JP7280810B2 - 画像測定装置 - Google Patents

画像測定装置 Download PDF

Info

Publication number
JP7280810B2
JP7280810B2 JP2019215173A JP2019215173A JP7280810B2 JP 7280810 B2 JP7280810 B2 JP 7280810B2 JP 2019215173 A JP2019215173 A JP 2019215173A JP 2019215173 A JP2019215173 A JP 2019215173A JP 7280810 B2 JP7280810 B2 JP 7280810B2
Authority
JP
Japan
Prior art keywords
image
measurement
unit
workpiece
measurement point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019215173A
Other languages
English (en)
Other versions
JP2021085772A (ja
Inventor
正 橋本
崇志 成瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keyence Corp
Original Assignee
Keyence Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keyence Corp filed Critical Keyence Corp
Priority to JP2019215173A priority Critical patent/JP7280810B2/ja
Publication of JP2021085772A publication Critical patent/JP2021085772A/ja
Application granted granted Critical
Publication of JP7280810B2 publication Critical patent/JP7280810B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ワークを撮像した画像を用いて2次元寸法を測定可能な画像測定装置に関する。
従来、ワークの寸法を測定する装置として、載置台に載置されたワークを照明装置によって照明し、照明した状態のワークを撮像装置で撮像し、得られたワーク画像を用いて各部の寸法を測定可能な画像測定装置が知られている(例えば特許文献1参照)。
特許文献1の画像測定装置では、ワークを撮像して得られたワーク画像中における各画素の輝度値を取得し、輝度の変化が大きい点を、ワークの輪郭を示す測定点として抽出することができるようになっている。このような画像測定装置を用いれば、ユーザが例えば2つの測定点を選択することで、これら測定点間の寸法を簡単に取得することができる。
特開2010-169584号公報
しかしながら、上方から照明した状態のワークを撮像装置で撮像した場合、取得されたワーク画像中にワークの影が映り込んでいる場合があり、このような場合では、映り込んだ影の影響によってワーク画像中の輪郭付近の輝度の変化が小さくなってしまい、測定点としてうまく抽出されないことがある。また、ワークは、その輪郭が丸みを帯びているケースが多く、このようなワークを撮像した場合にもワーク画像中の輪郭付近の輝度の変化が小さくなってしまい、測定点としてうまく抽出されないことがある。
測定点を抽出できない場合には、ユーザがワーク画像中に逐一、手動で測定点を指定することで、ワークの測定を行うことが強いられていた。この測定点の指定作業はユーザが目視で行うことになるため、同種のワークを複数個連続測定するような場合には、ユーザにとって煩雑である上に再現性が低いという問題があった。
本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、簡単な操作でありながら、従来技術では測定点として抽出されなかった部分を、測定点として自動的に高速で、しかも再現性高く決定できるようにすることにある。
上記目的を達成するために、第1の発明は、ワークを撮像することによって取得されたワーク画像中の測定点を基準に前記ワークの2次元寸法を測定する画像測定装置において、前記ワークが載置される載置台と、前記載置台に載置された前記ワークに対して上方から光を照射するための照明部と、前記照明部により前記ワークに照射されて該ワーク表面で反射した光を受光してワーク画像を生成するための撮像部と、前記撮像部で生成された前記ワーク画像を表示するための表示部と、前記画像測定装置の設定を行う設定時に前記表示部に表示された前記ワーク画像上の任意の位置を前記測定点として指定操作するための操作部と、前記操作部によって指定された前記測定点の位置と、該測定点を含む周辺画素の輝度情報とを取得する取得部と、前記取得部で取得された前記測定点の位置と前記輝度情報とを記憶する記憶部と、前記設定時のワークとは別のワークの2次元寸法を測定する前記画像測定装置の運用時に、前記撮像部で新たに生成されたワーク画像の輝度分布を取得して、前記記憶部に記憶された前記測定点の位置と前記輝度情報とに基づいて、前記新たに生成されたワーク画像上に測定点を決定する処理を実行する処理部とを備えている。
この構成によれば、画像測定装置の設定時に生成されたワーク画像中の輪郭付近の輝度の変化が小さくて、輝度の変化に基づく情報だけで測定点をうまく抽出できない場合に、当該ワーク画像を表示部に表示させることで、ユーザが操作部を使用してワーク画像上の任意の位置を測定点として指定することができる。ユーザは実物のワークの形状を把握しているので、表示部に表示されたワーク画像中の輪郭付近の輝度変化が小さくても、測定したい箇所を概ね正確に指定することができる。ユーザにより指定された点が、ユーザが所望する測定点となり、その測定点の位置と、測定点を含む周辺画素の輝度情報とが記憶部に記憶される。
画像測定装置の運用時、即ち、設定時のワークとは異なる別のワークの2次元寸法を測定する時には、処理部が、撮像部で新たに生成されたワーク画像の輝度分布を取得し、記憶部に記憶されている測定点の位置と輝度情報とを読み込み、これら情報に基づいて新たに生成されたワーク画像上に測定点を決定する。
すなわち、ある位置の測定点を含む周辺画素の輝度情報は、その位置が定まっていれば、同種のワークの間ではそれほど大きな変化はなく、概ね同じになるので、測定点の位置とその周辺画素の輝度情報とに基づくことで、新たなワーク画像上においても設定時に指定した測定点と同様な位置の測定点を、高い確度をもって見つけ出すことが可能になる。この処理は画像測定装置内で自動的に実行されるので、ユーザの作業が煩雑になることはなく、しかも高速に実行される。
第2の発明は、前記取得部は、前記操作部によって指定された前記測定点を通る線分を定め、当該線分上に位置する画素の輝度情報を取得することを特徴とする。
この構成によれば、測定点を通るように定められた線分上の画素の輝度情報を取得することで、測定点を含む周辺画素の輝度情報を確実に取得することができる。
第3の発明は、前記取得部は、前記線分上に位置する画素の輝度プロファイルを生成するように構成されていることを特徴とする。
この構成によれば、測定点を通るように定められた線分上の画素の輝度変化を詳細に取得することができる。このとき、線分は1次元に並ぶ画素で構成される線分であってもよいし、2次元に並ぶ画素で構成される、即ちある程度の幅を持った線分であってもよい。
第4の発明は、前記操作部は、複数の前記測定点を指定操作可能に構成され、前記取得部は、前記操作部により指定された前記測定点を結ぶ測定ラインを描いた時、前記測定点毎に、前記測定ラインに交差するように延びる前記線分を定め、各線分上に位置する画素の輝度プロファイルを生成して複数の輝度プロファイルを取得するように構成されていることを特徴とする。
