JP7289355B2 - 基板処理装置、半導体装置の製造方法及びプログラム - Google Patents

基板処理装置、半導体装置の製造方法及びプログラム Download PDF

Info

Publication number
JP7289355B2
JP7289355B2 JP2021529965A JP2021529965A JP7289355B2 JP 7289355 B2 JP7289355 B2 JP 7289355B2 JP 2021529965 A JP2021529965 A JP 2021529965A JP 2021529965 A JP2021529965 A JP 2021529965A JP 7289355 B2 JP7289355 B2 JP 7289355B2
Authority
JP
Japan
Prior art keywords
furnace
refrigerant
heat exchanger
furnace bodies
dampers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021529965A
Other languages
English (en)
Other versions
JPWO2021002228A1 (ja
JPWO2021002228A5 (ja
Inventor
明 堀井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokusai Electric Corp
Original Assignee
Kokusai Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Electric Corp filed Critical Kokusai Electric Corp
Publication of JPWO2021002228A1 publication Critical patent/JPWO2021002228A1/ja
Publication of JPWO2021002228A5 publication Critical patent/JPWO2021002228A5/ja
Application granted granted Critical
Publication of JP7289355B2 publication Critical patent/JP7289355B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • C23C16/463Cooling of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/205

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)

Description

本開示は、基板処理装置、半導体装置の製造方法及びプログラムに関する。
基板処理装置の一例として、半導体製造装置があり、さらに半導体製造装置の一例として、縦型拡散・CVD(Chemical Vapor Deposition)装置が知られている。この縦型拡散・CVD装置において、半導体、ガラス等の基板に加熱下で処理を施すことが行われる。例えば、縦型の処理炉に基板を収容して反応ガスを供給しつつ加熱し、基板上に薄膜を気相成長させる。この種の半導体製造装置において、成膜時またはメンテナンス時に高温となった炉内温度を冷却し、熱を装置本体外へ排出させることが行なわれる。
特開2014-209569号公報 特開2008-205426号公報 特開2011-066106号公報
上述の基板処理装置では、加熱して高温となった炉内温度を短時間で低下させるためにラジエータや排気ブロアを備えている。また、スループットを向上させるために、2つの処理炉を備えた基板処理装置が用いられる場合があるが、2つの処理炉を備えた構成の場合には、処理炉毎にそれぞれラジエータと排気ブロアを設けることがある。
本開示の目的は、2つの処理炉を備えた構成とした場合でも、必要となる設備を削除することにより省スペース化を図ることができる技術を提供することにある。
本開示の一態様によれば、 基板を処理する第1および第2の炉体と、
前記第1および第2の炉体から排出された冷媒を冷却する少なくとも1つの熱交換器と、
前記熱交換器から排出された前記冷媒を吸い込んで下流側へ送り出す少なくとも1つの排気ブロアと、
前記第1および第2の炉体と前記少なくとも1つの熱交換器と前記少なくとも1つの排気ブロアとの間を、前記冷媒を流通可能にそれぞれ接続する第1および第2の流路と、
前記第1および第2の流路の途中で前記熱交換器よりも上流側にそれぞれ設けられ、開度を可変可能な第1および第2のダンパと、
前記第1および第2の炉体の加熱および冷却を制御する制御器と、を備え、
前記第1および第2の流路は、ぞれぞれの少なくとも一部の区間において合流するよう構成される技術が提供される。
本開示によれば、2つの処理炉を備えた構成とした場合でも、必要となる設備を削除することにより省スペース化を図ることができる。
本開示の実施形態に係る基板処理装置を概略的に示す縦断面図である。 本開示の実施形態に係る基板処理装置を概略的に示す横断面図である。 本開示の実施形態に係る基板処理装置を概略的に示す縦断面図である。 本開示の実施形態に係る処理炉を概略的に示す縦断面図である。 図4に示す処理炉の断面図であって、(A)はA-A線断面図、(B)はB-B線断面図、(C)はC-C線断面図、(D)はD-D線断面図、(E)はE-E線断面図である。 本開示の実施形態に係る成膜処理のうち温度に関する処理の一例を示すフローチャートを示す図である。 図6に示したフローチャートにおける炉内の温度変化を示す図である。 本開示の実施形態に係る基板処理装置におけるコントローラの構成と、コントローラと基板処理装置との関係を模式的に示す図である。 本開示の実施形態に係る基板処理装置における温度制御装置の構成を説明するための図である。 (A)~(C)は、本開示の実施形態に係る基板処理装置の変形例を概略的に示す図であって、(D)は、比較例を概略的に示す図である。
本実施形態において、基板処理装置1は、半導体装置(デバイス)の製造方法における製造工程の一工程として熱処理等の基板処理工程を実施する縦型基板処理装置として構成されている。
図1~図3に示すように、基板処理装置1は隣接する2つの処理モジュール3A,3Bを備えている。処理モジュール3Aは、処理炉4Aと処理炉4A内外に搬入出する基板としてのウエハWを一時的に収容する第1の搬送室としての装填室6Aにより構成される。処理モジュール3Bは、処理炉4Bと処理炉4B内外に搬入出するウエハWを一時的に収容する第2の搬送室としての装填室6Bにより構成される。処理炉4A,4Bの下方には、装填室6A,6Bがそれぞれ配置されている。装填室6A,6Bの正面側に隣接して、ウエハWを移載する移載機7を備える移載室8が配置されている。移載室8の正面側には、ウエハWを複数枚収納するポッド(フープ)5を収納する収納室9が連結されている。収納室9の上面又は前面にはロードポート10が設置され、ロードポート10を介して基板処理装置1内外にポッド5が搬入出される。
装填室6A,6Bと移載室8との境界壁(隣接面)には、ゲートバルブ13A,13Bがそれぞれ設置される。移載室8内および装填室6A,6B内には圧力検知器がそれぞれに設置されており、移載室8内の圧力は、装填室6A,6B内の圧力よりも低くなるように設定されている。また、移載室8内および装填室6A,6B内には酸素濃度検知器がそれぞれに設置されており、移載室8内および装填室6A,6B内の酸素濃度は大気中における酸素濃度よりも低く維持されている。図1に示すように、移載室8の天井部には、移載室8内にクリーンエアを供給するクリーンユニット11が設置されており、移載室8内にクリーンエアとして、例えば、不活性ガスを循環させるように構成されている。移載室8内を不活性ガスにて循環パージすることにより、移載室8内を清浄な雰囲気とすることができる。このような構成により、移載室8内に装填室6A,6B内のパーティクル等が混入することを抑制することができ、移載室8内および装填室6A,6B内でウエハW上に自然酸化膜が形成されることを抑制することができる。
ボート20A,20BへのウエハWの移載は移載室8を通じて装填室6A,6Bでそれぞれ行われる。装填室6A,6B内の圧力は基板処理装置1外の圧力よりも低くなるように設定されている。
