JP7263924B2 - Conductive cushioning material - Google Patents

Conductive cushioning material Download PDF

Info

Publication number
JP7263924B2
JP7263924B2 JP2019102575A JP2019102575A JP7263924B2 JP 7263924 B2 JP7263924 B2 JP 7263924B2 JP 2019102575 A JP2019102575 A JP 2019102575A JP 2019102575 A JP2019102575 A JP 2019102575A JP 7263924 B2 JP7263924 B2 JP 7263924B2
Authority
JP
Japan
Prior art keywords
conductive
mass
particles
buffer material
conductive particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019102575A
Other languages
Japanese (ja)
Other versions
JP2020198344A (en
Inventor
大輔 山川
優 山崎
晃 山上
剛 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp filed Critical DIC Corp
Priority to JP2019102575A priority Critical patent/JP7263924B2/en
Publication of JP2020198344A publication Critical patent/JP2020198344A/en
Application granted granted Critical
Publication of JP7263924B2 publication Critical patent/JP7263924B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、柔軟で導電性を兼ね備えた導電性緩衝材に関する。 TECHNICAL FIELD The present invention relates to a conductive cushioning material that is both flexible and conductive.

従来、電気・電子機器等の誤作動防止を目的として、導電性部材が、輻射する不要な漏洩電磁波のシールド用、他の電気・電子機器より発生する有害な空間電磁波のシールド用、静電気帯電防止の接地用などに用いられている。また、電子機器類では、緩衝材が、電子部品同士の緩衝防止や埃の侵入防止に用いられている。 Conventionally, for the purpose of preventing malfunction of electrical and electronic equipment, etc., conductive members are used for shielding unnecessary leakage electromagnetic waves radiated, for shielding harmful space electromagnetic waves generated from other electrical and electronic equipment, and for preventing static electricity. It is used for grounding, etc. Also, in electronic devices, cushioning materials are used to prevent electronic components from buffering each other and to prevent dust from entering.

しかしながら、電子機器類の小型化に伴い、内部部品数を削減、高密度搭載化が進むなか、従来のように、導電材と緩衝材を個別に使用するのではなく、導電性と緩衝材を併せ持つ部材が要望されている。また、電子部品間のわずかな隙間を埋める緩衝材が電子部材と接触する場合があり、帯電防止性能が必要になっている。 However, with the miniaturization of electronic equipment, the number of internal parts is being reduced and mounting density is increasing. There is a demand for a component that has both. In addition, there are cases in which cushioning materials that fill small gaps between electronic components come into contact with electronic members, requiring antistatic performance.

このような導電性と緩衝性を併せ持つ部材として、導電材料を内部に添加した発泡体が提案されている(特許文献1)。
しかし、これまでに提案されている導電材料を内部に添加した発泡体では導電性に乏しく、特に接地用途において不十分であり、更なる導電性の向上が要望されていた。
As a member having both conductivity and cushioning properties, a foam containing a conductive material has been proposed (Patent Document 1).
However, the foams that have been proposed so far, in which a conductive material is added to the inside, are poor in electrical conductivity, particularly insufficient for grounding applications, and there has been a demand for further improvement in electrical conductivity.

特開2015-165021号公報JP 2015-165021 A

本発明が解決しようとする課題は、優れた柔軟性と導電性を両立することができる導電性緩衝材を提供することにある。 The problem to be solved by the present invention is to provide a conductive cushioning material that achieves both excellent flexibility and conductivity.

本発明においては、少なくとも1種のバインダー樹脂、少なくとも1種の導電性粒子(A)、及び少なくとも1種の中空粒子を含有し、前記導電性粒子(A)の形状は鱗片状、フレーク状又はプレート状であり、前記導電性粒子(A)の形状において面積が最大となる面を主面としたとき、その主面に対する厚さが0.5~6.0μmであり、かつ前記導電性粒子(A)の厚さに対する前記主面の平均径の比率が10~100であることを特徴とする導電性緩衝材により上記課題を解決した。 In the present invention, at least one binder resin, at least one conductive particle (A), and at least one hollow particle are contained, and the shape of the conductive particles (A) is scale-like, flake-like, or The conductive particles have a plate-like shape and a thickness of 0.5 to 6.0 μm with respect to the main surface when the surface having the largest area in the shape of the conductive particles (A) is taken as the main surface, and the conductive particles The above problem is solved by a conductive cushioning material characterized in that the ratio of the average diameter of the main surface to the thickness of (A) is 10-100.

本発明の導電性緩衝材は、薄型でありながら、優れた柔軟性と導電性を有するため、電子部品間の隙間を埋め、且つ電気又は電子機器等の内部で発生し、電子機器等の別箇所の動作に影響を及ぼす(内部)電磁波のシールド用、他の電気又は電子機器より発生し、電子機器等の外部から入ってくる有害な空間(外部)電磁波のシールド用、静電気帯電防止の接地用(アース用)として有用である。特に、薄型化が進み、筐体内での容積制限が厳しい携帯電子機器用途に好適に適用できる。 The conductive cushioning material of the present invention is thin yet has excellent flexibility and conductivity. For shielding (internal) electromagnetic waves that affect the operation of a place, for shielding harmful spatial (external) electromagnetic waves generated from other electric or electronic devices and entering from the outside of electronic devices, etc., grounding for preventing static electricity It is useful for use (for grounding). In particular, it can be suitably applied to portable electronic devices, which are becoming thinner and have strict limitations on the volume in the housing.