この構成によれば、複数の測定点が指定されることで、これら測定点を結ぶ測定ラインを描くことが可能になる。測定点毎に、測定ラインに交差するように延びる線分を定めると、複数の線分が得られることになり、これら線分上に位置する画素の輝度プロファイルを生成することで、複数の輝度プロファイルが取得されるので、測定点の周辺画素の輝度情報を十分に得ることができる。
第5の発明は、前記取得部は、複数の前記輝度プロファイルを平均化した輝度プロファイルからなるマスタープロファイルを周辺画素の輝度情報とすることを特徴とする。
この構成によれば、測定ラインを含む領域の広い範囲の輝度プロファイルを取得することができる。
第6の発明は、前記取得部は、複数の前記輝度プロファイルを微分した後、平均化したエッジプロファイルからなるマスタープロファイルを周辺画素の輝度情報とすることを特徴とする。
この構成によれば、輝度プロファイルを微分して絶対値を取得することで、ワークのエッジプロファイルを取得することができる。
第7の発明は、前記処理部は、前記設定時に生成されたワーク画像と、前記新たに生成されたワーク画像とのマッチングにより、前記新たに生成されたワーク画像中にシークラインを設定し、該シークライン上の輝度プロファイルと、前記マスタープロファイルとの正規化相関により前記測定点を決定するように構成されていることを特徴とする。
この構成よれば、新たに生成されたワーク画像中に設定したシークライン上の輝度プロファイルと、設定時に取得したマスタープロファイルとの正規化相関により、新たに生成されたワーク画像中に測定点を検出することができるので、測定点の位置が正確になる。
第8の発明は、前記処理部は、前記新たに生成されたワーク画像中に複数の前記測定点が検出された場合、検出された複数の前記測定点を最小二乗法で近似して測定点を決定するように構成されていることを特徴とする。
この構成よれば、処理部が複数の測定点を検出した場合に、その検出した測定点とは別に新たな測定点を複数決定することができる。
第9の発明は、前記処理部は、前記新たに生成されたワーク画像中に検出された前記測定点と、最小二乗法で近似して決定された前記新たな測定点とを結ぶ測定ラインを生成するように構成されていることを特徴とする。
この構成よれば、運用時に新たに生成されたワーク画像中に測定ラインを表示させることができ、この測定ラインがワークの輪郭となる。
本発明によれば、画像測定装置の設定時に表示部に表示されたワーク画像上の任意の位置を測定点として指定することで、指定された測定点の位置と、該測定点を含む周辺画素の輝度情報とを取得することができる。運用時には、新たに生成されたワーク画像の輝度分布を取得して、設定時に取得した測定点の位置と輝度情報とに基づいて新たに生成されたワーク画像上に測定点を決定することができるので、ユーザにとって簡単な操作でありながら、測定点を自動的に高速で、しかも再現性高く決定できる。
本発明の実施形態に係る画像測定装置の全体構成を示す図である。 本発明の実施形態に係る画像測定装置の構成を示す模式図である。 本発明の実施形態に係る画像測定装置のブロック図である。 ワークの平面図である。 図4AにおけるA-A線断面図である。 ワークを撮像した画像の例を示す図である。 画像測定装置の設定モードから運用モードまでの処理の一例を示すフローチャートである。 マスター画像上の任意の領域を測定点抽出領域として指定操作した場合を示す図である。 マスター画像上の測定点抽出領域の輝度変化を取得する場合を示す図である。 抽出された測定点をマスター画像に重畳表示した場合を示す図である。 複数の測定を結ぶ測定ラインを生成してマスター画像に重畳表示した場合を示す図である。 ユーザがマスター画像上の任意の位置を測定点として指定操作した場合を示す図である。 ユーザが測定点を含む周辺領域を指定操作した場合を示す図である。 ユーザが指定した複数の測定点を結ぶ測定ラインを生成してマスター画像に重畳表示した場合を示す図である。 設定されたシークラインを示す図である。 2本の測定ラインが指定された場合を示す図である。 マスターエッジプロファイルの生成処理の一例を示すフローチャートである。 マスターエッジプロファイルの生成処理を模式的に示す図である。 運用モード時の処理の一例を示すフローチャートである。 入力画像の一例を示す図である。 入力画像において測定点抽出領域が検出される様子を示す図である。 複数の測定点および複数の測定点を結ぶ測定ラインが検出された場合を示す図である。 シークラインが検出された場合を示す図である。 シークラインの輝度プロファイルと、マスタープロファイルの正規化相関により測定点を決定する方法を説明する図である。 測定点が正規化相関により検出された場合を示す図である。 複数の測定点を最小二乗法によって近似して測定ラインが検出された場合を示す図である。 新たな測定点及び測定ラインを決定し、2次元寸法の測定を実行した様子を示す模式図である。 マスタープロファイルの有効性判定処理の一例を示すフローチャートである。
以下、本発明の実施形態を図面に基づいて詳細に説明する。尚、以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものではない。
図1は、本発明の実施形態に係る画像測定装置1の全体構成を示す図であり、図2は、画像測定装置1の構成を示す模式図である。図1に示すように、画像測定装置1は本体部分2と制御ユニット3とを有しており、本体部分2にて取得されたワークWの画像データを制御ユニット3にて演算処理してワークWの各部の寸法を測定する。例えば、画像測定装置1は、ワークWを撮像することによって取得されたワーク画像中の測定点を基準にワークWの2次元寸法を測定することができる。
(本体部分2の構成)
図1に示すように、本体部分2は、ベース部20と、ベース部20に対して昇降可能に設けられたステージ21と備えている。ステージ21の中央部近傍には、光を透過する部材で構成された載置台21aが設けられており、この載置台21aにワークWを載置することが可能になっている。ステージ21は、昇降(Z方向)だけでなく、水平方向(本体部分2の幅方向であるX方向、本体部分2の奥行き方向であるY方向)にも移動可能に構成されている。ステージ21は、電動アクチュエータ等によって動かすことができるようになっているが、ユーザが手動で動かすことができるようになっていてもよい。
本体部分2の前側には、操作部の一例としての操作パネル2aが設けられている。操作パネル2aは、各種スイッチやボタン等を有しており、画像測定装置1の操作や各種設定をユーザが行うためのものである。
本体部分2は、ベース部20の後側から上方へ延びる支持アーム22と、支持アーム22の上側に支持された撮像実行部23及び表示部28とを備えている。撮像実行部23の高さ(Z方向の位置)は、電動アクチュエータ等によって変更することができるとともに、ユーザがダイヤル等を操作して変更することもできるようになっている。撮像実行部23には、撮像部24及び受光レンズユニット25等が設けられている。ワークWを載置台21aの上に載置し、操作パネル2aにて所望の操作の指定を受け付けることにより、ワークWの上方に配置されている撮像部24によりワークWが撮像され、それによって取得されたワーク画像や、ワークWの2次元寸法の測定結果等を表示部28に表示する。
図2にも示すように、本体部分2には、ワークWを撮像する際に載置台21aに載置されたワークWに対して上方から光を照射するための落射照明部26が設けられている。落射照明部26は、受光レンズユニット25に取り付けられており、例えばリング状に構成することができる。落射照明部26によりワークWに照射された光は、ワークWの表面で反射して、受光レンズユニット25へ戻ってくる。これにより、ワークWの形状、ワークWの表面の凹凸やパターン等を撮像することができる。
また、ステージ21の下方には、ワークWを下方から照明する透過照明部27が設置されている。透過照明部27は、少なくとも光源27a、反射機構27b及びレンズ27cで構成されており、光源27aから照射された光を反射機構27bにてステージ21側へ反射させ、レンズ27cにてステージ21に対して略直交する方向の平行光へと変換する。これにより、ワークWが存在しない位置の光のみ載置台21aを透過させて撮像部24により撮像することができる。