基板処理に使用されるガスは、後述するガス供給系によって処理室24A,24B内に供給される。ガス供給系が供給するガスは、成膜される膜の種類に応じて換えられる。ここでは、ガス供給系は、原料ガス供給部、反応ガス供給部及び不活性ガス供給部を含む。ガス供給系は供給ボックス17に収納されている。なお、供給ボックス17は、処理モジュール3A,3Bに対して共通に設けられるので、共通供給ボックスと見做される。
基板処理に使用されたガスは、後述するガス排気系によって処理室24A,24B内から排出される。ガス排気系は排気ボックス18A,18Bに収納されている。
処理炉4A,4Bの炉内空間14A,14Bには、それぞれ第1の流路としてのダクト50Aと、第2の流路としてのダクト50Bが接続されている。また、ダクト50Aとダクト50Bは下流側で合流し、第3の流路としてのダクト50Cに接続されている。言い換えれば、ダクト50Cは、ダクト50Aとダクト50Bの一部であってそれらが合流して流れる部分である。ダクト50Cには、上流側から熱交換器としてのラジエータ52と、排気ブロア54と、設備排気接続部55が設けられている。ラジエータ52は、炉内空間14A,14Bを冷却して高温となった気体の冷媒を短時間で排気可能な温度まで冷却する。また、排気ブロア54は、ラジエータ52により冷却された後の冷媒を吸い込んで下流側である設備排気ダクトへ送り出す。ラジエータ52と排気ブロア54は、処理炉4A,4Bの後方に向かって略同じ高さに設けられている。ダクト50A、ダクト50B及びダクト50Cは、ヒータ12Aの内側に形成される炉内空間14Aとヒータ12Bの内側に形成される炉内空間14Bとを、ラジエータ52と排気ブロア54を通して、冷媒を設備排気へ流通可能に接続する。
また、ダクト50A,50Bの途中でラジエータ52よりも上流側には、開度を可変可能な第1のダンパとしてのダンパ53Aと、第2のダンパとしてのダンパ53Bがそれぞれ設けられている。ダンパ53A,53Bは、熱逃げを最小化するために、それぞれ炉内空間14A,14Bの冷媒出口の直近に設けることが好ましい。本例では、ダクト50A,50Bは、ダンパ53A,53Bよりも下流且つラジエータ52よりも上流においてダクト50Cへと合流し、ラジエータ52と排気ブロア54の両方が、炉内空間14Aと炉内空間14Bの冷却に共通に用いられるよう構成されている。
図2及び図3に示すように、処理モジュール3A,3Bの各構成であって、処理炉4A,4B内の各構成、装填室6A,6B内の各構成は、それぞれ処理モジュール3A,3Bの隣接面(境界面)を対称面として、左右対称であって、面対称に配置されている。また、図2に示すように、ダクト50Aの長さとダクト50Bの長さが同じで、ダクト50Aとダンパ53A、ダクト50Bとダンパ53Bは、それぞれダクト50Cを中心として左右対称に配置され、ダクト50Aにおけるダンパ53Aの位置と、ダクト50Bにおけるダンパ53Bの位置が、略同じとなるように構成されている。
炉内空間14A,14Bの冷却時に使用されるラジエータ52と排気ブロア54は、冷却ボックス19に収納されている。なお、冷却ボックス19は、処理モジュール3A,3Bに対して共通に設けられるので、共通冷却ボックスと見做される。
ガス供給系、ガス排気系、搬送系およびラジエータ52、排気ブロア54、ダンパ53A、53B等には、これらを制御する制御器としてのコントローラ100が接続される。コントローラ100は、例えば、CPUを備えたマイクロプロセッサ(コンピュータ)からなり、基板処理装置1の動作を制御するよう構成される。コントローラ100には、例えばタッチパネル等として構成された入出力装置102が接続されている。コントローラ100は、処理モジュール3Aと処理モジュール3Bとで共通して1つ設置されうる。
記憶部104は、コントローラ100に内蔵された記憶装置(ハードディスクやフラッシュメモリ)であってもよいし、可搬性の外部記録装置(例えばUSBメモリやメモリカード等の半導体メモリ)であってもよい。また、コンピュータへのプログラムの提供は、ネットワーク等の通信手段を用いて行ってもよい。プログラムは、必要に応じて、入出力装置102からの指示等にて記憶部104から読み出され、読み出されたレシピに従った処理をコントローラ100が実行することで、基板処理装置1は、コントローラ100の制御のもと、所望の処理を実行する。コントローラ100は、コントローラボックス105に収納される。レシピの開始の指示は、処理モジュール毎に外部からランダムなタイミングで与えられうる。
コントローラ100は、ダンパ53A,53Bの開閉動作を、冷却のタイミングが処理炉4Aと処理炉4Bとで重ならないように制御することができる。例えば、コントローラ100は、冷却する側の処理炉4Aのダンパ53Aを開にし、冷却しない側の処理炉4Bのダンパ53Bを閉として、炉内空間14Aの冷却と炉内空間14Bの冷却を切り替える。このためにコントローラ100は、次にダンパ53A,53Bを開けるタイミングを予測し、ダンパ53A,53Bの開いている期間が重ならないか、重なったとしても、先に開くダンパを有する処理モジュールの処理炉の温度が、後に開くダンパの開放時点で所定以下に冷却されるような時間差を有するように、処理モジュール3Aと処理モジュール3Bで行われるレシピの開始時刻を調整する。つまり熱処理のタイミングを異ならせる。例えば、各処理モジュールのレシピは、逆位相で進行しうる。また先行するレシピの急冷の末期では、冷媒の温度が低下しているため、急冷期間の部分的な重複が許容される場合がある。レシピの開始の調整が必要なことはまれであり、処理モジュール間の独立性は実用に障害とならない程度に維持される。
なお、ダンパ53A,53Bに代えてダクト50A,50Bの合流点に3方弁を設けてもよい。3方弁として、3ポートの内のいずれか2ポート間を接続するだけでなく、3ポート同時連通、同時閉塞可能なものを用いることができる。この場合も、2つの処理炉4A,4Bのレシピが、3ポート同時連通する時間が0もしくは急冷期間に比べて十分小さくなるように進行することとなる。ダンパ53A,53Bに代えて3方弁を用いることにより、部品点数が削減され、省スペース化、省エネルギー化(コストの低減)を図ることができる。また、ダンパ53A,53Bに加えて、さらに3方弁を設けてもよい。これにより、ダクト50Aおよびダクト50Bを、ダンパ53Aおよびダンパ53Bの下流側において選択的にラジエータ52と流通可能に接続することができる。
処理炉4Aおよび処理炉4Bは同一の構成を備えるため、以下においては、処理炉4として説明する。
図4に示すように、処理炉4は、円筒状の炉体としてのヒータ12と、ヒータ12の内部に炉内空間14を以て収容された円筒状の反応管16と、反応管16内に処理対象のウエハWを保持するボート20とを備えている。ボート20はウエハWを水平状態で隙間をもって多段に装填でき、この状態で複数枚のウエハWを反応管16内で保持する。ボート20はボートキャップ22を介して図外のエレベータ上に載置されており、このエレベータにより昇降可能となっている。したがって、ウエハWの反応管16内への装填および反応管16からの取り出しはエレベータの作動により行われる。また、反応管16はウエハWを収容する処理室24を形成しており、反応管16内には図示しないガス導入管が連通され、ガス導入管にはガス供給系が接続されている。また、反応管16内にはガス排気管56が連通され、処理室24内の排気を行っている。
ヒータ12は、円筒形状であって、複数の断熱体が積層された構造の断熱構造体と、断熱構造体の内側で炉内空間14を加熱する発熱体としての発熱部30を有する構成となっている。発熱部30は、ヒータ12の内側に、複数のゾーンに分割して設けられる。ヒータ12は、ヒータ12の内側においてウエハWを加熱して熱処理する。
断熱構造体は、円筒形状に形成された断熱部としての側壁部32と、側壁部32の上端を覆うように形成された断熱部としての上壁部33と、を有している。
側壁部32は複数層構造に形成され、側壁部32の複数層のうち外側に形成された側壁外層32aと、複数層のうち内側に形成された側壁内層32bから構成される。側壁外層32aと側壁内層32bとの間には冷媒通路としての円筒空間34が形成されている。そして、側壁内層32bの内側に発熱部30が設けられ、発熱部30の内側が炉心となっている。尚、側壁部32は、複数の断熱体が積層された構造であるが、このような構造に限定されないのはいうまでもない。
