について具体的に説明する。
図1から図5に示すように、ステップS11にて、作業者は、移動台車20を操作し、移動台車20に搭載されたロボット11を作業位置G1に移動する。ここで、作業位置G1とは、ロボット11の多軸関節アーム21が作動することで、把持部33が把持した窓枠101を開口部103に取付けられる範囲とすることが好ましい。また、位置検出器12は、少なくとも把持部33に装着されたプローブ42を検出することができる所定の床面Gに配置される。ステップS12にて、作業者は、例えば、位置検出器12を用いて目標位置Tである開口部103における基準点P1の位置情報および姿勢情報を計測する。
ステップS13にて、作業者は、ロボット11を作動して把持部33により窓枠101を把持させる。ステップS14にて、作業者は、例えば、位置検出器12を用いてロボット11の把持部33が把持した窓枠101における基準点P2の位置情報および姿勢情報を計測する。ステップS15にて、作業者は、例えば、位置検出器12を用いて窓枠101を把持した把持部33における基準点P3の位置情報および姿勢情報を計測する。ステップS16にて、作業者は、レーザートラッカー41により把持部33に装着されたプローブ42における基準点P4の位置情報および姿勢情報を計測する。なお、計測した位置情報および姿勢情報は、記憶部52に記憶しておくことが好ましい。
ここで、開口部103における基準点P1の位置情報および姿勢情報、窓枠101における基準点P2の位置情報および姿勢情報、把持部33における基準点P3の位置情報および姿勢情報、プローブ42における基準点P4の位置情報および姿勢情報を取得することができたことから、各基準点P1,P2,P3,P4の位置情報および姿勢情報を、共通の基準点P0に対する絶対座標データ(X,Y,Z)とする。そのため、ロボット11が移動したり、多軸関節アーム21が作動したりしたとしても、プローブ42と把持部33と窓枠101との位置関係、つまり、プローブ42における基準点P4と窓枠101および把持部33の基準点P2,P3との位置関係(位置関連情報)は変わらない。すると、プローブ42における基準点P4の位置情報および姿勢情報がわかれば、窓枠101および把持部33の基準点P2,P3の位置情報および姿勢情報を算出することができる。
ステップS17にて、レーザートラッカー41により現在のプローブ42における基準点P4の位置情報および姿勢情報を計測する。ステップS18にて、算出部13は、計測した現在のプローブ42における基準点P4の位置情報および姿勢情報に基づいて、窓枠101における基準点P2の位置情報および姿勢情報を算出する。ステップS19にて、算出部13は、開口部103における基準点P1の位置情報および姿勢情報と、算出した窓枠101における基準点P2の位置情報および姿勢情報に基づいて、窓枠101を現在位置から開口部103まで移動するための多軸関節アーム21の移動経路および移動量を算出する。ステップS20にて、制御部14は、窓枠101の算出した多軸関節アーム21の移動経路および移動量に基づいて、多軸関節アーム21を作動制御する。
すると、ロボット11の多軸関節アーム21が作動し、把持部33が所定の移動経路に沿って所定の移動量だけ傾動し、把持部33が把持した窓枠101を開口部103まで移動する。ステップS21にて、窓枠101が開口部103まで到達して取付けられたかどうかを判定する。ここで、窓枠101が開口部103に適正に取付けられたと判定(Yes)されると、作業を終了する。
一方、窓枠101が開口部103に取付けられていないと判定(No)されると、ステップS22に移行する。この場合、2つの可能性がある。1つは、多軸関節アーム21が適正に作動し、窓枠101を所定の移動経路に沿って移動しているものの、まだ所定の移動量だけ移動しておらず、窓枠101が開口部103に到達していない。もう1つは、多軸関節アーム21が適正に作動しているものの、多軸関節アーム21の作動誤差や窓枠101の重量による多軸関節アーム21の撓みなどの原因により、把持部33が所定の移動経路から外れている。この場合、多軸関節アーム21の移動経路および移動量を補正する必要がある。
ステップS22にて、算出部13は、計測した現在のプローブ42における基準点P4の位置情報および姿勢情報に基づいて、現在の把持部33における基準点P2の位置情報および姿勢情報を算出する。ステップS23にて、算出部13は、現在の把持部33における基準点P2の位置情報および姿勢情報に基づいて多軸関節アーム21が配置される基準位置を算出する。すなわち、窓枠101を把持した把持部33の現在位置が設定した移動経路にない場合、現在の把持部33の基準点P3に基づいて多軸関節アーム21の基準位置を再設定する。
