JP7294651B2 - Manufacturing method of conductive polymer conductor - Google Patents

Manufacturing method of conductive polymer conductor Download PDF

Info

Publication number
JP7294651B2
JP7294651B2 JP2019147784A JP2019147784A JP7294651B2 JP 7294651 B2 JP7294651 B2 JP 7294651B2 JP 2019147784 A JP2019147784 A JP 2019147784A JP 2019147784 A JP2019147784 A JP 2019147784A JP 7294651 B2 JP7294651 B2 JP 7294651B2
Authority
JP
Japan
Prior art keywords
conductive polymer
reaction solution
monomer
water
ethylenedioxythiophene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019147784A
Other languages
Japanese (ja)
Other versions
JP2021028364A (en
Inventor
飛鳥 及川
秀生 岡野
圭亮 平田
勝徳 成田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AI Silk Corp
Original Assignee
AI Silk Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AI Silk Corp filed Critical AI Silk Corp
Priority to JP2019147784A priority Critical patent/JP7294651B2/en
Publication of JP2021028364A publication Critical patent/JP2021028364A/en
Application granted granted Critical
Publication of JP7294651B2 publication Critical patent/JP7294651B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Description

本発明は、導電性高分子を用いた導電性高分子導電体、及び、その製造方法に関する。 TECHNICAL FIELD The present invention relates to a conductive polymer conductor using a conductive polymer and a method for producing the same.

近年、PEDOT-PSS{ポリ(3.4-エチレンジオキシチオフェン)-ポリ(スチレンスルホン酸)}等の導電性高分子をシルクよりなる基材に付着させた導電性高分子繊維が知られている(例えば、特許文献1参照)。この導電性高分子繊維は、導電性、親水性、引っ張り強度、耐水強度を有しているので、特に、生体電極の材料として利用することができる。 In recent years, a conductive polymer fiber is known in which a conductive polymer such as PEDOT-PSS {poly(3.4-ethylenedioxythiophene)-poly(styrenesulfonic acid)} is adhered to a substrate made of silk. (See, for example, Patent Document 1). Since this conductive polymer fiber has conductivity, hydrophilicity, tensile strength, and water resistance, it can be used particularly as a material for bioelectrodes.

特開2015-77414号公報JP 2015-77414 A

しかしながら、従来の導電性高分子繊維は、洗濯を繰り返すと表面の導電性高分子が剥がれてしまい導電性が低下してしまうという問題があった。 However, conventional conductive polymer fibers have a problem that the conductive polymer on the surface is peeled off after repeated washing, resulting in a decrease in conductivity.

本発明は、このような問題に基づきなされたものであり、洗濯耐久性を向上させることができる導電性高分子導電体、及び、その製造方法を提供することを目的とする。 The present invention has been made based on such problems, and an object of the present invention is to provide a conductive polymer conductor capable of improving washing durability, and a method for producing the same.

本発明の導電性高分子導電体は、基材に導電性高分子が付着されたものであって、基材は、シルク、綿、及び、合成繊維のうちの少なくとも1種を含み、導電性高分子は、酸化剤及びドーパントとしてp-トルエンスルホン酸の鉄塩を添加したポリ3,4-エチレンジオキシチオフェンであり、p-トルエンスルホン酸の鉄塩とポリ3,4-エチレンジオキシチオフェンの単量体とエタノールと水とを含む反応溶液を用い、反応溶液におけるp-トルエンスルホン酸の鉄塩とポリ3,4-エチレンジオキシチオフェンの単量体との割合(p-トルエンスルホン酸の鉄塩:ポリ3,4-エチレンジオキシチオフェンの単量体)を、モル比で、1:0.2から1:0.6の範囲内として重合させたものである。 The conductive polymer conductor of the present invention comprises a base material to which a conductive polymer is attached, and the base material includes at least one of silk, cotton, and synthetic fibers, and is electrically conductive. The polymer is poly3,4-ethylenedioxythiophene added with iron salt of p-toluenesulfonic acid as an oxidizing agent and dopant, and iron salt of p-toluenesulfonic acid and poly3,4-ethylenedioxythiophene Using a reaction solution containing a monomer of p-toluenesulfonic acid, ethanol and water, the ratio of the iron salt of p-toluenesulfonic acid and the monomer of poly3,4-ethylenedioxythiophene in the reaction solution (p-toluenesulfonic acid (iron salt of poly(3,4-ethylenedioxythiophene): poly(3,4-ethylenedioxythiophene monomer)) are polymerized at a molar ratio within the range of 1:0.2 to 1:0.6.

本発明の導電性高分子導電体の製造方法は、シルク、綿、及び、合成繊維のうちの少なくとも1種を含む基材に、酸化剤及びドーパントとしてp-トルエンスルホン酸の鉄塩を添加したポリ3,4-エチレンジオキシチオフェンよりなる導電性高分子を付着させた導電性高分子導電体を製造するものであって、エタノールと、p-トルエンスルホン酸の鉄塩と、ポリ3,4-エチレンジオキシチオフェンの単量体とを含み、p-トルエンスルホン酸の鉄塩とポリ3,4-エチレンジオキシチオフェンの単量体との割合(p-トルエンスルホン酸の鉄塩:ポリ3,4-エチレンジオキシチオフェンの単量体)が、モル比で、1:0.2から1:0.6の範囲内である混合溶液を作製する工程と、混合溶液に水を混合して反応溶液を作製する工程と、反応溶液を基材に塗布し、ポリ3,4-エチレンジオキシチオフェンの単量体を重合させる工程とを含むものである。 In the method for producing a conductive polymer conductor of the present invention, an iron salt of p-toluenesulfonic acid is added as an oxidizing agent and dopant to a base material containing at least one of silk, cotton, and synthetic fibers. A method for manufacturing a conductive polymer conductor to which a conductive polymer made of poly 3,4-ethylenedioxythiophene is attached, comprising ethanol, iron salt of p-toluenesulfonic acid, and poly 3,4 - a monomer of ethylenedioxythiophene, and the ratio of the iron salt of p-toluenesulfonic acid and the monomer of poly 3,4-ethylenedioxythiophene (iron salt of p-toluenesulfonic acid: poly 3 , 4-ethylenedioxythiophene monomer) in a molar ratio of 1:0.2 to 1:0.6, and mixing water into the mixed solution. The method includes a step of preparing a reaction solution, and a step of applying the reaction solution to a base material to polymerize the poly-3,4-ethylenedioxythiophene monomer.

