JP7284886B2 - 脳全体にわたる高均一性での腫瘍治療電場(tt電場)の発生 - Google Patents

脳全体にわたる高均一性での腫瘍治療電場(tt電場)の発生 Download PDF

Info

Publication number
JP7284886B2
JP7284886B2 JP2021520224A JP2021520224A JP7284886B2 JP 7284886 B2 JP7284886 B2 JP 7284886B2 JP 2021520224 A JP2021520224 A JP 2021520224A JP 2021520224 A JP2021520224 A JP 2021520224A JP 7284886 B2 JP7284886 B2 JP 7284886B2
Authority
JP
Japan
Prior art keywords
electrode elements
human
brain
capacitively
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021520224A
Other languages
English (en)
Other versions
JP2022512690A (ja
Inventor
ゼーヴ・ボンゾン
アリエル・ナヴェー
オフィール・イェシャリム
Original Assignee
ノボキュア ゲーエムベーハー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ノボキュア ゲーエムベーハー filed Critical ノボキュア ゲーエムベーハー
Publication of JP2022512690A publication Critical patent/JP2022512690A/ja
Priority to JP2023045799A priority Critical patent/JP7536934B2/ja
Application granted granted Critical
Publication of JP7284886B2 publication Critical patent/JP7284886B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/40Applying electric fields by inductive or capacitive coupling ; Applying radio-frequency signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0408Use-related aspects
    • A61N1/0456Specially adapted for transcutaneous electrical nerve stimulation [TENS]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0408Use-related aspects
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0472Structure-related aspects
    • A61N1/0476Array electrodes (including any electrode arrangement with more than one electrode for at least one of the polarities)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0472Structure-related aspects
    • A61N1/0492Patch electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/08Arrangements or circuits for monitoring, protecting, controlling or indicating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36002Cancer treatment, e.g. tumour
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36014External stimulators, e.g. with patch electrodes
    • A61N1/36025External stimulators, e.g. with patch electrodes for treating a mental or cerebral condition
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/40ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to mechanical, radiation or invasive therapies, e.g. surgery, laser therapy, dialysis or acupuncture
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/63ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/50ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Medical Informatics (AREA)
  • Primary Health Care (AREA)
  • Epidemiology (AREA)
  • Hospice & Palliative Care (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Neurology (AREA)
  • Psychology (AREA)
  • General Business, Economics & Management (AREA)
  • Child & Adolescent Psychology (AREA)
  • Psychiatry (AREA)
  • Business, Economics & Management (AREA)
  • Social Psychology (AREA)
  • Biophysics (AREA)
  • Developmental Disabilities (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Pathology (AREA)
  • Oncology (AREA)
  • Surgery (AREA)
  • Urology & Nephrology (AREA)
  • Electrotherapy Devices (AREA)