本発明の導電性緩衝材は、少なくとも1種のバインダー樹脂、少なくとも1種の導電性粒子(A)、及び少なくとも1種の中空粒子を含有し、前記導電性粒子(A)の形状は鱗片状、フレーク状又はプレート状であり、前記導電性粒子(A)の形状において面積が最大となる面を主面としたとき、その主面に対する厚さが0.5~6.0μmであり、かつ前記導電性粒子(A)の厚さに対する前記主面の平均径の比率が10~100であることを特徴とする導電性緩衝材である。 The conductive buffer material of the present invention contains at least one binder resin, at least one conductive particle (A), and at least one hollow particle, and the shape of the conductive particles (A) is scaly. , flake-shaped or plate-shaped, and when the surface having the largest area in the shape of the conductive particles (A) is taken as the main surface, the thickness with respect to the main surface is 0.5 to 6.0 μm, and The conductive cushioning material is characterized in that the ratio of the average diameter of the main surface to the thickness of the conductive particles (A) is 10-100.

<導電性緩衝材組成物>
本発明の導電性緩衝材を形成する導電性緩衝材組成物としては、少なくとも1種のバインダー樹脂、少なくとも1種の導電性粒子(A)、及び少なくとも1種の中空粒子を含有する。
前記導電性緩衝材組成物中の前記導電性粒子(A)の含有量としては、前記バインダー樹脂100質量部(固形分)に対して、50~200質量部であるが、好ましくは70~170質量部であり、より好ましくは80~150質量部である。導電性粒子(A)の含有量を上記範囲にすることで、導電性、柔軟性、生産性を両立しやすくなる。
前記導電性緩衝材組成物中の前記中空粒子の含有量としては、前記バインダー樹脂100質量部(固形分)に対して、0.5~5質量部であるが、好ましくは1~4質量部であり、より好ましくは1.5~3質量部である。中空粒子の含有量を上記範囲にすることで、柔軟性と導電性を両立しやすくなる。
<Conductive cushioning material composition>
The conductive buffer composition forming the conductive buffer of the present invention contains at least one binder resin, at least one conductive particle (A), and at least one hollow particle.
The content of the conductive particles (A) in the conductive buffer composition is 50 to 200 parts by mass, preferably 70 to 170 parts by mass, based on 100 parts by mass (solid content) of the binder resin. parts by mass, more preferably 80 to 150 parts by mass. By setting the content of the conductive particles (A) within the above range, it becomes easier to achieve both conductivity, flexibility, and productivity.
The content of the hollow particles in the conductive buffer material composition is 0.5 to 5 parts by mass, preferably 1 to 4 parts by mass, with respect to 100 parts by mass (solid content) of the binder resin. and more preferably 1.5 to 3 parts by mass. By setting the content of the hollow particles within the above range, it becomes easier to achieve both flexibility and conductivity.

前記導電緩衝材組成物には必要に応じて、各種添加剤が添加されても良い。上記添加剤としては、例えば可塑剤、軟化剤、金属不活性剤、酸化防止剤、顔料、染料などが挙げられ、必要に応じて適宜使用される。 Various additives may be added to the conductive buffer material composition as necessary. Examples of the additives include plasticizers, softening agents, metal deactivators, antioxidants, pigments, dyes, and the like, and are appropriately used as necessary.

前記バインダー樹脂中に前記導電性粒子(A)及び前記中空粒子を分散する方法としては、バインダー樹脂、溶剤、導電性粒子、中空粒子、添加剤等を分散攪拌機で分散する方法が挙げられる。市販の分散攪拌機としては、井上製作所製ディゾルバー、バタフライミキサー、BDM2軸ミキサー、プラネタリーミキサーが挙げられる。そのなかでも撹拌中のバインダー樹脂の増粘が少ない中程度のシェアをかけられるディゾルバーやバタフライミキサーが好ましい。 Examples of the method of dispersing the conductive particles (A) and the hollow particles in the binder resin include a method of dispersing the binder resin, solvent, conductive particles, hollow particles, additives and the like with a dispersing stirrer. Commercially available dispersing stirrers include a dissolver manufactured by Inoue Seisakusho, a butterfly mixer, a BDM twin shaft mixer, and a planetary mixer. Among them, a dissolver and a butterfly mixer are preferable because the viscosity of the binder resin during stirring is small and a moderate amount of shear can be applied.

