JP7289103B2 - Thermosetting resin compositions, prepregs, metal-clad laminates, printed wiring boards, resin-coated films and resin-coated metal foils - Google Patents

Thermosetting resin compositions, prepregs, metal-clad laminates, printed wiring boards, resin-coated films and resin-coated metal foils Download PDF

Info

Publication number
JP7289103B2
JP7289103B2 JP2019551002A JP2019551002A JP7289103B2 JP 7289103 B2 JP7289103 B2 JP 7289103B2 JP 2019551002 A JP2019551002 A JP 2019551002A JP 2019551002 A JP2019551002 A JP 2019551002A JP 7289103 B2 JP7289103 B2 JP 7289103B2
Authority
JP
Japan
Prior art keywords
thermosetting resin
resin
resin composition
insulating layer
cured product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019551002A
Other languages
Japanese (ja)
Other versions
JPWO2019082698A1 (en
Inventor
龍史 高橋
心平 小畑
泰則 安部
智 六車
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Publication of JPWO2019082698A1 publication Critical patent/JPWO2019082698A1/en
Application granted granted Critical
Publication of JP7289103B2 publication Critical patent/JP7289103B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/043Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/024Woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/06Interconnection of layers permitting easy separation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/04Condensation polymers of aldehydes or ketones with phenols only of aldehydes
    • C08G8/08Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/02Coating on the layer surface on fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • B32B2262/0269Aromatic polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0276Polyester fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/02Synthetic macromolecular particles
    • B32B2264/0207Particles made of materials belonging to B32B25/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/104Oxysalt, e.g. carbonate, sulfate, phosphate or nitrate particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/105Metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/206Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/304Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • B32B2307/3065Flame resistant or retardant, fire resistant or retardant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/41Opaque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/558Impact strength, toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/71Resistive to light or to UV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/726Permeability to liquids, absorption
    • B32B2307/7265Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/734Dimensional stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/748Releasability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2361/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • C08J2361/04Condensation polymers of aldehydes or ketones with phenols only
    • C08J2361/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2451/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/53Core-shell polymer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/012Flame-retardant; Preventing of inflammation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles

Description

本開示は、一般には熱硬化性樹脂組成物、プリプレグ、金属張積層板及びプリント配線板に関する。本開示は、詳細には熱硬化性樹脂と無機充填材とを含有する熱硬化性樹脂組成物、当該熱硬化性樹脂組成物の半硬化物を備えるプリプレグ、当該プリプレグの硬化物を備える金属張積層板及びプリント配線板に関する。 TECHNICAL FIELD The present disclosure generally relates to thermosetting resin compositions, prepregs, metal clad laminates and printed wiring boards. Specifically, the present disclosure relates to a thermosetting resin composition containing a thermosetting resin and an inorganic filler, a prepreg comprising a semi-cured product of the thermosetting resin composition, and a metal clad comprising a cured product of the prepreg. It relates to laminates and printed wiring boards.

特許文献1は、エポキシ樹脂組成物を硬化させてなる硬化物を開示する。このエポキシ樹脂組成物は、エポキシ樹脂及び所定の多価ヒドロキシ樹脂硬化剤を必須成分とする。この多価ヒドロキシ樹脂中のナフトール類モノマーの含有率は0.8重量%以下であり、かつ、多価ヒドロキシ樹脂の10重量%メチルエチルケトン溶液のガードナー色数は13以下である。 Patent Literature 1 discloses a cured product obtained by curing an epoxy resin composition. This epoxy resin composition contains an epoxy resin and a predetermined polyhydric hydroxy resin curing agent as essential components. The content of naphthol monomers in this polyhydric hydroxy resin is 0.8% by weight or less, and the Gardner color number of a 10% by weight methyl ethyl ketone solution of the polyhydric hydroxy resin is 13 or less.

ところで、プリント配線板などの基板の両面に、液状の感光レジストを塗布したり、フィルム状の感光レジスト(ドライフィルム)を貼着したりした後、両面露光を行って、各面に所望のパターンを有する硬化被膜を形成することが行われている。 By the way, after applying a liquid photosensitive resist or pasting a film-like photosensitive resist (dry film) on both sides of a substrate such as a printed wiring board, a desired pattern is formed on each surface by performing double-sided exposure. Forming a cured film having

上記の両面露光では、各面においてフォトマスクを介して紫外線を照射している。この場合、いわゆる裏焼けが問題となる。すなわち、裏焼けとは、基板の一方の面に照射した紫外線が、基板内部を透過して、基板の他方の面の、感光させたくない箇所の感光レジストを感光させてしまうという現象である。この問題は、昨今の基板の薄型化の進展に伴って深刻化しており、特許文献1などの硬化物で基板が製造されていても解決することが難しい。 In the double-sided exposure described above, each surface is irradiated with ultraviolet rays through a photomask. In this case, so-called back burn becomes a problem. In other words, back burn is a phenomenon in which ultraviolet rays irradiated to one side of a substrate pass through the inside of the substrate and expose the photoresist on the other side of the substrate where it is not desired to be exposed. This problem is aggravated with the progress of thinning of substrates in recent years, and it is difficult to solve even if substrates are manufactured using a cured product such as that disclosed in Patent Document 1.

特開2001-261785号公報Japanese Patent Application Laid-Open No. 2001-261785

本開示の目的は、紫外線遮蔽性の高い硬化物を得ることができる熱硬化性樹脂組成物、プリプレグ、金属張積層板、プリント配線板、樹脂付きフィルム及び樹脂付き金属箔を提供することにある。 An object of the present disclosure is to provide a thermosetting resin composition, a prepreg, a metal-clad laminate, a printed wiring board, a resin-coated film, and a resin-coated metal foil that can provide a cured product with high UV shielding properties. .

本開示の一態様に係る熱硬化性樹脂組成物は、熱硬化性樹脂と、無機充填材と、を含有する熱硬化性樹脂組成物である。前記熱硬化性樹脂は、硬化剤を含む。前記硬化剤の3質量%メチルエチルケトン溶液のガードナー色数は15以上である。前記硬化剤の含有量は、前記熱硬化性樹脂組成物の固形分全量に対して、10質量%以上である。 A thermosetting resin composition according to an aspect of the present disclosure is a thermosetting resin composition containing a thermosetting resin and an inorganic filler. The thermosetting resin contains a curing agent. A 3% by mass methyl ethyl ketone solution of the curing agent has a Gardner color number of 15 or more. The content of the curing agent is 10% by mass or more with respect to the total solid content of the thermosetting resin composition.

本開示の一態様に係るプリプレグは、基材と、前記基材に含浸された前記熱硬化性樹脂組成物の半硬化物と、を備えている。 A prepreg according to an aspect of the present disclosure includes a base material and a semi-cured material of the thermosetting resin composition impregnated in the base material.

本開示の一態様に係る金属張積層板は、前記プリプレグの硬化物で形成された絶縁層と、前記絶縁層の片面又は両面に形成された金属層と、を備えている。 A metal-clad laminate according to an aspect of the present disclosure includes an insulating layer formed of a cured prepreg and a metal layer formed on one side or both sides of the insulating layer.

本開示の一態様に係るプリント配線板は、前記プリプレグの硬化物で形成された絶縁層と、前記絶縁層の片面又は両面に形成された導体配線と、を備えている。 A printed wiring board according to an aspect of the present disclosure includes an insulating layer formed of the cured prepreg, and conductor wiring formed on one side or both sides of the insulating layer.

図1は、本開示の一実施形態に係るプリプレグの概略断面図である。1 is a schematic cross-sectional view of a prepreg according to one embodiment of the present disclosure; FIG. 図2は、本開示の一実施形態に係る金属張積層板の概略断面図である。FIG. 2 is a schematic cross-sectional view of a metal-clad laminate according to one embodiment of the present disclosure. 図3は、本開示の一実施形態に係るプリント配線板の概略断面図である。FIG. 3 is a schematic cross-sectional view of a printed wiring board according to one embodiment of the present disclosure. 図4A~図4Dは、同上のプリント配線板の製造方法の各工程を示す概略断面図である。4A to 4D are schematic cross-sectional views showing each step of the manufacturing method of the printed wiring board of the same. 図5A~図5Cは、被覆プリント配線板の製造方法の各工程を示す概略断面図である。5A to 5C are schematic cross-sectional views showing each step of the manufacturing method of the coated printed wiring board. 図6Aは、本開示の一実施形態に係る樹脂付きフィルムの概略断面図である。図6Bは、本開示の一実施形態に係る樹脂付きフィルムの他の一例を示す概略断面図である。6A is a schematic cross-sectional view of a resin-coated film according to one embodiment of the present disclosure; FIG. FIG. 6B is a schematic cross-sectional view showing another example of the resin-coated film according to one embodiment of the present disclosure. 図7は、本開示の一実施形態に係る樹脂付き金属箔の概略断面図である。FIG. 7 is a schematic cross-sectional view of a resin-coated metal foil according to an embodiment of the present disclosure;

(1)概要
本実施形態に係る熱硬化性樹脂組成物は、熱硬化性樹脂と、無機充填材と、を含有する。熱硬化性樹脂は、硬化剤を含む。硬化剤の3質量%メチルエチルケトン溶液のガードナー色数は15以上である。硬化剤の含有量は、熱硬化性樹脂組成物の固形分全量に対して、10質量%以上である。
(1) Outline The thermosetting resin composition according to the present embodiment contains a thermosetting resin and an inorganic filler. A thermosetting resin contains a curing agent. The Gardner color number of a 3% by mass methyl ethyl ketone solution of the curing agent is 15 or more. The content of the curing agent is 10% by mass or more with respect to the total solid content of the thermosetting resin composition.

本実施形態によれば、硬化剤が紫外線を吸収しやすく、このような硬化剤が、熱硬化性樹脂組成物に所定量含有されていることで、紫外線遮蔽性の高い硬化物を得ることができる。 According to the present embodiment, the curing agent easily absorbs ultraviolet rays, and a predetermined amount of such a curing agent is contained in the thermosetting resin composition, so that a cured product with high ultraviolet shielding properties can be obtained. can.

(2)詳細
(2.1)熱硬化性樹脂組成物
本実施形態に係る熱硬化性樹脂組成物は、熱硬化性樹脂と、無機充填材と、を含有する。熱硬化性樹脂及び無機充填材は必須成分である。必須成分による効果を損なわない限度において、熱硬化性樹脂組成物は、必須成分以外の任意成分を更に含有してもよい。以下、必須成分及び任意成分の各成分について説明する。
(2) Details (2.1) Thermosetting resin composition The thermosetting resin composition according to the present embodiment contains a thermosetting resin and an inorganic filler. Thermosetting resins and inorganic fillers are essential ingredients. The thermosetting resin composition may further contain optional components other than the essential components as long as the effects of the essential components are not impaired. Each component of the essential component and the optional component will be described below.

(2.1.1)熱硬化性樹脂
熱硬化性樹脂は、反応性基を持つ低分子化合物(例えばプレポリマー又はオリゴマー)である。熱硬化性樹脂は、加熱されると、架橋反応(硬化反応)が進行し、三次元構造を持つ不溶不融の物質(硬化物)となる。
(2.1.1) Thermosetting Resins Thermosetting resins are low-molecular-weight compounds (eg, prepolymers or oligomers) with reactive groups. When the thermosetting resin is heated, a cross-linking reaction (curing reaction) proceeds to form an insoluble and infusible substance (cured material) having a three-dimensional structure.

熱硬化性樹脂の具体例として、エポキシ樹脂、ビスマレイミド樹脂、フェノール樹脂及びシアネート樹脂が挙げられる。 Specific examples of thermosetting resins include epoxy resins, bismaleimide resins, phenolic resins and cyanate resins.

エポキシ樹脂の具体例として、トリフェニルメタン型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、及び、ジシクロペンタジエン含有フェノールノボラック型エポキシ樹脂が挙げられる。熱硬化性樹脂がエポキシ樹脂である場合、そのエポキシ当量は、好ましくは158g/eq以上275g/eq以下の範囲内であり、より好ましくは158g/eq以上235g/eq以下の範囲内である。この範囲内であることで、架橋密度が高くなり、硬化物のガラス転移温度(Tg)を高めることができる。Tgを高めることによって、硬化物の寸法安定性及び耐熱信頼性を向上させることができる。 Specific examples of epoxy resins include triphenylmethane-type epoxy resins, biphenylaralkyl-type epoxy resins, naphthalene-type epoxy resins, phenol novolac-type epoxy resins, cresol novolac-type epoxy resins, and dicyclopentadiene-containing phenol novolak-type epoxy resins. be done. When the thermosetting resin is an epoxy resin, its epoxy equivalent is preferably in the range of 158 g/eq to 275 g/eq, more preferably in the range of 158 g/eq to 235 g/eq. Within this range, the crosslink density is increased, and the glass transition temperature (Tg) of the cured product can be increased. By increasing the Tg, the dimensional stability and heat resistance reliability of the cured product can be improved.

ビスマレイミド樹脂は、エポキシ樹脂より高い耐熱性を有する硬化物を与え得る。 Bismaleimide resins can give cured products with higher heat resistance than epoxy resins.

熱硬化性樹脂は、硬化剤を含む。本実施形態では、硬化剤の3質量%メチルエチルケトン溶液のガードナー色数は15以上である。ここで、ガードナー色数は、ガードナー色数試験方法によって求めることができる。ガードナー色数の定義及びガードナー色数試験方法は、JIS K 0071-2に準拠する。 A thermosetting resin contains a curing agent. In this embodiment, the Gardner color number of a 3% by mass methyl ethyl ketone solution of the curing agent is 15 or more. Here, the Gardner color number can be determined by the Gardner color number test method. The definition of the Gardner color number and the Gardner color number test method conform to JIS K 0071-2.

すなわち、ガードナー色数は、ガードナー色数標準液と試料との透過色を比較して定める色番号のことである。ガードナー色数標準液は、ヘキサクロロ白金(IV)酸カリウム、塩化鉄(III)、塩化コバルト(II)及び塩酸を用いて調製される。ガードナー色数は、1~18の範囲の色数によって表す。原則として、試料の色は単一の整数で表される。例外的に、試料の色が二つのガードナー色数標準液の間にある場合は、試料に最も近似したガードナー色数を決定し、その色数番号より“明るい”又は“暗い”と表される。ガードナー色数標準液の代わりに、それらと透過色が等しい標準色ガラスを用いてもよい。 That is, the Gardner color number is a color number determined by comparing the transmitted colors of the Gardner color number standard solution and the sample. Gardner Color Standards are prepared using potassium hexachloroplatinate(IV), iron(III) chloride, cobalt(II) chloride and hydrochloric acid. The Gardner color number is represented by a number of colors ranging from 1 to 18. As a rule, the color of a sample is represented by a single integer. Exceptionally, if the color of the sample is between two Gardner Color Standards, determine the Gardner Color Number that most closely matches the sample and express it as "lighter" or "darker" than that color number. . Instead of the Gardner Color Standards, standard color glasses with equivalent transmission colors may be used.

上記の試料が、硬化剤の3質量%メチルエチルケトン溶液である。すなわち、この試料は、溶質である硬化剤の濃度が3質量%となるように、溶媒であるメチルエチルケトンに硬化剤を溶かして調製される。 The above sample is a 3% by weight solution of the curing agent in methyl ethyl ketone. That is, this sample is prepared by dissolving a curing agent in a solvent, methyl ethyl ketone, so that the concentration of the curing agent, which is a solute, is 3% by mass.