ステップS24にて、算出部13は、再設定した多軸関節アーム21の基準位置に基づいて、窓枠101を現在位置から開口部103に移動させるための把持部33の移動距離と姿勢を算出する。そして、ステップS25にて、制御部14は、算出した把持部33の移動距離と姿勢に基づいて多軸関節アーム21を作動して位置を補正し、ステップS17に戻る。
ステップS17に戻ると、再び、レーザートラッカー41により現在のプローブ42における基準点P4の位置情報および姿勢情報を計測し、ステップS18からステップS21の処理を繰り返し実行する。
このように本実施形態のロボット制御システムは、多軸関節アーム21を有して移動可能なロボット11と、ロボット11とは別に配置されて多軸関節アーム21の把持部(基準部)33の位置情報を検出する位置検出器12と、位置検出器12が検出した把持部33の位置情報に基づいて窓枠(対象)101を現在位置から目標位置Tとしての開口部103まで移動するための多軸関節アーム21の移動経路および移動量を算出する算出部13と、算出部13が算出した移動経路および移動量に基づいて多軸関節アーム21を作動制御する制御部14とを備える。
ロボット11を作業位置G1に移動し、位置検出器12が多軸関節アーム21の把持部33を検出すると、算出部13は、把持部33の位置情報に基づいて窓枠101を現在位置から開口部103まで移動するための多軸関節アーム21の移動経路および移動量を算出し、制御部14は、窓枠101の移動経路および移動量に基づいて多軸関節アーム21を作動制御する。そのため、ロボット11を作業位置G1に固定する必要がなく、ロボット11の配置作業が容易になると共に、配置作業時間を短縮することができ、作業性の向上を図ることができる。また、多軸関節アーム21の把持部33を検出する位置検出器12だけを設ければよく、構造および制御の簡素化を図ることができる。
本実施形態のロボット制御システムでは、算出部13は、把持部33と把持部33が把持した窓枠101との位置関連情報を有しており、把持部33の位置情報と位置関連情報に基づいて窓枠101の位置情報を算出し、窓枠101の位置情報に基づいて窓枠101を現在位置から開口部103まで移動するための多軸関節アーム21の移動経路および移動量を算出する。そのため、把持部33の位置情報と位置関連情報に基づいて容易に窓枠101の位置情報を算出することができ、多軸関節アーム21の移動経路および移動量を高精度に算出することができる。
本実施形態のロボット制御システムでは、算出部13は、開口部103の位置情報を有しており、把持部33の位置情報と開口部103の位置情報に基づいて窓枠101を現在位置から開口部103まで移動するための多軸関節アーム21の移動経路および移動量を算出する。そのため、把持部33の位置情報と開口部103の位置情報に基づいて高精度に多軸関節アーム21の移動経路および移動量を算出することができる。
本実施形態のロボット制御システムでは、算出部13は、把持部33の位置情報に基づいて多軸関節アーム21が配置される基準位置を算出し、基準位置に基づいて多軸関節アーム21の移動経路および移動量を算出する。そのため、多軸関節アーム21の作動誤差が生じても、基準位置と把持部33との位置関係が常時適正な位置関係に修正されることとなり、基準位置に基づいて多軸関節アーム21の移動経路および移動量を常時高精度に算出することができる。
本実施形態のロボット制御システムでは、算出部13は、予め設定された所定周期ごとに多軸関節アーム21の移動経路および移動量を算出する。そのため、窓枠101が開口部103に移動するとき、常時、最適な多軸関節アーム21の移動経路および移動量が算出されることとなり、窓枠101を開口部103に高精度に移動させることができる。
本実施形態のロボット制御システムでは、位置検出器12は、所定の位置に配置されるレーザートラッカー41と、把持部33に装着されるプローブ42とを有し、算出部13は、レーザートラッカー41が検出したプローブ42の位置情報と開口部103の位置情報と把持部33の位置情報と把持部33が把持した窓枠101の位置情報に基づいて多軸関節アーム21の移動経路および移動量を算出する。そのため、レーザートラッカー41がプローブ42の位置情報を検出しており、算出部13は、プローブ42の位置情報、開口部103の位置情報、把持部33の位置情報、窓枠101の位置情報に基づいて多軸関節アーム21の移動経路および移動量を高精度に算出することができる。
本実施形態のロボット制御システムでは、多軸関節アーム21は、把持部33を互いに交差する3次元方向と互いに交差する3次元の軸回り方向に移動可能である。そのため、多軸関節アーム21が6軸方向に移動することで、窓枠101を高精度に開口部103に移動することができる。