<導電性緩衝材>
本発明の導電性緩衝材の厚み方向への抵抗値は、0.5Ω以下が好ましく、0.3Ω以下がより好ましく、0.1Ω以下が更に好ましい。上記範囲の抵抗値であることで電子機器の接地に適した導電性を発現できる。尚、厚み方向への抵抗値は、長さ25mm×幅25mmに切断した導電性緩衝材を20Nで加圧し、導電性緩衝材の厚さ方向に電流10mAを流したときの抵抗値である。測定装置としては、三菱ケミカルアナリティック製ロレスタ―GX等、任意の低抵抗率計が挙げられる。
<Conductive cushioning material>
The resistance value in the thickness direction of the conductive cushioning material of the present invention is preferably 0.5Ω or less, more preferably 0.3Ω or less, and still more preferably 0.1Ω or less. With the resistance value within the above range, conductivity suitable for grounding of electronic equipment can be exhibited. The resistance value in the thickness direction is the resistance value when a conductive cushioning material cut into a length of 25 mm and a width of 25 mm is pressurized at 20 N and a current of 10 mA is passed through the thickness direction of the conductive cushioning material. The measuring device includes any low resistivity meter such as Loresta-GX manufactured by Mitsubishi Chemical Analytics.

本発明の導電性緩衝材の25%圧縮時の対反発強度は、0.05~2MPaが好ましく、0.1~1.5MPaがより好ましく、0.3~1.3MPaが更に好ましい。上記範囲内の対反発強度であることで、形状への追従性と落下衝撃に耐えうる相関強度を両立できる。尚、25%圧縮時の対反発強度は、50mm角に切断した試料を水平台上に置き、23℃下で10mm/分の速度で試料を50%以上圧縮させ停止し、得られた距離-圧縮強度の図より25%圧縮時点での強度を読み取る。 The rebound strength of the conductive cushioning material of the present invention when compressed by 25% is preferably 0.05 to 2 MPa, more preferably 0.1 to 1.5 MPa, even more preferably 0.3 to 1.3 MPa. When the repulsion strength is within the above range, it is possible to achieve both shape followability and correlation strength that can withstand a drop impact. The rebound strength at 25% compression was obtained by placing a sample cut into 50 mm squares on a horizontal table, compressing the sample by 50% or more at a speed of 10 mm / min at 23 ° C. and stopping. The strength at the time of 25% compression is read from the figure of compressive strength.

本発明の導電性緩衝材の厚みは、0.05~1mmが好ましく、0.1~0.7mmがより好ましく、0.15~0.5mmが更に好ましい。上記範囲内の厚みであることで、電気機器の薄型化と形状追従性を両立できる。 The thickness of the conductive cushioning material of the present invention is preferably 0.05 to 1 mm, more preferably 0.1 to 0.7 mm, even more preferably 0.15 to 0.5 mm. By setting the thickness within the above range, it is possible to achieve both thinning of the electric device and conformability to the shape.

本発明の導電性緩衝材は、少なくとも前記導電性緩衝材を含有している。従って、導電性緩衝材のみからなる構成であってもよいし、導電性緩衝材の片面又は両面に、他の層や基材、粘着剤層が設けられている構成であってもよい。
前記粘着剤層を形成する粘着剤としては、特に制限されず、例えば、アクリル系粘着剤、ゴム系粘着剤、シリコーン系粘着剤、ウレタン系粘着剤など公知の粘着剤を適宜選択して用いることができる。粘着剤は、単独又は2種類以上組み合わせて使用することができる。尚、粘着剤は、溶剤系粘着剤、エマルジョン系粘着剤、ホットメルト系粘着剤などいずれの形態の粘着剤であってもよい。耐久性、コスト、生産性の観点から溶剤系アクリル系粘着剤が好ましい。
The conductive cushioning material of the present invention contains at least the conductive cushioning material. Therefore, it may be composed only of the conductive cushioning material, or may be composed of another layer, a base material, or an adhesive layer provided on one side or both sides of the conductive cushioning material.
The pressure-sensitive adhesive that forms the pressure-sensitive adhesive layer is not particularly limited, and for example, known pressure-sensitive adhesives such as acrylic pressure-sensitive adhesives, rubber-based pressure-sensitive adhesives, silicone-based pressure-sensitive adhesives, and urethane-based pressure-sensitive adhesives may be appropriately selected and used. can be done. An adhesive can be used individually or in combination of 2 or more types. The adhesive may be any type of adhesive, such as a solvent-based adhesive, an emulsion-based adhesive, or a hot-melt adhesive. Solvent-based acrylic pressure-sensitive adhesives are preferred from the viewpoints of durability, cost, and productivity.

前記粘着剤層には導電性を付与し、導電性緩衝材の導電性を更に向上する上で導電性粒子(B)を含有することが好ましい。
前記導電性粒子(B)の材質としては金、銀、銅、ニッケル、アルミニウム等の金属粉粒子、カーボン、グラファイト等の導電性樹脂、樹脂や中実ガラスビーズ、中空ガラスビーズの表面に金属被覆を有するもの等が使用できる。そのなかでもニッケル粉粒子や銅粉粒子や銀粉粒子が導電性、接着性、生産性に優れるため好ましい。さらに好ましいものとしては、カーボニル法で製造される粒子表面に多数の針状形状を有する表面針状形状のニッケル粒子や、当該表面針状粒子を平滑化処理して球状粒子としたものや、超高圧旋回水アトマイズ法で製造される銅粉や銀粉があげられる。これらの導電性粒子は2種類以上混合して使用してもよい。
It is preferable that the adhesive layer contains conductive particles (B) in order to impart conductivity to the adhesive layer and further improve the conductivity of the conductive cushioning material.
Examples of the material of the conductive particles (B) include metal powder particles such as gold, silver, copper, nickel, and aluminum; conductive resins such as carbon and graphite; resins, solid glass beads, and hollow glass beads. can be used. Among them, nickel powder particles, copper powder particles, and silver powder particles are preferable because they are excellent in conductivity, adhesiveness, and productivity. More preferred are surface needle-shaped nickel particles having a large number of needle-shaped surfaces on the surface of the particles produced by the carbonyl method, spherical particles obtained by smoothing the surface needle-shaped particles, and ultra Copper powder and silver powder produced by the high-pressure swirl water atomizing method can be mentioned. Two or more kinds of these conductive particles may be mixed and used.