Description

関連出願の相互参照
本願は、2018年10月15日出願の米国仮出願第62/745689号の優先権を主張し、その全内容は参照として本願に組み込まれる。
腫瘍治療電場(TT電場,tumor treating field)は、中間周波数範囲(例えば、100~300kHz)内で低強度(例えば、1~4V/cm)の交流電場であり、例えば、特許文献1(その全内容は参照として本願に組み込まれる)に記載のように、腫瘍を治療するために使用可能である。TT電場治療は、再発性の膠芽腫(GBM,glioblastoma)用に承認された単独療法であり、また、新たに診断されたGBM患者用に承認された化学療法との併用療法である。交流電場は、患者の頭部上に直接配置されたトランスデューサアレイ(つまり、容量結合電極のアレイ)によって非侵襲的に誘起され(例えば、Novocure社のOptune(登録商標)システムを用いる)、トランスデューサアレイ同士の間にAC(交流)電圧を印加する。
膠芽腫を治療するためには、例えば、膠芽腫を有する人間について図1A~図1Dに示されるように、腫瘍近傍において患者の皮膚上に配置された四つのトランスデューサアレイ11~14を介して、TT電場を患者に伝える。トランスデューサアレイ11~14は二対として配置され、各トランスデューサアレイはケーブルを介してAC信号発生器に接続される。AC信号発生器は、(a)第一期間中に一対のアレイ11、12を通るAC電流を送り、腫瘍を通る第一方向の電場を誘起し、次いで、(b)第二期間中に他対のアレイ13、14を通るAC電流を送り、腫瘍を通る第二方向の電場を誘起し、次いで、治療期間にわたってステップ(a)と(b)を繰り返す。
膠芽腫に関しては、従来の解決策(例えば、Novocure社のNovoTALソフトウェア)が、腫瘍内の電場強度を最大にするためにトランスデューサアレイ11~14を患者の頭部の何処に配置すべきなのかを決定するために利用可能である。しかしながら、従来技術の解決策は、腫瘍内の電場分布のみに関するものであるため、いずれの従来技術の解決策も、脳の他の領域における電場の均一性には対処していなかった。
米国特許第7565205号明細書 米国特許第7599746号明細書
本発明の一態様は、人間の脳に交流電場を印加する第一方法を対象としている。第一方法は、人間の頭部の右側に第一組の電極素子を取り付けることを備える。第一組の電極素子は、人間の右耳の外耳道の外開口の上方に主に水平な向きで位置する上部と、人間の右耳の外耳道の外開口の後方に主に垂直な向きで位置する後部とを有する。第一方法は、人間の頭部の左側に第二組の電極素子を取り付けることも備える。第二組の電極素子は、人間の左耳の外耳道の外開口の上方に主に水平な向きで位置する上部と、人間の左耳の外耳道の外開口の後方に主に垂直な向きで位置する後部とを有する。第一方法は、第一組の電極素子と第二組の電極素子との間に交流電圧を印加することも備える。その印加は、第一組の電極素子と第二組の電極素子を人間の頭部に取り付けた後に行われる。
第一方法の一部実施形態では、第一組の電極素子の上部が少なくとも三つの容量結合電極素子を含み、第一組の電極素子の後部が少なくとも三つの容量結合電極素子を含み、第二組の電極素子の上部が少なくとも三つの容量結合電極素子を含み、第二組の電極素子の後部が少なくとも三つの容量結合電極素子を含む。
第一方法の一部実施形態では、第一組の電極素子と第二組の電極素子の各々の上部が、(a)6cm以上の長さを有し、(b)各外耳道の外開口の上方6cm未満に位置し、(c)各外耳道の外開口の前方1cm以上に位置する前端を有し、且つ、(d)各外耳道の外開口の後方1cm以上に位置する後端を有する。
第一方法の一部実施形態では、第一組の電極素子と第二組の電極素子の各々の後部が、(a)6cm以上の長さを有し、(b)各外耳道の外開口の後方6cm未満に位置し、(c)各外耳道の外開口の上方1cm以上に位置する上端を有し、且つ、(d)各外耳道の外開口の下方3cm以上に位置する後端を有する。
第一方法の一部実施形態では、第一組の電極素子の上部が少なくとも三つの容量結合電極素子を含み、第一組の電極素子の後部が少なくとも三つの容量結合電極素子を含み、第二組の電極素子の上部が少なくとも三つの容量結合電極素子を含み、第二組の電極素子の後部が少なくとも三つの容量結合電極素子を含み、第一組の電極素子と第二組の電極素子の各々の上部が、(a)6cm以上の長さを有し、(b)各外耳道の外開口の上方6cm未満に位置し、(c)各外耳道の外開口の前方1cm以上に位置する前端を有し、且つ、(d)各外耳道の外開口の後方1cm以上に位置する後端を有し、第一組の電極素子と第二組の電極素子の各々の後部が、(a)6cm以上の長さを有し、(b)各外耳道の外開口の後方6cm未満に位置し、(c)各外耳道の外開口の上方1cm以上に位置する上端を有し、且つ、(d)各外耳道の外開口の下方3cm以上に位置する後端を有する。
第一方法の一部実施形態は、人間の頭頂部に位置する第三重心を有する第三組の電極素子を人間の頭部に取り付けることと、人間のC2椎骨の下方であって人間のC7椎骨の上方に位置する第四重心を有する第四組の電極素子を人間の後頚部に取り付けることと、第三組の電極素子と第四組の電極素子との間に交流電圧を印加することと、を更に備え、その印加は、第三組の電極素子と第四組の電極素子を人間の頭部に取り付けた後に行われる。(a)第一組の電極素子と第二組の電極素子との間に交流電圧を印加するステップ及び(b)第三組の電極素子と第四組の電極素子との間の交流電圧を印加するステップが交互の順で繰り返される。こうした実施形態では、任意選択的に、第三重心が人間の頭頂部の前方1cmから3cmの間に位置するようにして第三組の電極素子が取り付けられ得る。こうした実施形態では、任意選択的に、第四重心が人間のC3椎骨の下方であって人間のC6椎骨の上方に位置するようにして第四組の電極素子が取り付けられ得る。こうした実施形態では、任意選択的に、第三重心が人間の頭頂部の前方1cmから3cmの間に位置するようにして第三組の電極素子が取り付けられる一方で、第四重心が人間のC3椎骨の下方であって人間のC6椎骨の上方に位置するようにして第四組の電極素子が取り付けられ得る。
第一方法の一部実施形態では、第一組の電極素子が人間の頭部の右側に取り付けられ第二組の電極素子が人間の頭部の左側に取り付けられる具体的な箇所が、個人用に有限要素シミュレーションを行い、第一組の電極素子の位置と第二組の電極素子の位置の各組み合わせについて結果として得られる電場を計算すること、及び、最低値のΨをもたらす第一組の電極素子の位置と第二組の電極素子の位置の組み合わせを選択することによって決定され、ここで、Ψ=σ÷MEAN、σ=SD([μ]|i∈{α,β,γ、δ,in})、MEAN=mean([μ]|i∈{α,β,γ、δ,in})である。
第一方法の一部実施形態では、交流電圧が100kHzから300kHzの間の周波数を有する。
本発明の他の態様は、人間の体の脳に交流電場を印加する第二方法を対象としていて、その体は正中冠状面と正中矢状面を有する。第二方法は、人間の右耳の外耳道の外開口の上方であって正中矢状面の右側で人間の頭部に第一組の電極素子を取り付けることと、人間の左耳の外耳道の外開口の下方であって人間のC7椎骨の上方に位置する第二重心を有する第二組の電極素子を、正中矢状面の左側であって正中冠状面の後方で人間の体に取り付けることと、人間の左耳の外耳道の外開口の上方であって正中矢状面の左側で人間の頭部に第三組の電極素子を取り付けることと、人間の右耳の外耳道の外開口の下方であって人間のC7椎骨の上方に位置する第四重心を有する第四組の電極素子を、正中矢状面の右側であって正中冠状面の後方で人間の体に取り付けることとを備える。第二方法は、(a)第一組の電極素子と第二組の電極素子との間に交流電圧を印加すること及び(b)第三組の電極素子と第四組の電極素子との間に交流電圧を印加することを交互の順で繰り返すことも備える。第二方法において、その繰り返しは、第一組の電極素子と第二組の電極素子と第三組の電極素子と第四組の電極素子を取り付けた後に行われる。
第二方法の一部実施形態では、第二重心と第四重心が人間のC2椎骨の中点の上方に位置する。第二方法の一部実施形態では、第二重心と第四重心が人間のC2椎骨の中点の下方に位置する。第二方法の一部実施形態では、第二重心と第四重心が人間のC3椎骨の下方であって人間のC6椎骨の上方に位置する。
第二方法の一部実施形態では、第一組の電極素子と第二組の電極素子と第三組の電極素子と第四組の電極素子が人間の体に取り付けられる具体的な箇所が、それぞれ、個人用に有限要素シミュレーションを行い、第一組の電極素子の位置と第二組の電極素子の位置と第三組の電極素子の位置と第四組の電極素子の位置の各組み合わせについて結果として得られる電場を計算すること、及び、最低値のΨをもたらす第一組の電極素子の位置と第二組の電極素子の位置と第三組の電極素子の位置と第四組の電極素子の位置の組み合わせを選択することによって決定され、ここで、Ψ=σ÷MEAN、σ=SD([μ]|i∈{α,β,γ、δ,in})、MEAN=mean([μ]|i∈{α,β,γ、δ,in})である。
第二方法の一部実施形態では、交流電圧が100kHzから300kHzの間の周波数を有する。
本発明の他の態様は第一装置を対象としている。第一装置は、外側と内側を有するフレキシブルバッキングを備え、フレキシブルバッキングは、その内側を人間の頭部に向けて人間の頭部の一方の側に取り付けられるように構成される。フレキシブルバッキングは、第一方向に沿って6cm以上の長さを有する第一アームと、第二方向に沿って6cm以上の長さを有する第二アームとを有し、第一方向は第二方向と65°から115°の間の角度を成す。第一装置は、フレキシブルバッキングの第一アームの内側に位置する複数の第一容量結合電極素子(各第一容量結合電極素子が、導電板と、内側に向けてその上に位置する誘電体層を有する)と、フレキシブルバッキングの第二アームの内側に位置する複数の第二容量結合電極素子(各第二容量結合電極素子が、導電板と、内側に向けてその上に位置する誘電体層を有する)も備える。第一装置は、各第一容量結合電極素子の導電板に接続する第一組の導体と、各第二容量結合電極素子の導電板に接続する第二組の導体も備える。第一装置は、いずれの電極素子によっても覆われていないフレキシブルバッキングの部分を人間の頭部に対して保持するように位置する接着層も備える。
第一装置の一部実施形態では、複数の第一容量結合電極素子が少なくとも三つの容量結合電極素子を備え、複数の第二容量結合電極素子が少なくとも三つの容量結合素子を備える。第一装置の一部実施形態では、第一方向が第二方向と80°から100°の間の角度を成す。第一装置の一部実施形態では、第一方向が第二方向と90°の角度を成す。第一装置の一部実施形態では、複数の第一容量結合電極素子が全て並列で配線される。第一装置の一部実施形態では、複数の第二容量結合電極素子が全て並列で配線される。
本発明の他の態様は、電極素子の組を用いて人間の脳に交流電場を印加する前に、人間の頭部上に電極素子の組を配置する箇所を決定する第三方法を対象としている。第三方法は、(a)第一組の電極素子を複数の第一位置において人間の頭部の右側に取り付けることをシミュレーションするステップを備え、第一組の電極素子は、人間の右耳の外耳道の外開口の上方に主に水平な向きで位置する上部と、人間の右耳の外耳道の外開口の後方に主に垂直な向きで位置する後部とを有する。第三方法は、(b)第二組の電極素子を複数の第二位置において人間の頭部の左側に取り付けることをシミュレーションするステップも備え、第二組の電極素子は、人間の左耳の外耳道の外開口の上方に主に水平な向きで位置する上部と、人間の左耳の外耳道の外開口の後方に主に垂直な向きで位置する後部とを有する。第三方法は、(c)複数の第一位置の各々と複数の第二位置の各々においてそれぞれ第一組の電極素子と第二組の電極素子との間に交流電圧を印加することをシミュレーションするステップも備える。第三方法は、(d)ステップ(c)に基づいて、複数の第一位置のうちのどの第一位置と複数の第二位置のうちのどの第二位置が高均一性で人間の脳内に交流電場をもたらすのかを決定するステップも備える。第三方法は、(e)ステップ(d)の結果に基づいて、第一組の電極素子の推奨位置と、第二組の電極素子の推奨位置とを出力するステップも備える。
第三方法の一部実施形態では、第一組の電極素子と第二組の電極素子の各々の上部が、(a)6cm以上の長さを有し、(b)各外耳道の外開口の上方6cm未満に位置し、(c)各外耳道の外開口の前方1cm以上に位置する前端を有し、且つ、(d)各外耳道の外開口の後方1cm以上に位置する後端を有する。
第三方法の一部実施形態では、第一組の電極素子と第二組の電極素子の各々の後部が、(a)6cm以上の長さを有し、(b)各外耳道の外開口の後方6cm未満に位置し、(c)各外耳道の外開口の上方1cm以上に位置する上端を有し、且つ、(d)各外耳道の外開口の下方3cm以上に位置する後端を有する。