受光レンズユニット25は、受光レンズ25a、ビームスプリッタ25b、高倍側結像レンズ部25c及び低倍側結像レンズ部25dを備えている。高倍側結像レンズ部25cは、結像するための高倍側スリット25e及び高倍側結像レンズ25fで構成され、低倍側結像レンズ部25dは、結像するための低倍側スリット25g及び低倍側結像レンズ25hで構成されている。ビームスプリッタ25bは、受光レンズ25aからの光を二方向に分岐するプリズムである。例えばキューブ型、プレート型のビームスプリッタを使用することができる。キューブ型ビームスプリッタは、プレート型と比較して、ビームスプリッタを通過した光が屈折することがないので光軸がずれず、分岐角度のアライメント調整が容易なため好ましい。
図2では、落射照明部26により照射されてワークWで反射した光及び透過照明部27から照射されてステージ21の載置台21aを透過した光を、高倍側結像レンズ部25c及び低倍側結像レンズ部25dへ誘導する一例を示している。ビームスプリッタ25bにより分岐された二方向の光は、低倍側結像レンズ部25d及び高倍側結像レンズ部25cの双方へ誘導される。
撮像部24は、高倍側撮像部24aと、低倍側撮像部24bとを有している。高倍側撮像部24aは、高倍側結像レンズ部25cへ誘導された光をCCD、CMOS等の撮像素子24cで結像させ、高倍画像データとして制御ユニット3へ送信する。同様に低倍側撮像装置24bは、低倍側結像レンズ部25dへ誘導された光をCCD、CMOS等の撮像素子24dで結像させ、低倍画像データとして制御ユニット3へ送信する。つまり、撮像部24は、ワークWに照射されて該ワークW表面で反射した光を受光してワーク画像を生成する。
上述の受光レンズ25a及びビームスプリッタ25bによる二分岐光学系の構成により、光学系を機械的に切り替えることなく高倍画像データと低倍画像データとを同時に取得することができる。両画像データは電子的に切り替えて1つの画面上に表示することができ、また2つの画面上に別個に同時に表示することもできる。
なお、ビームスプリッタ25bによる二分岐光学系の構成を省略して、高倍レンズと低倍レンズとを機械的に切り替えるようにして、高倍画像データと低倍画像データとを取得するようにしてもよい。
(制御ユニット3の構成)
図3は、本発明の実施形態に係る画像計測装置1の制御ユニット3の構成を示すブロック図である。制御ユニット3は、例えば操作部の一例であるキーボード40やマウス41等の操作デバイスを備えたパーソナルコンピュータ等で構成することができる。実施形態に係る画像計測装置1の制御ユニット3は、少なくともCPU(中央演算装置)33、RAM34、例えばハードディスクドライブやソリッドステートドライブ等からなる記憶装置35、通信装置37及び上述したハードウェアを接続する内部バス38で構成されている。内部バス38を介して、CPU33が操作パネル2a、キーボード40、マウス41、撮像部24、表示部28にも接続されており、操作パネル2a、キーボード40、マウス41の操作状態を取得することができるともに、撮像部24で取得された画像データを取得することができる。また、CPU33内で演算した結果や、撮像部24で取得された画像データ等を表示部28に表示させることができる。
CPU33は、内部バス38を介して制御ユニット3を構成する各ハードウェアと接続されているので、上述したハードウェアの動作を制御するとともに、記憶装置35に記憶されているコンピュータプログラムに従って、種々のソフトウェア的機能を実行する。CPU33が実行可能な機能の詳細については後述するが、ワークWの輪郭を検出する測定点抽出部33a、ワークWの2次元寸法を測定する測定部33b、測定結果等の表示部28に表示させる表示制御部33c、姿勢/位置特定部33d、測定点の位置及び周辺画素の輝度情報を取得する取得部33e、測定点の位置及び周辺画素の輝度情報に基づいて測定点を決定する処理部33fをCPU33の演算処理によって構成することができる。これら各部は、ハードウェアとソフトウェアの組み合わせによって構成されていてもよいし、CPU33とは別の演算処理装置等によって構成されていてもよい。
RAM34は、例えばSRAM、SDRAM等の揮発性メモリで構成され、コンピュータプログラムの実行時にロードモジュールが展開され、コンピュータプログラムの実行時に発生する一時的なデータ等を記憶する。記憶装置35は、撮像部24で取得されたマスター画像データおよびワーク画像データを記憶する画像記憶部35a、後述する測定点の位置や周辺領域の輝度情報を記憶する位置/輝度情報記憶部35b、ユーザの測定したい測定点間の幾何寸法および許容公差の情報を記憶する測定設定記憶部35cによって構成できる。また記憶部35は図示しないがコンピュータプログラムが格納される他、測定結果、各種設定情報等も記憶することができるようになっている。
通信装置37は内部バス38に接続されており、通信線を介して撮像部24に接続され、高倍側撮像部24a、低倍側撮像部24bで撮像された画像データを受信する。また、インターネット、LAN、WAN等の外部のネットワークに接続されることにより、外部のコンピュータ等ともデータ送受信を行うことが可能となる。
(ワークWの説明)
ここで、図4A及び図4Bに基づいてワークWの一例を説明する。このワークWは、上方が開放した箱型であり、底板部W1と、底板部W1の周縁部から上方へ延びる側板部W2とを有している。このようなワークWにおいて2次元寸法を測定する箇所は複数想定される。例えば、図4Aに寸法線100で示す幅広部分の外寸、寸法線101で示すY方向の外寸、寸法線102で示す狭小部分の外寸、寸法線103で示す狭小部分の内寸等が想定される。
寸法線100、101、102で示す外寸については、ワークWを下方から照らす透過照明部27を用いて照明することで、比較的、容易に取得することができる。すなわち、透過照明部27によりワークWを下方から照明すると、ワークWが存在している部分で光が遮られ、それ以外の部分では光が載置台21aを透過して撮像部24に届くので、ワークWの輪郭部分(エッジ)において輝度の変化が急峻に起こることになる。よって、輝度の変化による輪郭を検出する精度が高く、図6Aにおいて後述する測定点抽出領域の指定によって測定点として精度高く検出できる。
一方、寸法線103で示す内寸については、透過照明部27が底板部W1で遮られて内側の輪郭を測定点として検出することが不可能であるため、落射照明部26を用いてワークWを上方から照明する必要がある。ところが、撮像部24で撮像したワーク画像において、側板部W2の内壁に底板部W1の内面が映り込む場合があり、このような場合では、映り込んだ底板部W1の影響によってワーク画像中の側板部W2の内壁輪郭付近の輝度の変化が小さくなってしまい、ワークWの内側の輪郭を測定点としてうまく抽出できないことがある。また、ワークWは、その輪郭が丸みを帯びているケースが多い。図4Aに示すようなワークWであっても、側板部W2と底板部W1との接続部分は湾曲面で構成されていたり、側板部W2の上端面が湾曲していることがあり、このようなワークWを撮像した場合にもワーク画像中の輪郭付近の輝度の変化が小さくなってしまい、ワークWの内側の輪郭を測定点としてうまく抽出できないことがある。また、ワークWが鋳物の場合、側板部W2には型の抜き勾配が微少に設定されていることがあり、この抜き勾配も内側の輪郭を測定点としてうまく抽出できない要因になることがある。さらに、機械加工されたワークWであれば、機械加工の跡がワーク画像に現れ、輝度の変化を小さくする要因になることがある。一例として、ワークWを撮像したワーク画像を図4Cに示す。図4Cにおいては、側板部W2の内壁に底板部W1が映り込んでいるため、側板部W2の内壁の輪郭付近の輝度変化が緩やかになっており、輪郭がぼやけている。このような場合には、後述する測定点抽出領域の指定によって測定点としてうまく検出することができない。
測定点抽出領域の指定によって輪郭を測定点としてうまく抽出できない場合には、ユーザがワーク画像中に逐一、手動で測定点を指定することで、ワークWの測定を行うことが強いられることになるが、この測定点の指定作業はユーザが目視で行うことになるため、同種のワークWを複数個連続測定するような場合には、ユーザにとって煩雑である上に再現性が低い。このような問題は、上述したワークWに限られるものではなく、様々な形状のワークで起こり得る。