前記導電性粒子(B)の形状としては球状、表面針状形状、又は図3で示すような多数の導電性粒子間で結合等を形成し連なった数珠状などが上げられる。 Examples of the shape of the conductive particles (B) include a spherical shape, a needle-like shape on the surface, and a beaded shape in which a large number of conductive particles form bonds and the like as shown in FIG.

前記導電性粒子(B)の粒子径としては、特に限定されるものではないが、粒子径d50が5~30μmであることが好ましく、10~25μmであることが好ましく、12~20μmであることがより好ましく、13~18μmであることが最も好ましい。また、粒子径d90が25~60μmであることが好ましく、27~55μmであることが好ましく、30~50μmであることがより好ましく、31~50μmであることが最も好ましい。なお、導電性粒子を2種以上混合する場合には、混合後の粒子径d50及びd90が上記範囲であることが好ましい。 The particle size of the conductive particles (B) is not particularly limited, but the particle size d50 is preferably 5 to 30 μm, preferably 10 to 25 μm, and more preferably 12 to 20 μm. is more preferred, and 13 to 18 μm is most preferred. Also, the particle diameter d90 is preferably 25 to 60 μm, preferably 27 to 55 μm, more preferably 30 to 50 μm, and most preferably 31 to 50 μm. When two or more types of conductive particles are mixed, the particle diameters d50 and d90 after mixing are preferably within the above ranges.

前記粒子径d50は粒度分布における50%累積値を指し、前記粒子径d90は粒度分布における90%累積値を指し、レーザー解析・散乱法により測定される値である。測定装置としては日機装社製マイクロトラックMT3000II、島津製作所製レーザー回折式粒度分布測定器SALD-3000等があげられる。
前記範囲の粒子径d50に調整する方法としては、例えば導電性粒子をジェットミルで粉砕する方法や篩等による篩分け法が挙げられる。
The particle size d50 refers to the 50% cumulative value in the particle size distribution, and the particle size d90 refers to the 90% cumulative value in the particle size distribution, and is a value measured by a laser analysis/scattering method. Examples of measuring devices include Microtrac MT3000II manufactured by Nikkiso Co., Ltd., laser diffraction particle size distribution analyzer SALD-3000 manufactured by Shimadzu Corporation, and the like.
Methods for adjusting the particle diameter d50 within the above range include, for example, a method of pulverizing the conductive particles with a jet mill and a sieving method using a sieve or the like.

前記導電性粒子(B)の粒子径d50が粘着剤層厚さの50~150%であり、d90が100~300%であることが好ましい。上記範囲の導電性粒子を用いることで、導電性・接着性・生産性を両立しやすい。d50はさらに好ましくは60~120%であり、最も好ましくは70~100%である。d90はさらに好ましくは120~250%であり、もっと好ましくは150~200%である。 It is preferable that the conductive particles (B) have a particle diameter d50 of 50 to 150% and a d90 of 100 to 300% of the adhesive layer thickness. By using the conductive particles within the above range, it is easy to achieve both conductivity, adhesiveness, and productivity. The d50 is more preferably 60-120%, most preferably 70-100%. The d90 is more preferably 120-250%, more preferably 150-200%.

前記導電性粒子(B)の含有量としては、特に限定されるものではないが、例えばアクリル系粘着剤組成物100質量部(固形分)に対して、10~100質量部を含有させることで導電性と接着性を発現しやすくなる。 The content of the conductive particles (B) is not particularly limited. Conductivity and adhesiveness are easily exhibited.

前記粘着剤層の厚みは特に限定されるものではないが、10~100μmの範囲内であることで導電性、接着性、生産性を両立しやすくなるため好ましい。 Although the thickness of the pressure-sensitive adhesive layer is not particularly limited, it is preferable that the thickness is in the range of 10 to 100 μm because it is easy to achieve both conductivity, adhesiveness, and productivity.

本発明の導電性緩衝材は、例えば、導電材、導電性衝撃吸収材、導電性緩衝シール材、導電性防塵材などとして用いることができる。
本発明の導電性緩衝材は、特に電子機器等の内部に用いることができる。特に小型の部材又は部品を、薄型電子機器に装着する際に好適に用いられる。
The conductive cushioning material of the present invention can be used as, for example, a conductive material, a conductive shock absorbing material, a conductive cushioning sealing material, a conductive dustproof material, and the like.
The conductive cushioning material of the present invention can be used particularly inside electronic equipment and the like. In particular, it is suitably used when mounting a small-sized member or part on a thin electronic device.