第三方法の一部実施形態は、(g)人間の頭頂部に位置する第三重心を有する第三組の電極素子を複数の第三位置において人間の頭部に取り付けることをシミュレーションするステップと、(h)人間のC2椎骨の下方であって人間のC7椎骨の上方に位置する第四重心を有する第四組の電極素子を複数の第四位置において人間の後頚部に取り付けることをシミュレーションするステップと、(i)複数の第三位置の各々と複数の第四位置の各々においてそれぞれ第三組の電極素子と第四組の電極素子との間に交流電圧を印加することをシミュレーションするステップと、(j)複数の第三位置のうちのどの第三位置と複数の第四位置のうちのどの第四位置が高均一性で人間の脳内に交流電場をもたらすのかを決定するステップと、(k)ステップ(j)の結果に基づいて、第三組の電極素子の推奨位置と、第四組の電極素子の推奨位置とを出力するステップとを更に備える。
ステップ(g)から(j)を含む第三方法の一部実施形態では、第三組の電極素子の取り付けのシミュレーションで第三重心が人間の頭頂部の前方1cmから3cmの間に位置する。ステップ(g)から(j)を含む第三方法の一部実施形態では、第四組の電極素子の取り付けのシミュレーションで第四重心が人間のC3椎骨の下方であって人間のC6椎骨の上方に位置する。
ステップ(g)から(j)を含む第三方法の一部実施形態では、第三組の電極素子の取り付けのシミュレーションで第三重心が人間の頭頂部の前方1cmから3cmの間に位置し、第四組の電極素子の取り付けのシミュレーションで第四重心が人間のC3椎骨の下方であって人間のC6椎骨の上方に位置する。
第三方法の一部実施形態では、ステップ(d)が、最低値のΨをもたらす第一組の電極素子の位置と第二組の電極素子の位置の組み合わせを選択することを備え、ここで、Ψ=σ÷MEAN、σ=SD([μ]|i∈{α,β,γ、δ,in})、MEAN=mean([μ]|i∈{α,β,γ、δ,in})である。
本発明の他の態様は、電極素子の組を用いて人間の体の脳に交流電場を印加する前に、人間の体上に電極素子の組を配置する箇所を決定する第四方法を対象としている。その体は正中冠状面と正中矢状面を有する。第四方法は、(a)人間の右耳の外耳道の外開口の上方であって正中矢状面の右側で複数の第一位置において人間の頭部に第一組の電極素子を取り付けることをシミュレーションするステップを備える。第四方法は、(b)第二重心を有する第二組の電極素子を、正中矢状面の左側であって正中冠状面の後方で複数の第二位置において人間の体に取り付けることをシミュレーションするステップも備え、第二重心は人間の左耳の外耳道の外開口の下方であって人間のC7椎骨の上方に位置する。第四方法は、(c)人間の左耳の外耳道の外開口の上方であって正中矢状面の左側で複数の第三位置において人間の頭部に第三組の電極素子を取り付けることをシミュレーションするステップも備える。第四方法は、(d)第四重心を有する第四組の電極素子を、正中矢状面の右側であって正中冠状面の後方で複数の第四位置において人間の体に取り付けることをシミュレーションするステップも備え、第四重心は人間の右耳の外耳道の外開口の下方であって人間のC7椎骨の上方に位置する。第四方法は、(e)複数の第一位置の各々と複数の第二位置の各々においてそれぞれ第一組の電極素子と第二組の電極素子との間に交流電圧を印加することをシミュレーションするステップも備える。第四方法は、(f)複数の第三位置の各々と複数の第四位置の各々において第三組の電極素子と第四組の電極素子との間に交流電圧を印加することをシミュレーションするステップも備える。第四方法は、(g)ステップ(e)とステップ(f)に基づいて、複数の第一位置のうちのどの第一位置と、複数の第二位置のうちのどの第二位置と、複数の第三位置のうちのどの第三位置と、複数の第四位置のうちのどの第四位置が高均一性で人間の脳内に交流電場をもたらすのかを決定するステップも備える。そして、第四方法は、(h)ステップ(g)の結果に基づいて、第一組の電極素子の推奨位置と、第二組の電極素子の推奨位置と、第三組の電極素子の推奨位置と、第四組の電極素子の推奨位置を出力するステップも備える。
第四方法の一部実施形態では、取り付けのシミュレーションで第二重心と第四重心が人間のC2椎骨の中点の上方に位置する。
第四方法の一部実施形態では、取り付けのシミュレーションで第二重心と第四重心が人間のC2椎骨の中点の下方に位置する。
第四方法の一部実施形態では、取り付けのシミュレーションで第二重心と第四重心が人間のC3椎骨の下方であって人間のC6椎骨の上方に位置する。
第四方法の一部実施形態では、ステップ(g)が、最低値のΨをもたらす第一組の電極素子の位置と第二組の電極素子の位置と第三組の電極素子の位置と第四組の電極素子の位置の組み合わせを選択することを備え、ここで、Ψ=σ÷MEAN、σ=SD([μ]|i∈{α,β,γ、δ,in})、MEAN=mean([μ]|i∈{α,β,γ、δ,in})である。
図1A~図1Dは、TT電場を用いて膠芽腫を治療するために人間の頭部上にトランスデューサアレイを位置決めするための従来の配置を示す。 図2A~図2Dは、TT電場を用いて転移を防止するために人間の頭部上にトランスデューサアレイを位置決めするための改善された配置を示す。 図3A~図3Dは、TT電場を用いて転移を防止するために人間の頭部上にトランスデューサアレイを位置決めするための他の改善された配置を示す。 図4A~図4Dは、TT電場を用いて転移を防止するために人間の頭部上にトランスデューサアレイを位置決めするための更に他の改善された配置を示す。 図2、図3及び図4に示される電極素子の組にわたってAC電圧を印加するのに使用可能なシステムのブロック図を示す。 図6A及び図6Bは、脳がどのように五つの異なる領域α、β、γ、δ、inに分割されるのかを示す。 図4A及び図4Bに示される電極素子の各組用に使用可能な装置を示す。
以下、添付図面を参照して多様な実施形態を詳述するが、図面において同様の参照番号は同様の要素を表すものである。
多くの種類のがん(例えば、肺がん、乳がん、結腸がん、腎臓がん、メラノーマ)は脳に転移し得る。特許文献2に記載されているように、TT電場を用いて転移(転移がん)を治療及び防止することができる。
転移が生じ得る脳内の正確な位置を事前に知ることはできないので、転移を防止又は治療する良好な方法は、TT電場で可能な限り脳の大部分を治療することである。脳内全体において電場強度を可能な限り均一に保つことで、トランスデューサアレイが熱くなり過ぎることを防止し、バッテリパワーを節約しながら、転移を防止又は治療するのに十分大きな電場強度を受ける脳の割合を最大にすることができる。そこで、本願は、脳全体(脳の天幕領域を含む)にわたって可能な限り均一な電場強度で脳にTT電場を印加するように人間の頭部上にトランスデューサアレイを配置するための多様な構成を開示する。
図1A~図1Dは、TT電場を用いて膠芽腫を治療するために人間の頭部上にトランスデューサアレイを位置決めするための従来の配置を示す。この配置では、AC信号発生器が、まず、前後一対のトランスデューサアレイ11、12にわたってAC電圧を印加し、次いで、左右一対のトランスデューサアレイ13、14にわたってAC電圧を印加し、次いで、治療期間にわたって上記二つのステップを順に繰り返す。以下で表にまとめるように、この従来の配置の電場強度の均一性は比較的低い。低い均一性の理由の一つは、電場強度が脳の天幕領域内において極めて低いからである。
図2A~図2Dは、TT電場を用いて転移を防止するために人間の頭部上にトランスデューサアレイを位置決めするための改善された一つの配置を示す。より具体的には、図2Aは、第一組の電極素子21が、人間の右耳の外耳道の外開口の上方であって正中矢状面の右側で人間の頭部に取り付けられている様子を示す。図2Bは、第二組の電極素子22が、正中矢状面の左側であって正中冠状面の後方で人間の頭部に取り付けられ、その重心が人間の左耳の外耳道の外開口の下方であって人間のC2椎骨の中点の上方に位置している様子を示す。図2Cは、第三組の電極素子23が、人間の左耳の外耳道の外開口の上方であって正中矢状面の左側で人間の頭部に取り付けられている様子を示す。図2Dは、第四組の電極素子24が、正中矢状面の右側であって正中冠状面の後方で人間の頭部に取り付けられ、その重心が人間の右耳の外耳道の外開口の下方であって人間のC2椎骨の中点の上方に位置している様子を示す。この配置では、AC信号発生器は、まず、第一組の電極素子21と第二組の電極素子22にわたってAC電圧を印加し、次いで、第三組の電極素子23と第四組の電極素子24にわたってAC電圧を印加するし、次いで、治療期間にわたってこれら二つのステップを順に繰り返す。以下で表にまとめるように、この代替配置の電場強度の均一性は、従来の図1の配置よりも顕著に高い。
図3A~図3Dは、TT電場を用いて転移を防止するために人間の頭部上にトランスデューサアレイを位置決めするための改善された他の配置を示す。この配置は、第二組の電極素子32と第四組の電極素子34が人体のより下方に位置決めされるという点を除いては図2A~図2Dの配置と同様である。より具体的には、図3Aは、第一組の電極素子31が、人間の右耳の外耳道の外開口の上方であって正中矢状面の右側で人間の頭部に取り付けられている様子を示す。図3Bは、第二組の電極素子32が、正中矢状面の左側であって正中冠状面の後方で人間の頭部に取り付けられ、その重心が人間のC2椎骨の中点の下方であって人間のC7椎骨の上方に位置している様子を示す。図3Cは、第三組の電極素子33が、人間の左耳の外耳道の外開口の上方であって正中矢状面の左側で人間の頭部に取り付けられている様子を示す。図3Dは、第四組の電極素子34が、正中矢状面の右側であって正中冠状面の後方で人間の頭部に取り付けられ、その重心が人間のC2椎骨の中点の下方であって人間のC7椎骨の上方に位置している様子を示す。この配置では、AC信号発生器は、まず、第一組の電極素子31と第二組の電極素子32にわたってAC電圧を印加し、次いで、第三組の電極素子33と第四組の電極素子34にわたってAC電圧を印加するし、次いで、治療期間にわたってこれら二つのステップを順に繰り返す。以下で表にまとめるように、この代替配置の電場強度の均一性も、従来の図1の配置よりも顕著に高い。
図4A~図4Dは、TT電場を用いて転移を防止するために人間の頭部上にトランスデューサアレイを位置決めするための改善された更に他の配置を示す。より具体的には、図4Aは、第一組の電極41が人間の頭部の右側に取り付けられている様子を示す。第一組の電極41は、人間の右耳の外耳道の外開口の上方に主に水平な向きで位置する上部41Hと、人間の右耳の外耳道の外開口の後方に主に垂直な向きで位置する後部41Vとを有する。図4Bは、第二組の電極42が人間の頭部の左側に取り付けられている様子を示す。第二組の電極42は、人間の左耳の外耳道の外開口の上方に主に水平な向きで位置する上部42Hと、人間の左耳の外耳道の外開口の後方に主に垂直な向きで位置する後部42Vとを有する。図4Cは、第三組の電極43が人間の頭部に取り付けられ、その重心が人間の頭頂部に位置する様子を示す。図4Dは、第四組の電極44が人間の後頚部に取り付けられ、その重心が人間のC2椎骨の下方であって人間のC7椎骨の上方に位置する様子を示す。この配置では、AC信号発生器は、まず、第一組の電極素子41と第二組の電極素子42にわたってAC電圧を印加し、次いで、第三組の電極素子43と第四組の電極素子44にわたってAC電圧を印加するし、次いで、治療期間にわたってこれら二つのステップを順に繰り返す。以下で表にまとめるように、この代替配置の電場強度の均一性も、従来の図1の配置よりも顕著に高い。
任意選択的に、図4A~図4Dの配置において、第一組の電極素子の上部41Hが少なくとも三つの容量結合電極素子を含み、第一組の電極素子の後部41Vが少なくとも三つの容量結合電極素子を含み、第二組の電極素子の上部42Hが少なくとも三つの容量結合電極素子を含み、第二組の電極素子の後部42Vが少なくとも三つの容量結合電極素子を含む。代替実施形態では、これらの部分41H、41V、42H、42Vの各々が異なる数(例えば、1個から8個の間)の電極素子を含み得る。
任意選択的に、図4A~図4Dの配置において、第一組の電極素子と第二組の電極素子の各々の上部が、(a)6cm以上の長さを有し、(b)各外耳道の外開口の上方6cm未満に位置し、(c)各外耳道の外開口の前方1cm以上に位置する前端を有し、(d)各外耳道の外開口の後方1cm以上に位置する後端を有する。
任意選択的に、図4A~図4Dの配置において、第一組の電極素子と第二組の電極素子の各々の後部が、(a)6cm以上の長さを有し、(b)各外耳道の外開口の後方6cm未満に位置し、(c)各外耳道の外開口の上方1cm以上に位置する上端を有し、(d)各外耳道の外開口の下方3cm以上に位置する後端を有する。