上壁部33の側部若しくは側壁外層32aの上部には、空気等の冷媒を処理炉4内(ヒータ12内)に供給する冷媒供給口36が形成されている。また、側壁外層32aの下部には、冷媒を処理炉4内(ヒータ12内)から排出する冷媒排出口43が形成されている。
図5(A)に示されているように、円筒空間34の上端であって、冷媒供給口36の略水平方向には、冷媒供給口36と円筒空間34に連通するバッファエリアとしてのダクト38aが設けられている。本実施の形態では、冷媒供給口36が環状に設けられているが、この形態に限定されないのはいうまでもない。上壁部33には、ヒータ12の中心軸上に円形の急冷排気口40が形成されており、この急冷排気口40は炉内空間14に開口している。また、ダクト38aの上方であって、上壁部33の側面には、冷媒排出口42が形成され、急冷排気口40に連通している。
図5(E)に示されているように、円筒空間34の下端であって、冷媒排出口43の略水平方向には、冷媒排出口43と円筒空間34に連通するバッファエリアとしてのダクト38bが設けられている。ダクト38bは、環状を有し、冷媒排出口43と円筒空間34のいずれの断面積よりも広く形成される。
すなわち、円筒空間34の両端部に、円筒空間34よりも広く形成されたバッファエリアとしてのダクト38a,38bが設けられている。
また、ダクト38aと円筒空間34との境界には、円筒空間34である冷媒通路を絞って(冷媒通路の断面積を小さくして)冷媒の流量を小さくする絞り部37aが設けられている。すなわち、ダクト38aと円筒空間34との境界面には、図5(B)に示されているように、絞り穴41aが円周方向に均等に複数形成されている。
また、ダクト38bと円筒空間34との境界には、円筒空間34である冷媒通路を絞って(冷媒通路の断面積を小さくして)冷媒の流量を小さくする絞り部37bが設けられている。すなわち、ダクト38bと円筒空間34との境界面には、図5(D)に示されているように、絞り穴41bが円周方向に均等に複数形成されている。
また、絞り穴41aの断面積は、絞り穴41bの断面積よりも大きく形成されている。また、複数の絞り穴41aの断面積の合計がダクト38a,38bのいずれの断面積よりも小さく形成されている。
また、図5(C)に示されているように、冷媒供給口36下方の側壁内層32bには、円筒空間34と炉内空間14とを連通する吹出孔35が所要の分布で複数形成されており、図4に示すように円筒空間34と炉内空間14とを略水平に連通している。すなわち、円筒空間34から炉内空間14へ冷媒を吹出すように構成されている。
又、冷媒排出口42及び冷媒排出口43は、排気管45a,45bにそれぞれ接続されて、ダクト50で合流される。具体的には、処理炉4A,4Bの、排気管45a,45bは、ダクト50A,50Bへとそれぞれ合流される。そして、ダクト50Aとダクト50Bがダクト50Cで合流される。ダクト50Cには、上流側からラジエータ52及び排気ブロア54が接続され、排気ブロア54には設備排気ダクト55が接続されており、これらダクト50、ラジエータ52、排気ブロア54、設備排気ダクト55を介してヒータ12A,12B内の熱せられた冷媒が、基板処理装置1が設置されているクリーンルームの外へ排出される。
ここで、ダクト38a中の冷媒供給口36の近傍には、開閉可能な弁であるダンパ39aが設けられている。また、ダクト50中の冷媒排出口42及びダクト50の近傍には、開閉可能なダンパ39bが設けられている。また、冷媒排出口43及びダクト38bの近傍には、開閉可能なダンパ39cが設けられている。そして、ダンパ39b,39cをダクト50又はダクト38b近傍に配置することにより、未使用時の排出口におけるダクトからの対流の影響を少なくし、ダクト周辺での基板内温度均一性を良好にすることができる。
更に、ダンパ39aの開閉及び排気ブロア54のON/OFFにより冷媒の供給が操作され、ダンパ39b又はダンパ39cの開閉及び排気ブロア54のON/OFFにより円筒空間34を閉鎖及び開放して、冷媒排出口42又は冷媒排出口43からそれぞれ冷媒を排出する。
また、ダクト50Cのラジエータ52の下流側であって排気ブロア54の上流側には、排気ブロア54の上流側の圧力を検出する圧力センサ131が設けられている。
排気ブロア制御装置80は、減算器1002と、PID演算器1004と、回転数変換器1006と、回転数指示器1008とから構成される。減算器1002には、プロセス制御装置81から圧力目標値Sが入力される。減算器1002には、圧力目標値Sに加えて、圧力センサ131によって計測された圧力値Aが入力され、減算器1002で、圧力目標値Sから圧力値Aを減算した偏差Dが出力される。ここで、圧力目標値Sは、排気ブロア54の吸気側が大気圧に比べて所定の負圧を維持するような値である。
偏差Dは、PID演算器1004に入力される。PID演算器1004では、入力された偏差Dに基づいてPID演算がなされ操作量Xが算出される。算出された操作量Xは、回転数変換器1006に入力され、回転数変換器1006で回転数Tへと変換され出力される。出力された回転数Tはインバータ132へと入力され、排気ブロア54の回転数が変更される。
圧力センサ131からの圧力値Aは、常時又は所定時間間隔で減算器1002へと入力され、この圧力値Aに基づいて、圧力目標値Sと圧力値Aとの偏差Dが0となるように、排気ブロア54の回転数の制御が続けられる。以上のように、圧力センサ131によって計測された圧力値Aと予め定められた圧力目標値Sとの偏差Dがなくなるように、排気ブロア54の回転数がインバータ132を介して制御される。圧力センサ131の示す圧力Aが圧力目標値Sよりも高いことは、何らかの異常を示しており、圧力Aは日常的に点検されうる。
PID演算器1004で回転数Tを演算することに替えて、プロセス制御装置81から回転数指示器1008に回転数設定値Tを入力して、回転数指示器1008から回転数Tをインバータ132へと入力することで、排気ブロア54の回転数を変更しても良い。また圧力センサ131に代えて流速センサを用い、ダクト50C内の流量を一定にするよう制御してもよい。
次に、図6及び図7を用いて処理炉4で行われる成膜処理の一例について説明する。図6は、処理炉4で行われる成膜処理のうち温度に関する処理の一例を示すフローチャートであり、図7は、炉内の温度変化を概略的に示したものである。図7に記されている符号S1~S6は、図6の各ステップS1~S6が行われることを示している。
ステップS1は、炉内の温度を比較的低い温度T0に安定させる処理である。ステップS1では、ウエハWはまだ炉内に挿入されていない。
ステップS2は、ボート20に保持されたウエハWを炉内へ挿入する処理である。ウエハWの温度は、この時点で炉内の温度T0より低いので、ウエハWを炉内へ挿入した結果、炉内の温度は一時的にT0より低くなるが、後述する温度制御装置74等により炉内の温度は若干の時間を経て再び温度T0に安定する。
ステップS3は、温度T0からウエハWに成膜処理を施すための目標温度T1まで、一定のレートで炉内の温度を上昇させる処理である。
ステップS4は、ウエハWに成膜処理を施すために炉内の温度を目標温度T1で維持して安定させる処理である。
ステップS5は、成膜処理終了後に温度T1から再び比較的低い温度T0まで一定のレートで炉内の温度を下降させる処理である。
ステップS6は、成膜処理が施されたウエハWをボート20と共に炉内から引き出す処理である。
成膜処理を施すべき未処理のウエハWが残っている場合には、ボート20上の処理済ウエハWが未処理のウエハWと入れ替えられ、これらステップS1~S6の一連の処理が繰り返される。
ステップS1~S6の処理は、いずれも目標温度に対し、炉内温度が予め定められた微小温度範囲にあり、且つ予め定められた時間だけその状態が続くといった安定状態を得た後、次のステップへ進むようになっている。あるいは、最近では、一定時間でのウエハWの成膜処理枚数を大きくすることを目的として、ステップS1,S2,S5,S6等においては安定状態を得ずして次のステップへ移行することも行われている。
反応管16内には、ボート20と並列して、反応管16内の上方から順に、基板温度を検知する第1の温度センサ27-1,27-2,27-3,27-4が設置されている。第1の温度センサ27-1,27-2,27-3,27-4は、それぞれヒータ12の上から、ヒータゾーンU,CU,CL,LのウエハWの温度に対応する温度を検出する基板温度センサとして用いられる。