本発明の導電性緩衝材は、一般的に使用されている方法で作成できる。具体的には、離型ライナー上に塗布し、乾燥または硬化させる方法などにより製造できる。 The conductive cushioning material of the present invention can be produced by a commonly used method. Specifically, it can be produced by a method of coating on a release liner and drying or curing.

<導電性粒子(A)>
本発明の導電性緩衝材は、少なくとも1種の導電性粒子(A)を含有する。
前記導電性粒子(A)の形状は、鱗片状、フレーク状又はプレート状であり、また、前記導電性粒子(A)の形状において、面積が最大となる面を主面としたとき、その主面に対する厚さは0.5~6.0μmであるが、1.0~4.0μmが好ましく、1.5~3.0μmがより好ましく、1.8~2.4μmがさらに好ましい。上記範囲内であることで、柔軟性と導電性を両立しやすくなる。
前記導電性粒子(A)の厚さに対する前記主面の平均粒子径の比率は、10~100であるが、20~80が好ましく、30~60がより好ましく、35~45がさらに好ましい。前記比率とすることで、厚み方向(Z軸方向)の導電性に加え平面方向(XY方向)の導電性に優れた導電性緩衝材を得ることが可能となる。
<Conductive particles (A)>
The conductive cushioning material of the present invention contains at least one type of conductive particles (A).
The shape of the conductive particles (A) is scale-like, flake-like, or plate-like. The thickness to the surface is 0.5 to 6.0 μm, preferably 1.0 to 4.0 μm, more preferably 1.5 to 3.0 μm, even more preferably 1.8 to 2.4 μm. By being within the above range, it becomes easier to achieve both flexibility and conductivity.
The ratio of the average particle size of the main surface to the thickness of the conductive particles (A) is 10 to 100, preferably 20 to 80, more preferably 30 to 60, even more preferably 35 to 45. By setting the above ratio, it is possible to obtain a conductive cushioning material having excellent conductivity in the planar direction (XY direction) in addition to the conductivity in the thickness direction (Z-axis direction).

前記導電性粒子(A)としては金、銀、銅、ニッケル、アルミニウム等の金属粉粒子、カーボン、グラファイト等の導電性樹脂、樹脂やガラスフレーク、ガラスフレーク等の基材の表面に金属被覆を有するもの等が使用できる。その中でも基材となる粒子に金属メッキ処理を施した導電粒子(A)を用いることが、より優れた柔軟性と粘着シートの厚み方向(Z軸方向)と平面方向(XY方向)の導電性を両立する上で好ましい。 Examples of the conductive particles (A) include metal powder particles such as gold, silver, copper, nickel, and aluminum, conductive resins such as carbon and graphite, and metal coatings on the surface of substrates such as resins, glass flakes, and glass flakes. You can use what you have. Among them, the use of conductive particles (A) in which the particles serving as the base material are metal-plated provides superior flexibility and conductivity in the thickness direction (Z-axis direction) and planar direction (XY direction) of the adhesive sheet. It is preferable in terms of compatibility.

前記導電性粒子(A)の基材は、ガラス、シリカ、アルミナ、雲母、ジルコニアから選ばれた少なくとも1種を主成分とするのが好ましく、具体的には基材の成分として50質量%以上含有することが好ましく、65質量%以上含有することがより好ましく、80質量%以上含有することがより好ましく、90質量%以上含有することがより好ましく、95質量%以上含有することがより好ましく、99質量%以上の微量の不純物が含有する程度のものが更に好ましい。
また、前記導電性粒子(A)に施す金属メッキに用いる金属としては、銀、金、白金、パラジウム、ニッケル、銅、アルミニウムから選ばれた少なくとも1種を主成分とするのが好ましく、具体的には前記金属メッキ中に前記金属が70質量%以上含有することが好ましく、80質量%以上含有することがより好ましく、90質量%以上含有することがより好ましく、95質量%以上含有することがより好ましく、99質量%以上の微量の不純物が含有する程度のものが更に好ましい。
また、前記導電性粒子(A)中における金属メッキの含有量は、5~90質量%が好ましく、10~50質量%がより好ましく、15~30質量%が更に好ましい。上記範囲内であることで、高い導電性と低コストを両立できる。
The base material of the conductive particles (A) preferably contains at least one selected from glass, silica, alumina, mica, and zirconia as a main component. It is preferably contained, more preferably 65% by mass or more, more preferably 80% by mass or more, more preferably 90% by mass or more, more preferably 95% by mass or more, It is more preferable to contain a trace amount of impurities of 99% by mass or more.
The metal used for the metal plating applied to the conductive particles (A) preferably contains at least one selected from silver, gold, platinum, palladium, nickel, copper, and aluminum as a main component. Preferably, the metal is contained in the metal plating in an amount of 70% by mass or more, more preferably 80% by mass or more, more preferably 90% by mass or more, and 95% by mass or more. More preferably, it contains a trace amount of impurities of 99% by mass or more, even more preferably.
Also, the content of the metal plating in the conductive particles (A) is preferably 5 to 90% by mass, more preferably 10 to 50% by mass, even more preferably 15 to 30% by mass. By being within the above range, both high conductivity and low cost can be achieved.