任意選択的に、図4A~図4Dの配置において、第三組の電極素子は、その重心が人間の頭頂部の前方1cmから3cmの間に位置するように取り付けられる。
任意選択的に、図4A~図4Dの配置において、第四組の電極素子は、その重心が人間のC3椎骨の下方であって人間のC6椎骨の上方に位置するように取り付けられる。
図5は、図2~図4に関して上述したように、第一組の電極素子と第二組の電極素子の間(図2の21/22、図3の31/32、図4の41/42)と、第三組の電極素子と第四組の電極素子の間(図2の23/24、図3の33/34、図4の43/44)とに交互の順でAC電圧を印加するのに使用可能なAC電圧発生器50を含むシステムのブロック図を示す。
上述のトランスデューサアレイの各配置について、肩まで伸びるリアルな人間頭部モデルを用いて電場をシミュレーションした。シミュレーションでは、それぞれ直径2cmの9個のディスク状容量結合電極素子を備えるトランスデューサアレイを、図1~図4に関して上述した身体の箇所に配置して、200kHzの周波数でピークピーク値が2Aで一定の電流をディスクに外面に印加した。シミュレーションは、Sim4Lifeバージョン4プラットフォーム(チューリッヒのZMT社)を用いて行われた。電場の均一性を分析するため、脳を図6A~図6Bに示されるような五区画に分割し、即ち、天幕領域「in」(小脳と脳幹を含む)、脳上部の四区画である右前α、左前β、左後γ、右後δに分割した。脳のこれらの領域間の境界が図6A~図6Bに示されている。有限要素シミュレーションを用いて五つの区画の各々の各ボクセルについて電場強度を計算した。各区画について、区画の全ボクセルの平均値と中央値の電場強度を計算した。灰白質と白質についてのみデータを取った。
上述の各配置の各対のトランスデューサアレイについて、以下のように、異なる区画の平均値間の標準偏差を異なる区間の平均値で割ったものをΨと定義した:
Ψ=σ/MEAN
ここで、σ=SD([μ]|i∈{α,β,γ、δ,in})、
MEAN=mean([μ]|i∈{α,β,γ、δ,in})
これら三式において、SDは標準偏差を表し、μは各区画の平均値を表し、α、β、γ及びδは脳区画を表し(図6Aを参照)、「in」は小脳/脳幹区画を表す(図6Bを参照)。
各対のトランスデューサアレイについて得られたΨの値(パーセント単位)が、以下の表1に示されている。
Figure 0007284886000001
図1A~図1Bの配置の値は推定である。
表1の結果に基づくと、一対のトランスデューサアレイのみを用いて人間の脳に電場を印加する場合、脳全体にわたる高均一性を得るようにトランスデューサを位置決めするための上位二つの良好な配置は、配置43/44(図4C/図4Dに示される)と、配置41/42(図4A/図4Bに示される)である。
次いで、図1~図4に示されるトランスデューサアレイの各配置について、有限要素シミュレーションを用いて、以下の二つの場合での脳内の各ボクセルにおける電場強度を計算することによって、脳全体にわたって形成される電場の均一性を評価した:(a)第一組の電極素子と第二組の電極素子との間(図1の11/12、図2の21/22、図3の31/32、図4の41/42)にAC電圧を印加する場合;(b)第三組の電極素子と第四組の電極素子の間(図1の13/14、図2の23/24、図3の33/34、図4の43/44)にAC電圧を印加する場合。次いで、脳内の各ボクセルについて、(a)の場合の電場強度の結果と、(b)の場合の電場強度の結果を平均化した。
脳内の各ボクセルにおける平均電場強度を得た後に、表1に関して上述したΨを計算するのに用いたのと同じ三式を用いて、Ψを計算した。しかしながら、今回は、脳内の各ボクセルについて単独の電場強度を式への入力として用いる代わりに、脳内の各ボクセルについて二つの電場強度の平均を式への入力として用いた。
各場合の四つのトランスデューサアレイについて得られたΨの値(パーセント単位)が以下の表2に示されている。これらの値は、電場が所与の設定時間の半分において第一トランスデューサアレイと第二トランスデューサアレイとの間に印加され、所与の設定時間の残りの半分において第三トランスデューサアレイと第四トランスデューサアレイとの間に印加されるという仮定に基づくものである。
Figure 0007284886000002
図1A~図1Dの配置の結果は図1に関する上記推定に依るものである。
表2の結果に基づくと、二対のトランスデューサアレイを用いて、各対を交互の順で50%の時間で活性化させて人間の脳に電場を印加する場合、脳全体にわたる高均一性を得るようにトランスデューサアレイを位置決めするための上位二つの良好な配置は、(1)配置41/42と配置43/44の組み合わせ(図4A~図4Dに示される)と、(2)配置21/22と配置23/24の組み合わせ(図2A~図2Dに示される)である。
図2~図4に関して上述したトランスデューサアレイの配置の追加データを以下に与える。図2A/図2Bに示されるトランスデューサアレイ21/22の位置についてのデータが以下の表3に示されている。
Figure 0007284886000003
図2C/図2Dに示されるトランスデューサアレイ23/24の位置についてのデータが以下の表4に示されている。
Figure 0007284886000004
図3A/図3Bに示されるトランスデューサアレイ31/32の位置についてのデータが以下の表5に示されている。
Figure 0007284886000005
図3C/図3Dに示されるトランスデューサアレイ33/34の位置についてのデータが以下の表6に示されている。
Figure 0007284886000006
図4A/図4Bに示されるトランスデューサアレイ41/42の位置についてのデータが以下の表7に示されている。
Figure 0007284886000007
図4C/図4Dに示されるトランスデューサアレイ43/44の位置についてのデータが以下の表8に示されている。
Figure 0007284886000008
図2、図3、図4C/図4Dに示される実施形態では、各組の電極素子は、個々の電極素子ディスクの3×3アレイとして構成されている。結果として、これらの実施形態では、各組の重心は、中心ディスクの中心と一致している。しかしながら、代替実施形態では、各組の電極素子は異なる数の電極素子を含み得る。例えば、所与の組の電極素子が、個々の電極素子ディスクの2×2アレイとして構成され得る。この場合、重心は、四つの全てのディスクの間に位置する領域内にあり得る。他の代替実施形態では、所与の組の電極素子が、単一の電極素子ディスク(円形や矩形に限られず、あらゆる適切な形状となり得る)のみを含み得る。この場合、重心は、単一の電極素子の中心と一致している。
図2~図5に示される実施形態では、四組全ての電極素子が人体に容量結合されることが好ましい。上述の各実施形態のように第一組の電極素子、第二組の電極素子、第三組の電極素子、及び第四組の電極素子を取り付けた後に、以下のステップを交互に繰り返す:(a)第一組の電極素子と第二組の電極素子との間に交流電圧を印加するステップ、(b)第三組の電極素子と第四組の電極素子との間に交流電圧を印加するステップ。一部実施形態では、交流電圧の周波数は100kHzから300kHzの間である。
図2~図5に関して上述した実施形態について、表1~表7に与えられている値は、四組の電極素子がそれぞれ図2~図4に示されるように位置決めされた場合に得られる電場をシミュレーションすることによって、得られたものである。しかしながら、各組の電極素子の位置は、上記の解剖学的な記述が変わらない程度にその移動が十分小さいものである限りにおいて、図面に示される厳密な箇所からは異なり得る点に留意されたい。例えば、図2Aに示される第一組の電極素子21は、人間の右耳の外耳道の外開口の上方であって正中矢状面の右側で人体に取り付けられたままである限りにおいて、上下左右に移動し得る。同様に、図2Bに示される第二組の電極素子22は、正中矢状面の左側であって正中冠状面の後方で人体に取り付けられ、その重心が人間の左耳の外耳道の外開口の下方であって人間のC2椎骨の中点の上方に位置したままである限りにおいて、上下左右に移動し得る。この限られた移動範囲内において、各個人用のシミュレーション(例えば、有限要素シミュレーション)を用いて、多様な組の電極の位置の各組み合わせについてその結果として得られる電場を計算し、最良の結果(例えば、脳全体にわたる電場の最高の均一性や、最小のΨ)を与える組み合わせを選択することによって、四組の電極素子の各々の最適な位置が決定され得る。そして、選択された組み合わせの指標を、例えば、適切なディスプレイやプリントアウトを用いて、医療従事者に出力する。医療従事者は、出力に示される位置においてそれら組の電極素子を人間に適用し、それら組の電極素子をAC信号発生器50に接続し、治療を開始する。
図7は、人間の頭部の右側に取り付けられる第一組の電極素子41(図4Aに示される)又は人間の頭部の左側に取り付けられる第二組の電極素子42(図4Bに示される)のいずれかを実現するのに使用可能な装置を示す。
この装置は、人間の脳に交流電場を印加するのに使用され、外側76(図7では隠れている)と内側75とを有するフレキシブルバッキング70を備える。フレキシブルバッキング70は、内側75を人間の頭部に向けて、人間の頭部の一方の側に取り付けられるように構成される。フレキシブルバッキング用の適切な物質として、布、発泡体、フレキシブルプラスチック(例えば、バンドエイドで使用される対応の物質と同様のもの)が挙げられる。フレキシブルバッキングは、第一方向d1に沿って6cm以上の長さを有する第一アーム71と、第二方向d2に沿って6cm以上の長さを有する第二アーム72を有する。
複数の第一容量結合電極素子81が、フレキシブルバッキング70の第一アーム71の内側75上に位置決めされ、各第一容量結合電極素子81は、導電板81cと、内側に向けてその上に位置する誘電体層を有する。複数の第二容量結合電極素子82が、フレキシブルバッキング70の第二アーム72の内側75上に位置決めされ、各第二容量結合電極素子82は、導電板82cと、内側に向けてその上に位置する誘電体層を有する。電極素子81、82は、Novocure社のOptune(登録商標)システムで用いられる従来の電極素子と同様のものであり得る。任意選択的に、Novocure社のOptune(登録商標)システムで用いられている従来の配置構成と同様にして、温度センサ(例えば、サーミスタ)を、電極素子81、82の一部又は全部の下方に配置し得る。
第一組の導体61が、各第一容量結合電極素子81の導電板81cを並列に接続し、第二組の導体62が、各第二容量結合電極素子82の導電板82cを並列に接続する。導体は、例えば、個別配線を用いたり、フレキシブル回路上のトレースを用いたりして実現可能である。接着層(ドットパターンで示される)が、フレキシブルバッキング70の内側75上に位置し、その接着層は、電極素子81、82で覆われていないフレキシブルバッキング70の部分を人間の頭部に対して保持するように構成される。
図7に示される実施形態では、複数の第一電極素子81は四個の電極素子を有し、複数の第二電極素子82は三個の電極素子を有する。しかしながら、代替実施形態では、第一電極素子と第二電極素子の各々における電極素子の数は異なり得る(例えば、2個から10個の間)。
図7に示される実施形態では、第一方向d1と第二方向d2との間の角度θは90°である。しかしながら、代替実施形態では、その角度θは、80°から100°の間や、65°から115°の間になり得る。
図7に示される向きでは、本装置は、図4Bの左耳の隣に位置する第二組の電極42としての使用に適していて、図7の第一電極素子81と第二電極素子82はそれぞれ図4Bの上部/水平アーム42Hと後部/垂直アーム42Vに対応している。しかしながら、バッキング70を図7に示される向きに対して時計回りに90°回転させると、同じ装置が、図4Aの右耳の隣に位置する第一組の電極41としての使用に適したものとなる。より具体的には、時計回りの90°回転の後に、図7の複数の第一電極素子81は図4Aの後部/垂直アーム41Vに対応し、図7の複数の第二電極素子82は図4Aの上部/水平アーム41Hに対応するようになる。
特定の実施形態を参照して本発明を開示してきたが、特許請求の範囲に定められる本発明の要旨と範囲から逸脱せずに、開示の実施形態に対する多数の修正、変更、変化が可能である。従って、本発明は開示の実施形態に限定されるものではなく、添付の特許請求の範囲の文言及びその均等物で定められる完全な範囲を有するものである。
11、21、31、41 第一組の電極素子
12、22、32、42 第二組の電極素子
13、23、33、43 第三組の電極素子
14、24、34、44 第四組の電極素子
50 AC信号発生器