また、炉内空間14には、反応管16と並列して、炉内空間14内の上方から順に、ヒータ温度を検知する第2の温度センサ70-1,70-2,70-3,70-4が設置されている。第2の温度センサ70-1,70-2,70-3,70-4は、それぞれヒータ12の上から、ヒータゾーンU,CU,CL,Lの炉内空間もしくは発熱部30の温度に対応する温度を検出するヒータ温度センサとして用いられる。
次に、炉内温度が適している場合の処理について説明する。
炉内温度が適しており、安定している場合には、ダンパ39a,39b,39cが全て閉じられ、排気ブロア54も停止される(炉内温度安定制御状態)。このとき、冷媒通路である円筒空間34の冷媒は静止状態で省エネ効果が高い状態となっている。すなわち、図6、図7におけるステップS4(ウエハWの成膜処理中)の状態である。
次に、炉内を急速に冷却する場合の急冷処理について説明する。
急速冷却時には、ダンパ39cを閉じて、ダンパ39aを開くとともにダンパ39bを開いて排気ブロア54を作動させる(急速冷却制御状態)。冷媒供給口36から供給された冷媒は、ダクト38aを介して絞り部37aで均一化された後、円筒空間34に導入される。円筒空間34に導入された冷媒は円筒空間34を下降し、吹出孔35を介して炉内空間14内に導入される。この炉内空間14に導入された冷媒は、炉内空間14を上昇し、急冷排気口40を介して冷媒排出口42から排出され、発熱部30を外面、内面の両側から冷却する。すなわち、ヒータ12内の熱せられた冷媒を冷媒排出口42を介して外部へ放出して、ヒータ12内の温度を降下させる。すなわち、図6、図7におけるステップS5(ウエハWの成膜処理後、ボートアンロード前)の状態である。このような急冷処理は、成膜処理終了後のウエハ冷却時や、ボートアンロード時、ウエハディスチャージ時、堆積膜を強制的に剥離除去する時等に実行されうる。急冷処理の降温レートは、自然冷却のそれの5倍以上であり、例えば15℃/分以上である。
次に、炉内の温度をリカバリーする場合の処理について説明する。
温度リカバリー時には、ダンパ39bを閉じて、ダンパ39aを開くとともにダンパ39cを開いて排気ブロア54を作動させる(温度リカバリー時制御状態)。冷媒供給口36から供給された冷媒は、ダクト38aを介して絞り部37aで均一化された後、円筒空間34に供給され、炉内空間14、急冷排気口40を経由せず、絞り部37bで均一化された後、ダクト38bを経由して冷媒排出口43から排気される。このように、発熱部30を発熱させたまま、側壁部32を冷却することで、ヒータ12内の輻射のスペクトルのピークを高温側にシフトさせ、炉心のウェハWを効果的に加熱する。
温度制御装置74が、上述した炉内温度安定制御状態、急速冷却制御状態、温度リカバリー時制御状態等の温度制御モードを状況に応じて、ダンパ制御装置82によるダンパ39a,39b,39cの開閉、排気ブロア制御装置80による排気ブロア54の回転の制御をすることにより、良好な基板温度均一性を維持しつつ、温度リカバリー特性と消費電力低減の両立が可能となる。すなわち、コントローラ100は、ヒータ12A,12Bそれぞれにおいて、独立したタイミングによりウエハWを熱処理するように、ヒータ駆動装置76-1~76-4によるヒータゾーンU,CU,CL,Lの発熱部30の加熱と、ダンパ制御装置82によるダンパ39a,39b,39cの開閉、ダンパ制御装置82によるダンパ53A,53Bの開閉、ラジエータ52及び排気ブロア54の回転等を制御する。つまり、コントローラ100は、ヒータ12A,12Bにおけるダンパ39b,39cの開度をそれぞれ調整して、異なる温度のヒータ12A,12Bを、それぞれ共通の所定の降温レートで冷却する。
図8は、基板処理装置1を制御するコントローラ100の構成と、コントローラ100と処理炉4の関係を模式的に示す図である。
図8に示すように、コントローラ100は、流量制御装置78と、温度制御装置74と、ヒータ駆動装置76-1,76-2,76-3,76-4と、排気ブロア制御装置80と、ダンパ制御装置82と、プロセス制御装置81を備えている。
流量制御装置78は、流量センサ64による検出結果に基づいてガス流量調整器62により処理室24内に供給するガスの流量を調整する。ガス流量調整器62は、不図示のガス導入ノズルを介して反応管16内に導かれるガスの流量を調節する。流量センサ64は、ガス導入ノズルを介して反応管16内に供給されるガスの流量を測定する。
温度制御装置74は、ヒータ12を上から、ヒータゾーンU,CU,CL,Lの4つの領域に分割し、それぞれ対応するヒータ駆動装置76-1,76-2,76-3,76-4を制御する。具体的には、温度制御装置74は、ヒータゾーンUに配置された第1の温度センサ27-1及び第2の温度センサ70-1により検出された検出温度に基づいて、ヒータ駆動装置76-1を制御する。他のゾーンも同様に制御される。
ダンパ制御装置82は、プロセス制御装置81が決定した温度制御モード(レシピ)に応じて、ダンパ39a,39b及び39cの開度や、ダンパ53A,53Bの開閉を制御する。また、急速冷却制御状態以外の所定の温度制御モードにおいては、温度制御装置74から与えられた開度を用いて、ダンパ39b等の制御を行なう。
排気ブロア制御装置80は、圧力センサ131により検出された圧力値に基づいて排気ブロア54の回転数を制御する。
コントローラ100は、これらの構成部分により、記憶部104又は入出力装置102から設定された温度および圧力・流量の設定値に基づいて基板処理装置1としての半導体製造装置の各構成部分を制御する。コントローラ7の内部で行われる制御方法としては、通常、図12に示されるような、いわゆるカスケード制御が用いられている。図12では、コントローラ7と電力制御部8との接続が示され、さらに温度コントローラ7の内部については、制御出力の演算方法についてブロック図で表されている。入力端Sには、温度設定部6からの目標温度が入力される。
次に、温度制御装置74の内部で行われる制御方法について図9を用いて説明する。なお、設定温度及び入力端S、入力端A、入力端B及び出力端Fは、それぞれ第1温度センサ27-1,27-2,27-3,27-4の個数分だけ存在する。入力端Sには、プロセス制御装置81からそれぞれのヒータゾーンU,CU,CL,Lにおける設定温度が入力される。入力端Aには、第1の温度センサ27-1,27-2,27-3,27-4からの基板温度が入力される。入力端Bには、第2の温度センサ70-1,70-2,70-3、70-4からのヒータ温度が入力される。
図9では、ヒータゾーンUのためのカスケード制御ループを示している。
温度制御装置74は、減算器521と、PID演算器522と、減算器523と、PID演算器524と、フィルタ525と、減算器526と、PD演算器527と、変換器528と、基準テーブル529とから構成される。
減算器521には、プロセス制御装置81からヒータゾーンUの設定温度Sが入力される。減算器521には、設定温度Sに加えて、第1の温度センサ27-1によって検出された検出温度Aが入力され、減算器521で、設定温度Sから検出温度Aを減算した偏差Cが出力される。
偏差Cは、PID演算器522に入力される。PID演算器522では、入力された偏差Cに基づいてPID演算がなされ操作量Dが算出される。算出された操作量Dは、減算器523に入力される。
減算器523には、第2の温度センサ70-1によって検出された検出温度Bが入力され、減算器523で、操作量Dに基づくヒータ温度に対する目標温度から検出温度Bを減算した偏差Eが出力される。
偏差Eは、PID演算器524に入力される。PID演算器524では、入力された偏差Eに基づいてPID演算がなされ操作量Fが算出される。
算出された操作量Fは、ヒータ駆動装置76-1へ入力される。ヒータ駆動装置76-1は、入力された操作量Fに基づいてサイリスタの導通角を調整し、ヒータゾーンUの発熱部30への電力量(供給電力)を制御する。
同様に、ヒータ駆動装置76-2,76-3,76-4はそれぞれ、ヒータゾーンCU,CL,Lにおける、設定温度、入力端S、入力端A、入力端Bを用いることにより算出された操作量Fに基づいてヒータゾーンCU,CL,Lの発熱部30への電力量(供給電力)をそれぞれ制御する。
また、操作量Fは、フィルタ525を介して減算器526に入力される。フィルタ525は操作量Fを時間領域で平滑化し、操作量fとして出力するフィルタであり、制御系の共振周波数における1周期以上の時間の操作量Fに基づく平滑化値を算出しうる。なお、負の操作量Fが入力されたときには直ちに0の操作量fを出力してもよい。減算器526には、基準テーブル529から基準量Gが入力される。