本発明の導電性高分子導電体によれば、導電性高分子を、p-トルエンスルホン酸の鉄塩とポリ3,4-エチレンジオキシチオフェンの単量体とエタノールと水とを含み、p-トルエンスルホン酸の鉄塩とポリ3,4-エチレンジオキシチオフェンの単量体との割合を所定の範囲内とした反応溶液を用いて重合させたものにより構成したので、洗濯耐性を向上させることができる。 According to the conductive polymer conductor of the present invention, the conductive polymer contains an iron salt of p-toluenesulfonic acid, a monomer of poly3,4-ethylenedioxythiophene, ethanol and water, and p - The iron salt of toluenesulfonic acid and the poly 3,4-ethylenedioxythiophene monomer are polymerized using a reaction solution in which the ratio is within a predetermined range, so that the resistance to washing is improved. be able to.

特に、反応溶液における水の割合を1体積%以上30体積%以下とするようにすれば、より高い効果を得ることができる。 In particular, if the ratio of water in the reaction solution is 1% by volume or more and 30% by volume or less, a higher effect can be obtained.

本発明の導電性高分子導電体の製造方法によれば、エタノールと、p-トルエンスルホン酸の鉄塩と、ポリ3,4-エチレンジオキシチオフェンの単量体とを含み、p-トルエンスルホン酸の鉄塩とポリ3,4-エチレンジオキシチオフェンの単量体との割合が所定範囲の混合溶液を作製したのち、この混合溶液に水を混合して反応溶液とし、基材に塗布して重合させるようにしたので、本発明の導電性高分子導電体を容易に得ることができ、洗濯耐性を向上させることができる。 According to the method for producing a conductive polymer conductor of the present invention, ethanol, an iron salt of p-toluenesulfonic acid, and a monomer of poly-3,4-ethylenedioxythiophene are included, After preparing a mixed solution in which the ratio of the iron salt of the acid and the monomer of poly3,4-ethylenedioxythiophene is within a predetermined range, water is mixed with this mixed solution to form a reaction solution, which is applied to a substrate. Since the polymer is polymerized by using the above method, the conductive polymer conductor of the present invention can be easily obtained, and the resistance to washing can be improved.

特に、反応溶液における水の割合を1体積%以上30体積%以下とするようにすれば、より高い効果を得ることができる。 In particular, if the ratio of water in the reaction solution is 1% by volume or more and 30% by volume or less, a higher effect can be obtained.

本発明の一実施の形態に係る導電性高分子導電体の概略構成を表す図である。1 is a diagram showing a schematic configuration of a conductive polymer conductor according to an embodiment of the present invention; FIG. 図1に示した導電性高分子導電体を製造する製造装置の構成を表す図である。2 is a diagram showing the configuration of a manufacturing apparatus for manufacturing the conductive polymer conductor shown in FIG. 1. FIG. 実施例1-1及び比較例1-1に係る導電性高分子導電体、並びに、基材のX線回折の結果を表す特性図である。FIG. 2 is a characteristic diagram showing the results of X-ray diffraction of conductive polymer conductors and substrates according to Example 1-1 and Comparative Example 1-1. 実施例1-1、比較例1-1、及び、基材のX線回折の結果を重ねて表す特性図である。1 is a characteristic diagram superimposing the results of X-ray diffraction of Example 1-1, Comparative Example 1-1, and a base material. FIG. 実施例1-1~1-3及び比較例1-1に係る導電性高分子導電体の洗濯回数による抵抗値の変化を示す特性図である。FIG. 2 is a characteristic diagram showing changes in resistance values depending on the number of washings of conductive polymer conductors according to Examples 1-1 to 1-3 and Comparative Example 1-1. 実施例2-1~2-3及び比較例2-1に係る導電性高分子導電体の洗濯回数による抵抗値の変化を示す特性図である。FIG. 4 is a characteristic diagram showing changes in resistance values depending on the number of washings of conductive polymer conductors according to Examples 2-1 to 2-3 and Comparative Example 2-1; 実施例3-1~3-3に係る導電性高分子導電体の洗濯回数による抵抗値の変化を示す特性図である。FIG. 10 is a characteristic diagram showing changes in resistance values depending on the number of washings of conductive polymer conductors according to Examples 3-1 to 3-3.

以下、本発明の実施の形態について図面を参照して詳細に説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明の一実施の形態に係る導電性高分子導電体10の概略構成を表すものである。この導電性高分子導電体10は、基材11に導電性高分子12が付着されたものであり、例えば、導電性高分子電極として用いることができる。 FIG. 1 shows a schematic configuration of a conductive polymer conductor 10 according to one embodiment of the present invention. This conductive polymer conductor 10 is obtained by attaching a conductive polymer 12 to a substrate 11, and can be used as, for example, a conductive polymer electrode.

基材11を構成する材料はどのようなものでもよいが、繊維が好ましく、例えば、シルク及び綿等の天然繊維、及び、合成繊維等の化学繊維からなるうちの少なくとも1種を含むものが好ましい。生産性及び伸縮性に優れるからである。特に、異形断面を有する合成繊維(すなわち異形断面糸)を含むようにすれば、繊維の間にも導電性高分子12が付着し、洗濯耐性を高めることができるので好ましい。 Any material can be used to form the base material 11, but fibers are preferable, and those containing at least one of natural fibers such as silk and cotton, and chemical fibers such as synthetic fibers are preferable. . It is because it is excellent in productivity and stretchability. In particular, it is preferable to include a synthetic fiber having a modified cross section (that is, a modified cross section yarn) because the conductive polymer 12 adheres also between the fibers and the washing resistance can be improved.

基材11の形状は、例えば、糸状、布状、又は、シート状が好ましく挙げられ、布状又はシート状の場合には、織物、編み物、あるいは、不織布のいずれでもよい。不織布は、繊維を織らずに絡み合わせたシート状のものであり、繊維を熱、機械的または化学的な作用によって接着または絡み合わせたものである。なお、基材11が糸状の場合には、基材11に導電性高分子12を付着させた糸状の導電性高分子導電体10をそのまま用いてもよいが、布状又はシート状に形成して用いてもよい。 The shape of the substrate 11 is preferably, for example, thread-like, cloth-like, or sheet-like, and in the case of cloth-like or sheet-like, it may be any of woven fabric, knitted fabric, or non-woven fabric. A non-woven fabric is a sheet-like material in which fibers are entangled without being woven, and fibers are bonded or entangled by heat, mechanical or chemical action. When the base material 11 is filamentous, the filamentous conductive polymer conductor 10 having the conductive polymer 12 attached to the base material 11 may be used as it is. may be used.