以下、3質量%メチルエチルケトン溶液のガードナー色数が15以上となる硬化剤のことを、第1硬化剤という場合がある。また第1硬化剤以外の硬化剤のことを、第2硬化剤という場合がある。すなわち、第2硬化剤の3質量%メチルエチルケトン溶液のガードナー色数は1以上14以下の範囲内である。特に断りのない限り、ガードナー色数といえば、3質量%メチルエチルケトン溶液のガードナー色数を意味する。 Hereinafter, a curing agent having a Gardner color number of 15 or more in a 3% by mass methyl ethyl ketone solution may be referred to as a first curing agent. A curing agent other than the first curing agent may be referred to as a second curing agent. That is, the Gardner color number of the 3% by mass methyl ethyl ketone solution of the second curing agent is in the range of 1 or more and 14 or less. Unless otherwise specified, the Gardner color number means the Gardner color number of a 3% by mass methyl ethyl ketone solution.

第1硬化剤は、ガードナー色数が15以上(上限値は18)であるので、熱硬化性樹脂組成物に含有されていると、高い紫外線遮蔽性を硬化物に付与し得る。すなわち、第1硬化剤は、架橋反応して硬化物を形成するが、この硬化物中における第1硬化剤に由来する部分によって、紫外線を吸収することができる。第2硬化剤は、第1硬化剤ほど高い紫外線遮蔽性を硬化物に付与し得るものではないが、第1硬化剤と併用されてもよい。 Since the first curing agent has a Gardner color number of 15 or more (the upper limit is 18), when it is contained in the thermosetting resin composition, it can impart high UV shielding properties to the cured product. That is, the first curing agent undergoes a cross-linking reaction to form a cured product, and the portion derived from the first curing agent in this cured product can absorb ultraviolet rays. Although the second curing agent cannot impart a UV shielding property as high as that of the first curing agent to the cured product, it may be used in combination with the first curing agent.

第1硬化剤の含有量は、熱硬化性樹脂組成物の固形分全量に対して、10質量%以上である。第1硬化剤の含有量が10質量%以上であることで、紫外線遮蔽性の高い硬化物を得ることができる。例えば、このような硬化物で絶縁層が形成されていると、絶縁層の一方の面に紫外線が照射された場合に、この紫外線は絶縁層内部で吸収されて遮蔽され、他方の面から透過するのが抑制される。 The content of the first curing agent is 10% by mass or more with respect to the total solid content of the thermosetting resin composition. When the content of the first curing agent is 10% by mass or more, a cured product having high ultraviolet shielding properties can be obtained. For example, when an insulating layer is formed of such a cured product, when one surface of the insulating layer is irradiated with ultraviolet rays, the ultraviolet rays are absorbed inside the insulating layer and blocked, and are transmitted from the other surface. is suppressed.

紫外線は、感光レジストを感光させる程度の波長域の紫外線である。例えば、紫外線の波長は350nm以上450nm以下の範囲内である。第1硬化剤の含有量が10質量%未満であると、硬化物の紫外線遮蔽性が低くなる。このような硬化物で絶縁層が形成されていると、絶縁層の一方の面に紫外線が照射された場合に、一部の紫外線は絶縁層内部で吸収され得るが、残りの紫外線が他方の面から透過し得る。 The ultraviolet light has a wavelength range that sensitizes the photosensitive resist. For example, the wavelength of ultraviolet rays is within the range of 350 nm or more and 450 nm or less. If the content of the first curing agent is less than 10% by mass, the UV shielding properties of the cured product will be low. When the insulating layer is formed of such a cured product, when one surface of the insulating layer is irradiated with ultraviolet rays, part of the ultraviolet rays can be absorbed inside the insulating layer, but the remaining ultraviolet rays are absorbed by the other surface. can penetrate through the surface.

このように、第2硬化剤に比べて紫外線を吸収しやすい第1硬化剤が、10質量%以上の含有量で熱硬化性樹脂組成物に含有されていることで、紫外線遮蔽性の高い硬化物を得ることができる。 In this way, the first curing agent, which absorbs ultraviolet rays more easily than the second curing agent, is contained in the thermosetting resin composition at a content of 10% by mass or more, so that curing with high ultraviolet shielding properties can get things.

第1硬化剤の具体例として、ナフタレン型フェノール樹脂及びノボラック型フェノール樹脂が挙げられる。 Specific examples of the first curing agent include naphthalene-type phenolic resins and novolac-type phenolic resins.

好ましくは、ナフタレン型フェノール樹脂は、1分子中に、少なくとも1つのナフタレン環と、少なくとも1つのベンゼン環と、を含む。ナフタレン環同士、ベンゼン環同士、及び、ナフタレン環とベンゼン環とは、例えば2価の有機基(メチレン基(-CH-)など)で連結されている。このナフタレン型フェノール樹脂において、ナフタレン環の各々は、少なくとも1つのヒドロキシ基(-OH)を有し、ベンゼン環の各々は、少なくとも1つのヒドロキシ基(フェノール性ヒドロキシ基)を有する。Preferably, the naphthalene-type phenolic resin contains at least one naphthalene ring and at least one benzene ring in one molecule. Naphthalene rings, benzene rings, and naphthalene rings and benzene rings are linked by, for example, a divalent organic group (methylene group ( --CH.sub.2-- ), etc.). In this naphthalene-type phenolic resin, each naphthalene ring has at least one hydroxy group (--OH) and each benzene ring has at least one hydroxy group (phenolic hydroxy group).

言い換えると、好ましくは、ナフタレン型フェノール樹脂は、1分子中に、少なくとも1つのナフトール骨格と、少なくとも1つのフェノール骨格と、を含む。ナフトール骨格は、例えば、下記式(A)又は下記式(C)で表される。ナフトール骨格は、ナフタレン環における1つ又は複数の水素をヒドロキシ基に置換した骨格である。フェノール骨格は、例えば、下記式(B)で表される。フェノール骨格は、ベンゼン環における1つ又は複数の水素をヒドロキシ基に置換した骨格である。 In other words, the naphthalene-type phenol resin preferably contains at least one naphthol skeleton and at least one phenol skeleton in one molecule. A naphthol skeleton is represented, for example, by the following formula (A) or the following formula (C). A naphthol skeleton is a skeleton in which one or more hydrogen atoms in a naphthalene ring are substituted with hydroxy groups. A phenol skeleton is represented by the following formula (B), for example. A phenol skeleton is a skeleton in which one or more hydrogen atoms in a benzene ring are substituted with hydroxy groups.

Figure 0007289103000001
Figure 0007289103000001

式(A)及び式(C)中、R1、R3及びR5の各々は、水素原子(H)、メチル基(-CH)、メトキシ基(-OCH)又はヒドロキシ基であり、R1、R3及びR5のうちの少なくともいずれかはヒドロキシ基である。式(B)中、R2及びR4の各々は、水素原子、メチル基又はヒドロキシ基であり、R2及びR4のうちの少なくともいずれかはヒドロキシ基である。なお、式(A)中の1本の線分、式(B)及び式(C)中の2本の線分は、他の構造部位との結合手を表す。In formulas (A) and (C), each of R1, R3 and R5 is a hydrogen atom (H), a methyl group (-CH 3 ), a methoxy group (-OCH 3 ) or a hydroxy group, and R1, R3 and at least one of R5 is a hydroxy group. In formula (B), each of R2 and R4 is a hydrogen atom, a methyl group or a hydroxy group, and at least one of R2 and R4 is a hydroxy group. One line segment in formula (A) and two line segments in formulas (B) and (C) represent bonds with other structural sites.

ナフタレン型フェノール樹脂はナフタレン環を含むので、ベンゼン環を含むノボラック型フェノール樹脂に比べて共役系が大きくなる。そのため、ナフタレン型フェノール樹脂の吸収ピーク波長は、ノボラック型フェノール樹脂の吸収ピーク波長よりも長波長側に位置している。すなわち、ナフタレン型フェノール樹脂は、ノボラック型フェノール樹脂に比べて紫外線を吸収しやすい。したがって、第1硬化剤は、ナフタレン型フェノール樹脂を含むことが好ましい。 Since naphthalene-type phenolic resins contain naphthalene rings, the conjugated system is larger than that of novolac-type phenolic resins containing benzene rings. Therefore, the absorption peak wavelength of the naphthalene-type phenolic resin is located on the longer wavelength side than the absorption peak wavelength of the novolac-type phenolic resin. That is, the naphthalene-type phenolic resin absorbs ultraviolet rays more easily than the novolac-type phenolic resin. Therefore, the first curing agent preferably contains a naphthalene-type phenolic resin.

第1硬化剤がナフタレン型フェノール樹脂を含むことで、硬化物のTgを高めることができる。そのため、硬化物の耐熱性及び耐燃性を向上させることができる。さらに硬化物の吸湿性及び熱膨張率を低減することもできる。 By including the naphthalene-type phenolic resin in the first curing agent, the Tg of the cured product can be increased. Therefore, the heat resistance and flame resistance of the cured product can be improved. Furthermore, the hygroscopicity and coefficient of thermal expansion of the cured product can be reduced.

好ましくは、ナフタレン型フェノール樹脂は、下記式(D)で表される。このナフタレン型フェノール樹脂は、式(A)及び式(C)で表されるナフトール骨格と、式(B)で表されるフェノール骨格と、を含む。 Preferably, the naphthalene-type phenolic resin is represented by the following formula (D). This naphthalene-type phenolic resin includes a naphthol skeleton represented by formulas (A) and (C) and a phenol skeleton represented by formula (B).

Figure 0007289103000002
Figure 0007289103000002

式(D)中、R1、R3及びR5の各々は、水素原子、メチル基、メトキシ基又はヒドロキシ基であり、R1、R3及びR5の少なくともいずれかはヒドロキシ基である。式(D)中、R2及びR4の各々は、水素原子、メチル基又はヒドロキシ基であり、R2及びR4の少なくともいずれかはヒドロキシ基である。 In formula (D), each of R1, R3 and R5 is a hydrogen atom, a methyl group, a methoxy group or a hydroxy group, and at least one of R1, R3 and R5 is a hydroxy group. In formula (D), each of R2 and R4 is a hydrogen atom, a methyl group or a hydroxy group, and at least one of R2 and R4 is a hydroxy group.

式(D)中、nは1~3の整数、mは0~3の整数である。式(D)で表されるナフタレン型フェノール樹脂において、式(B)で表されるフェノール骨格及び式(C)で表されるナフトール骨格の配列順序は特に限定されない。すなわち、式(D)で表されるナフタレン型フェノール樹脂において、式(B)で表されるフェノール骨格同士は連続していても連続していなくてもよく、また式(C)で表されるナフトール骨格同士は連続していても連続していなくてもよい。要するに、式(D)で表されるナフタレン型フェノール樹脂は、式(A)で表されるナフトール骨格を1個、式(B)で表されるフェノール骨格をn個、及び式(C)で表されるナフトール骨格をm個有していればよい。 In formula (D), n is an integer of 1-3, and m is an integer of 0-3. In the naphthalene-type phenolic resin represented by formula (D), the arrangement order of the phenol skeleton represented by formula (B) and the naphthol skeleton represented by formula (C) is not particularly limited. That is, in the naphthalene-type phenol resin represented by the formula (D), the phenol skeletons represented by the formula (B) may or may not be continuous, and the phenol skeleton represented by the formula (C) The naphthol skeletons may or may not be continuous. In short, the naphthalene-type phenol resin represented by formula (D) has one naphthol skeleton represented by formula (A), n phenol skeletons represented by formula (B), and formula (C). It suffices if it has m number of represented naphthol skeletons.

好ましくは、ナフタレン型フェノール樹脂は、下記式(E)で表される。このナフタレン型フェノール樹脂は、式(D)で表されるナフタレン型フェノール樹脂の具体例である。 Preferably, the naphthalene-type phenolic resin is represented by the following formula (E). This naphthalene-type phenol resin is a specific example of the naphthalene-type phenol resin represented by formula (D).

Figure 0007289103000003
Figure 0007289103000003

式(E)中、R1は、水素原子、メチル基又はメトキシ基である。式(E)中、R2は、水素原子又はメチル基である。式(E)中、nは1~3の整数、mは0~3の整数である。 In formula (E), R1 is a hydrogen atom, a methyl group or a methoxy group. In formula (E), R2 is a hydrogen atom or a methyl group. In formula (E), n is an integer of 1-3, and m is an integer of 0-3.

さらにナフタレン型フェノール樹脂は、酸化されていることが好ましい。より詳しくは、ナフタレン型フェノール樹脂に含まれるナフタレン環が有するヒドロキシ基は、酸化されていることが好ましい。ヒドロキシ基が酸化されるとオキソ基(=O)となる。 Furthermore, the naphthalene-type phenolic resin is preferably oxidized. More specifically, the hydroxy group of the naphthalene ring contained in the naphthalene-type phenolic resin is preferably oxidized. When a hydroxy group is oxidized, it becomes an oxo group (=O).

例えば、酸化されたナフタレン型フェノール樹脂は、ナフトキノン骨格を有する。ナフトキノン骨格は、例えば、下記式(F)で表される1,4-ナフトキノン骨格、及び下記式(G)で表される1,2-ナフトキノン骨格を含む。 For example, an oxidized naphthalene-type phenolic resin has a naphthoquinone skeleton. The naphthoquinone skeleton includes, for example, a 1,4-naphthoquinone skeleton represented by the following formula (F) and a 1,2-naphthoquinone skeleton represented by the following formula (G).

Figure 0007289103000004
Figure 0007289103000004

式(F)及び式(G)中、R6及びR7の各々は、水素原子、メチル基、エチル基(-CHCH)又はメトキシ基である。なお、式(F)及び式(G)中の2本の線分は、他の構造部位との結合手を表す。In Formula (F) and Formula (G), each of R6 and R7 is a hydrogen atom, a methyl group, an ethyl group (--CH 2 CH 3 ) or a methoxy group. Note that two line segments in formulas (F) and (G) represent bonds with other structural sites.

好ましくは、酸化されたナフタレン型フェノール樹脂は、式(F)で表される1,4-ナフトキノン骨格、及び式(G)で表される1,2-ナフトキノン骨格のうちの少なくともいずれかの骨格を含む。このように酸化されたナフタレン型フェノール樹脂は、例えば、式(D)又は式(E)で表されるナフタレン型フェノール樹脂を酸化処理することにより得られる。酸化処理の方法として、例えば、(1)ナフタレン型フェノール樹脂を非密閉型容器に入れ、この容器を空気存在下に放置又は攪拌する方法、(2)ナフタレン型フェノール樹脂を非密閉型容器に入れ、この容器に酸素を吹き込みながら放置又は攪拌する方法、(3)ナフタレン型フェノール樹脂を空気と共に密閉型容器に閉じ込めて放置又は攪拌する方法などが挙げられる。酸化処理の温度は、例えば50℃以上100℃以下の範囲内である。酸化処理の時間は、例えば6時間以上72時間以下の範囲内である。 Preferably, the oxidized naphthalene-type phenol resin has at least one skeleton of a 1,4-naphthoquinone skeleton represented by formula (F) and a 1,2-naphthoquinone skeleton represented by formula (G). including. The naphthalene-type phenolic resin oxidized in this way can be obtained, for example, by subjecting the naphthalene-type phenolic resin represented by formula (D) or formula (E) to oxidation treatment. As a method of oxidation treatment, for example, (1) a naphthalene-type phenolic resin is placed in a non-sealed container and the container is left to stand or stirred in the presence of air, and (2) a naphthalene-type phenolic resin is placed in a non-sealed container. (3) a method in which the naphthalene-type phenolic resin is confined together with air in a sealed container and left to stand or stirred; The temperature of the oxidation treatment is, for example, within the range of 50° C. or higher and 100° C. or lower. The oxidation treatment time is, for example, within the range of 6 hours or more and 72 hours or less.

ナフタレン型フェノール樹脂が酸化されることで、吸収ピーク波長が、長波長側に更にシフトする。 Oxidation of the naphthalene-type phenolic resin further shifts the absorption peak wavelength to the longer wavelength side.