本実施形態では、このような従来の問題を解決することができるものであり、以下、その具体的な構成及び処理について説明する。まず、図5に示すように、画像測定装置1は、大きく分けて、ユーザが測定前に画像測定装置1の各種設定を行う設定モードと、設定モード後にワークWの測定を実行する運用モードとの2つに切替可能に構成されている。例えば画像測定装置1の立ち上げ時に設定モードに自動的に移行するように構成してもよいし、ユーザによるモードの選択操作を受け付けた後、設定モードに移行するように構成することもできる。設定モードが終了すると自動的に運用モードに移行するように構成してもよいし、ユーザによるモードの選択操作を受け付けた後、運用モードに移行するように構成することもできる。
(設定モード)
図5に示すフローチャートは、設定モードに移行した時に開始されるが、以下に述べる設定処理は、設定モードの一部の処理であり、他の処理を設定モード中に行うこともできる。設定モードは測定点抽出領域を設定する工程(ステップSA1~SA3)と、測定点および周辺領域を指定する工程(ステップSB1~SB3)の二つに大別される。まずは、測定点抽出領域を設定する工程(ステップSA1~ST2)について説明する。
ステップST1では、マスター画像を取得する。すなわち、ユーザがマスターとなるワークWを載置台21aに載置した後、ワークWを撮像部24により撮像してワーク画像を取得する。マスターとなるワークWを撮像して取得された画像をマスター画像と呼ぶ。マスター画像は、複数あってもよく、例えば、透過照明部27によりワークWを下方から照明した状態で撮像したマスター画像と、落射照明部26によりワークWを上方から照明した状態で撮像したマスター画像とが含まれていてもよい。マスター画像は、図3に示す記憶装置35の画像記憶部35aに記憶することができる。
図4Cは、表示部28に表示されるマスター画像200の一例を示している。図5に示すステップST2ではまず、マスター画像200においてユーザが測定したい点について、後述するステップSA1~SA3で測定点として抽出できそうであるか否かをユーザが判断する。ユーザの判断に応じてステップSA1~SA3の工程とステップSB1~SB3の工程に分岐する。なおステップST2はステップSA3の後でもよく、この場合ユーザは、ステップSA1~SA3を試した上で、ステップSB1~SB3の工程に進むこととなる。ステップSA1では、図6Aに示すように、ユーザが、表示部28に表示されたマスター画像200上の任意の位置を測定点抽出領域(斜線にて示す領域)として指定操作する。この指定操作は、操作パネル2a、キーボード40、マウス41等により行うことが可能になっており、例えばマウス41のドラッグ操作によって指定することができる。具体的には、測定点抽出領域として指定したい部分の上部かつ左端から下部かつ右端までポインタPTを移動させることによってドラッグ操作を行うと、取得部33eがその領域の位置及び広さ(幅及び長さ)を取得し、その領域が測定点抽出領域であるとして設定する。図5に示すステップSA2ではステップSA1で指定した測定点抽出領域について、取得部33eが図6Bに示す矢印方向に輝度変化を取得する。この結果、輝度変化の急峻な画素が測定点として抽出される。
抽出された測定点は図6Cに示すようにマスター画像200に重畳表示される。この時、図6Cに示すように、輪郭の鮮明な側板部W2の外壁は測定点PA1~PA4として抽出されるが、側板部W2の内壁の輪郭は測定点として抽出されない。図5に示すステップSA3では、ステップSA2で測定点として抽出された点を最小二乗近似することで測定ラインを生成する。例えば図6Dに示すように、複数の測定点PA1を結ぶ測定ラインLA1が生成され、マスター画像200に重畳表示される。図5に示すステップSA4ではユーザが任意の測定点抽出領域を指定し終えるまでステップSA1~SA3を繰り返す。
ステップSA5では図6Dに示すように、ユーザが測定したい測定点および測定ライン間の幾何寸法を指定する。図6Dの例では、測定ラインLA1とLA3、LA2とLA4の距離および測定ラインLA1とLA2とのなす角度を指定している。この指定操作は操作パネル2a、キーボード40、マウス41等により行うことが可能である。また、指定した各々の幾何寸法について許容公差を指定することができる。図5に示すステップST3では、ステップSA1~SA5までで指定された測定点抽出領域のマスター画像における相対位置(位置、幅及び長さ)とユーザが指定した幾何寸法及び許容公差などが測定設定記憶部33cに記憶される。後述のステップST6では、測定設定記憶部33cに記憶されたこれらの情報を基に指定された幾何寸法を自動で演算する。
続いて測定点を指定する工程(ステップSB1~ST3)について説明する。先述したように、ステップSA1~SA3の工程では、ユーザが測定したい輪郭部分が測定点として抽出されないことがある。このような箇所については、ステップSB1の工程で測定点としてユーザ手動で指定する。
図5に示すステップSB1では、図7Aに示すように、ユーザが、表示部28に表示されたマスター画像上の任意の位置を測定点として指定操作する。この指定操作は、操作パネル2a、キーボード40、マウス41等により行うことが可能になっている。
例えばマウス41等で操作可能なポインタPTを、表示制御部33cが表示部28にマスター画像と重畳表示させ、そのポインタPTをユーザがマウス41等によって輪郭であると推定される部分に移動させた後、例えばマウス41のクリック操作を行うことで、測定点を指定することができる。測定点の指定操作は、これに限られるものではなく、操作パネル2aやキーボード40で行ってもよい。
ユーザは実物のワークの形状を把握しているので、表示部28に表示されたマスター画像200中の輪郭付近の輝度変化が小さくても、測定したい箇所を概ね正確に指定することができる。ユーザが指定する測定点は複数カ所に限られるものではなく1カ所であってもよい。また、ユーザが指定する測定点は複数又は1つであってもよい。
このようにして指定された測定点の位置は、ワークWの外側の輪郭や外形状等の特徴的な部分を基準とし、その部分に対する相対的な位置として特定することができる。相対的な位置として特定された測定点の位置は、取得部33eが取得し、マスター画像と合わせて位置/輝度情報記憶部35bに記憶される。
図5に示すステップSB1ではさらに、図7Bに示すようにユーザが測定点PB1を含む周辺領域B1と、測定点PB2を含む周辺領域B2とを個別に指定することもできる。周辺領域B1は、測定点PB1を含む周辺画素の輝度情報を取得する領域を設定するものである。周辺領域B1は、例えばマウス41のドラッグ操作によって指定することができる。具体的には、周辺領域B1として指定したい部分の上部かつ左端から下部かつ右端までドラッグ操作を行うと、取得部33eがその領域の位置及び広さ(幅及び長さ)を取得し、その領域が周辺領域B1であるとして設定する。取得された周辺領域B1の位置及び広さの情報は、マスター画像と合わせて位置/輝度情報記憶部35bに記憶される。周辺領域B1の指定方法は、ドラッグ操作以外にもキーボード40による操作であってもよいし、位置座標と幅及び長さの入力による指定方法であってもよい。また、形状は四角形に限られるものではなく、測定点が一点である場合には線分となってもよい。周辺領域B2は、測定点P2を含む周辺画素の輝度情報を取得する領域を定めるものであり、周辺領域B1と同様に指定することができる。
周辺領域B1、B2は、ユーザが指定することなく、取得部33eが自動的に指定するようにしてもよい。例えば、測定点PB1が設定されると、その測定点PB1を含むように予め設定された所定範囲を周辺領域として設定することができる。ステップSB2では、図7Cに示すように、ユーザが指定した複数の測定点PB1を結ぶ測定ラインLB1と、複数の測定点PB2を結ぶ測定ラインLB2とを生成する。
その後、図5に示すステップSB3に進む。ステップSB3では、マスタープロファイルを生成する。マスタープロファイルには、マスターエッジプロファイルと、マスター輝度プロファイルとがあり、いずれか一方のみ生成してもよいし、両方生成してもよい。