導電性高分子12としては、p-トルエンスルホン酸の鉄塩(以下、pTSと記す)を添加したポリ3,4-エチレンジオキシチオフェン(以下、PEDOTと記す)が好ましい。すなわち、導電性高分子12は、pTSとPEDOTとを含んでいる。pTSは、PEDOTの単量体、すなわち3,4-エチレンジオキシチオフェン(以下、EDOTと記す)を重合させる際の酸化剤として機能すると共に、PEDOTに導電性を発現させるためのドーパントとして機能するものである。 As the conductive polymer 12, poly 3,4-ethylenedioxythiophene (hereinafter referred to as PEDOT) added with iron salt of p-toluenesulfonic acid (hereinafter referred to as pTS) is preferable. That is, the conductive polymer 12 contains pTS and PEDOT. pTS functions as an oxidizing agent when polymerizing the PEDOT monomer, that is, 3,4-ethylenedioxythiophene (hereinafter referred to as EDOT), and also functions as a dopant for making PEDOT exhibit conductivity. It is.

PEDOTは、pTSと、PEDOTの単量体(すなわちEDOT)と、エタノールと、水とを含む反応溶液を用いて重合させたものであることが好ましい。PEDOTの結晶化度が低くなり、基材11に対する付着性が向上し、洗濯耐性を向上させることができるからである。PEDOTの結晶性については、例えば、X線回折において2θ=5度から7度付近に結晶性ピークが現れるので、この結晶性ピークの強度を測定することにより判断することができる。反応溶液における水の割合(水/反応溶液)は、1体積%以上30体積%以下の範囲内であることが好ましい。より高い効果を得ることができるからである。 PEDOT is preferably polymerized using a reaction solution containing pTS, a PEDOT monomer (that is, EDOT), ethanol, and water. This is because the crystallinity of PEDOT is lowered, the adhesion to the substrate 11 is improved, and the resistance to washing can be improved. The crystallinity of PEDOT can be determined, for example, by measuring the intensity of the crystallinity peak, which appears in the vicinity of 2θ=5° to 7° in X-ray diffraction. The proportion of water in the reaction solution (water/reaction solution) is preferably in the range of 1% by volume or more and 30% by volume or less. This is because higher effects can be obtained.

また、PEDOTは、反応溶液におけるpTSとPEDOTの単量体との割合(pTS:PEDOTの単量体)を、モル比で、1:0.2から1:0.6の範囲内として重合させたものであることが好ましい。導電性と洗濯耐性をより向上させることができるからである。また、このような割合で重合させることにより、導電性高分子12のPEDOTのうち、pTSが配位しているPEDOTの割合を10%以上50%以下とすることができる。なお、PEDOTのうちpTSが配位しているPEDOTの割合は、例えば、XPS(X-ray Photoelectron Spectroscopy;X線光電子分光)により得られたPEDOTのピークと、pTSが配位しているPEDOTのピークとの面積比から求めることができる。 In addition, PEDOT is polymerized with the molar ratio of pTS and PEDOT monomer (pTS:PEDOT monomer) in the reaction solution within the range of 1:0.2 to 1:0.6. It is preferable that the This is because the electrical conductivity and washing resistance can be further improved. Moreover, by polymerizing at such a ratio, the ratio of PEDOT with which pTS is coordinated among the PEDOT of the conductive polymer 12 can be 10% or more and 50% or less. The ratio of pTS-coordinated PEDOT to PEDOT is determined by comparing, for example, the PEDOT peak obtained by XPS (X-ray Photoelectron Spectroscopy) and the ratio of pTS-coordinated PEDOT. It can be determined from the area ratio to the peak.

導電性高分子12は、基材11の全面に形成されていてもよく、一部に形成されていてもよい。例えば、基材11が糸状の場合には、図1(A)に示したように、基材11の全面に形成されていてもよく、基材11が布状又はシート状の場合には、図1(B)に示したように、片面に形成されていてもよく、図示しないが、両面に形成されていてもよい。また、導電性高分子12は、基材11の表面に付着しているが、基材11の表面にしみ込んでいてもよい。 The conductive polymer 12 may be formed over the entire surface of the substrate 11 or may be formed partially. For example, when the base material 11 is filamentous, it may be formed on the entire surface of the base material 11 as shown in FIG. It may be formed on one side as shown in FIG. 1B, or may be formed on both sides (not shown). Also, although the conductive polymer 12 adheres to the surface of the base material 11 , it may permeate the surface of the base material 11 .

また、導電性高分子導電体10は、図1(C)に示したように、導電性高分子12の表面に、水系架橋剤が架橋した被覆膜13を有していることが好ましい。洗濯耐性をより向上させることができるからである。水系架橋剤というのは水溶性の架橋剤であり、例えば、イソシアネートを含むイソシアネート系の架橋剤が挙げられる。 Moreover, as shown in FIG. 1C, the conductive polymer conductor 10 preferably has a coating film 13 crosslinked by a water-based crosslinking agent on the surface of the conductive polymer 12 . This is because the washing resistance can be further improved. The water-based cross-linking agent is a water-soluble cross-linking agent, and examples thereof include isocyanate-based cross-linking agents containing isocyanate.

この導電性高分子導電体10は、例えば、次のようにして製造することができる。図2は、導電性高分子導電体10を製造する製造装置20の構成を表わすものである。この製造装置20は、例えば、pTSとPEDOTの単量体とエタノールと水とを含む反応溶液を製造し、基材11に塗布する塗布部21と、反応溶液を塗布した基材11を加熱してPEDOTの単量体を重合させる加熱部22と、基材11を塗布部21から加熱部22に移動させる移動手段23とを備えている。 This conductive polymer conductor 10 can be produced, for example, as follows. FIG. 2 shows the configuration of a manufacturing apparatus 20 for manufacturing the conductive polymer conductor 10. As shown in FIG. This manufacturing apparatus 20, for example, manufactures a reaction solution containing pTS and PEDOT monomers, ethanol, and water, and heats the coating portion 21 that coats the substrate 11 and the substrate 11 coated with the reaction solution. and a moving means 23 for moving the substrate 11 from the coating section 21 to the heating section 22 .