基準テーブル529は、例えばゾーン毎且つ設定温度毎に、安定状態における操作量Fを記憶しており、基準量として出力する。なお基準量は、炉内温度安定制御状態、定レート昇温中、定レート降温中、及びそれらの状態間の遷移中などの状態に応じて、早く収束するように連続的に調整されうる。例えば、定レート昇温中から炉内温度安定制御状態に遷移する際は、加熱と冷却とを同時に行い応答性を改善するために、基準量は一時的に小さくされうる。また炉内温度安定制御状態では、冷却が容易に作動しないように基準量は大きく設定されうる。
減算器526で、基準量Gから操作量fを減算した偏差Hが出力される。正の偏差Hは、ヒータが冷却されるべきであることを示唆する。
偏差Hは、PD演算器527に入力される。PD演算器527では、入力された偏差Hに基づいてPD演算がなされ操作量Iが算出される。
算出された操作量Iは、変換器528によりダンパ39bの開度に変換される。なお負の操作量Iは、0(全閉)に変換され、所定以上の操作量Iは、全開に変換される。そして、ダンパ制御装置82は、変換された開度に基づいて、ダンパ39bの開度を制御する。
本例では、ダンパ39bの開度は、ヒータゾーンUの発熱部30への操作量Fを、制御量として用いるが、他のヒータゾーンの操作量でもよい。例えば、ヒータゾーンU,CU,CL,Lの発熱部30への操作量Fの重み付き平均値を制御量として用いてもよい。なお、実際のヒータゾーンUの発熱部30への操作量(供給電力)は非負値であるが、操作量Fは負にもなりえる。
このように、コントローラ100は、ヒータゾーンU,CU,CL,L毎に、第1の温度センサ27-1~27-4の検出温度がそれぞれ目標値に従うように、第2の温度センサ70-1~70-4の検出温度を参照しながら各ヒータゾーンの発熱部30の発熱量を制御するとともに、急冷時などには、第1の温度センサ27-1,27-4の検出温度が、目標値に従うように、第2の温度センサ70-1,70-4の検出温度を参照しながら、ダンパ39b及びダンパ39cの開度をそれぞれ調整することができる。
(変形例)
以下いくつかの変形例を説明する。
(変形例1)
図10(A)は、変形例1に係る基板処理装置のヒータ12A,12B部分の一例を概略的に示す上面図である。
図10(A)に示すように、ヒータ12A,12B内には、それぞれダクト50A、50Bが接続されている。また、ダクト50Aとダクト50Bは下流側で合流し、ダクト50Cに接続されている。ダクト50Cには、上流側から高性能のラジエータ152と、高性能の排気ブロア154が設けられている。また、ダクト50A,50Bの途中でラジエータ152よりも上流側には、それぞれ開度を可変可能なダンパ53A,53Bが設けられている。すなわち、ダクト50A,50Bは、ダクト50Cにおいて合流し、高性能のラジエータ152と高性能の排気ブロア154の両方が、ヒータ12Aとヒータ12Bの急冷に共通に用いられるよう構成されている。本変形例では、ラジエータ152と排気ブロア154として、高性能なものを用いることで、ダンパ53A及びダンパ53Bを同時に開いて、ヒータ12Aとヒータ12Bを同時急冷することができる。このとき、ダンパ53A及びダンパ53Bを全開にせずとも、所要の降温レートが得られる程度に、性能に余裕のあるラジエータ152等を用いることが好ましい。これにより、レシピの開始時間の調整は不要となり、処理モジュール3A,3B間の独立性が担保される。また、例えばダンパ53Aを開、ダンパ53Bを閉として、ヒータ12Aのみを急冷する場合であっても、急冷時間を短縮することができる。
(変形例2)
図10(B)は、変形例2に係る基板処理装置のヒータ12A,12B部分の一例を概略的に示す上面図である。
図10(B)に示すように、ヒータ12A,12B内には、それぞれダクト50A、50Bが接続されている。また、ダクト50Aとダクト50Bは下流側で合流し、ダクト50Cに接続されている。ダクト50Cには、高性能の排気ブロア154が設けられている。また、ダクト50A,50Bには、それぞれラジエータ52A,52Bが設けられている。また、ダクト50A,50Bの途中でラジエータ52A,52Bよりも上流側には、それぞれ開度を可変可能なダンパ53A,53Bが設けられている。すなわち、ダクト50A,50Bは、ダクト50Cにおいて合流し、高性能の排気ブロア154が、ヒータ12Aとヒータ12Bの急冷に共通に用いられるよう構成されている。本変形例では、排気ブロア154として、高性能なものを用いることで、ダンパ53A及びダンパ53Bを同時に開いて、ヒータ12Aとヒータ12Bを並行して急冷することができる。
(変形例3)
図10(C)は、変形例3に係る基板処理装置のヒータ12A,12B部分の一例を概略的に示す上面図である。
図10(C)に示すように、ヒータ12A,12Bには、それぞれダクト50A,50Bが接続されている。また、ダクト50Aとダクト50Bは途中で合流し、ダクト50Cに接続されている。ダクト50Aは、ダクト50Cの上流側のダクト50A-1と、ダクト50Cの下流側のダクト50A-2とから構成される。ダクト50Bは、ダクト50Cの上流側のダクト50B-1と、ダクト50Cの下流側のダクト50B-2とから構成される。ダクト50A-1,50B-1には、それぞれ開度を可変可能なダンパ53A-1,53B-1が設けられている。ダクト50A-2,50B-2には、それぞれ排気ブロア54A,54Bが設けられている。ダクト50A-2,50B-2の排気ブロア54A,54Bの上流側には、それぞれ開度を可変可能なダンパ53A-2,53B-2が設けられている。ダクト50Cには、高性能のラジエータ152が設けられている。すなわち、ダクト50A,50Bは、ダクト50Cにおいて合流し、ラジエータ152が、ヒータ12Aとヒータ12Bの急冷に共通に用いられるよう構成されている。本変形例では、ラジエータ152として、高性能なものを用いているため、ダンパ53A-1,53A-2とダンパ53B-1,53B-2を同時に開いて、ヒータ12Aとヒータ12Bを同時急冷することができる。
(比較例)
図10(D)は、比較例に係る基板処理装置の処理炉部分の一例を概略的に示す上面図である。
図10(D)に示すように、ヒータ12A,12Bには、それぞれダクト50A,50Bが接続されている。また、ダクト50Aとダクト50Bには、それぞれラジエータ52A,52B、排気ブロア54A,54Bが設けられている。また、ダクト50A,50Bの途中でラジエータ52A,52Bよりも上流側には、それぞれ開度を可変可能なダンパ53A,53Bが設けられている。すなわち、ヒータ12A,12Bには、それぞれラジエータ52と排気ブロア54が備えられている。
すなわち、本実施形態及び変形例によれば、比較例と比較して部品点数が少ないため、基板処理装置の省スペース化、省エネルギー化が可能である。
本実施形態によれば、以下の1また複数の効果を得ることができる。
1)複数の処理炉間において、高スループット化と省スペース化の相反する条件の両立を実現し、炉内温度を迅速に低下させることができる。特にプロセス最高温度からの同時急冷が生じないように、複数の処理モジュールの間でレシピの進行をずらすことで、ラジエータ52や排気ブロア54の小型化が実現される。
2)複数の処理炉に対して、ラジエータ又は排気ブロアの少なくとも一つを共有するので、それらの設備を削除することにより省スペース化、省資源化を図ることができ、また点検箇所が減り、保守も容易となる。
3)複数の処理炉間において、急冷期間の一部または全部が重なったとしても、決められた降温レートで急冷を行うことができ、ウェハに形成される膜質を同等にすることができるとともに、反応管16の熱履歴を同等にすることができる。
4)処理モジュールの境界面を対称面として左右対称に各構成を配置することにより、左右の処理モジュールでの成膜の品質のばらつきを抑制することができる。また、左右の処理モジュールにおいて同様の条件で成膜を実施することができ、成膜の品質を揃えることができるため、生産性を向上させることができる。さらに、各処理モジュールに接続されるダクトとダンパをこれらのダクトが合流するダクトを中心として左右対称に配置することにより、左右の処理モジュールでの成膜の品質のばらつきを抑制することができる。また、左右の処理モジュールにおいて同様の条件で成膜を実施することができ、成膜の品質を揃えることができるため、生産性を向上させることができる。
1 基板処理装置
3 処理モジュール
4 処理炉
12 ヒータ
16 反応管
52 ラジエータ(熱交換器)
53 ダンパ
54 排気ブロア
100 コントローラ