(マスターエッジプロファイルの生成処理)
まず、マスターエッジプロファイルの生成処理について図8に示すフローチャートに基づいて説明する。スタート後のステップSC1では、図7D及び図9に示すように、複数のシークラインSL1~3を設定し、各シークラインSL1~3の輝度プロファイルを取得する。なお、説明の便宜上、シークラインが3つ設定されている場合について説明するが、シークラインの数は限定されるものではない。
図9は、測定点PB1が指定されたワークWの側板部W2の一部を拡大して示している。この図には、複数の測定点PB1と、これら測定点PB1を結ぶ測定ラインLB1と、測定点PB1を含む周辺領域B1とが表示されている。ユーザはこのような画像を表示部28を介して見ることができるようになっている。
シークラインSL1~3は次のようにして求めることができる。まず、取得部33eは、測定点PB1を通る線分を定める。具体的には、複数の測定点PB1を結ぶ測定ラインBL1を描いた時、測定点PB1毎に、測定ラインBL1に交差するように延びる線分を定め、各線分がシークラインSL1~3となる。シークラインSL1~3は、測定ラインBL1に対して直交する線分で構成することができる。シークラインは、周辺領域の形状に応じてその形状が決定されてもよい。
取得部33eは、シークラインSL1上に位置する画素の輝度プロファイルを生成する。すなわち、図9の左右方向中央部に示すように、シークラインSL1上に並ぶ画素(ピクセル)を横軸に取り、縦軸に輝度値を取ったグラフにより、シークラインSL1上に位置する画素の輝度プロファイルを生成することができる。この輝度プロファイルは、シークラインSL1上に位置する画素の輝度情報に相当する。同様にしてシークラインSL2上に位置する画素の輝度プロファイルと、シークラインSL3上に位置する画素の輝度プロファイルも生成する。このようにして測定点PB1毎に輝度プロファイルを生成することができるので、複数の輝度プロファイルを取得できる。測定点PB2についても同様である。
その後、図8のステップSC2に進み、各シークラインSL1~3の輝度プロファイルを微分して絶対値を取得する。これにより、各シークラインSL1~3のエッジプロファイルを取得することができる。
次いで、ステップSC3に進み、全シークラインSL1~3のエッジプロファイルを平均化してマスターエッジプロファイルを生成する。図7Dでは、単にマスタープロファイルと表現している。マスターエッジプロファイルを生成する際、1次元に並ぶ画素の輝度値のみで生成してもよいし、シークラインSL1~3の長手方向と、長手方向に直交する方向の2次元に並ぶ画素の輝度値を用いて生成してもよい。
(マスター輝度プロファイル)
上述したマスターエッジプロファイルの代わりに、またはマスターエッジプロファイルと共に、マスター輝度プロファイルを生成することもできる。マスター輝度プロファイル生成処理については図8のステップSC2で輝度プロファイルを微分する工程を経ずに、輝度プロファイルを平均化する処理を行う。
マスター輝度プロファイルを生成する際も、1次元に並ぶ画素の輝度値のみで生成してもよいし、シークラインSL1~3の長手方向と、長手方向に直交する方向の2次元に並ぶ画素の輝度値を用いて生成してもよい。以降マスター輝度プロファイルを単にマスタープロファイルと表現している。
(記憶処理)
上述のようにして生成したマスターエッジプロファイル及びマスター輝度プロファイルは、図7Dに示すように、シークライン上における測定点PB2の相対位置と共に、当該測定点PB2を含む周辺画素の輝度情報として記憶装置35の位置/輝度情報記憶部35bに記憶される。測定点PB1の位置、その周辺画素の輝度情報も同様に記憶される。
続いて、図5におけるステップSB4に進む。ステップSB4では、ユーザがすべての測定点を指定し終えるまでステップSB1~SB3を繰り返す。ステップSB5では、ステップSA5と同様に、ユーザが測定したい測定点および測定ライン間の幾何寸法を指定する。また、指定した幾何寸法の許容公差を入力してもよい。図7Eの例では、寸法線103で示すように、測定ラインLB1とLB2の距離が指定されている。図5に示すステップST2においては、ステップSB1~SB5で生成されたマスタープロファイル、ユーザの指定した幾何寸法及び許容公差などが測定設定記憶部33cに記憶される。後述のステップST5では、測定設定記憶部33cに記憶されたこれらの情報を基に指定された幾何寸法を自動で演算する。
(運用モード)
次に、画像計測装置1の運用モードについて説明する。図5に示すステップST3以降が運用モードである。運用モードは、測定点抽出領域の指定によって抽出された測定点に基づいて測定する工程(ステップSA6~SA8、ST6)と、マスタープロファイルを用いて測定する工程(ステップSB6~SB8、ST6)の二つに大別される。ステップST4~ST5までは共通である。
以下、具体的に、図10に示すフローチャートに基づいて運用モードの処理について説明する。このフローチャートは設定モードが完了した後に開始される。
運用モードにおいてユーザが行うことは、新たなワークWを載置台21aの設置し、操作パネル2a内の測定ボタンを押すだけである。すなわち、ユーザはステップSD1において測定ボタンを押すだけで、ステップSD2~SD6はすべて自動で行われる。ステップSD2では、載置されたワークWを撮像しワーク画像を生成する(以降、ワーク画像を入力画像と呼ぶ)。このとき撮像するワークWは、上記マスターのワークWとは異なり、画像測定装置1の運用時に測定するワークWである。図11Aに入力画像300の一例を示す。このように、ワークWの向きは図6A等に示すマスター画像200におけるワークWの向きと異なっていることがある。ステップSD3では、図3に示す姿勢/位置特定部33dが、設定時に取得したマスター画像200中におけるワークWの位置及び姿勢を特定するとともに、入力画像300が入力されたとき、入力画像300中におけるワークWの位置及び姿勢を画像記憶部35aに記憶されているマスター画像から呼び出し、入力画像とマッチングすることで、入力画像の姿勢を特定する。ステップSD4では、図5におけるステップST3で測定設定情報記憶部35cおよび位置/輝度情報記憶部35bに記憶された情報に基づいて、ステップSE1~SE3の工程とステップSF1~SF4の工程のいずれで入力画像300において測定点を検出するべきであるかを自動で判断する。
次にステップSE1~SE3について説明する。ステップSE1では、図5におけるステップSA1で指定した測定点抽出領域に対応する領域を検出する。これはステップSD3で、設定モードにおいてマスター画像200上で設定された測定点抽出領域について、ワークWのどこに位置しているかを測定設定記憶部33cから読み込んでいるので、マスター画像200中におけるワークWと、入力画像300中におけるワークWとをマッチングさせると、マスター画像200上の測定点抽出領域の位置に対応させて、入力画像300上で測定点抽出領域を検出することができる。図11Bは入力画像において測定点抽出領域が検出される様子である。入力画像における測定点抽出領域とマスター画像200でユーザが指定した測定点抽出領域の位置及び広さ(幅及び長さ)は対応している。ステップSE2及びSE3おいては図11Cに示すように複数の測定点および複数の測定点を結ぶ測定ラインが検出される。
続いて、ステップSF1~SF4について説明する。ステップSF1では、図5におけるステップSB1で指定した測定点又は周辺領域に対応する領域を検出する。図10におけるステップSD3では設定モードにおいてマスター画像200上でユーザが指定した測定点がワークWのどこに位置しているかを位置/輝度情報記憶部35bから読み込んでいるので、マスター画像200中におけるワークWと、入力画像300中におけるワークWとマッチングさせると、マスター画像200上の周辺領域B1の位置に対応させて、図12Aに示すように入力画像300上で対応するシークラインを検出することができる。マスター画像200上のシークラインについても同様に、入力画像300上で検出できる。