塗布部21は、例えば、pTSとエタノールとを含む第1液を収納する第1タンク21Aと、PEDOTの単量体とエタノールとを含む第2液を収納する第2タンク21Bと、水を収納する第3タンク21Cと、これら第1タンク21A、第2タンク21B、及び、第3タンク21Cと接続され、第1液、第2液、及び、水を混合して反応溶液を作製し、基材11に塗布する混合・塗布部21Dを有している。加熱部22は、例えば、温風装置22Aを有しており、基材11に温風を当てて加熱するようになっている。移動手段23は、基材11を挟む複数対のローラー23Aを有しており、これらのローラー23Aにより基材11は支持及び移動されるようになっている。 The application unit 21 includes, for example, a first tank 21A containing a first liquid containing pTS and ethanol, a second tank 21B containing a second liquid containing a PEDOT monomer and ethanol, and water. The first tank 21A, the second tank 21B, and the third tank 21C are connected to the third tank 21C, and the first liquid, the second liquid, and water are mixed to prepare a reaction solution, and It has a mixing/applying section 21</b>D for applying to the material 11 . The heating unit 22 has, for example, a hot air device 22A, and applies hot air to the base material 11 to heat it. The moving means 23 has a plurality of pairs of rollers 23A that sandwich the substrate 11, and the substrate 11 is supported and moved by these rollers 23A.

導電性高分子導電体10は、この製造装置20を用いて、例えば、次のようにして製造することが好ましい。まず、第1タンク21Aに収納したpTSとエタノールとを含む第1液と、第2タンク21Bに収納したPEDOTの単量体とエタノールとを含む第2液とを混合・塗布部21Dに入れ、混合して混合溶液を作製する(ステップS101;混合溶液作製工程)。その際、pTSとPEDOTの単量体との割合(pTS:PEDOTの単量体)が、モル比で、1:0.2から1:0.6の範囲内となるように、第1液と第2液との混合割合を調整することが好ましい。 The conductive polymer conductor 10 is preferably manufactured using this manufacturing apparatus 20, for example, as follows. First, the first liquid containing pTS and ethanol stored in the first tank 21A and the second liquid containing the PEDOT monomer and ethanol stored in the second tank 21B are put into the mixing/applying section 21D, A mixed solution is produced by mixing (step S101; mixed solution producing step). At that time, the ratio of pTS and PEDOT monomer (pTS: PEDOT monomer) is adjusted so that the molar ratio is in the range of 1:0.2 to 1:0.6. It is preferable to adjust the mixing ratio of the second liquid and the second liquid.

次いで、混合・塗布部21Dに第3タンク21Cに収納した水を入れ、混合して反応溶液を作製する(ステップS102;反応溶液作製工程)。その際、反応溶液における水の割合(水/反応溶液)が1体積%以上30体積%以下の範囲内となるように、混合割合を調整することが好ましい。このように、混合溶液に後から水を添加して反応溶液を作製するのは、水を添加すると反応溶液が早く劣化してしまうからである。 Next, the water stored in the third tank 21C is put into the mixing/applying section 21D and mixed to prepare a reaction solution (step S102; reaction solution preparation step). At that time, it is preferable to adjust the mixing ratio so that the ratio of water in the reaction solution (water/reaction solution) is in the range of 1% by volume or more and 30% by volume or less. The reason why water is subsequently added to the mixed solution to prepare the reaction solution is that the reaction solution deteriorates quickly when water is added.

続いて、反応溶液を作製したのち、できるだけ早く、反応溶液を基材11に塗布し、PEDOTの単量体を重合させて導電性高分子12を基材11に付着させる(ステップS103;重合工程)。その際、加熱部22において必要に応じて加熱することが好ましく、加熱した後、例えば、室温において反応させることが好ましい。加熱温度は、例えば、20℃から60℃とすることが好ましい。加熱時間は、例えば、5分から60分とすることが好ましい。反応時間は10分から24時間とすることが好ましい。 Subsequently, after the reaction solution is prepared, the reaction solution is applied to the substrate 11 as soon as possible, and the PEDOT monomer is polymerized to adhere the conductive polymer 12 to the substrate 11 (step S103; polymerization step). ). At that time, it is preferable to heat in the heating unit 22 as necessary, and after heating, it is preferable to react at room temperature, for example. The heating temperature is preferably 20° C. to 60° C., for example. The heating time is preferably 5 to 60 minutes, for example. The reaction time is preferably 10 minutes to 24 hours.

そののち、例えば、水洗いをし、乾燥させる(ステップS104;水洗・乾燥工程)。なお、混合溶液作製工程(ステップS101)から水洗・乾燥工程(ステップS104)は、複数回繰り返して行うことが好ましく、2回以上繰り返すようにすればより好ましい。導電性と洗濯耐性をより向上させることができるからである。更に、導電性高分子12を形成したのち、導電性高分子12の表面に、水系架橋剤を架橋させた被覆膜13を形成することが好ましい(ステップS105;被覆膜形成工程)。洗濯耐性を向上させることができるからである。被覆膜13は、例えば、導電性高分子12の表面に水系架橋剤を塗布した後、熱処理を行うことにより形成することができる。熱処理は、例えば、乾燥させるドライ処理を行った後、焼成する焼成処理を行うことが好ましい。 After that, for example, it is washed with water and dried (step S104; washing/drying step). The mixed solution preparation step (step S101) to the water washing/drying step (step S104) are preferably repeated a plurality of times, more preferably two or more times. This is because the electrical conductivity and washing resistance can be further improved. Furthermore, after forming the conductive polymer 12, it is preferable to form the coating film 13 on the surface of the conductive polymer 12 by cross-linking the water-based cross-linking agent (step S105; coating film forming step). This is because the washing resistance can be improved. The coating film 13 can be formed, for example, by applying a water-based cross-linking agent to the surface of the conductive polymer 12 and then performing heat treatment. As for the heat treatment, for example, it is preferable to perform a firing treatment of firing after performing a dry treatment of drying.