Claims (4)

  1. 装置であって、
    外側(76)と内側(75)を有するフレキシブルバッキング(70)であって、前記内側(75)を人間の頭部に向けて前記人間の頭部の一方の側に取り付けられるように構成され、第一方向(d1)に沿って6cm以上の長さを有する第一アーム(71)と、第二方向(d2)に沿って6cm以上の長さを有する第二アーム(72)とを有し、前記第一方向(d1)と前記第二方向(d2)との間の角度(θ)が65°から115°の間であり、前記第一アーム(71)と前記第二アーム(72)が前記人間の頭部の耳の隣に該装置を取り付けるように構成されている、フレキシブルバッキング(70)と、
    前記フレキシブルバッキング(70)の第一アーム(71)の内側(75)に位置する複数の第一容量結合電極素子(81)であって、各第一容量結合電極素子(81)が、導電板(81c)と、内側に向けて該導電板上に位置する誘電体層とを有する、複数の第一容量結合電極素子(81)と、
    前記フレキシブルバッキング(70)の第二アーム(72)の内側(75)に位置する複数の第二容量結合電極素子(82)であって、各第二容量結合電極素子(82)が、導電板(82c)と、内側に向けて該導電板上に位置する誘電体層とを有する、複数の第二容量結合電極素子(82)と、
    各第一容量結合電極素子(81)の導電板(81c)に接続する第一組の導体(61)と、
    各第二容量結合電極素子(82)の導電板(82c)に接続する第二組の導体(62)と、
    前記第一容量結合電極素子(81)と前記第二容量結合電極素子(82)によって覆われていない前記フレキシブルバッキング(70)の部分を前記人間の頭部に対して保持するように位置する接着層と、を備える装置。
  2. 前記複数の第一容量結合電極素子(81)が少なくとも三つの容量結合電極素子又は二個から十個の容量結合電極素子を備え、前記複数の第二容量結合電極素子(82)が少なくとも三つの容量結合電極素子又は二個から十個の容量結合電極素子を備える、請求項1に記載の装置。
  3. 前記角度(θ)が80°から100°の間である又は前記角度(θ)が90°である、請求項1に記載の装置。
  4. 前記複数の第一容量結合電極素子(81)が全て並列で配線されている、及び/又は、前記複数の第二容量結合電極素子(82)が全て並列で配線されている、請求項1に記載の装置。
JP2021520224A 2018-10-15 2019-10-11 脳全体にわたる高均一性での腫瘍治療電場(tt電場)の発生 Active JP7284886B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023045799A JP7536934B2 (ja) 2018-10-15 2023-03-22 脳全体にわたる高均一性での腫瘍治療電場(tt電場)の発生