本実施形態のロボット制御システムでは、位置検出器12は、把持部33における互いに交差する3次元方向における位置情報と互いに交差する3次元の軸回り方向の姿勢情報を検出する。そのため、位置検出器12が把持部33の6軸方向位置情報および姿勢情報を検出することで、多軸関節アーム21を高精度に作動することができる。
また、本実施形態のロボット制御方法は、ロボット11を作業位置G1に移動する工程と、ロボット11における多軸関節アーム21の把持部33を検出する工程と、把持部33の位置情報に基づいて窓枠101の位置情報を算出する工程と、窓枠101の位置情報に基づいて窓枠101を現在位置から開口部103まで移動するための多軸関節アーム21の移動経路および移動量を算出する工程と、移動経路および移動量に基づいて多軸関節アーム21を作動制御する工程とを有する。
そのため、ロボット11を作業位置G1に固定する必要がなく、ロボット11の配置作業が容易になると共に、配置作業時間を短縮することができ、作業性の向上を図ることができる。また、多軸関節アーム21の把持部33を検出する位置検出器12だけを設ければよく、構造および制御の簡素化を図ることができる。
本実施形態のロボット制御では、把持部33の位置情報に基づいて多軸関節アーム21が配置される基準位置を算出し、基準位置に基づいて多軸関節アーム21の移動経路および移動量を算出する。そのため、多軸関節アーム21の作動誤差が生じても、基準位置と把持部33との位置関係が常時適正な位置関係に修正されることとなり、基準位置に基づいて多軸関節アーム21の移動経路および移動量を常時高精度に算出することができる。
本実施形態のロボット制御方法では、現在位置から開口部103までの窓枠101の移動中、予め設定された所定周期ごとに多軸関節アーム21の移動経路および移動量を繰り返し算出する。そのため、窓枠101が開口部103に移動するとき、常時、最適な多軸関節アーム21の移動経路および移動量が算出されることとなり、窓枠101を開口部103に高精度に移動させることができる。
なお、上述した実施形態では、移動台車20にロボット11を搭載することで、ロボット11の配置位置を変更可能としたが、ロボット11自体を走行可能としてもよい。また、位置検出器12をレーザートラッカー41とプローブ42により構成したが、この構成に限定されるものでなく、プローブ42に代えて複数の反射板を設けたり、3次元カメラなどを適用したりしてもよい。さらに、位置検出器12は、基準部として、多軸関節アーム21の把持部33の位置情報を検出するものとしたが、これに限定されるものではなく、例えば、多軸関節アーム21の先端部であってもよい。
また、上述した実施形態では、作業者が移動台車20によりロボット11を作業位置G1に移動し、ロボット11を停止した状態で多軸関節アーム21を作動して作業を行うようにしたが、作業の途中で移動台車20によりロボット11を移動してもよく、この場合であっても、高精度に多軸関節アーム21の移動経路および移動量を算出することができる。また、ロボット11が多軸関節アーム21を有するものとしたが、多軸関節アーム21は、6軸関節アームに限るものではなく、単なる棒形状のアームであってもよい。
また、上述した実施形態では、対象を窓枠101とし、目標位置Tを開口部103とし、ロボット制御システム10により窓枠101を開口部103まで移動して取付ける作業に適用して説明したが、このような作業に限定されるものではない。例えば、対象を所定の位置に搬送する作業や工具を移動して所定の位置に所定の加工を行う作業などにも適用することができる。
そのほか、アームの先端であるヘッド部を目標位置である航空機の搭乗口へ自動着機させるロボットとしての機能を備える搭乗橋や、アームを保有して自動制御される建設ロボットに対して、先端部の移動制御に適用することができる。
10 ロボット制御システム
11 ロボット
12 位置検出器
13 算出部
14 制御部
20 移動台車
21 多軸関節アーム(アーム)
22 駆動部
23 第1アーム
24 第2アーム
25 第3アーム
26 第4アーム
27 第5アーム
28 第6アーム
29 基台
30,31,32 連結軸
33 把持部(基準部)
41 レーザートラッカー
42 プローブ
51 制御装置
52 記憶部
101 窓枠(対象)
102 建造物
103 開口部
O1 第1軸心
O2 第2軸心
O3 第3軸心
O4 第4軸心
O5 第5軸心
O6 第6軸心
P0,P1,P2,P3,P4 基準点
T 目標位置
G 床面
G1 作業位置