このように本実施の形態の導電性高分子導電体10によれば、導電性高分子12を、pTSとPEDOTの単量体とエタノールと水とを含み、pTSとPEDOTの単量体との割合を所定の範囲内とした反応溶液を用いて重合させたものにより構成したので、洗濯耐性を向上させることができる。 As described above, according to the conductive polymer conductor 10 of the present embodiment, the conductive polymer 12 contains pTS and PEDOT monomers, ethanol, and water, and the pTS and PEDOT monomers Since it is composed of a material polymerized using a reaction solution having a ratio within a predetermined range, resistance to washing can be improved.

特に、反応溶液における水の割合を1体積%以上30体積%以下とするようにすれば、より高い効果を得ることができる。 In particular, if the ratio of water in the reaction solution is 1% by volume or more and 30% by volume or less, a higher effect can be obtained.

本実施の形態の製造方法によれば、エタノールとpTSとPEDOTの単量体とを含み、pTSとPEDOTの単量体との割合が所定範囲の混合溶液を作製したのち(ステップS101;混合溶液作製工程)、この混合溶液に水を混合して反応溶液とし(ステップS102;反応溶液作製工程)、基材11に塗布して重合させる(ステップS103;重合工程)ようにしたので、本実施の形態の導電性高分子導電体10を容易に得ることができ、洗濯耐性を向上させることができる。 According to the production method of the present embodiment, after preparing a mixed solution containing ethanol, pTS and PEDOT monomers and having a ratio of pTS and PEDOT monomers in a predetermined range (step S101; mixed solution preparation step), this mixed solution is mixed with water to form a reaction solution (step S102; reaction solution preparation step), and is applied to the substrate 11 and polymerized (step S103; polymerization step). It is possible to easily obtain the conductive polymer conductor 10 in the form of a morphology, and to improve washing resistance.

特に、反応溶液における水の割合を1体積%以上30体積%以下とするようにすれば、より高い効果を得ることができる。 In particular, if the ratio of water in the reaction solution is 1% by volume or more and 30% by volume or less, a higher effect can be obtained.

(実施例1-1~1-3)
まず、pTSとエタノールとを含む第1液と、PEDOTの単量体とエタノールとを含む第2液とをそれぞれ調整し、第1液と第2液とを混合して混合溶液を作製した(ステップS101;混合溶液作製工程)。pTSとPEDOTの単量体との割合(pTS:PEDOTの単量体)は、モル比で、1:0.2から1:0.6とした。次いで、この混合溶液に水を混合して反応溶液を作製した(ステップS102;反応溶液作製工程)。反応溶液における水の割合(水/反応溶液)は、20体積%とした。
(Examples 1-1 to 1-3)
First, a first liquid containing pTS and ethanol and a second liquid containing a PEDOT monomer and ethanol were prepared, respectively, and the first and second liquids were mixed to prepare a mixed solution ( step S101; mixed solution preparation step). The molar ratio of pTS to PEDOT monomer (pTS:PEDOT monomer) was 1:0.2 to 1:0.6. Then, this mixed solution was mixed with water to prepare a reaction solution (step S102; reaction solution preparation step). The proportion of water in the reaction solution (water/reaction solution) was 20% by volume.

続いて、直ちに、反応溶液を基材11に塗布し、加熱したのち、25℃、湿度60%の室内に2時間保持してEDOTを重合させ、導電性高分子12を付着させた(ステップS103;重合工程)。基材11にはポリエステル製の布を用いた。加熱温度は40℃とし、加熱時間は実施例1-1~1-3で変化させ、実施例1-1は6分、実施例1-2は9分、実施例1-3は12分とした。そののち、水洗いをし、乾燥させた(ステップS104;水洗・乾燥工程)。更に、混合溶液作製工程(ステップS101)から水洗・乾燥工程(ステップS104)を順にもう1回行った。 Subsequently, the reaction solution was immediately applied to the substrate 11, heated, and then held in a room at 25° C. and 60% humidity for 2 hours to polymerize EDOT and adhere the conductive polymer 12 (step S103). ; polymerization step). A cloth made of polyester was used for the base material 11 . The heating temperature was 40 ° C., and the heating time was changed in Examples 1-1 to 1-3, with Example 1-1 being 6 minutes, Example 1-2 being 9 minutes, and Example 1-3 being 12 minutes. bottom. After that, it was washed with water and dried (step S104; washing/drying step). Furthermore, the mixed solution preparation step (step S101) to the water washing/drying step (step S104) were sequentially performed once more.

(比較例1-1)
実施例1-1~1-3に対する比較例1-1として、実施例1-1~1-3と同一の混合溶液に水を添加せずにそのまま同一の基材に塗布し、実施例1-1~1-3と同様にしてEDOTを重合させて導電性高分子を付着させた。重合時の条件は、加熱時間を12分としたことを除き、他は実施例1-1~1-3と同一とした。また、重合させたのち、実施例1-1~1-3と同様に水洗・乾燥を行い、更に、実施例1-1~1-3と同様に、混合溶液の塗布、重合、水洗、乾燥を順にもう1回行った。
(Comparative Example 1-1)
As Comparative Example 1-1 for Examples 1-1 to 1-3, the same mixed solution as in Examples 1-1 to 1-3 was applied to the same substrate as it was without adding water. EDOT was polymerized in the same manner as in 1 to 1-3 to attach a conductive polymer. The conditions during polymerization were the same as in Examples 1-1 to 1-3, except that the heating time was 12 minutes. Further, after polymerizing, washing and drying are performed in the same manner as in Examples 1-1 to 1-3, and further, in the same manner as in Examples 1-1 to 1-3, the mixed solution is applied, polymerized, washed and dried. was repeated one more time.