熱硬化性樹脂組成物に含有される硬化剤は、第1硬化剤のみが好ましいが、第1硬化剤及び第2硬化剤の両方でもよい。 The curing agent contained in the thermosetting resin composition is preferably only the first curing agent, but may be both the first curing agent and the second curing agent.

熱硬化性樹脂は、反応型難燃剤を更に含むことが好ましい。反応型難燃剤は、熱硬化性樹脂組成物が硬化する際に、架橋構造を形成する。反応型難燃剤の具体例として、リン変性フェノール樹脂、テトラブロモビスフェノールA及びトリブロモフェノールが挙げられる。反応型難燃剤は、硬化物中では孤立して存在せず、架橋構造の形成に関与するので、ブリードアウトを抑制しつつ、硬化物の耐燃性(難燃性)を向上させることができる。 The thermosetting resin preferably further contains a reactive flame retardant. A reactive flame retardant forms a crosslinked structure when the thermosetting resin composition is cured. Specific examples of reactive flame retardants include phosphorus-modified phenolic resins, tetrabromobisphenol A and tribromophenol. Since the reactive flame retardant does not exist in isolation in the cured product and participates in the formation of a crosslinked structure, it is possible to improve the flame resistance (flame retardancy) of the cured product while suppressing bleed out.

反応型難燃剤は、反応型リン系難燃剤であることが好ましい。反応型リン系難燃剤をハロゲンの代わりに使用することで、ハロゲンフリーの熱硬化性樹脂組成物を得ることができる。反応型リン系難燃剤の具体例として、リン変性フェノール樹脂が挙げられる。反応型リン系難燃剤がリン変性フェノール樹脂である場合、その水酸基当量は、好ましくは350g/eq以上600g/eq以下の範囲内であり、より好ましくは373g/eq以上550g/eq以下の範囲内である。 The reactive flame retardant is preferably a reactive phosphorus-based flame retardant. A halogen-free thermosetting resin composition can be obtained by using a reactive phosphorus-based flame retardant instead of halogen. Specific examples of reactive phosphorus-based flame retardants include phosphorus-modified phenolic resins. When the reactive phosphorus-based flame retardant is a phosphorus-modified phenolic resin, its hydroxyl equivalent is preferably in the range of 350 g/eq to 600 g/eq, more preferably in the range of 373 g/eq to 550 g/eq. is.

(2.1.2)無機充填材
無機充填材は、熱硬化性樹脂組成物の硬化物の寸法安定性の向上などに寄与し得る。無機充填材の具体例として、溶融シリカ、水酸化アルミニウム、水酸化マグネシウム、Eガラス粉末、酸化アルミニウム、酸化マグネシウム、二酸化チタン、チタン酸カリウム、ケイ酸カルシウム、炭酸カルシウム、クレイ及びタルクが挙げられる。これらの中では、溶融シリカ及び水酸化アルミニウムが好ましい。
(2.1.2) Inorganic filler The inorganic filler can contribute to the improvement of the dimensional stability of the cured product of the thermosetting resin composition. Specific examples of inorganic fillers include fused silica, aluminum hydroxide, magnesium hydroxide, E-glass powder, aluminum oxide, magnesium oxide, titanium dioxide, potassium titanate, calcium silicate, calcium carbonate, clay and talc. Among these, fused silica and aluminum hydroxide are preferred.

溶融シリカは、球状であるため、熱硬化性樹脂組成物における含有量がある程度多くても、成型性を確保することができる。さらに溶融シリカは、硬化物の低熱膨張率化、レーザ加工性の向上、ドリル加工性の向上及び寸法安定化などに寄与し得る。ただし、溶融シリカが過剰であると、熱硬化性樹脂組成物の成型性が低下するおそれがある。また溶融シリカは、水酸化アルミニウムに比べて硬いため、含有量が過剰であると、硬化物のレーザ加工性及びドリル加工性が低下するおそれがある。 Since fused silica is spherical, moldability can be ensured even if the content in the thermosetting resin composition is large to some extent. Furthermore, fused silica can contribute to lowering the thermal expansion coefficient of the cured product, improving laser workability, improving drilling workability, stabilizing dimensions, and the like. However, if the fused silica is excessive, the moldability of the thermosetting resin composition may deteriorate. Further, since fused silica is harder than aluminum hydroxide, if the content is excessive, the laser workability and drill workability of the cured product may deteriorate.

水酸化アルミニウムは、硬化物の耐燃性の向上に寄与し得る。ただし、水酸化アルミニウムが過剰であると、同量の溶融シリカを使用する場合に比べて、熱硬化性樹脂組成物の成型性が低下したり、硬化物が吸湿しやすくなったりするおそれがある。 Aluminum hydroxide can contribute to improving the flame resistance of the cured product. However, if aluminum hydroxide is excessive, there is a risk that the moldability of the thermosetting resin composition will be reduced and the cured product will be more likely to absorb moisture than when the same amount of fused silica is used. .

溶融シリカ及び水酸化アルミニウムを併用してもよいし、これらのうち溶融シリカのみを使用してもよい。このような場合には、溶融シリカ及び水酸化アルミニウムの合計質量に対して、溶融シリカの割合は、50質量%以上100質量%以下の範囲内であることが好ましい。このような最適量であれば、溶融シリカ及び水酸化アルミニウムの各々の利点が得られる。すなわち、硬化物の低熱膨張率化、耐燃性、レーザ加工性及びドリル加工性の向上を実現し得る。 Fused silica and aluminum hydroxide may be used in combination, or only fused silica may be used. In such a case, the ratio of fused silica to the total mass of fused silica and aluminum hydroxide is preferably in the range of 50% by mass or more and 100% by mass or less. Such optimum amounts provide the benefits of each of fused silica and aluminum hydroxide. That is, it is possible to achieve a low coefficient of thermal expansion, flame resistance, laser workability, and drill workability of the cured product.

無機充填材の平均粒子径は0.5μm以上5μm以下の範囲内であることが好ましい。本明細書において、「平均粒子径」は、レーザー回折・散乱法によって測定された粒度分布における積算値50%での粒径(d50)を意味する。 The average particle size of the inorganic filler is preferably in the range of 0.5 µm or more and 5 µm or less. As used herein, "average particle size" means a particle size (d50) at an integrated value of 50% in a particle size distribution measured by a laser diffraction/scattering method.

無機充填材の含有量は、熱硬化性樹脂100質量部に対して、200質量部以下であることが好ましい。無機充填材の含有量が200質量部以下であることで、熱硬化性樹脂組成物の成型性を向上させることができる。さらに熱硬化性樹脂組成物の硬化物内におけるボイドの発生を抑制することができる。無機充填材の含有量は、熱硬化性樹脂100質量部に対して、50質量部以上であることが好ましい。 The content of the inorganic filler is preferably 200 parts by mass or less with respect to 100 parts by mass of the thermosetting resin. When the content of the inorganic filler is 200 parts by mass or less, the moldability of the thermosetting resin composition can be improved. Furthermore, generation of voids in the cured product of the thermosetting resin composition can be suppressed. The content of the inorganic filler is preferably 50 parts by mass or more with respect to 100 parts by mass of the thermosetting resin.

(2.1.3)任意成分
任意成分の具体例として、コアシェルゴム、アクリル樹脂、添加型難燃剤及び硬化促進剤が挙げられる。これらの成分について、以下、順に説明する。
(2.1.3) Optional Components Specific examples of optional components include core-shell rubbers, acrylic resins, additive flame retardants, and curing accelerators. These components are described in order below.

熱硬化性樹脂組成物は、コアシェルゴム、アクリル樹脂、又は、コアシェルゴム及びアクリル樹脂の両方を更に含有することが好ましい。 The thermosetting resin composition preferably further contains core-shell rubber, acrylic resin, or both core-shell rubber and acrylic resin.

まずコアシェルゴムについて説明する。コアシェルゴムは、コアシェル構造を有するゴム粒子の集合体である。ゴム粒子は、コアとシェルとで形成されている。コア及びシェルの少なくともいずれかが弾性を有する。このようなコアシェルゴムを熱硬化性樹脂組成物が含有することで、硬化物の耐衝撃性、耐熱衝撃性、レーザ加工性及びドリル加工性を高めることができる。好ましくは、コアシェルゴムがコア及びシェルの少なくともいずれかにシリコーンを含んでいる。これにより耐熱衝撃性を更に高めることができる。つまり、シリコーンを含んでいない場合に比べて、より低温でも耐衝撃性を高めることができる。 First, the core-shell rubber will be explained. Core-shell rubber is an aggregate of rubber particles having a core-shell structure. A rubber particle is formed of a core and a shell. At least one of the core and shell has elasticity. By including such a core-shell rubber in the thermosetting resin composition, the impact resistance, thermal shock resistance, laser processability, and drill processability of the cured product can be enhanced. Preferably, the core-shell rubber contains silicone in at least one of the core and shell. This can further enhance the thermal shock resistance. In other words, the impact resistance can be enhanced even at lower temperatures than when silicone is not included.

コアは、粒子状のゴムである。ゴムは、共重合体でも単独重合体でもよい。共重合体の具体例として、シリコーン/アクリル共重合体が挙げられる。単独重合体の具体例として、架橋アクリル重合体が挙げられる。架橋アクリル重合体は、アクリルモノマーの単独重合体であって、三次元架橋構造を有するものである。 The core is particulate rubber. Rubbers may be copolymers or homopolymers. Specific examples of copolymers include silicone/acrylic copolymers. Specific examples of homopolymers include crosslinked acrylic polymers. A crosslinked acrylic polymer is a homopolymer of an acrylic monomer and has a three-dimensional crosslinked structure.

シェルは、コアの表面に存在する。シェルは、複数のグラフト鎖からなる。各グラフト鎖の一端はコアの表面に結合されて固定端となっており、他端は自由端となっている。グラフト鎖は、共重合体でも単独重合体でもよい。共重合体の具体例として、アクリロニトリル/スチレン共重合体が挙げられる。単独重合体の具体例として、ポリメタクリル酸メチルが挙げられる。 A shell exists on the surface of the core. The shell consists of multiple graft chains. One end of each graft chain is bonded to the surface of the core to form a fixed end, and the other end is a free end. A graft chain may be a copolymer or a homopolymer. Specific examples of copolymers include acrylonitrile/styrene copolymers. A specific example of the homopolymer is polymethyl methacrylate.

コアシェルゴムの平均粒子径は、0.1μm以上0.7μm以下の範囲内であることが好ましい。コアシェルゴムの平均粒子径が0.1μm以上であることによって、硬化物の耐衝撃性を更に高めることができる。コアシェルゴムの平均粒子径が0.7μm以下であることによって、コアシェルゴムが熱硬化性樹脂組成中において均一に分散しやすくなり、その結果、硬化物中においても均一に分散しやすくなる。 The average particle size of the core-shell rubber is preferably in the range of 0.1 µm or more and 0.7 µm or less. When the core-shell rubber has an average particle size of 0.1 μm or more, the impact resistance of the cured product can be further enhanced. When the average particle size of the core-shell rubber is 0.7 μm or less, the core-shell rubber can be easily dispersed uniformly in the thermosetting resin composition, and as a result, it can be easily dispersed uniformly in the cured product.

コアシェルゴムの含有量は、熱硬化性樹脂100質量部に対して、10質量部以上30質量部以下の範囲内であることが好ましい。コアシェルゴムの含有量がこの範囲内であることで、熱硬化性樹脂組成物の成型性を適度に維持しながら、硬化物の耐衝撃性、ドリル加工性及びレーザ加工性を向上させることができる。 The content of the core-shell rubber is preferably in the range of 10 parts by mass or more and 30 parts by mass or less with respect to 100 parts by mass of the thermosetting resin. When the content of the core-shell rubber is within this range, it is possible to improve the impact resistance, drill workability, and laser workability of the cured product while appropriately maintaining the moldability of the thermosetting resin composition. .

次にアクリル樹脂について説明する。アクリル樹脂は、下記式(1)、下記式(2)及び下記式(3)のうちの、少なくとも下記式(2)及び下記式(3)で表される構造を有することが好ましい。以下では、このような構造を有するアクリル樹脂について説明するが、このアクリル樹脂には限定されない。 Next, the acrylic resin will be explained. The acrylic resin preferably has a structure represented by at least the following formulas (2) and (3) among the following formulas (1), (2) and (3). An acrylic resin having such a structure will be described below, but the present invention is not limited to this acrylic resin.

Figure 0007289103000005
Figure 0007289103000005

式(1)中のx、式(2)中のy及び式(3)中のzは、次の関係式を満たす。x:y:z(モル分率)=0:0.95:0.05~0.2:0.6:0.2(ただし、x+y+z≦1、0≦x≦0.2、0.6≦y≦0.95、0.05≦z≦0.2)である。式(2)中、R1は水素原子又はメチル基、R2は、水素原子、アルキル基、グリシジル基及びエポキシ化されたアルキル基のうち、少なくともグリシジル基及びエポキシ化されたアルキル基のうちの1つを含む。式(3)中、R3は水素原子又はメチル基、R4はフェニル基(-Ph)、-COOCHPh又は-COO(CHPhである。x in formula (1), y in formula (2), and z in formula (3) satisfy the following relational expressions. x: y: z (molar fraction) = 0: 0.95: 0.05 to 0.2: 0.6: 0.2 (where x + y + z ≤ 1, 0 ≤ x ≤ 0.2, 0.6 ≤ y ≤ 0.95, 0.05 ≤ z ≤ 0.2). In formula (2), R1 is a hydrogen atom or a methyl group, and R2 is a hydrogen atom, an alkyl group, a glycidyl group and an epoxidized alkyl group, at least one of a glycidyl group and an epoxidized alkyl group. including. In formula (3), R3 is a hydrogen atom or a methyl group, R4 is a phenyl group (-Ph), -COOCH 2 Ph or -COO(CH 2 ) 2 Ph.

アクリル樹脂の主鎖は、式(1)、式(2)及び式(3)のうちの、少なくとも式(2)及び式(3)で表される構造を有している。 The main chain of the acrylic resin has a structure represented by at least formula (2) and formula (3) out of formula (1), formula (2) and formula (3).

アクリル樹脂の主鎖が式(1)、式(2)及び式(3)で表される構造を有する場合、式(1)、式(2)及び式(3)で表される構造の配列順序は特に限定されない。この場合、アクリル樹脂の主鎖において、式(1)で表される構造同士が連続していても連続していなくてもよく、また式(2)で表される構造同士が連続していても連続していなくてもよく、また式(3)で表される構造同士が連続していても連続していなくてもよい。 When the main chain of the acrylic resin has the structures represented by formulas (1), (2) and (3), the arrangement of the structures represented by formulas (1), (2) and (3) The order is not particularly limited. In this case, in the main chain of the acrylic resin, the structures represented by formula (1) may or may not be continuous, and the structures represented by formula (2) may be continuous. may be discontinuous, and the structures represented by formula (3) may be discontinuous or discontinuous.

アクリル樹脂の主鎖が式(2)及び式(3)で表される構造を有する場合も、式(2)及び式(3)で表される構造の配列順序は特に限定されない。この場合、アクリル樹脂の主鎖において、式(2)で表される構造同士が連続していても連続していなくてもよく、また式(3)で表される構造同士が連続していても連続していなくてもよい。 Also when the main chain of the acrylic resin has the structures represented by the formulas (2) and (3), the arrangement order of the structures represented by the formulas (2) and (3) is not particularly limited. In this case, in the main chain of the acrylic resin, the structures represented by formula (2) may or may not be continuous, and the structures represented by formula (3) may be continuous. may not be consecutive.