入力画像300上では、マスター画像上で設定した周辺領域よりも幅を拡大させてシークラインを設定する。例えば、入力画像300上では、図7Dに示すマスター画像200上で設定されたシークラインSL1~3の長さの2倍の長さのシークラインとすることができる。シークラインは、測定点を通る線分である。入力画像300上で設定するシークラインの長さは、マスター画像200上で設定されたシークラインSL1~3の長さ以上に設定され、入力画像300上で設定するシークラインの長さを、シークラインSL1~3の長さの1.5倍以上にすることができる。これにより、マスター画像200上の周辺領域よりも広い範囲で探索を実行することができる。
入力画像300上でシークラインを設定した後、図10のステップSF2に進む。ステップSF2では、取得部33eが、新たに生成された入力画像300の輝度分布を取得して、マスター画像200上でユーザが指定した測定点の位置と、測定点を含む周辺画素の輝度情報とに基づいて、新たに生成された入力画像300上に測定点を決定する処理を実行する。
具体的には、まず、処理部33fが、入力画像300に設定されている各シークライン上の画素の輝度プロファイルを生成する。
その後、図12Bに示すように、各シークラインの輝度プロファイルと、マスタープロファイルの正規化相関により測定点を決定する。マスタープロファイルは、マスターエッジプロファイルと、マスター輝度プロファイルのいずれであってもよい。以下、この決定手法について具体例を示して説明する。例えばマスタープロファイルが図12Bの右図に示すような波形で表され、かつ、測定点PB1が定義されているとする。また、入力画像300に設定されているシークライン上で図12Bの中央に示すような波形からなる輝度プロファイルが生成されたとする。図12Bの下図に示すように、マスタープロファイルを、シークライン上の輝度プロファイル(運用時に生成されたプロファイル)上で、画素の並び方向にスライドさせながら、両プロファイルの相関を調べる。図12Bの下図では、運用時に生成されたシークライン上の輝度プロファイルと、マスタープロファイルとの相関が強い場合を示している。両プロファイルの相関が強い位置を探索し、相関が強い位置を特定する。
すなわち、ある位置の測定点PB1を含む周辺画素の輝度情報は、その位置が定まっていれば、同種のワークWの間で殆ど同じになるので、測定点PB1の位置とその周辺画素の輝度情報とに基づくことで、新たなワーク画像上において設定時に指定した測定点PB1と同様な位置の測定点を、高い確度をもって見つけ出すことが可能になる。この処理は画像測定装置1内で自動的に実行されるので、ユーザの作業が煩雑になることはなく、しかも高速に実行される。
図10におけるステップSF2では、図12Cに示すように、両プロファイルの相関が強い位置で、マスタープロファイル上における測定点PB1’の位置を、シークライン上の測定点として検出する。このとき、複数の測定点を検出した後、図12Dに示すようにこれら複数の検出された測定点を最小二乗法によって近似して測定ラインを検出する。近似された測定ラインを基に(図12Dに示す測定点PB1a)測定点を決定することができる。図12Dに示す測定点PB2aについても同様に決定することができる。
ステップSE1~SE3およびSF1~SF4が終了すると、図13に示すように図5におけるステップST1~ST5までの工程で抽出・指定された測定点全てが入力画像300に重畳表示される。図10におけるステップSD5では、図5におけるステップSA5及びSB5で指定し、測定設定記憶部33cに記憶された幾何寸法が測定部33bによって測定され入力画像300に重畳表示される。
ステップSD6では、全ワークWを測定したか否かを判定する。全ワークWの測定が完了していなければステップSD1に進み、ステップSD1~SD5を繰り返し、全ワークWの測定が完了していれば、この処理を終了する。
(マスタープロファイルの有効性判定処理)
次に、図8に示すフローチャートで生成したマスターエッジプロファイル及びマスター輝度プロファイルの有効性を判定する処理について、図14に示すフローチャートに基づいて説明する。この処理は、処理部33fで実行することができる。図14に示すフローチャートは、ユーザの指示によって開始することもできるし、図8に示すフローチャートの処理が完了した後に自動的に開始することもできる。
ステップSH1では、マスター画像200に対して測定ラインを指定し、各測定ラインを通る線分上に位置する画素の輝度プロファイルを複数取得し、これら輝度ファイルに基づいてマスタープロファイルを生成する。
その後、ステップSH2に進み、マスター画像200自身に対してマスタープロファイルを利用して測定点を検出する。次いで、ステップSH3に進み、検出された測定点と、マスタープロファイルとの差分を計算する。差分を計算した後、ステップSH4に進み、差分の大小に応じて表示部28に表示する。例えば、差分が所定の閾値よりも大きければ、マスタープロファイルの有効性が低いと判定することができ、一方、差分が所定の閾値以下であれば、マスタープロファイルの有効性が高いと判定することができる。
(変形例1)
マスター画像は1枚である必要はなく、複数枚生成してもよい。設定時に、例えば複数個のマスターとなるワークWを準備しておき、これらワークWを順次撮像することで複数枚のマスター画像を生成することができる。そして、複数枚のマスター画像を学習することで、測定点の検出精度を高めることができる。例えば、10個のマスターとなるワークWを順次撮像して10枚のマスター画像を生成すると、10個のマスタープロファイルを生成することができるので、10セットの測定点を決定できる。これら測定点のうち、乖離の大きいものを除外することで、検出精度を高めることができる。
(変形例2)
マスター画像を複数枚生成する方法としては、複数個のマスターとなるワークWを準備しなくてもよく、例えば、1個のマスターとなるワークWを準備し、撮像条件を変えて撮像することで複数枚のマスター画像を生成することができる。撮像条件を変えるとは、例えば照明の種別(落射照明、透過照明)を変えること、照明の明るさを変えること、露光時間を変えること、レンズ倍率を変えること、フォーカスを変えること等が含まれる。このようにして生成された複数枚のマスター画像を学習することで、検出精度を高めることができる。なお、変形例1と変形例2とを組み合わせてもよい。
また、入力画像についても、複数通りの撮像条件で撮像し、同条件下で撮像された画像同士を用いて測定点を生成することができる。このようにして生成した測定点のうち、最も乖離の小さいものを採用する。
(変形例3)
運用モード時には複数のワークWを連続して測定することになるが、この中で、測定点の位置が不適切である場合が想定される。測定点の位置が不適切であった場合には、ユーザがマウス41等の操作部を操作し、測定点の位置を手動で修正可能にすることもできる。修正結果は、処理部33fが把握し、その修正内容をフィードバックし、その後のワークWの測定時に測定点の検出ルールを変更することができる。
(実施形態の作用効果)
以上説明したように、この実施形態によれば、画像測定装置1の設定時に表示部28に表示されたワーク画像上の任意の位置をユーザが測定点として指定することで、指定された測定点の位置と、該測定点を含む周辺画素の輝度情報とを取得することができる。その後、画像測定装置1の運用時には、新たにワークを撮像することによってワーク画像を生成し、生成された新たなワーク画像の輝度分布を取得して、設定時に取得した測定点の位置と輝度情報とに基づいてワーク画像上に測定点を決定することができる。これにより、ユーザにとって簡単な操作でありながら、測定点を自動的に高速で、しかも再現性高く決定できる。
上述の実施形態はあらゆる点で単なる例示に過ぎず、限定的に解釈してはならない。さらに、特許請求の範囲の均等範囲に属する変形や変更は、全て本発明の範囲内のものである。
以上説明したように、本発明に係る画像測定装置は、各種ワークを撮像したワーク画像から2次元寸法を測定する場合に使用することができる。
1 画像測定装置
2a 操作パネル(操作部)
21a 載置台
24 撮像部
26 落射照明部
28 表示部
33e 取得部
33f 処理部
35a 位置/輝度情報記憶部
35c 測定設定記憶部
40 キーボード(操作部)
41 マウス(操作部)