Claims (10)

  1. 対象を予め設定された目標位置に移動するロボット制御システムにおいて、
    アームを有して移動可能なロボットと、
    前記ロボットとは別に配置されて前記アームの基準部の位置情報を検出する位置検出器と、
    前記位置検出器が検出した前記基準部の位置情報に基づいて前記対象を現在位置から前記目標位置まで移動するための前記アームの移動経路および移動量を算出する算出部と、
    前記算出部が算出した移動経路および移動量に基づいて前記アームを作動制御する制御部と、
    を備え、
    前記算出部は、前記基準部と前記基準部に関連する前記対象との位置関連情報を有しており、前記基準部の位置情報と前記位置関連情報に基づいて前記対象の位置情報を算出し、前記対象の位置情報に基づいて前記対象を現在位置から前記目標位置まで移動するための前記アームの移動経路および移動量を算出する、
    ことを特徴とするロボット制御システム。
  2. 前記算出部は、前記目標位置の位置情報を有しており、前記基準部の位置情報と前記目標位置の位置情報に基づいて前記対象を現在位置から前記目標位置まで移動するための前記アームの移動経路および移動量を算出することを特徴とする請求項1に記載のロボット制御システム。
  3. 前記算出部は、前記基準部の位置情報に基づいて前記アームが配置される基準位置を算出し、前記基準位置に基づいて前記アームの移動経路および移動量を算出することを特徴とする請求項1または請求項2に記載のロボット制御システム。
  4. 前記算出部は、予め設定された所定周期ごとに前記アームの移動経路および移動量を算出することを特徴とする請求項1から請求項3のいずれか一項に記載のロボット制御システム。
  5. 前記位置検出器は、所定の位置に配置されるレーザートラッカーと、前記基準部に装着されるプローブとを有し、前記算出部は、前記レーザートラッカーが検出した前記プローブの位置情報と前記目標位置の位置情報と前記基準部の位置情報と前記基準部に関連する前記対象の位置情報に基づいて前記アームの移動経路および移動量を算出することを特徴とする請求項1から請求項4のいずれか一項に記載のロボット制御システム。
  6. 前記アームは、前記基準部を互いに交差する3次元方向と互いに交差する3次元の軸回り方向に移動可能であることを特徴とする請求項1から請求項5のいずれか一項に記載のロボット制御システム。
  7. 前記位置検出器は、前記基準部における互いに交差する3次元方向における位置情報と互いに交差する3次元の軸回り方向の姿勢情報を検出することを特徴とする請求項6に記載のロボット制御システム。
  8. 対象を予め設定された目標位置に移動するロボット制御方法において、
    ロボットを作業位置に移動する工程と、
    前記ロボットにおけるアームの基準部の位置情報を検出する工程と、
    前記基準部の位置情報に基づいて前記対象の位置情報を算出する工程と、
    前記対象の位置情報に基づいて前記対象を現在位置から前記目標位置まで移動するための前記アームの移動経路および移動量を算出する工程と、
    前記移動経路および前記移動量に基づいて前記アームを作動制御する工程と、
    を有し、
    前記基準部の位置情報と前記基準部に関連する前記対象との位置関連情報に基づいて前記対象の位置情報を算出し、前記対象の位置情報に基づいて前記対象を現在位置から前記目標位置まで移動するための前記アームの移動経路および移動量を算出する、
    ことを特徴とするロボット制御方法。
  9. 前記基準部の位置情報に基づいて前記アームが配置される基準位置を算出し、前記基準位置に基づいて前記アームの移動経路および移動量を算出することを特徴とする請求項8に記載のロボット制御方法。
  10. 現在位置から前記目標位置までの前記対象の移動中、予め設定された所定周期ごとに前記アームの移動経路および移動量を繰り返し算出することを特徴とする請求項8または請求項9に記載のロボット制御方法。
JP2019103906A 2019-06-03 2019-06-03 ロボット制御システムおよび方法 Active JP7296252B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019103906A JP7296252B2 (ja) 2019-06-03 2019-06-03 ロボット制御システムおよび方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019103906A JP7296252B2 (ja) 2019-06-03 2019-06-03 ロボット制御システムおよび方法