ここで、式(2)中のR2が、水素原子、アルキル基、グリシジル基及びエポキシ化されたアルキル基のうち、少なくともグリシジル基及びエポキシ化されたアルキル基のうちの1つを含むことの意味について補足説明する。前提として、1つの式(2)で表される構造におけるR2は1つである。アクリル樹脂が、式(2)で表される構造を1つのみ有する場合と、2つ以上有する場合とに分けて説明する。 Here, the meaning that R2 in formula (2) includes at least one of a glycidyl group and an epoxidized alkyl group among a hydrogen atom, an alkyl group, a glycidyl group and an epoxidized alkyl group. Supplementary explanation will be given. As a premise, there is one R2 in one structure represented by formula (2). The case where the acrylic resin has only one structure represented by formula (2) and the case where it has two or more structures will be described separately.

アクリル樹脂が1つの式(2)で表される構造を有する場合、R2は、グリシジル基又はエポキシ化されたアルキル基である。 When the acrylic resin has one structure represented by formula (2), R2 is a glycidyl group or an epoxidized alkyl group.

アクリル樹脂が2つ以上の式(2)で表される構造を有する場合、少なくとも1つの式(2)で表される構造におけるR2は、グリシジル基又はエポキシ化されたアルキル基であり、残りの式(2)で表される構造におけるR2は、水素原子又はアルキル基である。少なくとも1つの式(2)で表される構造におけるR2が、グリシジル基又はエポキシ化されたアルキル基であるから、全部の式(2)で表される構造におけるR2が、グリシジル基又はエポキシ化されたアルキル基でもよい。 When the acrylic resin has two or more structures represented by formula (2), at least one R2 in the structure represented by formula (2) is a glycidyl group or an epoxidized alkyl group, and the remaining R2 in the structure represented by formula (2) is a hydrogen atom or an alkyl group. Since R2 in at least one structure represented by formula (2) is a glycidyl group or an epoxidized alkyl group, R2 in all the structures represented by formula (2) is a glycidyl group or an epoxidized or an alkyl group.

式(3)で表される構造は、フェニル基(-Ph)、-COOCHPh、-COO(CHPhを有している。-Ph、-COOCHPh、-COO(CHPhは熱的に安定であるため、プリプレグの硬化物の強度が高められる。したがって、プリプレグを材料として製造された金属張積層板2及びプリント配線板3(以下まとめて「基板」という場合がある。)基板の吸湿耐熱性を向上させることができる。The structure represented by formula (3) has a phenyl group (--Ph), --COOCH 2 Ph, and --COO(CH 2 ) 2 Ph. Since —Ph, —COOCH 2 Ph, and —COO(CH 2 ) 2 Ph are thermally stable, the strength of the cured prepreg is increased. Therefore, the moisture absorption and heat resistance of the metal-clad laminate 2 and the printed wiring board 3 (hereinafter collectively referred to as "substrate" in some cases) manufactured using prepreg as a material can be improved.

アクリル樹脂は、隣り合う炭素原子間に二重結合や三重結合のような不飽和結合を有しないことが好ましい。すなわち、アクリル樹脂の隣り合う炭素原子同士は飽和結合(単結合)により結合されていることが好ましい。これにより、経時的な酸化を低減することができるので、弾性を失って脆くなることを抑制することができる。 The acrylic resin preferably does not have unsaturated bonds such as double bonds and triple bonds between adjacent carbon atoms. That is, it is preferable that the adjacent carbon atoms of the acrylic resin are bound by a saturated bond (single bond). As a result, oxidation over time can be reduced, so that loss of elasticity and brittleness can be suppressed.

アクリル樹脂の重量平均分子量(Mw)は20万以上85万以下の範囲内であることが好ましい。アクリル樹脂の重量平均分子量が20万以上であることで、硬化物の耐薬品性を向上させることができる。アクリル樹脂の重量平均分子量が85万以下であることで、熱硬化性樹脂組成物の成型性を向上させることができる。 The weight average molecular weight (Mw) of the acrylic resin is preferably in the range of 200,000 or more and 850,000 or less. When the weight average molecular weight of the acrylic resin is 200,000 or more, the chemical resistance of the cured product can be improved. When the weight average molecular weight of the acrylic resin is 850,000 or less, the moldability of the thermosetting resin composition can be improved.

アクリル樹脂が熱硬化性樹脂組成物に含有されていると、プリプレグの硬化物が吸湿しにくくなることによって、基板の耐湿性を高めることができ、絶縁信頼性を向上させることができる。またプリプレグの硬化物が吸湿したとしても、この硬化物を構成する樹脂の破断強度が高められているので、基板の吸湿耐熱性を向上させることができる。 When the acrylic resin is contained in the thermosetting resin composition, the cured product of the prepreg becomes less likely to absorb moisture, thereby increasing the moisture resistance of the substrate and improving the insulation reliability. Moreover, even if the cured product of the prepreg absorbs moisture, the resistance to moisture absorption and heat of the substrate can be improved because the breaking strength of the resin constituting this cured product is increased.

アクリル樹脂は、1分子中に少なくとも1つ以上のエポキシ基を有するプレポリマーである。エポキシ基は、アクリル樹脂が有する官能基の1種である。アクリル樹脂のエポキシ当量は、好ましくは1250g/eq以上100000g/eq以下の範囲内であり、より好ましくは2500g/eq以上7000g/eq以下の範囲内である。この場合のエポキシ当量とは、1当量のエポキシ基を含むアクリル樹脂の質量を意味する。エポキシ当量が小さければエポキシ基の濃度が高く、エポキシ当量が大きければエポキシ基の濃度が低い。 Acrylic resin is a prepolymer having at least one or more epoxy groups in one molecule. Epoxy groups are one type of functional groups possessed by acrylic resins. The epoxy equivalent of the acrylic resin is preferably in the range of 1250 g/eq to 100000 g/eq, more preferably in the range of 2500 g/eq to 7000 g/eq. The epoxy equivalent in this case means the mass of the acrylic resin containing one equivalent of epoxy groups. If the epoxy equivalent is small, the concentration of epoxy groups is high, and if the epoxy equivalent is large, the concentration of epoxy groups is low.

アクリル樹脂の含有量は、熱硬化性樹脂100質量部に対して、10質量部以上30質量部以下の範囲内であることが好ましい。アクリル樹脂の含有量が10質量部以上であることで、金属に対する硬化物の密着性を向上させることができる。アクリル樹脂の含有量が30質量部以下であることで、硬化物を燃えにくくすることができる。 The content of the acrylic resin is preferably in the range of 10 parts by mass or more and 30 parts by mass or less with respect to 100 parts by mass of the thermosetting resin. When the content of the acrylic resin is 10 parts by mass or more, the adhesion of the cured product to metal can be improved. The hardened|cured material can be made hard to burn because content of an acrylic resin is 30 mass parts or less.

コアシェルゴム及びアクリル樹脂を併用してもよいし、これらのうちコアシェルゴムのみを使用してもよい。このような場合には、コアシェルゴム及びアクリル樹脂の合計質量に対して、コアシェルゴムの割合は、50質量%以上100質量%以下の範囲内であることが好ましい。このような最適量であれば、コアシェルゴム及びアクリル樹脂の各々の利点が得られる。すなわち、硬化物の耐衝撃性、耐熱衝撃性、レーザ加工性、ドリル加工性、及び、金属に対する密着性の向上を実現し得る。 A core-shell rubber and an acrylic resin may be used in combination, or only the core-shell rubber may be used. In such a case, the ratio of the core-shell rubber is preferably in the range of 50% by mass or more and 100% by mass or less with respect to the total mass of the core-shell rubber and the acrylic resin. Such optimal amounts provide the benefits of each of the core-shell rubber and the acrylic resin. That is, it is possible to improve the impact resistance, thermal shock resistance, laser workability, drill workability, and adhesion to metal of the cured product.

次に添加型難燃剤について説明する。添加型難燃剤の具体例として、リン酸エステル化合物、ホスファゼン化合物及び酸化アンチモンが挙げられる。熱硬化性樹脂組成物に添加型難燃剤が含有されていることで、硬化物の耐燃性を向上させることができる。 Next, the additive-type flame retardant will be explained. Specific examples of additive flame retardants include phosphate ester compounds, phosphazene compounds and antimony oxide. By containing the additive flame retardant in the thermosetting resin composition, the flame resistance of the cured product can be improved.

添加型難燃剤は、添加型リン系難燃剤であることが好ましい。添加型リン系難燃剤をハロゲンの代わりに使用することで、ハロゲンフリーの熱硬化性樹脂組成物を得ることができる。添加型リン系難燃剤の具体例として、リン酸エステル化合物、ホスファゼン化合物、亜リン酸エステル化合物、ホスフィン化合物、ホスフィン酸塩化合物、ポリリン酸塩化合物、ホスホニウム塩化合物及びホスフィンオキサイド化合物が挙げられる。 The additive flame retardant is preferably an additive phosphorus flame retardant. A halogen-free thermosetting resin composition can be obtained by using an additive-type phosphorus-based flame retardant instead of halogen. Specific examples of additive-type phosphorus-based flame retardants include phosphate ester compounds, phosphazene compounds, phosphite ester compounds, phosphine compounds, phosphinate compounds, polyphosphate compounds, phosphonium salt compounds and phosphine oxide compounds.

次に硬化促進剤について説明する。硬化促進剤は、熱硬化性樹脂及び硬化剤に応じて適宜に選定される。硬化促進剤の具体例として、2-エチル-4-メチルイミダゾールが挙げられる。 Next, the curing accelerator will be explained. The curing accelerator is appropriately selected according to the thermosetting resin and curing agent. A specific example of the curing accelerator is 2-ethyl-4-methylimidazole.

次に熱硬化性樹脂組成物に含有されていないのが好ましい任意成分について説明する。 Next, optional components that are preferably not contained in the thermosetting resin composition will be described.

熱硬化性樹脂組成物は、顔料及び染料を実質的に含有しないことが好ましい。顔料及び染料の中には紫外線を吸収し得るものもあるが、顔料及び染料の少なくともいずれかが熱硬化性樹脂組成物に実質的に含有されていると、以下のような問題が生じ得る。 The thermosetting resin composition preferably contains substantially no pigments or dyes. Although some pigments and dyes can absorb ultraviolet rays, if at least one of the pigments and dyes is substantially contained in the thermosetting resin composition, the following problems may occur.

一般に顔料及び染料は、熱硬化性樹脂と反応し得る架橋点を持たないため、架橋構造を形成することができない。そのため、顔料及び染料が硬化物51中に過剰に含有されていると、硬化物51の耐熱性が低下するおそれがある。 In general, pigments and dyes cannot form a crosslinked structure because they do not have crosslink points that can react with thermosetting resins. Therefore, if the cured product 51 contains an excessive amount of pigment and dye, the heat resistance of the cured product 51 may decrease.

また顔料の溶剤への分散性が悪いと、硬化物51を均一に着色することができなくなるおそれがある。すなわち、硬化物51の表面に顔料が局所的に凝集し、この局所的な凝集によって濃淡が発生することにより、不均一な着色となる。 Also, if the dispersibility of the pigment in the solvent is poor, the cured product 51 may not be uniformly colored. That is, the pigment locally agglomerates on the surface of the cured product 51, and the local agglomeration causes uneven coloring, resulting in non-uniform coloring.

また染料の溶剤への溶解性が悪いと、硬化物51を均一に着色することができなくなるおそれがある。すなわち、硬化物51の表面に染料が局所的に析出し、この局所的な析出によって濃淡が発生することにより、不均一な着色となる。 Moreover, if the solubility of the dye in the solvent is poor, the cured product 51 may not be uniformly colored. That is, the dye locally precipitates on the surface of the cured product 51, and this local precipitation causes unevenness in coloration, resulting in non-uniform coloring.

また、プリント配線板3の導体配線81の高密度化が進展すると、隣り合う導体配線81間の絶縁不良を生じるおそれもある。この絶縁不良の原因として、例えば、隣り合う導体配線81間において、カーボンブラックのように導電性を有する顔料が凝集した状態で存在することで、上記の導体配線81間を短絡してしまうことが挙げられる。 Further, as the density of the conductor wirings 81 of the printed wiring board 3 progresses, there is a possibility that insulation failure may occur between the adjacent conductor wirings 81 . As a cause of this insulation failure, for example, a conductive pigment such as carbon black exists between the adjacent conductor wirings 81 in an agglomerated state, which causes a short circuit between the conductor wirings 81 . mentioned.

これに対して、本実施形態では、熱硬化性樹脂組成物が硬化する際に、紫外線を吸収する第1硬化剤は、架橋構造を形成し、硬化物中では孤立して存在しないので、上記のような問題は生じにくい。なお、紫外線遮蔽効果が損なわなければ、熱硬化性樹脂組成物は、顔料及び染料の少なくともいずれかを含有してもよい。 In contrast, in the present embodiment, when the thermosetting resin composition is cured, the first curing agent that absorbs ultraviolet rays forms a crosslinked structure and does not exist in isolation in the cured product. Problems like this are unlikely to occur. The thermosetting resin composition may contain at least one of a pigment and a dye as long as the ultraviolet shielding effect is not impaired.

また熱硬化性樹脂組成物は、ハロゲンを実質的に含有しないことが好ましい。熱硬化性樹脂組成物がハロゲンフリーであることで、硬化物を含むプリント配線板などが焼却される場合に、ダイオキシン類の発生を抑制することができる。硬化物に耐燃性を付与する場合には、上述のようにハロゲンの代わりに、リン含有難燃剤を熱硬化性樹脂組成物に含有させればよい。なお、紫外線遮蔽効果が損なわれず、かつ、ダイオキシン類の発生が抑制できるのであれば、熱硬化性樹脂組成物は、微量のハロゲンを含有してもよい。 Moreover, it is preferable that the thermosetting resin composition does not substantially contain halogen. Since the thermosetting resin composition is halogen-free, generation of dioxins can be suppressed when a printed wiring board or the like containing the cured product is incinerated. When flame resistance is to be imparted to the cured product, the thermosetting resin composition may contain a phosphorus-containing flame retardant instead of the halogen as described above. The thermosetting resin composition may contain a small amount of halogen as long as the ultraviolet shielding effect is not impaired and the generation of dioxins can be suppressed.

(2.2)プリプレグ
本実施形態に係るプリプレグ1を図1に示す。プリプレグ1は、全体としてシート状又はフィルム状である。プリプレグ1は、金属張積層板2の材料、プリント配線板3の材料、及びプリント配線板3の多層化(ビルドアップ法)などに利用される。
(2.2) Prepreg A prepreg 1 according to the present embodiment is shown in FIG. The prepreg 1 is sheet-like or film-like as a whole. The prepreg 1 is used as a material for the metal-clad laminate 2, a material for the printed wiring board 3, multilayering of the printed wiring board 3 (build-up method), and the like.

プリプレグ1は、基材4と、基材4に含浸された熱硬化性樹脂組成物の半硬化物50と、を備えている。 The prepreg 1 includes a base material 4 and a semi-cured material 50 of a thermosetting resin composition impregnated in the base material 4 .

基材4の具体例として、織布及び不織布が挙げられる。織布の具体例として、ガラスクロスが挙げられる。不織布の具体例として、ガラス不織布が挙げられる。ガラスクロス及びガラス不織布は、ガラス繊維で形成されているが、ガラス繊維以外の強化繊維で形成されていてもよい。強化繊維の具体例として、芳香族ポリアミド繊維、液晶ポリエステル繊維、ポリ(パラフェニレンベンゾビスオキサゾール)(PBO)繊維、及び、ポリフェニレンサルファイド(PPS)樹脂繊維が挙げられる。 Specific examples of the base material 4 include woven fabrics and non-woven fabrics. A specific example of the woven fabric is glass cloth. A specific example of the nonwoven fabric is glass nonwoven fabric. The glass cloth and the glass non-woven fabric are made of glass fibers, but may be made of reinforcing fibers other than glass fibers. Specific examples of reinforcing fibers include aromatic polyamide fibers, liquid crystal polyester fibers, poly(paraphenylenebenzobisoxazole) (PBO) fibers, and polyphenylene sulfide (PPS) resin fibers.