前記導電性粒子(A)の主面の平均粒子径は、10~200μmが好ましく、より好ましくは20~150μmであり、さらに好ましくは40~120μmである。導電性粒子(A)の主面の平均粒子径を上記範囲とすることで、より優れた柔軟性と粘着シートの厚み方向(Z軸方向)と平面方向(XY方向)の導電性を両立できる。
なお、前記平均粒子径は、粒度分布における50%累積値を指し、レーザー解析・散乱法により測定される値である。測定装置としては日機装社製マイクロトラックMT3000II、島津製作所製レーザー回折式粒度分布測定器SALD-3000等があげられる。
前記範囲の平均粒子径を調整する方法としては、例えば導電性粒子をジェットミルで粉砕する方法や篩等による篩分け法が挙げられる。
The average particle size of the main surfaces of the conductive particles (A) is preferably 10 to 200 μm, more preferably 20 to 150 μm, still more preferably 40 to 120 μm. By setting the average particle size of the main surface of the conductive particles (A) within the above range, it is possible to achieve both excellent flexibility and conductivity in the thickness direction (Z-axis direction) and planar direction (XY direction) of the adhesive sheet. .
The average particle size refers to a 50% cumulative value in particle size distribution, and is a value measured by a laser analysis/scattering method. Examples of measuring devices include Microtrac MT3000II manufactured by Nikkiso Co., Ltd., laser diffraction particle size distribution analyzer SALD-3000 manufactured by Shimadzu Corporation, and the like.
Methods for adjusting the average particle size within the above range include, for example, a method of pulverizing conductive particles with a jet mill and a sieving method using a sieve or the like.

<中空粒子>
中空粒子は、熱可塑性樹脂からなる外殻を有し、その内部に空洞部があるものである。本発明の導電性緩衝材は、少なくとも1種の中空粒子を含有することで、柔軟性を高め、良好な形状追従性を付与することができる。
前記外殻を形成する熱可塑性樹脂としては、エチレン、スチレン、酢酸ビニル、塩化ビニル、塩化ビニリデン、アクリロニトリル、ブタジエン、クロロプレン等のビニル重合体およびこれらの共重合体;ナイロン6、ナイロン66等のポリアミド;ポリエチレンテレフタレート等のポリエステルから選ばれる1種又は2種以上をポリマー成分として用いることができる。耐熱性、耐溶剤性の観点からアクリロニトリル共重合体が好ましい。
<Hollow particles>
A hollow particle has an outer shell made of a thermoplastic resin and has a cavity inside. By containing at least one kind of hollow particles, the conductive buffer material of the present invention can increase flexibility and impart good conformability to shape.
Examples of the thermoplastic resin forming the outer shell include vinyl polymers such as ethylene, styrene, vinyl acetate, vinyl chloride, vinylidene chloride, acrylonitrile, butadiene, and chloroprene, and copolymers thereof; polyamides such as nylon 6 and nylon 66; ; one or more selected from polyesters such as polyethylene terephthalate can be used as the polymer component. Acrylonitrile copolymers are preferred from the viewpoint of heat resistance and solvent resistance.

前記中空粒子の平均粒子径は好ましくは10μm~200μm、より好ましくは20μm~150μm、更に好ましくは30μm~100μmである。平均粒子径を300μm以下とすることで、導電性緩衝材が極めて薄くなっても、中空粒子により独立気泡が形成され、緩衝材として機能することが可能になる。また、5μm以上とすることで、耐衝撃性や柔軟性を良好にすることができる。
なお、平均粒子径は、走査型顕微鏡、光学顕微鏡を用いて、観察した視野中の100個の粒子の一次粒子の大きさをそれぞれ測定したときの測定値の平均値である。
The average particle size of the hollow particles is preferably 10 μm to 200 μm, more preferably 20 μm to 150 μm, still more preferably 30 μm to 100 μm. By setting the average particle size to 300 μm or less, even if the conductive buffer material is extremely thin, the hollow particles form closed cells and can function as a buffer material. Further, by setting the thickness to 5 μm or more, impact resistance and flexibility can be improved.
The average particle size is the average value of measured values when the primary particle sizes of 100 particles in the observed field are measured using a scanning microscope and an optical microscope.

中空粒子は、その粒子径が、単一分布を示してもよいが、異なる分布を示してもよい。
中空粒子の形状としては、球状、板状、針状及び不定形状等が挙げられる。
粒子の充填性及び分散性をより一層高める観点から、中空粒子は球状であることが好ましい。なお、球状の粒子のアスペクト比は5以下であり、好ましくは2以下、より好ましくは1.2以下である。
中空粒子の市販例としては、日本フェライト株式会社製「EXPANCEL」、松本油脂製薬株式会社製「マツモトマイクロスフェアー」、株式会社クレハ製「マイクロスフェアー」等が挙げられる。
The hollow particles may exhibit a single distribution of particle sizes, but may also exhibit different distributions.
Examples of the shape of the hollow particles include spherical, plate-like, needle-like and irregular shapes.
The hollow particles are preferably spherical from the viewpoint of further enhancing the packing properties and dispersibility of the particles. The spherical particles have an aspect ratio of 5 or less, preferably 2 or less, and more preferably 1.2 or less.
Commercially available examples of hollow particles include "EXPANCEL" manufactured by Nippon Ferrite Co., Ltd., "Matsumoto Microsphere" manufactured by Matsumoto Yushi Seiyaku Co., Ltd., and "Microsphere" manufactured by Kureha Corporation.