(実施例1-1~1-3及び比較例1-1の結果)
得られた各導電性高分子導電体10について、X線回折を行い導電性高分子12の結晶性を調べた。図3(A)に実施例1-1の結果を、図3(B)に比較例1-1の結果を示す。また、図3(C)に基材のX線回折の結果を参考として示す。更に、図4に実施例1-1と比較例1-1と基材の結果を重ねて示す。図3及び図4に示したように、2θ=6度付近のPEDOTの結晶性ピークを見ると、実施例1-1は比較例1-1に比べて、ビーク強度が小さくなっており、結晶化度が低くなっていることが分かった。なお、図3及び図4では実施例1-1の結果を示したが、実施例1-2,1-3についても同様の結果が得られた。
(Results of Examples 1-1 to 1-3 and Comparative Example 1-1)
Each conductive polymer conductor 10 thus obtained was subjected to X-ray diffraction to examine the crystallinity of the conductive polymer 12 . FIG. 3A shows the results of Example 1-1, and FIG. 3B shows the results of Comparative Example 1-1. Moreover, the result of the X-ray diffraction of a base material is shown in FIG.3(C) for reference. Further, FIG. 4 shows the results of Example 1-1, Comparative Example 1-1, and the base material. As shown in FIGS. 3 and 4, looking at the crystalline peak of PEDOT near 2θ=6 degrees, Example 1-1 has a smaller peak strength than Comparative Example 1-1, and the crystal It was found that the degree of quenching was low. 3 and 4 show the results of Example 1-1, similar results were obtained for Examples 1-2 and 1-3.

また、得られた各導電性高分子導電体10について、洗濯を1回から10回行い、洗濯前(すなわち洗濯0回)及び各洗濯後毎にシート抵抗を測定し、洗濯による抵抗の変化を調べた。洗濯方法は、JIS L 103法とした。シート抵抗は、三菱化学アナリテック製のLoresta‐AX MCP‐T370を用い、8mm離れた3点間での表面抵抗を測定した。得られた結果を図5に示す。 In addition, each conductive polymer conductor 10 obtained was washed 1 to 10 times, and the sheet resistance was measured before washing (i.e., 0 times of washing) and after each washing, and the change in resistance due to washing was measured. Examined. The washing method was JIS L 103 method. For the sheet resistance, the surface resistance was measured between three points separated by 8 mm using Loresta-AX MCP-T370 manufactured by Mitsubishi Chemical Analytic Tech. The results obtained are shown in FIG.

図5に示したように、本実施例によれば、比較例1-1に比べて、洗濯を繰り返した時のシート抵抗を小さくすることができた。すなわち、混合溶液に水を添加した反応溶液を用いてEDOTを重合させるようにすれば、PEDOTの結晶化度を低くすることができ、洗濯耐性を向上させることができることが分かった。 As shown in FIG. 5, according to the present example, the sheet resistance after repeated washing could be reduced as compared with Comparative Example 1-1. That is, it was found that the crystallinity of PEDOT can be lowered and the resistance to washing can be improved by polymerizing EDOT using a reaction solution in which water is added to the mixed solution.

(実施例2-1~2-3)
反応溶液作製工程(ステップS102)において、反応溶液における水の割合(水/反応溶液)を変化させ、混合溶液作製工程(ステップS101)から水洗・乾燥工程(ステップS104)を順に3回繰り返したことを除き、他は、実施例1-3と同様にして、導電性高分子導電体10を作製した。反応溶液における水の割合(水/反応溶液)は、実施例2-1が10体積%、実施例2-2が20体積%、実施例2-3が30体積%とした。
(Examples 2-1 to 2-3)
In the reaction solution preparation step (step S102), the ratio of water in the reaction solution (water/reaction solution) is changed, and the mixed solution preparation step (step S101) to the water washing/drying step (step S104) are repeated three times in order. A conductive polymer conductor 10 was produced in the same manner as in Example 1-3 except for the above. The ratio of water in the reaction solution (water/reaction solution) was 10% by volume in Example 2-1, 20% by volume in Example 2-2, and 30% by volume in Example 2-3.

(比較例2-1)
実施例2-1~2-3に対する比較例2-1として、実施例2-1~2-3と同一の混合溶液に水を添加せずにそのまま同一の基材に塗布したことを除き、他は、実施例2-1~2-3と同様にして導電性高分子導電体を作製した。
(Comparative Example 2-1)
As Comparative Example 2-1 for Examples 2-1 to 2-3, the same mixed solution as in Examples 2-1 to 2-3 was applied to the same substrate as it was without adding water. Other than that, conductive polymer conductors were produced in the same manner as in Examples 2-1 to 2-3.

(実施例2-1~2-3及び比較例2-1の結果)
得られた各導電性高分子導電体10について、実施例1-1~1-3と同様にして洗濯による抵抗の変化を調べた。得られた結果を図6に示す。図6に示したように、本実施例によれば、比較例2-1に比べて、洗濯を繰り返した時のシート抵抗を小さくすることができた。すなわち、混合溶液に水を添加した反応溶液を用いてEDOTを重合させるようにすれば、洗濯耐性を向上させることができることが分かった。
(Results of Examples 2-1 to 2-3 and Comparative Example 2-1)
For each of the conductive polymer conductors 10 thus obtained, changes in resistance due to washing were examined in the same manner as in Examples 1-1 to 1-3. The results obtained are shown in FIG. As shown in FIG. 6, according to the present example, the sheet resistance after repeated washing could be reduced as compared with Comparative Example 2-1. That is, it was found that washing resistance can be improved by polymerizing EDOT using a reaction solution obtained by adding water to a mixed solution.

(実施例3-1~3-3)
混合溶液作製工程(ステップS101)から水洗・乾燥工程(ステップS104)の繰り返し回数を変えたこと除き、他は、実施例1-3と同様にして、導電性高分子導電体10を作製した。繰り返し回数は、実施例3-1が3回、実施例3-2が2回、実施例3-3が1回とした。
(Examples 3-1 to 3-3)
A conductive polymer conductor 10 was produced in the same manner as in Example 1-3, except that the number of repetitions of the mixed solution preparation step (step S101) to the water washing/drying step (step S104) was changed. The number of repetitions was 3 in Example 3-1, 2 in Example 3-2, and 1 in Example 3-3.

得られた各導電性高分子導電体10について、実施例1-1~1-3と同様にして洗濯による抵抗の変化を調べた。得られた結果を図7に示す。図7に示したように、実施例3-1,3-2の方が、実施例3-3に比べて、大幅に洗濯耐性が向上した。すなわち、混合溶液作製工程(ステップS101)から水洗・乾燥工程(ステップS104)を2回以上繰り返すことが好ましいことが分かった。 For each of the conductive polymer conductors 10 thus obtained, changes in resistance due to washing were examined in the same manner as in Examples 1-1 to 1-3. The results obtained are shown in FIG. As shown in FIG. 7, Examples 3-1 and 3-2 were significantly improved in washing resistance as compared with Example 3-3. That is, it was found that it is preferable to repeat the mixed solution preparation step (step S101) to the water washing/drying step (step S104) two or more times.