Claims (20)

  1. 基板を処理する第1および第2の炉体と、
    前記第1および第2の炉体から排出された冷媒を冷却する少なくとも1つの熱交換器と、
    前記熱交換器から排出された前記冷媒を吸い込んで下流側へ送り出す少なくとも1つの排気ブロアと、
    前記第1および第2の炉体と前記少なくとも1つの熱交換器と前記少なくとも1つの排気ブロアとの間を、前記冷媒を流通可能にそれぞれ接続する第1および第2の流路と、
    前記第1および第2の流路の途中で前記熱交換器よりも上流側にそれぞれ設けられ、開度を可変可能な第1および第2のダンパと、
    前記第1および第2の炉体の加熱および冷却を制御する制御器と、を備え、
    前記第1および第2の流路は、それぞれの少なくとも一部の区間において合流するよう構成され、
    前記第1の炉体内外へ搬入出する基板を一時的に収容する第1の搬送室と、前記第2の炉体内外へ搬入出する基板を一時的に収容する第2の搬送室と、をさらに備え、
    前記第1の炉体内の構成および前記第1の搬送室内の構成と、前記第2の炉体内の構成および前記第2の搬送室内の構成とは、前記第1の搬送室と前記第2の搬送室との隣接面を対称面として左右対称に配置されている
    基板処理装置。
  2. 基板を処理する第1および第2の炉体と、
    前記第1および第2の炉体から排出された冷媒を冷却する少なくとも1つの熱交換器と、
    前記熱交換器から排出された前記冷媒を吸い込んで下流側へ送り出す少なくとも1つの排気ブロアと、
    前記第1および第2の炉体と前記少なくとも1つの熱交換器と前記少なくとも1つの排気ブロアとの間を、前記冷媒を流通可能にそれぞれ接続する第1および第2の流路と、
    前記第1および第2の流路の途中で前記熱交換器よりも上流側にそれぞれ設けられ、開度を可変可能な第1および第2のダンパと、
    前記第1および第2の炉体の加熱および冷却を制御する制御器と、を備え、
    前記第1および第2の流路は、それぞれの少なくとも一部の区間において合流するよう構成され、
    前記第1の流路と前記第2の流路とは、前記第1の流路と前記第2の流路の合流区間に対して左右対称に配置され、前記第1のダンパと前記第2のダンパとは、前記合流区間に対して左右対称に配置されている
    基板処理装置。
  3. 左右に並んで設けられ、基板を処理する第1および第2の炉体と、
    前記第1および第2の炉体から排出された冷媒を冷却する少なくとも1つの熱交換器と、
    前記熱交換器から排出された前記冷媒を吸い込んで下流側へ送り出す少なくとも1つの排気ブロアと、
    前記第1および第2の炉体と前記少なくとも1つの熱交換器と前記少なくとも1つの排気ブロアとの間を、前記冷媒を流通可能にそれぞれ接続する第1および第2の流路と、
    前記第1および第2の流路の途中で前記熱交換器よりも上流側にそれぞれ設けられ、開度を可変可能な第1および第2のダンパと、
    前記第1および第2の炉体の加熱および冷却を制御する制御器と、を備え、
    前記第1および第2の流路は、それぞれの少なくとも一部の区間において合流するよう構成され、
    前記熱交換器と前記排気ブロアとが前記第1および第2の炉体の後方に向かって略同じ高さに設けられている
    基板処理装置。
  4. 基板を処理する第1および第2の炉体と、
    前記第1および第2の炉体から排出された冷媒を冷却する少なくとも1つの熱交換器と、
    前記熱交換器から排出された前記冷媒を吸い込んで下流側へ送り出す少なくとも1つの排気ブロアと、
    前記第1および第2の炉体と前記少なくとも1つの熱交換器と前記少なくとも1つの排気ブロアとの間を、前記冷媒を流通可能にそれぞれ接続する第1および第2の流路と、
    前記第1および第2の流路の途中で前記熱交換器よりも上流側にそれぞれ設けられ、開度を可変可能な第1および第2のダンパと、
    前記第1および第2の炉体の加熱および冷却を制御する制御器と、を備え、
    前記第1および第2の流路は、それぞれの少なくとも一部の区間において合流するよう構成され、
    前記制御器は、次に前記第1および第2のダンパを開けるタイミングを予測し、前記第1および第2のダンパの開いている期間が重ならないか、重なったとしても、先に開く前記第1又は第2のダンパを有する第1又は第2の炉体の温度が、後に開く前記第1又は第2のダンパの開放時点で所定以下に冷却されるような時間差を有するように、第1および第2の炉体で行われるレシピの開始時刻を調整する
    基板処理装置。
  5. 前記制御器は、前記第1および第2のダンパの開度を調整して、異なる温度の前記第1および第2の炉体が、前記冷媒によって共通の所定の降温レートで並行して冷却されるように制御可能に構成される請求項1から4のいずれか一項に記載の基板処理装置。
  6. 前記制御器は、前記第1および第2の炉体で、異なるタイミングにより前記基板を熱処理し、前記第1および第2のダンパの開度を調整して、異なる温度の前記第1および第2の炉体が、前記冷媒によって共通の所定の降温レートで並行して冷却されるように制御可能に構成される請求項1から4のいずれか一項に記載の基板処理装置。
  7. 前記第1および第2の炉体のそれぞれは、
    前記炉体の内側に、複数のゾーンに分けて設けられる発熱体と、
    前記ゾーン毎に、前記炉体もしくは前記発熱体の温度に対応する温度を検出するヒータ温度センサと、
    前記ゾーン毎に、前記基板の温度に対応する温度を検出する基板温度センサと、を有し、
    前記制御器は、前記ゾーン毎に、前記基板温度センサの検出温度が目標値に従うように、前記ヒータ温度センサの検出温度を参照しながら前記発熱体の発熱量を制御するとともに、前記第1および第2の炉体の冷却を行う際は、前記基板温度センサの検出温度が、所定の降温レートで降下する目標値に従うように、前記ヒータ温度センサの検出温度を参照しながら、前記開度を調整することができるように構成された請求項5又は6記載の基板処理装置。
  8. 前記第1および第2の炉体のそれぞれは、
    前記炉体の内側に、設けられた発熱体と、
    前記炉体もしくは前記発熱体の温度に対応する温度を検出するヒータ温度センサと、
    前記基板の温度に対応する温度を検出する基板温度センサと、を有し、
    前記制御器は、前記基板温度センサの検出温度が目標値に従うように、前記ヒータ温度センサの検出温度を参照しながら前記発熱体の発熱量を制御するとともに、前記第1および第2の炉体の冷却を行う際は、前記基板温度センサの検出温度が、所定の降温レートで降下する目標値に従うように、前記ヒータ温度センサの検出温度を参照しながら、前記開度を調整することができるように構成された請求項5又は6記載の基板処理装置。
  9. 前記第1および第2の流路を、前記第1および第2のダンパの下流側において選択的に前記熱交換器と流通可能に接続する3方弁を更に備え、
    前記排気ブロア及び前記熱交換器が、前記第1および第2の炉体の冷却に共通に用いられる請求項1から4のいずれか一項に記載の基板処理装置。
  10. 前記第1の炉体内外へ搬入出する基板を一時的に収容する第1の搬送室と、前記第2の炉体内外へ搬入出する基板を一時的に収容する第2の搬送室と、をさらに備える請求項2から4のいずれか一項に記載の基板処理装置。
  11. 前記第1の流路と前記第2の流路とは、前記第1の流路と前記第2の流路の合流区間に対して左右対称に配置され、前記第1のダンパと前記第2のダンパとは、前記合流区間に対して左右対称に配置されている請求項1、3又は4のいずれか一項に記載の基板処理装置。
  12. 前記熱交換器と前記排気ブロアとが前記第1および第2の炉体の下流側に略同じ高さに設けられている請求項1、2又は4のいずれか一項に記載の基板処理装置。
  13. 第1の炉体内外へ搬入出する基板を一時的に収容する第1の搬送室と、第2の炉体内外へ搬入出する基板を一時的に収容する第2の搬送室と、を備え、前記第1の炉体内の構成および前記第1の搬送室内の構成と、前記第2の炉体内の構成および前記第2の搬送室内の構成とは、前記第1の搬送室と前記第2の搬送室との隣接面を対称面として左右対称に配置されている前記第1および第2の炉体の加熱を制御して、前記第1および第2の炉体において基板を処理する工程と、