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862745689P 2018-10-15 2018-10-15
US62/745,689 2018-10-15
PCT/IB2019/058709 WO2020079554A1 (en) 2018-10-15 2019-10-11 Generating tumor treating fields (ttfields) with high uniformity throughout the brain

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023045799A Division JP7536934B2 (ja) 2018-10-15 2023-03-22 脳全体にわたる高均一性での腫瘍治療電場(tt電場)の発生

Publications (2)

Publication Number Publication Date
JP2022512690A JP2022512690A (ja) 2022-02-07
JP7284886B2 true JP7284886B2 (ja) 2023-06-01

Family

ID=68426548

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2021520224A Active JP7284886B2 (ja) 2018-10-15 2019-10-11 脳全体にわたる高均一性での腫瘍治療電場(tt電場)の発生
JP2023045799A Active JP7536934B2 (ja) 2018-10-15 2023-03-22 脳全体にわたる高均一性での腫瘍治療電場(tt電場)の発生

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023045799A Active JP7536934B2 (ja) 2018-10-15 2023-03-22 脳全体にわたる高均一性での腫瘍治療電場(tt電場)の発生

Country Status (7)

Country Link
US (4) US11241577B2 (ja)
EP (4) EP3840823B1 (ja)
JP (2) JP7284886B2 (ja)
CN (1) CN112930209B (ja)
HU (1) HUE061361T2 (ja)
PL (1) PL3984590T3 (ja)
WO (1) WO2020079554A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10441776B2 (en) 2016-06-30 2019-10-15 Novocure Gmbh Arrays for longitudinal delivery of TTFields to a body
US11986647B2 (en) 2018-09-07 2024-05-21 Novocure Gmbh Treating autoinflammatory and mitochondrial diseases using an alternating electric field
CN112930209B (zh) 2018-10-15 2024-10-15 诺沃库勒有限责任公司 生成遍及大脑具有高均匀性的肿瘤治疗场(ttfields)的装置和方法
US12115381B2 (en) 2019-12-02 2024-10-15 Novocure Gmbh Methods, systems, and apparatuses for optimizing transducer array placement
EP4074370A1 (en) 2019-12-31 2022-10-19 Novocure GmbH High voltage, high efficiency sine wave generator that prevents spikes during amplitude adjustments and switching of channels
DK4074367T3 (da) 2019-12-31 2023-05-22 Novocure Gmbh Arrays til levering af tumorbehandlingsfelter (tt-felter) med individuelt tilgængelige elektrodeelementer og temperatursensorer
US11941761B2 (en) 2019-12-31 2024-03-26 Novocure Gmbh Methods, systems, and apparatuses for image segmentation
US11818943B2 (en) 2020-06-25 2023-11-14 Novocure Gmbh Fabricating organic light emitting diodes (OLEDs) using tubulin
KR20230073173A (ko) * 2020-09-25 2023-05-25 노보큐어 게엠베하 과열 없이 전류를 최대화하기 위해 종양 치료 필드(ttfields) 시스템의 개별 전극 요소에 대한 금속화 영역 변경
US20220096829A1 (en) * 2020-09-30 2022-03-31 Novocure Gmbh Method and apparatus for delivering tumor treating fields to a torso, and method for determining locations for transducers to deliver tumor treating fields
TWI830958B (zh) * 2020-10-16 2024-02-01 瑞士商諾沃庫勒有限責任公司 用於判定傳感器陣列在個體之身體上之最佳位置以及規劃電極元件集合在個體之身體上之定位的方法
US11869151B2 (en) * 2021-01-26 2024-01-09 Beth Israel Deaconess Medical Center Systems and methods for finite element analysis of tumor treating fields
US20220257927A1 (en) * 2021-02-17 2022-08-18 Novocure Gmbh Arrays for Delivering Tumor Treating Fields (TTFields) with Sets of Electrode Elements Having Individually Adjustable Active Areas
JP2024533777A (ja) * 2021-09-30 2024-09-12 ノボキュア ゲーエムベーハー 交流電場を用いた被験者の治療における電気感覚の軽減
US20230181919A1 (en) * 2021-12-14 2023-06-15 Novocure Gmbh Transducer array with shape that contours to a subject's body and method of determining shape and placement of transducer arrays
SE2350150A1 (en) * 2023-02-15 2024-08-16 Force Oncology Ab Tumor treating fields (ttfields) equipment configurations for improved ease-of-use

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150094557A1 (en) 2013-09-30 2015-04-02 Mediatek Inc. Patches for bio-electrical signal processing
WO2017072706A1 (en) 2015-10-28 2017-05-04 Zeev Bomzon Ttfield treatment with optimization of electrode positions on the head based on mri-based conductivity measurements
WO2018002879A1 (en) 2016-06-30 2018-01-04 Zeev Bomzon Arrays for longitudinal delivery of ttfields to a body
WO2018057953A2 (en) 2016-09-23 2018-03-29 Beth Isreal Deaconess Medical Center, Inc. System and methods for cancer treatment using alternating electric fields