以上、実施の形態を挙げて本発明を説明したが、本発明は上記実施の形態に限定されるものではなく、種々変形可能である。例えば、上記実施の形態では、各構成要素についても具体的に説明したが、全ての構成要素を備えていなくてもよく、また、他の構成要素を備えていてもよい。 Although the present invention has been described above with reference to the embodiments, the present invention is not limited to the above embodiments and can be variously modified. For example, in the above embodiments, each component was specifically described, but not all components may be included, or other components may be included.

近年、日本において、高齢化が進み、健康状態監視や健康寿命を延ばすため、さりげないセンシングによって、心電(心電図のもとになる情報のこと。以下同様)や筋電などの生体情報を検出して、病気や怪我を予防し、また、病気を早期発見できるウェアラブル機器の開発が進められている。しかし、心電などを計測する際、従来はジェルや粘性のあるシールを貼って測定を行ったり、ベルトで強く押し付けたりする必要があり、長時間の装着は困難であった。また、使い捨てのシールなどを代用して利用されているが、装着時に違和感があり、肌が荒れるなどの問題がでることがある。
また、従来は、主にAg金属をコーティングしたものも一般的に利用されているが、生体への悪影響が懸念されている。さらに、湿気、汗で電極が酸化され、性能劣化を起こす問題もあった。すなわち、長時間使い続けても生体に悪影響を与えない電極であることが望まれている。
本願発明によれば、例えば、市販のアンダーウェアの表面に導電性高分子の単量体、酸化剤、及び、溶媒であるエタノールを含む混合溶液を塗布して化学反応によって重合させ、導電性の機能をアンダーウェアに持たせることができる。その電極は生体に強く押し付けることはなく測定でき、従来の製品より低コストでアンダーウェアを製作することができ、生体情報を検出できる。ウェアの価格が安くなればヘルスケアや介護用の支援ロボット、作業用の支援ロボット、フィットネス、作業服等に広く応用することができる。
In recent years, the aging of Japan has progressed, and in order to monitor health conditions and extend healthy life expectancy, casual sensing is used to detect biological information such as electrocardiograms (information that is the basis of electrocardiograms; the same applies hereinafter) and myoelectricity. As a result, wearable devices are being developed that can prevent diseases and injuries and detect diseases at an early stage. However, when measuring the electrocardiogram, it was difficult to wear it for a long time because it was necessary to attach a gel or sticky sticker to the device or to press it strongly with a belt. Disposable seals are also used as substitutes, but problems such as uncomfortable feeling and rough skin may occur when worn.
In addition, conventionally, those coated mainly with Ag metal have been generally used, but there is concern about adverse effects on the living body. Furthermore, there is also the problem that the electrodes are oxidized by moisture and sweat, causing deterioration in performance. In other words, there is a demand for an electrode that does not adversely affect the living body even when used continuously for a long period of time.
According to the present invention, for example, a mixed solution containing a conductive polymer monomer, an oxidizing agent, and ethanol as a solvent is applied to the surface of commercially available underwear, polymerized by a chemical reaction, and conductive Functions can be given to underwear. The electrodes can be measured without being strongly pressed against the living body, underwear can be manufactured at a lower cost than conventional products, and biological information can be detected. If the price of wear becomes cheaper, it can be widely applied to healthcare and nursing support robots, work support robots, fitness, work clothes, and the like.

10…導電性高分子導電体、11…基材、12…導電性高分子、13…被覆膜、20…製造装置、21…塗布部、21A…第1タンク、21B…第2タンク、21C…第3タンク、21D…混合・塗布部、22…加熱部、22A…温風装置、23…移動手段、23A…ローラー DESCRIPTION OF SYMBOLS 10... Conductive polymer conductor, 11... Base material, 12... Conductive polymer, 13... Coating film, 20... Manufacturing apparatus, 21... Application part, 21A... First tank, 21B... Second tank, 21C 3rd tank 21D Mixing/coating section 22 Heating section 22A Warm air device 23 Moving means 23A Roller

Claims (2)

基材に導電性高分子が付着された導電性高分子導電体の製造方法であって、
前記基材は、シルク、綿、及び、合成繊維のうちの少なくとも1種を含み、
前記導電性高分子は、酸化剤及びドーパントとしてp-トルエンスルホン酸の鉄塩を添加したポリ3,4-エチレンジオキシチオフェンであり、p-トルエンスルホン酸の鉄塩とポリ3,4-エチレンジオキシチオフェンの単量体とエタノールと水とを含む反応溶液を用い、前記反応溶液におけるp-トルエンスルホン酸の鉄塩とポリ3,4-エチレンジオキシチオフェンの単量体との割合(p-トルエンスルホン酸の鉄塩:ポリ3,4-エチレンジオキシチオフェンの単量体)を、モル比で、1:0.2から1:0.6の範囲内とし、前記反応溶液における水の割合を、10体積%以上30体積%以下の範囲内として重合させ
ことを特徴とする導電性高分子導電体の製造方法
A method for producing a conductive polymer conductor in which a conductive polymer is attached to a base material,
the substrate comprises at least one of silk, cotton, and synthetic fibers;
The conductive polymer is poly3,4-ethylenedioxythiophene added with iron salt of p-toluenesulfonic acid as an oxidizing agent and dopant, and the iron salt of p-toluenesulfonic acid and poly3,4-ethylene Using a reaction solution containing a dioxythiophene monomer, ethanol, and water, the ratio (p - iron salt of toluenesulfonic acid:poly3,4 - ethylenedioxythiophene monomer) in a molar ratio within the range of 1:0.2 to 1:0.6; Polymerize the ratio within the range of 10% by volume or more and 30% by volume or less
A method for producing a conductive polymer conductor, characterized by:
エタノールと、p-トルエンスルホン酸の鉄塩と、ポリ3,4-エチレンジオキシチオフェンの単量体とを含み、p-トルエンスルホン酸の鉄塩とポリ3,4-エチレンジオキシチオフェンの単量体との割合(p-トルエンスルホン酸の鉄塩:ポリ3,4-エチレンジオキシチオフェンの単量体)が、モル比で、1:0.2から1:0.6の範囲内である混合溶液を作製する工程と、
前記混合溶液に水を混合して前記反応溶液を作製する工程と、
前記反応溶液を前記基材に塗布し、ポリ3,4-エチレンジオキシチオフェンの単量体を重合させる工程と
を含むことを特徴とする請求項1記載の導電性高分子導電体の製造方法。
Ethanol, iron salt of p-toluenesulfonic acid, and a monomer of poly3,4-ethylenedioxythiophene; The ratio with the monomer (iron salt of p-toluenesulfonic acid: poly 3,4-ethylenedioxythiophene monomer) is within the range of 1:0.2 to 1:0.6 in terms of molar ratio. creating a mixed solution;
A step of mixing water with the mixed solution to prepare the reaction solution;
2. The method for producing a conductive polymer conductor according to claim 1, further comprising the step of applying the reaction solution to the base material to polymerize the poly-3,4-ethylenedioxythiophene monomer. .
JP2019147784A 2019-08-09 2019-08-09 Manufacturing method of conductive polymer conductor Active JP7294651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019147784A JP7294651B2 (en) 2019-08-09 2019-08-09 Manufacturing method of conductive polymer conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019147784A JP7294651B2 (en) 2019-08-09 2019-08-09 Manufacturing method of conductive polymer conductor