1枚のプリプレグ1は、少なくとも1枚の基材4を備えている。 One sheet of prepreg 1 includes at least one sheet of base material 4 .

半硬化物50は、熱硬化性樹脂組成物の半硬化状態のものである。ここで、半硬化状態とは、硬化反応の中間段階(Bステージ)の状態を意味する。中間段階は、ワニス状態の段階(Aステージ)と、硬化状態の段階(Cステージ)との間の段階である。プリプレグ1は加熱されると一度溶融した後、完全に硬化して硬化状態となる。プリプレグ1の硬化物は、基板の絶縁層を形成し得る。 The semi-cured material 50 is a thermosetting resin composition in a semi-cured state. Here, the semi-cured state means the intermediate stage (B stage) of the curing reaction. The intermediate stage is the stage between the varnish state stage (A stage) and the cured state stage (C stage). When the prepreg 1 is heated, it melts once and then completely hardens into a hardened state. The cured prepreg 1 can form the insulating layer of the substrate.

プリプレグ1は、好ましくは厚さが100μm以下、より好ましくは厚さが60μm以下、さらに好ましくは厚さが40μm以下である。これにより絶縁層の厚さを薄くすることができ、基板の薄型化を実現することができる。プリプレグ1の厚さは10μm以上であることが好ましい。 The prepreg 1 preferably has a thickness of 100 μm or less, more preferably 60 μm or less, and even more preferably 40 μm or less. As a result, the thickness of the insulating layer can be reduced, and the thickness of the substrate can be reduced. The thickness of the prepreg 1 is preferably 10 μm or more.

(2.3)金属張積層板
本実施形態に係る金属張積層板2を図2に示す。金属張積層板2は、絶縁層52と、金属層80と、を備えている。金属張積層板2は、プリント配線板3の材料などに利用される。
(2.3) Metal-clad laminate A metal-clad laminate 2 according to this embodiment is shown in FIG. The metal-clad laminate 2 includes an insulating layer 52 and a metal layer 80 . The metal-clad laminate 2 is used as a material for the printed wiring board 3 and the like.

絶縁層52は、プリプレグ1の硬化物51で形成されている。図2では、絶縁層52は、1枚の基材4を有しているが、2枚以上の基材4を有していてもよい。絶縁層52の厚さは、特に限定されない。絶縁層52の厚さが厚ければUV遮蔽性に有効であり、絶縁層52の厚さが薄ければ基板の薄型化に有効である。これらを両立させるために、絶縁層52の厚さは、好ましくは100μm以下、より好ましくは60μm以下、さらに好ましくは40μm以下である。UV遮蔽性は、第1硬化剤の寄与するところが大きいが、絶縁層52の厚さをある程度確保することも有効であるので、絶縁層52の厚さは10μm以上であることが好ましく、15μm以上であることがより好ましい。 The insulating layer 52 is formed of the cured product 51 of the prepreg 1 . Although the insulating layer 52 has one substrate 4 in FIG. 2 , it may have two or more substrates 4 . The thickness of the insulating layer 52 is not particularly limited. A thick insulating layer 52 is effective for UV shielding, and a thin insulating layer 52 is effective for thinning the substrate. In order to achieve both of these, the thickness of the insulating layer 52 is preferably 100 μm or less, more preferably 60 μm or less, and even more preferably 40 μm or less. The UV shielding property largely depends on the first curing agent, but it is also effective to ensure the thickness of the insulating layer 52 to some extent. is more preferable.

金属層80は、絶縁層52の片面又は両面に形成されている。金属層80の具体例として、銅層が挙げられる。図2では、絶縁層52の両面に金属層80が形成されているが、絶縁層52の片面のみに金属層80が形成されていてもよい。絶縁層52の両面に金属層80が形成されている金属張積層板2は、両面金属張積層板である。絶縁層52の片面のみに金属層80が形成されている金属張積層板2は、片面金属張積層板である。 The metal layer 80 is formed on one side or both sides of the insulating layer 52 . A specific example of the metal layer 80 is a copper layer. Although the metal layer 80 is formed on both sides of the insulating layer 52 in FIG. 2, the metal layer 80 may be formed on only one side of the insulating layer 52 . The metal-clad laminate 2 in which the metal layers 80 are formed on both sides of the insulating layer 52 is a double-sided metal-clad laminate. The metal-clad laminate 2 in which the metal layer 80 is formed only on one side of the insulating layer 52 is a single-sided metal-clad laminate.

(2.4)プリント配線板
本実施形態に係るプリント配線板3を図3に示す。プリント配線板3は、絶縁層52と、導体配線81と、を備えている。本明細書において、「プリント配線板」は、電子部品がはんだ付けされておらず、配線だけの状態のものを意味する。
(2.4) Printed Wiring Board FIG. 3 shows a printed wiring board 3 according to this embodiment. The printed wiring board 3 includes an insulating layer 52 and conductor wiring 81 . As used herein, the term "printed wiring board" means a board in which electronic components are not soldered and only wiring is present.

絶縁層52は、プリプレグ1の硬化物51で形成されている。絶縁層52は、上述の金属張積層板2の絶縁層52と同じである。 The insulating layer 52 is formed of the cured product 51 of the prepreg 1 . The insulating layer 52 is the same as the insulating layer 52 of the metal-clad laminate 2 described above.

導体配線81は、絶縁層52の片面又は両面に形成されている。図3では、絶縁層52の両面に導体配線81が形成されているが、絶縁層52の片面に導体配線81が形成されていてもよい。 The conductor wiring 81 is formed on one side or both sides of the insulating layer 52 . Although the conductor wiring 81 is formed on both sides of the insulating layer 52 in FIG. 3 , the conductor wiring 81 may be formed on one side of the insulating layer 52 .

次にプリント配線板3の製造方法について説明する。具体的には、図2に示す金属張積層板2を、図3に示すプリント配線板3に加工する方法である。金属張積層板2の金属層80の不要部分を除去することによって、プリント配線板3を製造することができる。金属層80の不要部分を除去して残った必要部分が導体配線81となる。 Next, a method for manufacturing the printed wiring board 3 will be described. Specifically, it is a method of processing the metal-clad laminate 2 shown in FIG. 2 into the printed wiring board 3 shown in FIG. The printed wiring board 3 can be manufactured by removing unnecessary portions of the metal layer 80 of the metal-clad laminate 2 . The necessary portion remaining after removing the unnecessary portion of the metal layer 80 becomes the conductor wiring 81 .

まず図4Aに示すように、金属張積層板2の一方の金属層80に第1エッチングレジスト61を塗布又は貼着し、他方の金属層80に第2エッチングレジスト62を塗布又は貼着する。以下では、第1エッチングレジスト61及び第2エッチングレジスト62がネガティブレジストである場合について説明するが、ポジティブレジストでもよい。 First, as shown in FIG. 4A, a first etching resist 61 is applied or adhered to one metal layer 80 of the metal-clad laminate 2 and a second etching resist 62 is applied or adhered to the other metal layer 80 . Although the case where the first etching resist 61 and the second etching resist 62 are negative resists will be described below, they may be positive resists.

次に図4Bに示すように、第1エッチングレジスト61に第1フォトマスク601を重ね、第2エッチングレジスト62に第2フォトマスク602を重ねる。 Next, as shown in FIG. 4B, a first photomask 601 is overlaid on the first etching resist 61 and a second photomask 602 is overlaid on the second etching resist 62 .

ここで、第1フォトマスク601は、透光部601a及び遮光部601bを有する。第2フォトマスク602は、透光部602a及び遮光部602bを有する。 Here, the first photomask 601 has a light-transmitting portion 601a and a light-shielding portion 601b. The second photomask 602 has a light transmitting portion 602a and a light shielding portion 602b.

そして、両面露光を行う。すなわち、第1フォトマスク601及び第2フォトマスク602の各々に紫外線UVを照射する。 Then, double-sided exposure is performed. That is, each of the first photomask 601 and the second photomask 602 is irradiated with ultraviolet rays UV.

第1フォトマスク601において、紫外線UVは、透光部601aを透過し、遮光部601bで遮られる。第1エッチングレジスト61のうち、透光部601aを透過して紫外線UVが照射された部分は、光重合で硬化して第1レジスト層61aとなる。 In the first photomask 601, the ultraviolet rays UV pass through the translucent portion 601a and are blocked by the light shielding portion 601b. A portion of the first etching resist 61 that is irradiated with ultraviolet rays UV through the transparent portion 601a is cured by photopolymerization to become the first resist layer 61a.

この場合において、紫外線UVが第1エッチングレジスト61を透過したとしても、その先には金属層80が存在するので、この金属層80で紫外線UVは反射される。そのため、いわゆる裏焼けの問題は生じない。 In this case, even if the ultraviolet rays UV pass through the first etching resist 61 , since the metal layer 80 exists beyond the first etching resist 61 , the ultraviolet rays UV are reflected by the metal layer 80 . Therefore, the problem of so-called backburning does not occur.

一方、第2フォトマスク602において、紫外線UVは、透光部602aを透過し、遮光部602bで遮られる。第2エッチングレジスト62のうち、透光部602aを透過して紫外線UVが照射された部分は、光重合で硬化して第2レジスト層62aとなる。 On the other hand, in the second photomask 602, the ultraviolet rays UV pass through the translucent portion 602a and are blocked by the light shielding portion 602b. A portion of the second etching resist 62 that is irradiated with the ultraviolet rays UV through the transparent portion 602a is cured by photopolymerization to form the second resist layer 62a.

この場合も同様に、紫外線UVが第2エッチングレジスト62を透過したとしても、その先には金属層80が存在するので、この金属層80で紫外線UVは反射される。そのため、いわゆる裏焼けの問題は生じない。 In this case as well, even if the ultraviolet rays UV pass through the second etching resist 62 , since the metal layer 80 exists beyond the second etching resist 62 , the ultraviolet rays UV are reflected by the metal layer 80 . Therefore, the problem of so-called backburning does not occur.

次に図4Cに示すように、第1エッチングレジスト61及び第2エッチングレジスト62のうち、紫外線UVが照射されなかった部分を現像液で除去する。このとき、第1レジスト層61a及び第2レジスト層62aは、現像液に溶解しないで残存する。第1レジスト層61a及び第2レジスト層62a以外の部分は、現像液に溶解して除去される。 Next, as shown in FIG. 4C, portions of the first etching resist 61 and the second etching resist 62 that have not been irradiated with the ultraviolet UV are removed with a developer. At this time, the first resist layer 61a and the second resist layer 62a remain without being dissolved in the developer. Portions other than the first resist layer 61a and the second resist layer 62a are dissolved in a developer and removed.

次に図4Dに示すように、金属層80のうち、第1レジスト層61a及び第2レジスト層62aで保護されていない部分をエッチング液で除去する。 Next, as shown in FIG. 4D, portions of the metal layer 80 that are not protected by the first resist layer 61a and the second resist layer 62a are removed with an etchant.

その後、第1レジスト層61a及び第2レジスト層62aを剥離液で除去する。そうすると、図3に示すプリント配線板3が得られる。 After that, the first resist layer 61a and the second resist layer 62a are removed with a remover. Then, the printed wiring board 3 shown in FIG. 3 is obtained.

(2.5)被覆プリント配線板
被覆プリント配線板30の製造方法について説明する。具体的には、図3に示すプリント配線板3を、図5Cに示す被覆プリント配線板30に加工する方法である。
(2.5) Covered Printed Wiring Board A method for manufacturing the covered printed wiring board 30 will be described. Specifically, it is a method of processing the printed wiring board 3 shown in FIG. 3 into the coated printed wiring board 30 shown in FIG. 5C.

まず図5Aに示すように、プリント配線板3の一方の面に第1ソルダーレジスト71を塗布又は貼着し、他方の面に第2ソルダーレジスト72を塗布又は貼着する。以下では、第1ソルダーレジスト71及び第2ソルダーレジスト72がネガティブレジストである場合について説明するが、ポジティブレジストでもよい。 First, as shown in FIG. 5A, a first solder resist 71 is applied or adhered to one surface of the printed wiring board 3, and a second solder resist 72 is applied or adhered to the other surface. Although the case where the first solder resist 71 and the second solder resist 72 are negative resists will be described below, they may be positive resists.

次に図5Bに示すように、第1ソルダーレジスト71に第1フォトマスク701を重ね、第2ソルダーレジスト72に第2フォトマスク702を重ねる。 Next, as shown in FIG. 5B, a first photomask 701 is overlaid on the first solder resist 71 and a second photomask 702 is overlaid on the second solder resist 72 .

ここで、第1フォトマスク701は、透光部701a及び遮光部701bを有する。第2フォトマスク702は、透光部702a及び遮光部702bを有する。 Here, the first photomask 701 has a light-transmitting portion 701a and a light-shielding portion 701b. The second photomask 702 has a light transmitting portion 702a and a light shielding portion 702b.

そして、両面露光を行う。すなわち、第1フォトマスク701及び第2フォトマスク702の各々に紫外線UVを照射する。 Then, double-sided exposure is performed. That is, each of the first photomask 701 and the second photomask 702 is irradiated with ultraviolet rays UV.

第1フォトマスク701において、紫外線UVは、透光部701aを透過し、遮光部701bで遮られる。第1ソルダーレジスト71のうち、透光部701aを透過して紫外線UVが照射された部分は、光重合で硬化して第1レジスト層71aとなる。 In the first photomask 701, the ultraviolet rays UV pass through the translucent portion 701a and are blocked by the light shielding portion 701b. A portion of the first solder resist 71 that is irradiated with the ultraviolet rays UV through the transparent portion 701a is cured by photopolymerization to become the first resist layer 71a.

ここで、第1ソルダーレジスト71と絶縁層52との間に導体配線81が存在する箇所では、紫外線UVが第1ソルダーレジスト71を透過したとしても、その先には導体配線81が存在するので、この導体配線81で紫外線UVは反射される。 Here, even if the ultraviolet rays UV pass through the first solder-resist 71 at the place where the conductor wiring 81 exists between the first solder-resist 71 and the insulating layer 52, the conductor wiring 81 exists ahead of it. , the ultraviolet rays UV are reflected by this conductor wiring 81 .

これに対して、第1ソルダーレジスト71と絶縁層52との間に導体配線81が存在しない箇所では、紫外線UVが第1ソルダーレジスト71を透過し、絶縁層52に照射される。この場合において、絶縁層52は、プリプレグ1の硬化物51で形成されているので、紫外線遮蔽性が高い。そのため、第1フォトマスク701の透光部701aを透過し、さらに第1ソルダーレジスト71を透過してきた紫外線UVがあったとしても、この紫外線UVは絶縁層52で遮られることとなる。したがって、絶縁層52を透過して反対側の第2ソルダーレジスト72まで感光させることを抑制することができる。つまり、いわゆる裏焼けを抑制することができる。 On the other hand, in a portion where the conductor wiring 81 does not exist between the first solder resist 71 and the insulating layer 52 , the ultraviolet rays UV pass through the first solder resist 71 and irradiate the insulating layer 52 . In this case, since the insulating layer 52 is formed of the cured product 51 of the prepreg 1, it has a high ultraviolet shielding property. Therefore, even if ultraviolet rays UV pass through the transparent portion 701 a of the first photomask 701 and further through the first solder resist 71 , the ultraviolet rays UV are blocked by the insulating layer 52 . Therefore, it is possible to prevent the second solder resist 72 on the opposite side from being exposed to light through the insulating layer 52 . In other words, so-called back burn can be suppressed.