<バインダー樹脂>
また、本発明の導電性緩衝材は、少なくとも1種のバインダー樹脂を含有する。前記バインダー樹脂としては、アクリル系重合体、合成ゴム系重合体、ウレタン系重合体、シリコーン系重合体を使用することができる。中でも、耐久性、コスト、生産性の観点から、アクリル系重合体、又はウレタン系重合体が好ましい。
<Binder resin>
Also, the conductive buffer material of the present invention contains at least one binder resin. As the binder resin, an acrylic polymer, a synthetic rubber polymer, a urethane polymer, or a silicone polymer can be used. Among them, an acrylic polymer or a urethane polymer is preferable from the viewpoint of durability, cost, and productivity.

前記アクリル系重合体としては、例えばn-ブチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソノニル(メタ)アクリレート、エチル(メタ)アクリレート等に由来する構造単位を含むアクリル重合体を使用することができる。
また、前記アクリル系重合体としては、前記した構造単位の他に、水酸基、カルボキシル基またはアミノ基等の極性基を有する(メタ)アクリル単量体に由来する構造単位を有するものを使用することが、前記バインダー樹脂の耐久性を向上するうえで好ましい。
前記アクリル系重合体に架橋剤を含有することで、得られる導電性緩衝材が3次元架橋構造を形成し、凝集力を向上できる。架橋構造の形成には、例えば、イソシアネート系架橋剤、エポキシ系架橋剤、キレート系架橋剤、アジリジン系架橋剤など、公知の架橋剤などが挙げられる。架橋剤の種類は、前述の単量体成分の官能基に応じて選定するのが好ましい。
Examples of the acrylic polymer include structural units derived from n-butyl (meth)acrylate, isooctyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, isononyl (meth)acrylate, ethyl (meth)acrylate, and the like. Acrylic polymers can be used.
Further, as the acrylic polymer, in addition to the structural units described above, those having a structural unit derived from a (meth)acrylic monomer having a polar group such as a hydroxyl group, a carboxyl group, or an amino group may be used. is preferable for improving the durability of the binder resin.
By including a cross-linking agent in the acrylic polymer, the obtained conductive cushioning material forms a three-dimensional cross-linked structure, and the cohesion can be improved. For the formation of the crosslinked structure, known cross-linking agents such as isocyanate-based cross-linking agents, epoxy-based cross-linking agents, chelate-based cross-linking agents, and aziridine-based cross-linking agents can be used. The type of cross-linking agent is preferably selected according to the functional groups of the aforementioned monomer components.

前記アクリル系重合体は、前記ビニル単量体の混合物を、例えば溶液重合法、塊状重合法、懸濁重合法、乳化重合法、紫外線照射法、電子線照射法によって重合させることによって製造することができる。
前記方法で得られたアクリル系重合体としては、重量平均分子量10万~200万のものを使用することが好ましく、20万~150万のものを使用することがより好ましく、30万~100万のものを使用することが更に好ましい。
The acrylic polymer is produced by polymerizing the vinyl monomer mixture by, for example, a solution polymerization method, a bulk polymerization method, a suspension polymerization method, an emulsion polymerization method, an ultraviolet irradiation method, or an electron beam irradiation method. can be done.
The acrylic polymer obtained by the above method preferably has a weight average molecular weight of 100,000 to 2,000,000, more preferably 200,000 to 1,500,000, and more preferably 300,000 to 1,000,000. It is more preferred to use

なお、本発明では、当該アクリル重合体の重量平均分子量Mwは、ゲルパーミエーションクロマトグラフ(GPC)により測定することができる。より具体的には、GPC測定装置として、東ソー株式会社製「SC8020」を用いて、ポリスチレン換算値により、次のGPC測定条件で測定して求めることができる。
(GPCの測定条件)
・サンプル濃度:0.5重量%(テトラヒドロフラン溶液)
・サンプル注入量:100μL
・溶離液:テトラヒドロフラン(THF)
・流速:1.0mL/min
・カラム温度(測定温度):40℃
・カラム:東ソー株式会社製「TSKgel GMHHR-H」
・検出器:示差屈折
In the present invention, the weight average molecular weight Mw of the acrylic polymer can be measured by gel permeation chromatography (GPC). More specifically, it can be obtained by measuring under the following GPC measurement conditions using a polystyrene conversion value using Tosoh Corporation's "SC8020" as a GPC measurement device.
(GPC measurement conditions)
・ Sample concentration: 0.5% by weight (tetrahydrofuran solution)
・Sample injection volume: 100 μL
- Eluent: tetrahydrofuran (THF)
・Flow rate: 1.0 mL/min
・Column temperature (measurement temperature): 40°C
・ Column: "TSKgel GMHHR-H" manufactured by Tosoh Corporation
・Detector: Differential refraction