    前記第1および第2の炉体と、少なくとも1つの熱交換器と、少なくとも1つの排気ブロアと、前記熱交換器の上流側に設けられた第1および第2のダンパと、がそれぞれ冷媒を流通可能に第1又は第2の流路を介して接続され、前記熱交換器または前記排気ブロアの少なくとも一つは合流区間にて前記第1と第2の炉体に共通して使用され、前記第1または第2のダンパの少なくともいずれかの開度を可変させた状態で前記冷媒を通過させて前記熱交換器が前記冷媒を冷却しつつ、前記冷媒を前記少なくとも1つの排気ブロアにより吸い込んで下流側へ送り出す工程と、
    を有する半導体装置の製造方法。
  14. 第1および第2の炉体の加熱を制御して、前記第1および第2の炉体において基板を処理する工程と、
    前記第1および第2の炉体と、少なくとも1つの熱交換器と、少なくとも1つの排気ブロアと、前記熱交換器の上流側に設けられた第1および第2のダンパと、がそれぞれ冷媒を流通可能に第1又は第2の流路を介して接続され、前記熱交換器または前記排気ブロアの少なくとも一つは前記第1の流路と前記第2の流路の合流区間にて前記第1と第2の炉体に共通して使用され、前記第1の流路と前記第2の流路とは、前記合流区間に対して左右対称に配置され、前記第1のダンパと前記第2のダンパとは、前記合流区間に対して左右対称に配置されて、前記第1または第2のダンパの少なくともいずれかの開度を可変させた状態で前記冷媒を通過させて前記熱交換器が前記冷媒を冷却しつつ、前記冷媒を前記少なくとも1つの排気ブロアにより吸い込んで下流側へ送り出す工程と、
    を有する半導体装置の製造方法。
  15. 左右に並んで設けられた第1および第2の炉体の加熱を制御して、前記第1および第2の炉体において基板を処理する工程と、
    前記第1および第2の炉体と、少なくとも1つの熱交換器と、少なくとも1つの排気ブロアと、前記熱交換器の上流側に設けられた第1および第2のダンパと、がそれぞれ冷媒を流通可能に第1又は第2の流路を介して接続され、前記熱交換器または前記排気ブロアの少なくとも一つは合流区間にて前記第1と第2の炉体に共通して使用され、前記熱交換器と前記排気ブロアとが前記第1および第2の炉体の後方に向かって略同じ高さに設けられ、前記第1または第2のダンパの少なくともいずれかの開度を可変させた状態で前記冷媒を通過させて前記熱交換器が前記冷媒を冷却しつつ、前記冷媒を前記少なくとも1つの排気ブロアにより吸い込んで下流側へ送り出す工程と、
    を有する半導体装置の製造方法。
  16. 第1および第2の炉体の加熱を制御して、前記第1および第2の炉体において基板を処理する工程と、
    前記第1および第2の炉体と、少なくとも1つの熱交換器と、少なくとも1つの排気ブロアと、前記熱交換器の上流側に設けられた第1および第2のダンパと、がそれぞれ冷媒を流通可能に第1又は第2の流路を介して接続され、前記熱交換器または前記排気ブロアの少なくとも一つは合流区間にて前記第1と第2の炉体に共通して使用され、前記第1または第2のダンパの少なくともいずれかの開度を可変させた状態で前記冷媒を通過させて前記熱交換器が前記冷媒を冷却しつつ、前記冷媒を前記少なくとも1つの排気ブロアにより吸い込んで下流側へ送り出す工程と、
    次に前記第1および第2のダンパを開けるタイミングを予測し、前記第1および第2のダンパの開いている期間が重ならないか、重なったとしても、先に開く前記第1又は第2のダンパを有する第1又は第2の炉体の温度が、後に開く前記第1又は第2のダンパの開放時点で所定以下に冷却されるような時間差を有するように、第1および第2の炉体で行われるレシピの開始時刻を調整する工程と、
    を有する半導体装置の製造方法。
  17. 第1の炉体内外へ搬入出する基板を一時的に収容する第1の搬送室と、第2の炉体内外へ搬入出する基板を一時的に収容する第2の搬送室と、を備え、前記第1の炉体内の構成および前記第1の搬送室内の構成と、前記第2の炉体内の構成および前記第2の搬送室内の構成とは、前記第1の搬送室と前記第2の搬送室との隣接面を対称面として左右対称に配置されている前記第1および第2の炉体の加熱を制御して、前記第1および第2の炉体において基板を処理する手順と、
    前記第1および第2の炉体と、少なくとも1つの熱交換器と、少なくとも1つの排気ブロアと、前記熱交換器の上流側に設けられた第1および第2のダンパと、がそれぞれ冷媒を流通可能に第1又は第2の流路を介して接続され、前記熱交換器または前記排気ブロアの少なくとも一つは合流区間にて前記第1と第2の炉体に共通して使用され、前記第1または第2のダンパの少なくともいずれかの開度を可変させた状態で前記冷媒を通過させて前記熱交換器が前記冷媒を冷却しつつ、前記冷媒を前記少なくとも1つの排気ブロアにより吸い込んで下流側へ送り出す手順と、
    を基板処理装置が備えるコンピュータに実行させるプログラム。
  18. 第1および第2の炉体の加熱を制御して、前記第1および第2の炉体において基板を処理する手順と、
    前記第1および第2の炉体と、少なくとも1つの熱交換器と、少なくとも1つの排気ブロアと、前記熱交換器の上流側に設けられた第1および第2のダンパと、がそれぞれ冷媒を流通可能に第1又は第2の流路を介して接続され、前記熱交換器または前記排気ブロアの少なくとも一つは前記第1の流路と前記第2の流路の合流区間にて前記第1と第2の炉体に共通して使用され、前記第1の流路と前記第2の流路とは、前記合流区間に対して左右対称に配置され、前記第1のダンパと前記第2のダンパとは、前記合流区間に対して左右対称に配置されて、前記第1または第2のダンパの少なくともいずれかの開度を可変させた状態で前記冷媒を通過させて前記熱交換器が前記冷媒を冷却しつつ、前記冷媒を前記少なくとも1つの排気ブロアにより吸い込んで下流側へ送り出す手順と、
    を基板処理装置が備えるコンピュータに実行させるプログラム。
  19. 左右に並んで設けられた第1および第2の炉体の加熱を制御して、前記第1および第2の炉体において基板を処理する手順と、
    前記第1および第2の炉体と、少なくとも1つの熱交換器と、少なくとも1つの排気ブロアと、前記熱交換器の上流側に設けられた第1および第2のダンパと、がそれぞれ冷媒を流通可能に第1又は第2の流路を介して接続され、前記熱交換器または前記排気ブロアの少なくとも一つは合流区間にて前記第1と第2の炉体に共通して使用され、前記熱交換器と前記排気ブロアとが前記第1および第2の炉体の後方に向かって略同じ高さに設けられ、前記第1または第2のダンパの少なくともいずれかの開度を可変させた状態で前記冷媒を通過させて前記熱交換器が前記冷媒を冷却しつつ、前記冷媒を前記少なくとも1つの排気ブロアにより吸い込んで下流側へ送り出す手順と、
    を基板処理装置が備えるコンピュータに実行させるプログラム。
  20. 第1および第2の炉体の加熱を制御して、前記第1および第2の炉体において基板を処理する手順と、
    前記第1および第2の炉体と、少なくとも1つの熱交換器と、少なくとも1つの排気ブロアと、前記熱交換器の上流側に設けられた第1および第2のダンパと、がそれぞれ冷媒を流通可能に第1又は第2の流路を介して接続され、前記熱交換器または前記排気ブロアの少なくとも一つは合流区間にて前記第1と第2の炉体に共通して使用され、前記第1または第2のダンパの少なくともいずれかの開度を可変させた状態で前記冷媒を通過させて前記熱交換器が前記冷媒を冷却しつつ、前記冷媒を前記少なくとも1つの排気ブロアにより吸い込んで下流側へ送り出す手順と、
    次に前記第1および第2のダンパを開けるタイミングを予測し、前記第1および第2のダンパの開いている期間が重ならないか、重なったとしても、先に開く前記第1又は第2のダンパを有する第1又は第2の炉体の温度が、後に開く前記第1又は第2のダンパの開放時点で所定以下に冷却されるような時間差を有するように、第1および第2の炉体で行われるレシピの開始時刻を調整する手順と、
    を基板処理装置が備えるコンピュータに実行させるプログラム。
JP2021529965A 2019-07-01 2020-06-22 基板処理装置、半導体装置の製造方法及びプログラム Active JP7289355B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019122797 2019-07-01
JP2019122797 2019-07-01
PCT/JP2020/024303 WO2021002228A1 (ja) 2019-07-01 2020-06-22 基板処理装置、半導体装置の製造方法及びプログラム