Publications (2)

Publication Number Publication Date
JP2021028364A JP2021028364A (en) 2021-02-25
JP7294651B2 true JP7294651B2 (en) 2023-06-20

Family

ID=74667606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019147784A Active JP7294651B2 (en) 2019-08-09 2019-08-09 Manufacturing method of conductive polymer conductor

Country Status (1)

Country Link
JP (1) JP7294651B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020143416A (en) * 2019-03-01 2020-09-10 エーアイシルク株式会社 Conductive polymer conductor, and method of producing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000090732A (en) 1998-09-16 2000-03-31 Matsushita Electric Ind Co Ltd Conductive composition, and manufacture of capacitor
JP2003268082A (en) 2002-03-19 2003-09-25 Matsushita Electric Ind Co Ltd Electroconductive composition, method for producing the same, capacitor using the electroconductive composition and method for producing the same
JP2011124029A (en) 2009-12-09 2011-06-23 Alps Electric Co Ltd Transparent conductive film and its manufacturing method
WO2016148249A1 (en) 2015-03-17 2016-09-22 国立大学法人東北大学 Method for producing electrode element, method for producing electrode, and manufacture of measurement system using said electrode
JP2018055866A (en) 2016-09-27 2018-04-05 東レ株式会社 Conductive fiber, conductive composition, conductive material and manufacturing method of conductive fiber and conductive material
JP6476480B1 (en) 2018-03-30 2019-03-06 エーアイシルク株式会社 Conductive polymer conductor and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000090732A (en) 1998-09-16 2000-03-31 Matsushita Electric Ind Co Ltd Conductive composition, and manufacture of capacitor
JP2003268082A (en) 2002-03-19 2003-09-25 Matsushita Electric Ind Co Ltd Electroconductive composition, method for producing the same, capacitor using the electroconductive composition and method for producing the same
JP2011124029A (en) 2009-12-09 2011-06-23 Alps Electric Co Ltd Transparent conductive film and its manufacturing method
WO2016148249A1 (en) 2015-03-17 2016-09-22 国立大学法人東北大学 Method for producing electrode element, method for producing electrode, and manufacture of measurement system using said electrode
JP2018055866A (en) 2016-09-27 2018-04-05 東レ株式会社 Conductive fiber, conductive composition, conductive material and manufacturing method of conductive fiber and conductive material
JP6476480B1 (en) 2018-03-30 2019-03-06 エーアイシルク株式会社 Conductive polymer conductor and manufacturing method thereof

Also Published As

Publication number Publication date
JP2021028364A (en) 2021-02-25

Similar Documents

Publication Publication Date Title
TWI671334B (en) Conductive polymer conductor, and method of producing the same
JP5984645B2 (en) Pressure sensor and pressure sensor device
Trindade et al. High electrical conductance poly (3, 4-ethylenedioxythiophene) coatings on textile for electrocardiogram monitoring
JP5740038B2 (en) Biological electrode and biological signal measuring device
KR20160113603A (en) Vital sign detection garment
Meng et al. Self-adhesive, biodegradable silk-based dry electrodes for epidermal electrophysiological monitoring
WO2018013920A1 (en) Conductive polymer electrodes, wiring elements, and use thereof in health and sports monitoring
JP7294651B2 (en) Manufacturing method of conductive polymer conductor
CN103462602B (en) Preparation method of spinning electrode used for testing electrocardiosignal
TW201825013A (en) Elastic conductive sheet, elastic wiring, elastic wiring-equipped fabric, and method for restoring conductivity
Yang et al. Toward high-performance multifunctional electronics: Knitted fabric-based composite with electrically conductive anisotropy and self-healing capacity
Tseghai et al. PEDOT: PSS/PDMS-coated cotton fabric for ECG electrode
JP2023143982A (en) Conductive polymer conductor, and method of producing the same
Ragazzini et al. Polyaniline/poly (2-acrylamido-2-methyl-1-propanesulfonic acid) modified cellulose as promising material for sensors design
Hong et al. Washable and Multifunctional Electronic Textiles Via In Situ Lamination for Personal Health Care
CN113873943B (en) Bioelectrode and bioelectrode-attached assembly tool
CN113201929A (en) Flexible temperature sensing material, preparation method thereof and flexible temperature sensor
JP6010203B2 (en) Conductor, biological electrode, and biological signal measuring device
JP6039724B2 (en) Biological electrode and biological signal measuring device
CN110184731B (en) Fabric sensor with negative pressure resistance effect and application thereof
JP6324602B2 (en) Method for producing conductive polymer conductor and method for producing substrate
US10472747B2 (en) Textile with conductive structures
Zhou et al. Design and manufacture of intelligent fabric-based insoles for disease prevention by monitoring plantar pressure
KR102196283B1 (en) Composite materials including self-healing polyester, real time ion-sensor using the composite materials, and wearable device using the ion-sensor
TW201946588A (en) Electronic patch

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230601

R150 Certificate of patent or registration of utility model

Ref document number: 7294651

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150