一方、第2フォトマスク702において、紫外線UVは、透光部702aを透過し、遮光部702bで遮られる。第2ソルダーレジスト72のうち、透光部702aを透過して紫外線UVが照射された部分は、光重合で硬化して第2レジスト層72aとなる。 On the other hand, in the second photomask 702, the ultraviolet rays UV pass through the translucent portion 702a and are blocked by the light shielding portion 702b. A portion of the second solder resist 72 that is irradiated with the ultraviolet rays UV through the transparent portion 702a is cured by photopolymerization and becomes the second resist layer 72a.

ここで、第2ソルダーレジスト72と絶縁層52との間に導体配線81が存在する箇所では、紫外線UVが第2ソルダーレジスト72を透過したとしても、その先には導体配線81が存在するので、この導体配線81で紫外線UVは反射される。 Here, even if the ultraviolet rays UV pass through the second solder-resist 72 at the place where the conductor wiring 81 exists between the second solder-resist 72 and the insulating layer 52, the conductor wiring 81 exists ahead of it. , the ultraviolet rays UV are reflected by this conductor wiring 81 .

これに対して、第2ソルダーレジスト72と絶縁層52との間に導体配線81が存在しない箇所では、紫外線UVが第2ソルダーレジスト72を透過し、絶縁層52に照射される。この場合も同様に、絶縁層52は、プリプレグ1の硬化物51で形成されているので、紫外線遮蔽性が高い。そのため、第2フォトマスク702の透光部702aを透過し、さらに第2ソルダーレジスト72を透過してきた紫外線UVがあったとしても、この紫外線UVは絶縁層52で遮られることとなる。したがって、絶縁層52を透過して反対側の第1ソルダーレジスト71まで感光させることを抑制することができる。つまり、いわゆる裏焼けを抑制することができる。 On the other hand, in places where the conductor wiring 81 does not exist between the second solder resist 72 and the insulating layer 52 , the ultraviolet rays UV pass through the second solder resist 72 and irradiate the insulating layer 52 . In this case as well, since the insulating layer 52 is formed of the cured product 51 of the prepreg 1, it has a high ultraviolet shielding property. Therefore, even if ultraviolet rays UV pass through the light-transmitting portions 702 a of the second photomask 702 and further through the second solder resist 72 , the ultraviolet rays UV are blocked by the insulating layer 52 . Therefore, it is possible to prevent the first solder resist 71 on the opposite side from being exposed to light through the insulating layer 52 . In other words, so-called back burn can be suppressed.

次に図5Cに示すように、第1ソルダーレジスト71及び第2ソルダーレジスト72のうち、紫外線UVが照射されなかった部分を現像液で除去する。このとき、第1レジスト層71a及び第2レジスト層72aは、現像液に溶解しないで残存する。第1レジスト層71a及び第2レジスト層72a以外の部分は、現像液に溶解して除去される。 Next, as shown in FIG. 5C, portions of the first solder resist 71 and the second solder resist 72 that have not been irradiated with ultraviolet rays UV are removed with a developer. At this time, the first resist layer 71a and the second resist layer 72a remain without being dissolved in the developer. Portions other than the first resist layer 71a and the second resist layer 72a are dissolved in a developer and removed.

上記のようにして被覆プリント配線板30が得られる。導体配線81のうち、第1レジスト層71a及び第2レジスト層72aで保護されていない部分は、パッド81aとなり得る。パッド81aには電子部品(不図示)をはんだ付けすることができる。 Covered printed wiring board 30 is obtained as described above. A portion of the conductor wiring 81 that is not protected by the first resist layer 71a and the second resist layer 72a can serve as a pad 81a. Electronic components (not shown) can be soldered to the pads 81a.

なお、プリント回路板は、被覆プリント配線板30のパッド81aに電子部品がはんだ付けされて、電子回路として動作するようになったものである。さらに半導体パッケージは、プリント回路板の電子部品が封止されたものである。 The printed circuit board has electronic components soldered to the pads 81a of the coated printed wiring board 30, and operates as an electronic circuit. Further, a semiconductor package is a printed circuit board in which electronic components are encapsulated.

(2.6)樹脂付きフィルム
本実施形態に係る樹脂付きフィルム10を図6Aに示す。樹脂付きフィルム10は、全体としてフィルム状又はシート状である。樹脂付きフィルム10は、樹脂層11と、支持フィルム12と、を備えている。樹脂付きフィルム10は、プリント配線板3の多層化(ビルドアップ法)などに利用される。
(2.6) Resin-coated film A resin-coated film 10 according to this embodiment is shown in FIG. 6A. The resin-coated film 10 has a film shape or a sheet shape as a whole. A resin-coated film 10 includes a resin layer 11 and a support film 12 . The resin-coated film 10 is used for multilayering the printed wiring board 3 (build-up method).

樹脂層11は、熱硬化性樹脂組成物の半硬化物50で形成されている。半硬化物50は、加熱されることにより、紫外線遮蔽性の高い硬化物51となり得る。このようにして樹脂層11は、絶縁層52を形成し得る。 The resin layer 11 is formed of a semi-cured material 50 of a thermosetting resin composition. The semi-cured material 50 can become a cured material 51 having high ultraviolet shielding properties by being heated. The resin layer 11 can thus form the insulating layer 52 .

樹脂層11は、好ましくは厚さが100μm以下、より好ましくは厚さが60μm以下、さらに好ましくは厚さが40μm以下である。これにより絶縁層52の厚さを薄くすることができ、基板の薄型化を実現することができる。樹脂層11の厚さは10μm以上であることが好ましい。 The resin layer 11 preferably has a thickness of 100 μm or less, more preferably 60 μm or less, and even more preferably 40 μm or less. As a result, the thickness of the insulating layer 52 can be reduced, and the thickness of the substrate can be reduced. It is preferable that the thickness of the resin layer 11 is 10 μm or more.

支持フィルム12は、樹脂層11を支持している。このように支持することで、半硬化状態の樹脂層11を扱いやすくなる。支持フィルム12は、例えば電気絶縁性フィルムである。支持フィルム12の具体例として、ポリエチレンテレフタレート(PET)フィルム、ポリイミドフィルム、ポリエステルフィルム、ポリパラバン酸フィルム、ポリエーテルエーテルケトンフィルム、ポリフェニレンスルフィドフィルム、アラミドフィルム、ポリカーボネートフィルム、及びポリアリレートフィルム等が挙げられる。支持フィルム12は、これらのフィルムに限定されない。支持フィルム12の樹脂層11を支持する面には離型剤層(不図示)が設けられていてもよい。離型剤層によって、支持フィルム12は、必要に応じて樹脂層11から剥離可能である。好ましくは、絶縁層52を形成した後に、絶縁層52から支持フィルム12が剥離される。 The support film 12 supports the resin layer 11 . Such support makes it easier to handle the semi-cured resin layer 11 . The support film 12 is, for example, an electrically insulating film. Specific examples of the support film 12 include polyethylene terephthalate (PET) film, polyimide film, polyester film, polyparabanic acid film, polyetheretherketone film, polyphenylene sulfide film, aramid film, polycarbonate film, and polyarylate film. The support film 12 is not limited to these films. A release agent layer (not shown) may be provided on the surface of the support film 12 that supports the resin layer 11 . The release agent layer allows the support film 12 to be peeled off from the resin layer 11 as necessary. Preferably, the support film 12 is removed from the insulating layer 52 after forming the insulating layer 52 .

図6Aでは、樹脂層11の一方の面を支持フィルム12が被覆しているが、図6Bに示すように、樹脂層11の他方の面を保護フィルム13で被覆してもよい。このように樹脂層11の両面を被覆することで、半硬化状態の樹脂層11を更に扱いやすくなる。また異物が樹脂層11に付着することを抑制することができる。保護フィルム13は、例えば電気絶縁性フィルムである。保護フィルム13の具体例として、ポリエチレンテレフタレート(PET)フィルム、ポリオレフィンフィルム、ポリエステルフィルム、及びポリメチルペンテンフィルム等が挙げられる。保護フィルム13は、これらのフィルムに限定されない。保護フィルム13の樹脂層11に重ねられている面には離型剤層(不図示)が設けられていてもよい。離型剤層によって、保護フィルム13は、必要に応じて樹脂層11から剥離可能である。 Although one surface of the resin layer 11 is covered with the support film 12 in FIG. 6A, the other surface of the resin layer 11 may be covered with the protective film 13 as shown in FIG. 6B. By coating both sides of the resin layer 11 in this manner, the semi-cured resin layer 11 can be handled more easily. In addition, it is possible to prevent foreign substances from adhering to the resin layer 11 . The protective film 13 is, for example, an electrically insulating film. Specific examples of the protective film 13 include polyethylene terephthalate (PET) film, polyolefin film, polyester film, polymethylpentene film, and the like. Protective film 13 is not limited to these films. A release agent layer (not shown) may be provided on the surface of the protective film 13 that is overlaid on the resin layer 11 . The release agent layer allows the protective film 13 to be peeled off from the resin layer 11 as necessary.

(2.7)樹脂付き金属箔
本実施形態に係る樹脂付き金属箔100を図7に示す。樹脂付き金属箔100は、全体としてフィルム状又はシート状である。樹脂付き金属箔100は、樹脂層101と、金属箔102と、を備えている。樹脂付き金属箔100は、プリント配線板3の多層化(ビルドアップ法)などに利用される。
(2.7) Resin-coated Metal Foil FIG. 7 shows a resin-coated metal foil 100 according to this embodiment. The resin-coated metal foil 100 has a film shape or a sheet shape as a whole. A resin-coated metal foil 100 includes a resin layer 101 and a metal foil 102 . The resin-coated metal foil 100 is used for multilayering the printed wiring board 3 (build-up method).

樹脂層101は、熱硬化性樹脂組成物の半硬化物50で形成されている。半硬化物50は、加熱されることにより、紫外線遮蔽性の高い硬化物51となり得る。このようにして樹脂層101は、絶縁層52を形成し得る。 The resin layer 101 is formed of a semi-cured material 50 of a thermosetting resin composition. The semi-cured material 50 can become a cured material 51 having high ultraviolet shielding properties by being heated. The resin layer 101 can thus form the insulating layer 52 .

樹脂層101は、好ましくは厚さが100μm以下、より好ましくは厚さが60μm以下、さらに好ましくは厚さが40μm以下である。これにより絶縁層52の厚さを薄くすることができ、基板の薄型化を実現することができる。樹脂層101の厚さは10μm以上であることが好ましい。 The resin layer 101 preferably has a thickness of 100 μm or less, more preferably 60 μm or less, and even more preferably 40 μm or less. As a result, the thickness of the insulating layer 52 can be reduced, and the thickness of the substrate can be reduced. It is preferable that the thickness of the resin layer 101 is 10 μm or more.

金属箔102には、樹脂層101が接着されている。金属箔102の具体例として、銅箔が挙げられる。金属箔102は、不要部分がエッチングにより除去されることで、導体配線81を形成し得る。 A resin layer 101 is adhered to the metal foil 102 . A specific example of the metal foil 102 is copper foil. The metal foil 102 can form the conductor wiring 81 by removing unnecessary portions by etching.

(3)まとめ
以上説明したように、第1の態様に係る熱硬化性樹脂組成物は、熱硬化性樹脂と、無機充填材と、を含有する熱硬化性樹脂組成物である。熱硬化性樹脂は、硬化剤を含む。硬化剤の3質量%メチルエチルケトン溶液のガードナー色数は15以上である。硬化剤の含有量は、熱硬化性樹脂組成物の固形分全量に対して、10質量%以上である。
(3) Summary As described above, the thermosetting resin composition according to the first aspect is a thermosetting resin composition containing a thermosetting resin and an inorganic filler. A thermosetting resin contains a curing agent. The Gardner color number of a 3% by mass methyl ethyl ketone solution of the curing agent is 15 or more. The content of the curing agent is 10% by mass or more with respect to the total solid content of the thermosetting resin composition.

第1の態様によれば、紫外線遮蔽性の高い硬化物(51)を得ることができる。 According to the first aspect, it is possible to obtain a cured product (51) having high ultraviolet shielding properties.

第2の態様に係る熱硬化性樹脂組成物は、第1の態様において、硬化剤が、ナフタレン型フェノール樹脂を含む。 A thermosetting resin composition according to a second aspect, in the first aspect, contains a naphthalene-type phenolic resin as the curing agent.

第2の態様によれば、ノボラック型フェノール樹脂に比べて紫外線を吸収しやすくなる。 According to the second aspect, it becomes easier to absorb ultraviolet rays than a novolak-type phenolic resin.

第3の態様に係る熱硬化性樹脂組成物は、第1又は2の態様において、無機充填材の含有量が、熱硬化性樹脂100質量部に対して、200質量部以下である。 In the first or second aspect, the thermosetting resin composition according to the third aspect has an inorganic filler content of 200 parts by mass or less with respect to 100 parts by mass of the thermosetting resin.

第3の態様によれば、熱硬化性樹脂組成物の成型性を向上させることができる。さらに硬化物(51)内におけるボイドの発生を抑制することができる。 According to the third aspect, the moldability of the thermosetting resin composition can be improved. Furthermore, generation of voids in the cured product (51) can be suppressed.

第4の態様に係る熱硬化性樹脂組成物は、第1~3のいずれかの態様において、熱硬化性樹脂が、反応型難燃剤を更に含む。 In a thermosetting resin composition according to a fourth aspect, in any one of the first to third aspects, the thermosetting resin further contains a reactive flame retardant.

第4の態様によれば、硬化物(51)の耐燃性を向上させることができる。 According to the fourth aspect, the flame resistance of the cured product (51) can be improved.

第5の態様に係る熱硬化性樹脂組成物は、第1~4のいずれかの態様において、コアシェルゴム、アクリル樹脂、又は、コアシェルゴム及びアクリル樹脂の両方を更に含有する。 A thermosetting resin composition according to a fifth aspect, in any one of the first to fourth aspects, further contains core-shell rubber, acrylic resin, or both core-shell rubber and acrylic resin.

第5の態様によれば、硬化物の耐衝撃性、耐熱衝撃性、レーザ加工性及びドリル加工性、及び、金属に対する密着性のうち、少なくともいずれかの特性を向上させることができる。 According to the fifth aspect, it is possible to improve at least one of the impact resistance, thermal shock resistance, laser processability, drilling processability, and adhesion to metal of the cured product.

第6の態様に係る熱硬化性樹脂組成物は、第1~5のいずれかの態様において、添加型難燃剤を更に含有する。 A thermosetting resin composition according to a sixth aspect, in any one of the first to fifth aspects, further contains an additive flame retardant.

第6の態様によれば、硬化物(51)の耐燃性を更に向上させることができる。 According to the sixth aspect, the flame resistance of the cured product (51) can be further improved.

第7の態様に係るプリプレグ(1)は、基材(4)と、基材(4)に含浸された第1~6のいずれかの熱硬化性樹脂組成物の半硬化物(50)と、を備えている。 A prepreg (1) according to a seventh aspect comprises a substrate (4) and a semi-cured product (50) of any one of the first to sixth thermosetting resin compositions impregnated in the substrate (4). , is equipped with

第7の態様によれば、紫外線遮蔽性の高い硬化物(51)を得ることができる。 According to the seventh aspect, it is possible to obtain a cured product (51) having high ultraviolet shielding properties.

第8の態様に係るプリプレグ(1)は、第7の態様において、厚さが100μm以下である。 The prepreg (1) according to the eighth aspect has a thickness of 100 μm or less in the seventh aspect.

第8の態様によれば、厚さが100μm以下の硬化物(51)であって、紫外線遮蔽性の高い硬化物(51)を得ることができる。 According to the eighth aspect, it is possible to obtain a cured product (51) having a thickness of 100 μm or less and having high UV shielding properties.

第9の態様に係る金属張積層板(2)は、第7又は8の態様のプリプレグ(1)の硬化物(51)で形成された絶縁層(52)と、絶縁層(52)の片面又は両面に形成された金属層(80)と、を備えている。 A metal-clad laminate (2) according to a ninth aspect comprises an insulating layer (52) formed of the cured product (51) of the prepreg (1) of the seventh or eighth aspect, and one side of the insulating layer (52) or a metal layer (80) formed on both sides.