Publications (3)

Publication Number Publication Date
JPWO2021002228A1 JPWO2021002228A1 (ja) 2021-01-07
JPWO2021002228A5 JPWO2021002228A5 (ja) 2022-02-16
JP7289355B2 true JP7289355B2 (ja) 2023-06-09

Family

ID=74101330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021529965A Active JP7289355B2 (ja) 2019-07-01 2020-06-22 基板処理装置、半導体装置の製造方法及びプログラム

Country Status (4)

Country Link
US (1) US20220119951A1 (ja)
JP (1) JP7289355B2 (ja)
CN (1) CN114051651A (ja)
WO (1) WO2021002228A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012216851A (ja) 2006-03-07 2012-11-08 Hitachi Kokusai Electric Inc 基板処理装置、基板処理方法、制御プログラムおよび記録媒体

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2741906B2 (ja) * 1989-05-31 1998-04-22 株式会社日立製作所 真空処理方法及び装置
JPH08127861A (ja) * 1994-10-28 1996-05-21 Tokyo Electron Ltd 真空処理装置
JP2005210080A (ja) * 2003-12-25 2005-08-04 Tokyo Electron Ltd 温度調節方法及び温度調節装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012216851A (ja) 2006-03-07 2012-11-08 Hitachi Kokusai Electric Inc 基板処理装置、基板処理方法、制御プログラムおよび記録媒体

Also Published As

Publication number Publication date
US20220119951A1 (en) 2022-04-21
CN114051651A (zh) 2022-02-15
JPWO2021002228A1 (ja) 2021-01-07
WO2021002228A1 (ja) 2021-01-07

Similar Documents

Publication Publication Date Title
KR102287466B1 (ko) 기판 처리 장치, 반도체 장치의 제조 방법 및 프로그램
KR101560612B1 (ko) 단열 구조체 및 반도체 장치의 제조 방법
US10415136B2 (en) Substrate processing apparatus including heating and cooling device, and ceiling part included in the same
TWI518296B (zh) 直立型熱處理裝置
WO2016117588A1 (ja) 基板処理装置
TWI669411B (zh) Substrate processing apparatus, cooling unit, heat insulating structure, and method of manufacturing semiconductor device
JP6944990B2 (ja) 基板処理装置、半導体装置の製造方法およびプログラム
JP7011033B2 (ja) 基板処理装置、半導体装置の製造方法およびプログラム
JP6841920B2 (ja) 基板処理装置、半導体装置の製造方法およびプログラム
TW202032697A (zh) 冷卻單元、隔熱構造體及基板處理裝置以及半導體裝置的製造方法
TWI781096B (zh) 熱處理裝置
KR20110112074A (ko) 기판 처리 장치 및 방법
KR100559820B1 (ko) 열처리 장치 및 열처리 방법
JP2004119804A (ja) 半導体製造装置
JP7289355B2 (ja) 基板処理装置、半導体装置の製造方法及びプログラム
KR102472671B1 (ko) 가열부, 온도 제어 시스템, 처리 장치 및 반도체 장치의 제조 방법
JPH07135182A (ja) 熱処理装置
JP3194230U (ja) 加熱処理装置
JPH076955A (ja) 高速熱処理炉の温度制御方法及びその装置
JPH06349753A (ja) ヒータユニット冷却装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211118

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230530

R150 Certificate of patent or registration of utility model

Ref document number: 7289355

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150