Claims (9)

  1. ワークを撮像することによって取得されたワーク画像中の測定点を基準に前記ワークの2次元寸法を測定する画像測定装置において、
    前記ワークが載置される載置台と、
    前記載置台に載置された前記ワークに対して上方から光を照射するための照明部と、
    前記照明部により前記ワークに照射されて該ワーク表面で反射した光を受光してワーク画像を生成するための撮像部と、
    前記撮像部で生成された前記ワーク画像を表示するための表示部と、
    前記画像測定装置の設定を行う設定時に前記表示部に表示された前記ワーク画像上の任意の位置を前記測定点として指定操作するための操作部と、
    前記操作部によって指定された前記測定点の位置と、該測定点を含む周辺画素の輝度情報とを取得する取得部と、
    前記取得部で取得された前記測定点の位置と前記輝度情報とを記憶する記憶部と、
    前記設定時のワークとは別のワークの2次元寸法を測定する前記画像測定装置の運用時に、前記撮像部で新たに生成されたワーク画像の輝度分布を取得して、前記記憶部に記憶された前記測定点の位置と前記輝度情報とに基づいて、前記新たに生成されたワーク画像上に測定点を決定する処理を実行する処理部とを備えている画像測定装置。
  2. 請求項1に記載の画像測定装置において、
    前記取得部は、前記操作部によって指定された前記測定点を通る線分を定め、当該線分上に位置する画素の輝度情報を取得するように構成されている画像測定装置。
  3. 請求項2に記載の画像測定装置において、
    前記取得部は、前記線分上に位置する画素の輝度プロファイルを生成するように構成されている画像測定装置。
  4. 請求項3に記載の画像測定装置において、
    前記操作部は、複数の前記測定点を指定操作可能に構成され、
    前記取得部は、前記操作部により指定された前記測定点を結ぶ測定ラインを描いた時、前記測定点毎に、前記測定ラインに交差するように延びる前記線分を定め、各線分上に位置する画素の輝度プロファイルを生成して複数の輝度プロファイルを取得するように構成されている画像測定装置。
  5. 請求項4に記載の画像測定装置において、
    前記取得部は、複数の前記輝度プロファイルを平均化した輝度プロファイルからなるマスタープロファイルを周辺画素の輝度情報とする画像測定装置。
  6. 請求項4に記載の画像測定装置において、
    前記取得部は、複数の前記輝度プロファイルを微分した後、平均化したエッジプロファイルからなるマスタープロファイルを周辺画素の輝度情報とする画像測定装置。
  7. 請求項5または6に記載の画像測定装置において、
    前記処理部は、前記設定時に生成されたワーク画像と、前記新たに生成されたワーク画像とのマッチングにより、前記新たに生成されたワーク画像中にシークラインを設定し、該シークライン上の輝度プロファイルと、前記マスタープロファイルとの正規化相関により前記測定点を決定するように構成されている画像測定装置。
  8. 請求項7に記載の画像測定装置において、
    前記処理部は、前記新たに生成されたワーク画像中に複数の前記測定点が検出された場合、検出された複数の前記測定点を最小二乗法で近似して測定点を決定するように構成されている画像測定装置。
  9. 請求項8に記載の画像測定装置において、
    前記処理部は、前記新たに生成されたワーク画像中に検出された前記測定点と、最小二乗法で近似して決定された前記新たな測定点とを結ぶ測定ラインを生成するように構成されている画像測定装置。
JP2019215173A 2019-11-28 2019-11-28 画像測定装置 Active JP7280810B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019215173A JP7280810B2 (ja) 2019-11-28 2019-11-28 画像測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019215173A JP7280810B2 (ja) 2019-11-28 2019-11-28 画像測定装置