第9の態様によれば、絶縁層(52)の紫外線遮蔽性を高めることができる。 According to the ninth aspect, it is possible to enhance the ultraviolet shielding property of the insulating layer (52).

第10の態様に係るプリント配線板(3)は、第7又は8の態様のプリプレグ(1)の硬化物(51)で形成された絶縁層(52)と、絶縁層(52)の片面又は両面に形成された導体配線(81)と、を備えている。 A printed wiring board (3) according to a tenth aspect comprises an insulating layer (52) formed of the cured product (51) of the prepreg (1) of the seventh or eighth aspect, and one side or and conductor wiring (81) formed on both sides.

第10の態様によれば、絶縁層(52)の紫外線遮蔽性を高めることができる。 According to the tenth aspect, it is possible to enhance the ultraviolet shielding property of the insulating layer (52).

第11の態様に係る樹脂付きフィルム(10)は、第1~6のいずれかの熱硬化性樹脂組成物の半硬化物(50)で形成された樹脂層(11)と、樹脂層(11)を支持する支持フィルム(12)と、を備えている。 A resin-coated film (10) according to an eleventh aspect comprises a resin layer (11) formed of a semi-cured product (50) of any one of the first to sixth thermosetting resin compositions, and a resin layer (11 ), and a support film (12) for supporting ).

第11の態様によれば、紫外線遮蔽性の高い硬化物(51)を得ることができる。 According to the eleventh aspect, it is possible to obtain a cured product (51) having high ultraviolet shielding properties.

第12の態様に係る樹脂付き金属箔(100)は、第1~6のいずれかの熱硬化性樹脂組成物の半硬化物(50)で形成された樹脂層(101)と、樹脂層(101)が接着された金属箔(102)と、を備えている。 A resin-coated metal foil (100) according to a twelfth aspect comprises a resin layer (101) formed of a semi-cured product (50) of any one of the first to sixth thermosetting resin compositions, and a resin layer ( 101) is attached to a metal foil (102).

第12の態様によれば、紫外線遮蔽性の高い硬化物(51)を得ることができる。 According to the twelfth aspect, it is possible to obtain a cured product (51) having high ultraviolet shielding properties.

以下、本開示を実施例によって具体的に説明する。 EXAMPLES The present disclosure will be specifically described below with reference to examples.

[実施例1~13及び比較例1~5]
〔熱硬化性樹脂組成物〕
熱硬化性樹脂組成物の原料として、以下のものを用意した。
[Examples 1 to 13 and Comparative Examples 1 to 5]
[Thermosetting resin composition]
The following materials were prepared as raw materials for the thermosetting resin composition.

(熱硬化性樹脂)
・トリフェニルメタン型エポキシ樹脂(日本化薬株式会社製、商品名「EPPN-502H」、エポキシ当量:158~178g/eq)
・ナフタレン型エポキシ樹脂(DIC株式会社製、商品名「HP-9900」、エポキシ当量:272g/eq)
・ナフタレン型エポキシ樹脂(DIC株式会社製、商品名「HP-4710」、エポキシ当量:170g/eq)
・ビスマレイミド樹脂(日本化薬株式会社製、商品名「MIR-3000」、日本化薬株式会社製)
(硬化剤:第1硬化剤)
式(E)で表されるナフタレン型フェノール樹脂を非密閉型容器に入れ、空気存在下でこの容器内を攪拌した。酸化処理の温度を50℃以上100℃以下の範囲内で調整し、酸化処理の時間を6時間以上72時間以下の範囲内で調整することで、以下の2種の酸化されたナフタレン型フェノール樹脂を得た。
(Thermosetting resin)
・ Triphenylmethane type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., trade name “EPPN-502H”, epoxy equivalent: 158 to 178 g / eq)
・ Naphthalene type epoxy resin (manufactured by DIC Corporation, trade name “HP-9900”, epoxy equivalent: 272 g / eq)
・ Naphthalene type epoxy resin (manufactured by DIC Corporation, trade name “HP-4710”, epoxy equivalent: 170 g / eq)
・ Bismaleimide resin (manufactured by Nippon Kayaku Co., Ltd., trade name “MIR-3000”, manufactured by Nippon Kayaku Co., Ltd.)
(Curing agent: first curing agent)
A naphthalene-type phenolic resin represented by formula (E) was placed in a non-sealed container, and the inside of this container was stirred in the presence of air. By adjusting the oxidation treatment temperature in the range of 50 ° C. or higher and 100 ° C. or lower and adjusting the oxidation treatment time in the range of 6 hours or higher and 72 hours or lower, the following two types of oxidized naphthalene-type phenol resins are obtained. got

・酸化されたナフタレン型フェノール樹脂(水酸基当量:153g/eq、ガードナー色数18)
・酸化されたナフタレン型フェノール樹脂(水酸基当量:153g/eq、ガードナー色数15)
(硬化剤:第2硬化剤)
・ノボラック型フェノール樹脂(DIC株式会社製、商品名「TD-2090」、水酸基当量:105g/eq、ガードナー色数1以下)
・ナフタレン型フェノール樹脂(DIC株式会社製、商品名「HPC-9500」、水酸基当量:153g/eq、ガードナー色数7)
なお、硬化剤のガードナー色数は、3質量%メチルエチルケトン溶液を試料としてJIS K 0071-2に準拠して求めた。
- Oxidized naphthalene-type phenolic resin (hydroxyl equivalent: 153 g/eq, Gardner color number 18)
- Oxidized naphthalene-type phenolic resin (hydroxyl equivalent: 153 g/eq, Gardner color number 15)
(Curing agent: second curing agent)
・ Novolac phenol resin (manufactured by DIC Corporation, trade name “TD-2090”, hydroxyl equivalent: 105 g / eq, Gardner color number 1 or less)
- Naphthalene-type phenol resin (manufactured by DIC Corporation, product name "HPC-9500", hydroxyl equivalent: 153 g / eq, Gardner color number 7)
The Gardner color number of the curing agent was determined according to JIS K 0071-2 using a 3 mass % methyl ethyl ketone solution as a sample.

(反応型難燃剤)
・反応型リン系難燃剤(リン変性フェノール樹脂、ダウ・ケミカル製、商品名「XZ-92741」、水酸基当量:550g/eq)
・反応型リン系難燃剤(リン変性フェノール樹脂、DIC株式会社製、商品名「HPC-9080」、水酸基当量:373g/eq)
(無機充填材)
・溶融シリカ(株式会社アドマテックス製、商品名「SC-2500SEJ」、平均粒子径:0.5μm)
・水酸化アルミニウム(住友化学株式会社製、商品名「C-301N」、平均粒子径:1.5μm)
・水酸化アルミニウム(住友化学株式会社製、商品名「CL-303」、平均粒子径:4μm)
(コアシェルゴム)
・コアシェルゴム(三菱ケミカル株式会社製、商品名「SRK200A」、コア:シリコーン/アクリル共重合体、シェル:アクリロニトリル/スチレン、平均粒子径:0.15μm)
・コアシェルゴム(アイカ工業株式会社製、商品名「AC3816N」、コア:架橋アクリル重合体、シェル:ポリメタクリル酸メチル、平均粒子径:0.5μm)
・コアシェルゴム(アイカ工業株式会社製、商品名「AC3364」、コア:架橋アクリル重合体、シェル:ポリメタクリル酸メチル、平均粒子径:0.1μm)
(アクリル樹脂)
・アクリル樹脂(ナガセケムテックス株式会社製、商品名「SG-P3改197」、重量平均分子量70万)
(染料)
・油溶性染料(中央合成化学株式会社製、商品名「Oil Red 168」)
(硬化促進剤)
・2-エチル-4-メチルイミダゾール(四国化成工業株式会社製、商品名「2E4MZ」)
(熱硬化性樹脂組成物)
熱硬化性樹脂、硬化剤、無機充填材、リン含有難燃剤、コアシェルゴム、アクリル樹脂及び硬化促進剤を表1に示す割合で配合して、固形分濃度が65質量%となるように溶媒で希釈し、これを撹拌、混合して均一化することにより、熱硬化性樹脂組成物を調製した。上記の溶媒として、実施例8ではトルエン及びメチルエチルケトンの混合溶媒(体積比1:10)を使用し、その他の実施例及び比較例ではメチルエチルケトンのみを使用した。
(Reactive flame retardant)
・ Reactive phosphorus-based flame retardant (phosphorus-modified phenolic resin, manufactured by Dow Chemical, trade name “XZ-92741”, hydroxyl equivalent: 550 g / eq)
・ Reactive phosphorus-based flame retardant (phosphorus-modified phenolic resin, manufactured by DIC Corporation, trade name “HPC-9080”, hydroxyl equivalent: 373 g / eq)
(Inorganic filler)
・ Fused silica (manufactured by Admatechs Co., Ltd., trade name “SC-2500SEJ”, average particle size: 0.5 μm)
・ Aluminum hydroxide (manufactured by Sumitomo Chemical Co., Ltd., trade name “C-301N”, average particle size: 1.5 μm)
・ Aluminum hydroxide (manufactured by Sumitomo Chemical Co., Ltd., trade name “CL-303”, average particle size: 4 μm)
(core shell rubber)
・Core shell rubber (manufactured by Mitsubishi Chemical Corporation, trade name “SRK200A”, core: silicone/acrylic copolymer, shell: acrylonitrile/styrene, average particle size: 0.15 μm)
・Core shell rubber (manufactured by Aica Kogyo Co., Ltd., product name “AC3816N”, core: crosslinked acrylic polymer, shell: polymethyl methacrylate, average particle size: 0.5 μm)
・Core shell rubber (manufactured by Aica Kogyo Co., Ltd., product name “AC3364”, core: crosslinked acrylic polymer, shell: polymethyl methacrylate, average particle size: 0.1 μm)
(acrylic resin)
・ Acrylic resin (manufactured by Nagase ChemteX Co., Ltd., product name “SG-P3 Kai 197”, weight average molecular weight 700,000)
(dye)
・ Oil-soluble dye (manufactured by Chuo Synthetic Chemical Co., Ltd., trade name “Oil Red 168”)
(Curing accelerator)
・ 2-ethyl-4-methylimidazole (manufactured by Shikoku Chemical Industry Co., Ltd., trade name “2E4MZ”)
(Thermosetting resin composition)
A thermosetting resin, a curing agent, an inorganic filler, a phosphorus-containing flame retardant, a core-shell rubber, an acrylic resin, and a curing accelerator are blended in the proportions shown in Table 1, and then mixed with a solvent so that the solid content concentration is 65% by mass. A thermosetting resin composition was prepared by diluting, stirring, mixing and homogenizing. As the above solvent, a mixed solvent of toluene and methyl ethyl ketone (volume ratio 1:10) was used in Example 8, and only methyl ethyl ketone was used in other examples and comparative examples.

(プリプレグ)
プリプレグの硬化物の厚さが25μmとなるように、熱硬化性樹脂組成物をガラスクロス(日東紡績株式会社製、♯1017タイプ、Eガラス)に含浸させた。ガラスクロスに含浸された熱硬化性樹脂組成物を、半硬化状態となるまで非接触タイプの加熱ユニットによって加熱乾燥した。加熱温度は130~140℃とした。これにより、熱硬化性樹脂組成物中の溶媒を除去し、ガラスクロスと、このガラスクロスに含浸された熱硬化性樹脂組成物の半硬化物とを備えるプリプレグを製造した。プリプレグのレジンコンテント(樹脂量)は、プリプレグ全体(100質量%)に対して、68質量%以上74質量%以下の範囲内であった。
(prepreg)
A glass cloth (#1017 type, E glass manufactured by Nitto Boseki Co., Ltd.) was impregnated with the thermosetting resin composition so that the cured prepreg had a thickness of 25 μm. The thermosetting resin composition with which the glass cloth was impregnated was heated and dried by a non-contact type heating unit until it reached a semi-cured state. The heating temperature was 130-140°C. As a result, the solvent in the thermosetting resin composition was removed, and a prepreg comprising a glass cloth and a semi-cured product of the thermosetting resin composition impregnated in the glass cloth was produced. The resin content (resin amount) of the prepreg was within the range of 68% by mass or more and 74% by mass or less with respect to the entire prepreg (100% by mass).

(金属張積層板)
1枚のプリプレグの両面に、キャリア箔付き極薄銅箔(キャリア箔の厚さ:18μm、極薄銅箔の厚さ:2μm)の極薄銅箔を重ね、加熱加圧成形することによって、絶縁層の厚さが25μmの第1の両面金属張積層板を製造した。加熱加圧成形の条件は、210℃、4MPa、120分間である。
(Metal clad laminate)
Ultra-thin copper foil with carrier foil (thickness of carrier foil: 18 μm, thickness of ultra-thin copper foil: 2 μm) is superimposed on both sides of one prepreg, and heat-pressed to form A first double-sided metal-clad laminate having an insulating layer with a thickness of 25 μm was produced. The conditions for hot-press molding are 210° C., 4 MPa, and 120 minutes.

1枚のプリプレグの両面に、銅箔(厚さ:12μm)を重ね、加熱加圧成形することによって、絶縁層の厚さが25μmの第2の両面金属張積層板を製造した。加熱加圧成形の条件は、210℃、4MPa、120分間である。 A second double-sided metal-clad laminate having an insulating layer with a thickness of 25 μm was manufactured by laminating copper foil (thickness: 12 μm) on both surfaces of one prepreg and heat-pressing the laminate. The conditions for hot-press molding are 210° C., 4 MPa, and 120 minutes.

[特性評価]
第1の両面金属張積層板の両面の極薄銅箔をエッチングにより除去し、絶縁層のみを得た。この絶縁層を試料として用いて、紫外線遮蔽性、成型性、耐熱性1及び耐燃性の評価を実施した。
[Characteristic evaluation]
The ultra-thin copper foils on both sides of the first double-sided metal-clad laminate were removed by etching to obtain only the insulating layer. Using this insulating layer as a sample, evaluations of ultraviolet shielding properties, moldability, heat resistance 1 and flame resistance were carried out.

第2の両面金属張積層板を、両面の銅箔を除去しないで試料として用いて、耐燃性2の評価を実施した。 Flame resistance 2 was evaluated using the second double-sided metal-clad laminate as a sample without removing the copper foils on both sides.

<紫外線遮蔽率>
露光機(株式会社ハイテック製、型番「HTE-3000M」)及び紫外線照度計(株式会社オーク製作所製、型番「UV-M02」、受光器「UV-42」(ピーク波長400nm))の間に試料を介在させ、露光機から試料を透過して受光器に照射される紫外線の透過率を紫外線照度計により測定した。そして、下記の式に従い、紫外線遮蔽率(%)を算出した。
<Ultraviolet shielding rate>
Exposing machine (manufactured by Hitech Co., Ltd., model number "HTE-3000M") and ultraviolet illuminance meter (manufactured by Oak Manufacturing Co., Ltd., model number "UV-M02", receiver "UV-42" (peak wavelength 400 nm)) between the sample was interposed, and the transmittance of ultraviolet rays emitted from the exposing device through the sample and irradiated onto the photodetector was measured with an ultraviolet illuminometer. Then, the ultraviolet shielding rate (%) was calculated according to the following formula.

紫外線遮蔽率(%)=100-透過率
<成型性>
試料の表面を目視により観察してカスレの有無を確認し、さらに試料の断面を顕微鏡により観察してボイドの有無を確認した。試料の大きさは、410mm×510mm×厚さ25μmである。成型性は、以下の基準で判定した。
UV shielding rate (%) = 100 - transmittance <Moldability>
The surface of the sample was visually observed to confirm the presence or absence of scratches, and the cross section of the sample was observed under a microscope to confirm the presence or absence of voids. The sample size is 410 mm×510 mm×25 μm thick. Moldability was determined according to the following criteria.