Publications (2)

Publication Number Publication Date
JP2020196093A JP2020196093A (ja) 2020-12-10
JP7296252B2 true JP7296252B2 (ja) 2023-06-22

Family

ID=73648747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019103906A Active JP7296252B2 (ja) 2019-06-03 2019-06-03 ロボット制御システムおよび方法

Country Status (1)

Country Link
JP (1) JP7296252B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024100717A1 (ja) * 2022-11-07 2024-05-16 株式会社ニコン 位置計測システム及び位置計測方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012254518A (ja) 2011-05-16 2012-12-27 Seiko Epson Corp ロボット制御システム、ロボットシステム及びプログラム
JP2013173191A (ja) 2012-02-23 2013-09-05 Seiko Epson Corp ロボット装置、ロボット制御装置、ロボット制御方法及びロボット制御プログラム
JP2017226023A (ja) 2016-06-20 2017-12-28 三菱重工業株式会社 ロボット制御システム及びロボット制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012254518A (ja) 2011-05-16 2012-12-27 Seiko Epson Corp ロボット制御システム、ロボットシステム及びプログラム
JP2013173191A (ja) 2012-02-23 2013-09-05 Seiko Epson Corp ロボット装置、ロボット制御装置、ロボット制御方法及びロボット制御プログラム
JP2017226023A (ja) 2016-06-20 2017-12-28 三菱重工業株式会社 ロボット制御システム及びロボット制御方法

Also Published As

Publication number Publication date
JP2020196093A (ja) 2020-12-10

Similar Documents

Publication Publication Date Title
JP6468741B2 (ja) ロボットシステム及びロボットシステムの校正方法
JP6108860B2 (ja) ロボットシステム及びロボットシステムの制御方法
JP2019093481A (ja) ロボットシステム及びロボットシステムの制御方法
JP3665353B2 (ja) ロボットの教示位置データの3次元位置補正量取得方法及びロボットシステム
US8972059B2 (en) Displacement correcting method and displacement correcting program in automatic operation system
US11285609B2 (en) Working position correcting method and working robot
CN210678714U (zh) 具有移动机器人的机器人系统
US20110218675A1 (en) Robot system comprising visual sensor
JP6153316B2 (ja) ロボットシステム及びロボットシステムの制御方法
JP7109161B2 (ja) 多関節ロボットの機構モデルパラメータ推定方法
WO2020066102A1 (ja) ロボットの教示作業支援システム及び教示作業支援方法
WO2018230517A1 (ja) 作業システム
US9815196B2 (en) Apparatus and method for recording positions
CN112158587A (zh) 工件抓取装置的调节方法及工件抓取装置
JP7296252B2 (ja) ロボット制御システムおよび方法
KR20190104362A (ko) 아크점 조정봉 장착 구조, 다관절 용접 로봇 및 용접 장치
US20060136094A1 (en) Robot controller and robot control method
JP5088187B2 (ja) ロボット設置方法及びロボット生産システム
KR20130000496A (ko) 가속도센서와 자이로센서를 구비한 로봇 교시장치와 이를 이용한 로봇제어방법
WO2023170166A1 (en) System and method for calibration of an articulated robot arm
JP6882317B2 (ja) マニピュレータを用いて対象物を空間的に動作させるシステム及び方法
JPH0260475B2 (ja)
JPH0727408B2 (ja) 固定3次元視覚併用ロボットハンドリング装置
JP6367702B2 (ja) 位置決めシステム及び溶接システム
JP2019010700A (ja) ロボット、ロボットシステム、及びそれらの制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230612

R150 Certificate of patent or registration of utility model

Ref document number: 7296252

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150