Publications (2)

Publication Number Publication Date
JP2021085772A JP2021085772A (ja) 2021-06-03
JP7280810B2 true JP7280810B2 (ja) 2023-05-24

Family

ID=76087347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019215173A Active JP7280810B2 (ja) 2019-11-28 2019-11-28 画像測定装置

Country Status (1)

Country Link
JP (1) JP7280810B2 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001165635A (ja) 1999-12-09 2001-06-22 Sony Corp 検査装置
JP2001264059A (ja) 2000-03-22 2001-09-26 Taisei Corp 被計測対象の変位量計測方法
JP2010169584A (ja) 2009-01-23 2010-08-05 Keyence Corp 画像計測装置及びコンピュータプログラム
JP2016050794A (ja) 2014-08-29 2016-04-11 株式会社Screenホールディングス エッジ位置検出装置およびエッジ位置検出方法
JP2017129492A (ja) 2016-01-21 2017-07-27 横浜ゴム株式会社 タイヤ接地面解析装置、タイヤ接地面解析システム及びタイヤ接地面解析方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001165635A (ja) 1999-12-09 2001-06-22 Sony Corp 検査装置
JP2001264059A (ja) 2000-03-22 2001-09-26 Taisei Corp 被計測対象の変位量計測方法
JP2010169584A (ja) 2009-01-23 2010-08-05 Keyence Corp 画像計測装置及びコンピュータプログラム
JP2016050794A (ja) 2014-08-29 2016-04-11 株式会社Screenホールディングス エッジ位置検出装置およびエッジ位置検出方法
JP2017129492A (ja) 2016-01-21 2017-07-27 横浜ゴム株式会社 タイヤ接地面解析装置、タイヤ接地面解析システム及びタイヤ接地面解析方法

Also Published As

Publication number Publication date
JP2021085772A (ja) 2021-06-03

Similar Documents

Publication Publication Date Title
JP5547105B2 (ja) 寸法測定装置、寸法測定方法及び寸法測定装置用のプログラム
JP5923824B2 (ja) 画像処理装置
JP5972563B2 (ja) 構造化照明を用いるエッジ検出
EP2977720A1 (en) A method for measuring a high accuracy height map of a test surface
US20120027307A1 (en) Image Measurement Device, Method For Image Measurement, And Computer Readable Medium Storing A Program For Image Measurement
JP2018004497A (ja) 画像測定装置
JP5385703B2 (ja) 検査装置、検査方法および検査プログラム
JP2014055864A (ja) 画像測定装置、その制御方法及び画像測定装置用のプログラム
JP6937482B2 (ja) 表面形状測定装置及びそのスティッチング測定方法
JP2018004496A (ja) 画像測定装置
JP6236721B2 (ja) 形状計測装置および形状計測方法
US11448500B2 (en) Three-dimensional shape measuring apparatus and method thereof utilizing point cloud data and top view map imaging
JP5467962B2 (ja) 測定設定データ作成装置、測定設定データ作成方法、測定設定データ作成装置用のプログラム及び寸法測定装置
JP6599697B2 (ja) 画像測定装置及びその制御プログラム
JP2012037257A (ja) 測定設定データ作成装置、測定設定データ作成方法及び測定設定データ作成装置用のプログラム
JP6599698B2 (ja) 画像測定装置及びその制御プログラム
KR102235999B1 (ko) 변형 가공 지원 시스템 및 변형 가공 지원 방법
JP7280810B2 (ja) 画像測定装置
JP2020076676A (ja) 変位測定装置
JP2015021891A (ja) 画像測定装置およびプログラム
JP6979885B2 (ja) 3d形状のオートトレース方法及び測定機
JP2017053671A (ja) 形状測定方法
JP2017053733A (ja) 硬さ試験機及び硬さ試験方法
JP2018072270A (ja) 画像測定装置
JP6202875B2 (ja) 画像測定装置及びその制御用プログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230512

R150 Certificate of patent or registration of utility model

Ref document number: 7280810

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150