Family Cites Families (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6081744A (en) 1993-05-28 2000-06-27 Loos; Hendricus G. Electric fringe field generator for manipulating nervous systems
US6366813B1 (en) 1998-08-05 2002-04-02 Dilorenzo Daniel J. Apparatus and method for closed-loop intracranical stimulation for optimal control of neurological disease
US8447395B2 (en) * 2000-02-17 2013-05-21 Novocure Ltd Treating bacteria with electric fields
US7146210B2 (en) 2000-02-17 2006-12-05 Standen Ltd. Apparatus and method for optimizing tumor treatment efficiency by electric fields
US7089054B2 (en) 2002-10-02 2006-08-08 Standen Ltd. Apparatus and method for treating a tumor or the like
US7016725B2 (en) 2001-11-06 2006-03-21 Standen Ltd. Method and apparatus for destroying dividing cells
US7599746B2 (en) 2000-02-17 2009-10-06 Standen Ltd Apparatus and method for preventing the spread of cancerous metastases and for elimination of metastases
US7136699B2 (en) 2002-10-02 2006-11-14 Standen, Ltd. Apparatus for destroying dividing cells
AU3399801A (en) 2000-02-17 2001-08-27 Yoram Palti Method and apparatus for destroying dividing cells
US6868289B2 (en) 2002-10-02 2005-03-15 Standen Ltd. Apparatus for treating a tumor or the like and articles incorporating the apparatus for treatment of the tumor
US8175698B2 (en) 2000-02-17 2012-05-08 Novocure Ltd. Treating bacteria with electric fields
WO2002045791A2 (en) 2000-10-26 2002-06-13 Medtronic, Inc. Method and apparatus for electrically stimulating the nervous system to improve ventricular dysfunction, heart failure, and other cardiac comditions
JP4750784B2 (ja) 2004-04-23 2011-08-17 ノヴォキュアー・リミテッド 異なる周波数の電界による腫瘍等の治療
DK1833552T3 (da) 2004-12-07 2010-08-02 Standen Ltd Elektroder til anbringelse af et elektrisk felt in-vivo i en længere tidsperiode
CA2594231C (en) 2004-12-27 2016-04-19 Standen Ltd. Treating a tumor or the like with electric fields at different orientations
EP3804809B1 (en) 2005-10-03 2023-12-27 Novocure GmbH Optimizing characteristics of an electric field to increase the field's effect on proliferating cells
US10537728B2 (en) * 2005-11-10 2020-01-21 ElectroCore, LLC Vagal nerve stimulation to avert or treat stroke or transient ischemic attack
US8019414B2 (en) 2006-04-05 2011-09-13 Novocure Ltd. Treating cancer using electromagnetic fields in combination with other treatment regimens
US7949403B2 (en) 2007-02-27 2011-05-24 Accelerated Care Plus Corp. Electrical stimulation device and method for the treatment of neurological disorders
DK2167194T3 (en) 2007-03-06 2017-06-19 Novocure Ltd TREATMENT OF CANCER USING ELECTROMAGNETIC FIELDS IN COMBINATION WITH PHOTODYNAMIC THERAPY
JP5485153B2 (ja) 2007-08-14 2014-05-07 ノボキュア リミテッド 電界による寄生生物治療
US8715203B2 (en) 2007-09-17 2014-05-06 Novocure Limited Composite electrode
CA2765891A1 (en) 2008-06-18 2009-12-23 Accelerated Care Plus Corp. Electrical stimulation method for reduction of joint compression
US8968173B2 (en) * 2008-07-16 2015-03-03 Frank Sivo Methods to arrest cancer cell growth and proliferation using electromagnetic energy delivered via electromagnetic coil systems
US20170164878A1 (en) * 2012-06-14 2017-06-15 Medibotics Llc Wearable Technology for Non-Invasive Glucose Monitoring
US9180302B2 (en) 2012-08-31 2015-11-10 Greatbatch Ltd. Touch screen finger position indicator for a spinal cord stimulation programming device
CA2896800A1 (en) 2013-01-21 2014-07-24 Cala Health, Inc. Devices and methods for controlling tremor
US10537466B2 (en) 2013-04-10 2020-01-21 Zoll Circulation, Inc. Detecting and responding to preshivering
US9655669B2 (en) 2013-05-06 2017-05-23 Novocure Limited Optimizing treatment using TTFields by changing the frequency during the course of long term tumor treatment
US10779875B2 (en) 2013-05-06 2020-09-22 Novocure Gmbh Optimizing treatment using TTfields by changing the frequency during the course of long term tumor treatment
US20140371566A1 (en) * 2013-06-14 2014-12-18 Cardiothrive, Inc. Conforming patient contact interface and method for using same
US10293161B2 (en) 2013-06-29 2019-05-21 Thync Global, Inc. Apparatuses and methods for transdermal electrical stimulation of nerves to modify or induce a cognitive state
US9498635B2 (en) * 2013-10-16 2016-11-22 Syntilla Medical LLC Implantable head located radiofrequency coupled neurostimulation system for head pain
CN106029160B (zh) 2013-11-01 2019-03-15 波士顿科学神经调制公司 用于在中线处递送亚阈值治疗的系统
US20150224318A1 (en) 2014-02-12 2015-08-13 Pacesetter, Inc. Methods and systems for neurostimulation using paddle lead
JP6981752B2 (ja) 2014-05-23 2021-12-17 エレクトロコア リミテッド ライアビリティ カンパニー 迷走神経刺激システム及び方法
JP6588472B2 (ja) 2014-05-25 2019-10-09 ハイイン エクイティ インベストメント ファンド エル.ピー. ウェアラブル経皮神経刺激器
CN107949351A (zh) 2015-03-30 2018-04-20 伊诺佩斯生物医药有限公司 用于血管内装置的天线
US9910453B2 (en) 2015-09-25 2018-03-06 Novocure Limited High voltage, high efficiency sine wave generator with pre-set frequency and adjustable amplitude
US9956405B2 (en) 2015-12-18 2018-05-01 Thyne Global, Inc. Transdermal electrical stimulation at the neck to induce neuromodulation
US10821283B2 (en) 2016-04-04 2020-11-03 Novocure Gmbh Reducing motility of cancer cells using tumor treating fields (TTFields)
US10646708B2 (en) 2016-05-20 2020-05-12 Thync Global, Inc. Transdermal electrical stimulation at the neck
US20180008708A1 (en) 2016-07-10 2018-01-11 Novocure Limited Synchronizing Tumor Cells to the G2/M Phase Using TTFields Combined with Taxane or Other Anti-Microtubule Agents
EP4218905A1 (en) 2016-08-18 2023-08-02 Novocure GmbH Temperature measurement in arrays for delivering tumour treating fields
JP7184774B2 (ja) 2016-12-13 2022-12-06 ノボキュア ゲーエムベーハー 変形可能テンプレートを使用して最適化された電極位置を有するttフィールドを用いて患者を治療する
CN110178029B (zh) 2017-01-19 2021-11-16 诺沃库勒有限责任公司 用于在施加TTFields的同时在显微镜下观察细胞培养物的系统
PL421532A1 (pl) * 2017-05-08 2018-11-19 Michalczyk Marta System do leczenia nowotworów wewnątrzczaszkowych z wykorzystaniem implantu, generującego ciągłe, zmienne pole elektryczne oraz ultradźwięki, zasilanego metodą przezskórnego transferu energii
WO2018217577A1 (en) * 2017-05-22 2018-11-29 Thync Global, Inc. Systems and methods for applying electrical energy to treat medical disorders
US20200368525A1 (en) 2017-11-17 2020-11-26 Abbvie Inc. Methods of Treating Glioblastoma
US10953209B2 (en) 2018-03-28 2021-03-23 Board Of Regents Of The University Of Texas System Treating tumors using TTFields combined with a PARP inhibitor
CN112566665A (zh) 2018-04-09 2021-03-26 莫舍·吉拉迪 用TTFields和Aurora激酶抑制剂治疗肿瘤
KR102687814B1 (ko) 2018-04-10 2024-07-24 지브 봄존 서로 다른 반복 시간을 가지는 두 개의 MRI 이미지들로부터 얻어진 1MHz 미만 저주파 교류 전도도 추산치
JP7055906B2 (ja) 2018-07-03 2022-04-18 エドウィン・チャン 細胞膜透過性を増加させるための交流電界の使用
US11583675B2 (en) 2018-07-10 2023-02-21 Novocure Gmbh Inhibiting viral infection using alternating electric fields
US11179322B2 (en) 2018-07-10 2021-11-23 Novocure Gmbh Methods and compositions for treating tumors with TTFields and sorafenib
WO2020016840A1 (en) 2018-07-18 2020-01-23 Novocure Gmbh Using power loss density and related measures to quantify the dose of tumor treating fields (ttfields)
EP3892219B1 (en) 2018-08-23 2022-06-01 Novocure GmbH Using alternating electric fields to increase permeability of the blood brain barrier
US11160977B2 (en) * 2018-09-04 2021-11-02 Novocure Gmbh Delivering tumor treating fields (TTFields) to the infratentorial brain
EP3846894A1 (en) 2018-09-07 2021-07-14 Novocure GmbH Treating autoimmune diseases using an alternating electric field to reduce the proliferation of t-cells
US11986647B2 (en) 2018-09-07 2024-05-21 Novocure Gmbh Treating autoinflammatory and mitochondrial diseases using an alternating electric field
US20200108031A1 (en) 2018-10-05 2020-04-09 Novocure Gmbh Treating Tumors Using TTFields Combined with ABT-751
CN112930209B (zh) * 2018-10-15 2024-10-15 诺沃库勒有限责任公司 生成遍及大脑具有高均匀性的肿瘤治疗场(ttfields)的装置和方法
JP7282411B2 (ja) 2018-10-23 2023-05-29 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー 交流電場を使用する、幹細胞に基づく療法におけるテラトーマ形成の予防及び処置
US11369790B2 (en) 2018-10-25 2022-06-28 Novocure Gmbh Delivering alternating electric fields (e.g., TTFields) to a subject's spinal anatomy
US20200146586A1 (en) 2018-11-14 2020-05-14 Novocure Gmbh Creating Accurate Computational Head Models of Patients Using Datasets Combining MRI and CT Images
EP4019080A1 (en) 2018-11-19 2022-06-29 Novocure GmbH Arrays for delivering tumor treating fields (ttfields) with selectively addressable sub-elements
EP3909015B1 (en) 2019-01-08 2024-08-14 Novocure GmbH Evaluating quality of segmentation of an image into different types of tissue for planning treatment using tumor treating fields (ttfields)
JP7419391B2 (ja) 2019-03-29 2024-01-22 ノボキュア ゲーエムベーハー PTGER3阻害剤によりTTFields-耐性がん細胞におけるTTFieldsに対する感受性を回復させるための方法
EP3924039B1 (en) 2019-04-17 2023-11-22 Novocure GmbH Uploading data from an isolated system without compromising isolation
USD934892S1 (en) 2019-05-03 2021-11-02 Novocure Gmbh Display screen or portion thereof with a graphical user interface
WO2021019403A1 (en) 2019-07-31 2021-02-04 Yoram Wasserman Applying tumor treating fields (ttfields) via electrodes embedded into skull implants
US20210038584A1 (en) 2019-08-05 2021-02-11 Novocure Gmbh Increasing Cancer Cells' Sensitivity to Tumor Treating Fields (TTFields) by Inhibiting IL11 Activity
US11890467B2 (en) 2019-08-30 2024-02-06 Novocure Gmbh Delivering tumor treating fields (TTFields) to the neck
KR20220059958A (ko) 2019-09-10 2022-05-10 노보큐어 게엠베하 암 세포에 교번 전기장을 적용하고 체크포인트 억제제를 투여하여 암 세포의 활력성을 감소시키는 방법
JP2023508990A (ja) 2019-12-26 2023-03-06 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー 癌細胞における異常な解糖的代謝を正常化する方法
EP4074370A1 (en) 2019-12-31 2022-10-19 Novocure GmbH High voltage, high efficiency sine wave generator that prevents spikes during amplitude adjustments and switching of channels
DK4074367T3 (da) 2019-12-31 2023-05-22 Novocure Gmbh Arrays til levering af tumorbehandlingsfelter (tt-felter) med individuelt tilgængelige elektrodeelementer og temperatursensorer
US20210299440A1 (en) 2020-03-30 2021-09-30 Novocure Gmbh Intravenous / Intra-Spinal / Intra-Cavity / Intraventricular Delivery of TTFields (Tumor Treating Fields) for Treating Cancer and Metastases
CN115916325A (zh) 2020-04-24 2023-04-04 诺沃库勒有限责任公司 使用交变电场增加血脑屏障的通透性