A:カスレ及びボイドが存在しないもの
B:少なくともカスレ及びボイドのいずれかが、試料の外周縁から10mm以内の領域(外周領域)に存在するもの
C:少なくともカスレ及びボイドのいずれかが、外周領域で囲まれた領域(中央領域)、又は、中央領域及び外周領域の両方に存在するもの。
A: No faintness or voids B: At least any faintness or voids present in a region (peripheral region) within 10 mm from the outer peripheral edge of the sample C: At least any faintness or voids present in the outer peripheral region (Central region), or present in both the central region and the peripheral region.

<耐熱性1>
動的粘弾性測定装置(エスアイアイ・ナノテクノロジー株式会社製、型式:DMS6100)を用いて、試料のTgを測定した。Tgは、動的粘弾性試験の昇温過程で得られた損失正接(tanδ)と温度との関係を示すチャートにおいて、tanδが最大となる温度とした。試料の大きさは、5mm×50mm×厚さ25μmである。測定条件は、変形モード:引張り、周波数:10Hz、昇温速度:5℃/minとした。
<Heat resistance 1>
The Tg of the sample was measured using a dynamic viscoelasticity measuring device (manufactured by SII Nanotechnology Co., Ltd., model: DMS6100). Tg was taken as the temperature at which tan δ is maximum in the chart showing the relationship between the loss tangent (tan δ) obtained during the heating process of the dynamic viscoelasticity test and the temperature. The sample size is 5 mm×50 mm×25 μm thick. The measurement conditions were deformation mode: tension, frequency: 10 Hz, and temperature increase rate: 5°C/min.

<耐熱性2>
小型高温チャンバー(エスペック株式会社製、型式:STH-120)を用いて、第2の両面金属張積層板の耐熱性をJIS C6481に基づいて評価した。具体的には、第2の両面金属張積層板を、270℃に設定された上記の小型高温チャンバーに1時間静置した後、取り出して、銅箔の膨れ(デラミネーション)の有無を確認した。試料の大きさは、50mm×50mm×厚さ49μm(絶縁層の厚さ25μm、絶縁層の両面の銅箔の厚さ12μm)である。
<Heat resistance 2>
The heat resistance of the second double-sided metal-clad laminate was evaluated based on JIS C6481 using a small high-temperature chamber (manufactured by Espec Co., Ltd., model: STH-120). Specifically, the second double-sided metal-clad laminate was allowed to stand in the small high-temperature chamber set at 270° C. for 1 hour, and then taken out to confirm the presence or absence of blistering (delamination) of the copper foil. . The size of the sample is 50 mm×50 mm×49 μm thick (25 μm thick insulating layer, 12 μm thick copper foil on both sides of the insulating layer).

<耐燃性>
UL規格(Underwriters Laboratories Inc.)のUL94(プラスチック材料の燃焼性試験)による評価試験方法に従い、試料の耐燃性を確認した。
<Flame resistance>
The flame resistance of the sample was confirmed according to the evaluation test method according to UL94 (combustibility test of plastic materials) of UL standard (Underwriters Laboratories Inc.).

Figure 0007289103000006
Figure 0007289103000006

Figure 0007289103000007
Figure 0007289103000007

1 プリプレグ
2 金属張積層板
3 プリント配線板
4 基材
50 半硬化物
51 硬化物
52 絶縁層
80 金属層
81 導体配線
REFERENCE SIGNS LIST 1 prepreg 2 metal-clad laminate 3 printed wiring board 4 base material 50 semi-cured product 51 cured product 52 insulating layer 80 metal layer 81 conductor wiring

Claims (11)

熱硬化性樹脂と、無機充填材と、を含有する熱硬化性樹脂組成物であって、
前記熱硬化性樹脂は、エポキシ樹脂及びビスマレイミド樹脂のうちの少なくともいずれかと、硬化剤と、を含み、
前記硬化剤は、酸化されたナフタレン型フェノール樹脂を含み、
前記酸化されたナフタレン型フェノール樹脂は、式(F)で表される1,4-ナフトキノン骨格、及び式(G)で表される1,2-ナフトキノン骨格のうちの少なくともいずれかの骨格を含み、
前記硬化剤の3質量%メチルエチルケトン溶液のガードナー色数は15以上であり、
前記硬化剤の含有量は、前記熱硬化性樹脂組成物の固形分全量に対して、10質量%以上であり、
前記無機充填材は、シリカ及び水酸化アルミニウムのうちの少なくともいずれかを含む、
熱硬化性樹脂組成物。
Figure 0007289103000008
(F)及び式(G)中、R6及びR7の各々は、水素原子、メチル基、エチル基(-CH CH )又はメトキシ基である。R6及びR7以外の置換基は水素原子である。
A thermosetting resin composition containing a thermosetting resin and an inorganic filler,
The thermosetting resin includes at least one of an epoxy resin and a bismaleimide resin, and a curing agent,
The curing agent contains an oxidized naphthalene-type phenolic resin,
The oxidized naphthalene-type phenol resin contains at least one skeleton of a 1,4-naphthoquinone skeleton represented by formula (F) and a 1,2-naphthoquinone skeleton represented by formula (G). ,
The Gardner color number of a 3% by mass methyl ethyl ketone solution of the curing agent is 15 or more,
The content of the curing agent is 10% by mass or more with respect to the total solid content of the thermosetting resin composition,
The inorganic filler contains at least one of silica and aluminum hydroxide,
A thermosetting resin composition.
Figure 0007289103000008
In Formula (F) and Formula (G), each of R6 and R7 is a hydrogen atom, a methyl group, an ethyl group (--CH 2 CH 3 ) or a methoxy group. Substituents other than R6 and R7 are hydrogen atoms .
前記無機充填材の含有量は、前記熱硬化性樹脂100質量部に対して、200質量部以下である、
請求項1に記載の熱硬化性樹脂組成物。
The content of the inorganic filler is 200 parts by mass or less with respect to 100 parts by mass of the thermosetting resin.
The thermosetting resin composition according to claim 1.
前記熱硬化性樹脂は、反応型難燃剤を更に含む、
請求項1又は2に記載の熱硬化性樹脂組成物。
The thermosetting resin further contains a reactive flame retardant,
The thermosetting resin composition according to claim 1 or 2.
コアシェルゴム、アクリル樹脂、又は、コアシェルゴム及びアクリル樹脂の両方を更に含有する、
請求項1~3のいずれか1項に記載の熱硬化性樹脂組成物。
Further containing core-shell rubber, acrylic resin, or both core-shell rubber and acrylic resin,
The thermosetting resin composition according to any one of claims 1 to 3.
添加型難燃剤を更に含有する、
請求項1~4のいずれか1項に記載の熱硬化性樹脂組成物。
Further containing an additive flame retardant,
The thermosetting resin composition according to any one of claims 1 to 4.
基材と、
前記基材に含浸された請求項1~5のいずれか1項に記載の熱硬化性樹脂組成物の半硬化物と、を備えている、
プリプレグ。
a substrate;
A semi-cured product of the thermosetting resin composition according to any one of claims 1 to 5 impregnated in the base material,
prepreg.
厚さが100μm以下である、
請求項6に記載のプリプレグ。
thickness is 100 μm or less,
The prepreg according to claim 6.
請求項6又は7に記載のプリプレグの硬化物で形成された絶縁層と、
前記絶縁層の片面又は両面に形成された金属層と、を備えている、
金属張積層板。
an insulating layer formed of the cured prepreg according to claim 6 or 7;
a metal layer formed on one or both sides of the insulating layer;
Metal clad laminate.
請求項6又は7に記載のプリプレグの硬化物で形成された絶縁層と、
前記絶縁層の片面又は両面に形成された導体配線と、を備えている、
プリント配線板。
an insulating layer formed of the cured prepreg according to claim 6 or 7;
and conductor wiring formed on one side or both sides of the insulating layer,
printed wiring board.
請求項1~5のいずれか1項に記載の熱硬化性樹脂組成物の半硬化物で形成された樹脂層と、前記樹脂層を支持する支持フィルムと、を備えている、
樹脂付きフィルム。
A resin layer formed of a semi-cured product of the thermosetting resin composition according to any one of claims 1 to 5, and a support film that supports the resin layer,
Film with resin.
請求項1~5のいずれか1項に記載の熱硬化性樹脂組成物の半硬化物で形成された樹脂層と、前記樹脂層が接着された金属箔と、を備えている、
樹脂付き金属箔。
A resin layer formed of a semi-cured product of the thermosetting resin composition according to any one of claims 1 to 5, and a metal foil to which the resin layer is bonded,
Metal foil with resin.
JP2019551002A 2017-10-25 2018-10-12 Thermosetting resin compositions, prepregs, metal-clad laminates, printed wiring boards, resin-coated films and resin-coated metal foils Active JP7289103B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017206638 2017-10-25
JP2017206638 2017-10-25
PCT/JP2018/038155 WO2019082698A1 (en) 2017-10-25 2018-10-12 Thermosetting resin composition, prepreg, metal-clad laminate, printed wiring board, resin-provided film, and resin-provided metal foil

Publications (2)

Publication Number Publication Date
JPWO2019082698A1 JPWO2019082698A1 (en) 2020-12-10
JP7289103B2 true JP7289103B2 (en) 2023-06-09

Family

ID=66246357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019551002A Active JP7289103B2 (en) 2017-10-25 2018-10-12 Thermosetting resin compositions, prepregs, metal-clad laminates, printed wiring boards, resin-coated films and resin-coated metal foils

Country Status (5)

Country Link
US (1) US11414528B2 (en)
JP (1) JP7289103B2 (en)
CN (1) CN111212877A (en)
TW (1) TWI789444B (en)
WO (1) WO2019082698A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022239471A1 (en) * 2021-05-13 2022-11-17 Dic株式会社 Curable composition, cured object, fiber-reinforced composite material, and molded fiber-reinforced resin article
TW202400696A (en) * 2022-04-27 2024-01-01 日商三菱瓦斯化學股份有限公司 Resin composition, cured product, prepreg, metal foil clad laminated plate, resin composite sheet, printed wiring board, semiconductor device, and printed wiring board manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001261785A (en) 2000-03-14 2001-09-26 Nippon Steel Chem Co Ltd Epoxy resin composition and cured product thereof
WO2011096273A1 (en) 2010-02-03 2011-08-11 Dic株式会社 Phenol resin composition, process for production thereof, curable resin composition, cured products tehreof, and printed wiring board
WO2012017816A1 (en) 2010-08-06 2012-02-09 Dic株式会社 Novel phenol resin, curable resin composition, cured article thereof, and printed wiring board
JP2012097283A (en) 2005-11-29 2012-05-24 Ajinomoto Co Inc Resin composition for insulation layer of multi-layer printed circuit board
JP2014065829A (en) 2012-09-26 2014-04-17 Dic Corp Cresol-naphthol resin, curable resin composition, cured material of the composition, and printed circuit board

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06128357A (en) * 1991-05-13 1994-05-10 Nitto Denko Corp Semiconductor device
CN1469198A (en) * 2002-07-01 2004-01-21 关西涂料株式会社 Positve photosensitive painting composition, method for producing positive photosensitive resin and forming method of pattern
US9278505B2 (en) 2011-07-22 2016-03-08 Lg Chem, Ltd. Thermosetting resin composition and prepreg and metal clad laminate using the same
KR20150054790A (en) * 2012-09-07 2015-05-20 다우 글로벌 테크놀로지스 엘엘씨 Toughening masterblends
JP6114989B2 (en) * 2013-02-08 2017-04-19 パナソニックIpマネジメント株式会社 Method for curing thermosetting resin composition, thermosetting resin composition, prepreg using the same, metal-clad laminate, resin sheet, printed wiring board and sealing material
JP6277542B2 (en) 2013-02-28 2018-02-14 パナソニックIpマネジメント株式会社 Prepreg, metal-clad laminate
US10017601B2 (en) * 2013-07-04 2018-07-10 Panasonic Intellectual Property Management Co., Ltd. Resin composition, prepreg and laminate board

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001261785A (en) 2000-03-14 2001-09-26 Nippon Steel Chem Co Ltd Epoxy resin composition and cured product thereof
JP2012097283A (en) 2005-11-29 2012-05-24 Ajinomoto Co Inc Resin composition for insulation layer of multi-layer printed circuit board
WO2011096273A1 (en) 2010-02-03 2011-08-11 Dic株式会社 Phenol resin composition, process for production thereof, curable resin composition, cured products tehreof, and printed wiring board
WO2012017816A1 (en) 2010-08-06 2012-02-09 Dic株式会社 Novel phenol resin, curable resin composition, cured article thereof, and printed wiring board
JP2014065829A (en) 2012-09-26 2014-04-17 Dic Corp Cresol-naphthol resin, curable resin composition, cured material of the composition, and printed circuit board

Also Published As

Publication number Publication date
TW201922913A (en) 2019-06-16
WO2019082698A1 (en) 2019-05-02
US20200332078A1 (en) 2020-10-22
CN111212877A (en) 2020-05-29
JPWO2019082698A1 (en) 2020-12-10
US11414528B2 (en) 2022-08-16
TWI789444B (en) 2023-01-11

Similar Documents

Publication Publication Date Title
JP4686750B2 (en) Cured body and laminate
JP2010100802A (en) Epoxy-based resin composition, sheet-like molded product, prepreg, cured product, laminated plate, and multilayer laminated plate
JP2004182851A (en) Resin composition, prepreg, and printed wiring board therewith
JP6182534B2 (en) Multilayer substrate manufacturing method, multilayer insulating film, and multilayer substrate
JP5245301B2 (en) Resin composition, prepreg, laminate, and semiconductor device
JP2010215858A (en) Epoxy resin composition, sheet-like molding, laminated sheet, prepreg, cured product and multilayer laminated sheet
JP7289103B2 (en) Thermosetting resin compositions, prepregs, metal-clad laminates, printed wiring boards, resin-coated films and resin-coated metal foils
JP2003253018A (en) Prepreg and printed wiring board using the same
JP2003268136A (en) Prepreg and laminate
JP2007009217A (en) Resin composition, prepreg, and printed wiring board using the same
JP7426629B2 (en) Resin compositions, prepregs, resin-coated films, resin-coated metal foils, metal-clad laminates, and printed wiring boards
JP2020029494A (en) Resin composition for insulation layer, sheet-like laminated material, multilayer printed wiring board and semiconductor device
JP2003213019A (en) Prepreg and printed wiring board using the same
JP5245253B2 (en) Resin composition, insulating resin sheet with film or metal foil, multilayer printed wiring board, and semiconductor device
JP2007059838A (en) Epoxide resin composition for prepreg, prepreg and multilayer printed wiring board
JP6431425B2 (en) Manufacturing method of laminated structure and laminated structure
JP2010229313A (en) Epoxy resin composition, sheet-formed molded article, prepreg, cured product, laminated plate and multilayer laminated plate
JP2003073543A (en) Resin composition, prepreg and printed circuit board using the same
JP2004277671A (en) Prepreg and printed circuit board using the same
JP2013082873A (en) B-stage film and multilayer board
WO2021261306A1 (en) Resin composition, prepreg, resin-attached film, resin-attached metal foil, metal-cladded laminate sheet, and printed wiring board
JP2010222391A (en) Epoxy resin composition, sheet-shaped formed body, prepreg, cured product, laminate and multilayered laminate
JP5727325B2 (en) Thermosetting resin material and multilayer substrate
JP2012054511A (en) Heat conductive sheet, method for manufacturing heat conductive sheet and laminated structure
JP2009298981A (en) Resin composition, prepreg and printed wiring board using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230519

R151 Written notification of patent or utility model registration

Ref document number: 7289103

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151