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150094557A1 (en) 2013-09-30 2015-04-02 Mediatek Inc. Patches for bio-electrical signal processing
WO2017072706A1 (en) 2015-10-28 2017-05-04 Zeev Bomzon Ttfield treatment with optimization of electrode positions on the head based on mri-based conductivity measurements
WO2018002879A1 (en) 2016-06-30 2018-01-04 Zeev Bomzon Arrays for longitudinal delivery of ttfields to a body
WO2018057953A2 (en) 2016-09-23 2018-03-29 Beth Isreal Deaconess Medical Center, Inc. System and methods for cancer treatment using alternating electric fields

Also Published As

Publication number Publication date
US20240082592A1 (en) 2024-03-14
WO2020079554A1 (en) 2020-04-23
US20200114142A1 (en) 2020-04-16
HUE061361T2 (hu) 2023-06-28
EP3840823A1 (en) 2021-06-30
JP2023083291A (ja) 2023-06-15
US20220118249A1 (en) 2022-04-21
EP3840823C0 (en) 2023-07-12
EP4137195A1 (en) 2023-02-22
JP2022512690A (ja) 2022-02-07
US11865355B2 (en) 2024-01-09
CN112930209A (zh) 2021-06-08
JP7536934B2 (ja) 2024-08-20
EP3984590B1 (en) 2022-12-07
US20200114141A1 (en) 2020-04-16
EP3840823B1 (en) 2023-07-12
US11154707B2 (en) 2021-10-26
EP3878505B1 (en) 2023-05-24
CN112930209B (zh) 2024-10-15
US11241577B2 (en) 2022-02-08
EP3878505A1 (en) 2021-09-15
PL3984590T3 (pl) 2023-05-02
EP3984590A1 (en) 2022-04-20

Similar Documents

Publication Publication Date Title
JP7284886B2 (ja) 脳全体にわたる高均一性での腫瘍治療電場(tt電場)の発生
US20220280787A1 (en) Delivering Alternating Electric Fields (e.g., TTFields) to a Subject's Spinal Anatomy
Rawji et al. tDCS changes in motor excitability are specific to orientation of current flow
US20200069937A1 (en) Delivering Tumor Treating Fields (TTFields) to the Infratentorial Brain
Holdefer et al. Predicted current densities in the brain during transcranial electrical stimulation
JP2024038252A (ja) 頸部への腫瘍治療電界(TTFields)の印加
Sankarasubramanian et al. Transcranial direct current stimulation targeting primary motor versus dorsolateral prefrontal cortices: proof-of-concept study investigating functional connectivity of thalamocortical networks specific to sensory-affective information processing
US20210187296A1 (en) Auricular nerve stimulation to affect brain function and/or improve wellness, and associated systems and methods
JP6384967B2 (ja) コイル装置及び経頭蓋磁気刺激システム
JP2014510586A (ja) 非侵襲的容量性電気刺激のためのデバイスおよび方法、ならびに患者の頸部の迷走神経刺激のためのそれらの使用
TW202126342A (zh) 用於組合腫瘤治療場和心理健康治療之方法、系統及設備
US20240123221A1 (en) Method and apparatus for small array dose distribution of alternating electric fields
TW202430242A (zh) 用於交流電場的小陣列劑量分配之方法和裝置
WO2024079716A1 (en) Method and apparatus for small array dose distribution of alternating electric fields
TWI830958B (zh) 用於判定傳感器陣列在個體之身體上之最佳位置以及規劃電極元件集合在個體之身體上之定位的方法
US20240123246A1 (en) Method and apparatus for delivering alternating electric fields to a target tissue
WO2024079719A1 (en) Method and apparatus for delivering alternating electric fields to a target tissue
Hermiller Effects of continuous versus intermittent theta-burst TMS on fMRI connectivity
Bratu et al. Activation region overlap visualization for image-guided cochlear implant programming
KR20220124198A (ko) 교류장에 의해 유도된 온도를 관리하기 위한 방법, 시스템 및 장치
BR8301851Y1 (pt) Aparelho de estimulação vibrotáctil dos pontos de acupuntura

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210712

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220620

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230220

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20230322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230406

R150 Certificate of patent or registration of utility model

Ref document number: 7284886

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150