前記ウレタン系共重合体は、例えば、ポリオール、ポリイソシアネートを、水酸基が過剰となる条件で反応させて得られるものを用いることができる。
前記ポリオールとしては、例えば、ポリエーテルポリオール、ポリカーボネートポリオール、ポリエステルポリオール、ポリブタジエンポリオール、水添ポリブタジエンポリオール、ポリアクリルポリオール、ダイマージオール、ポリイソプレンポリオール等を用いることができる。これらのポリオールは単独で用いても2種以上を併用してもよい。柔軟性と耐久性の両立の観点から、ポリエーテルポリオール又はポリカーボネートポリオールを含有することが好ましい。
As the urethane-based copolymer, for example, one obtained by reacting a polyol or a polyisocyanate under conditions in which hydroxyl groups are excessive can be used.
Examples of polyols that can be used include polyether polyols, polycarbonate polyols, polyester polyols, polybutadiene polyols, hydrogenated polybutadiene polyols, polyacryl polyols, dimer diols, and polyisoprene polyols. These polyols may be used alone or in combination of two or more. From the viewpoint of compatibility between flexibility and durability, it is preferable to contain polyether polyol or polycarbonate polyol.

前記ポリイソシアネートとしては、例えば、キシリレンジイソシアネート、フェニレンジイソシアネート、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、ナフタレンジイソシアネート等の芳香族ポリイソシアネート;ヘキサメチレンジイソシアネート、リジンジイソシアネート、シクロヘキサンジイソシアネート、イソホロンジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネート、ジイソシアナートメチルシクロヘキサン、テトラメチルキシリレンジイソシアネート等の脂肪族又は脂環式ポリイソシアネートなどを用いることができる。これらのポリイソシアネートは単独で用いても2種以上を併用してもよい。 Examples of the polyisocyanate include aromatic polyisocyanates such as xylylene diisocyanate, phenylene diisocyanate, tolylene diisocyanate, diphenylmethane diisocyanate and naphthalene diisocyanate; hexamethylene diisocyanate, lysine diisocyanate, cyclohexane diisocyanate, isophorone diisocyanate, 4,4′-dicyclohexyl Aliphatic or alicyclic polyisocyanates such as methane diisocyanate, diisocyanatomethylcyclohexane, tetramethylxylylene diisocyanate, and the like can be used. These polyisocyanates may be used alone or in combination of two or more.

前記ウレタン系重合体の重量平均分子量Mwとしては、優れた凝集力を付与するうえで、5,000~200,000の範囲であることが好ましく、15,000~100,000の範囲がより好ましい。
更に前記ウレタン系重合体に架橋剤を含有することで、得られる導電性緩衝材が3次元架橋構造を形成し、凝集力を向上するうえで好ましい。架橋構造の形成には、イソシアネート系架橋剤が好ましい。
The weight average molecular weight Mw of the urethane-based polymer is preferably in the range of 5,000 to 200,000, more preferably in the range of 15,000 to 100,000, in order to impart excellent cohesive strength. .
Furthermore, by including a cross-linking agent in the urethane-based polymer, the obtained conductive cushioning material forms a three-dimensional cross-linked structure, which is preferable for improving the cohesive force. An isocyanate-based cross-linking agent is preferable for forming a cross-linked structure.

前記ウレタン系共重合体に対する前記イソシアネート系架橋剤の配合量としては、前記ウレタン系共重合体100質量部に対して、1~10質量部が好ましく、より好ましくは2~8質量部であり、更に好ましくは3~6質量部である。前記イソシアネート系架橋剤の配合量を上記範囲にすることで、柔軟性と耐久性を両立しやすい。 The amount of the isocyanate-based cross-linking agent added to the urethane-based copolymer is preferably 1 to 10 parts by mass, more preferably 2 to 8 parts by mass, with respect to 100 parts by mass of the urethane-based copolymer. More preferably, it is 3 to 6 parts by mass. By setting the blending amount of the isocyanate-based cross-linking agent within the above range, it is easy to achieve both flexibility and durability.

以下に実施例により本発明を具体的に説明するが、本発明はこれに限定されるものではない。 EXAMPLES The present invention will be specifically described below with reference to Examples, but the present invention is not limited thereto.

[バインダー樹脂の調製]
<アクリル系重合体(1)>
冷却管、攪拌機、温度計、滴下漏斗を備えた反応容器に、n-ブチルアクリレート90.94質量部、2-エチルヘキシルアクリレート5質量部、アクリル酸4質量部、4-ヒドロキシエチルアクリレート0.06質量部と、重合開始剤として2,2’-アゾビスイソブチルニトリル溶液4質量部(固形分2.5質量%)と、酢酸エチル100質量部とを供給し、反応容器内を窒素置換した後、65℃で10時間重合させることによって、重量平均分子量160万のアクリル系重合体(1)を得た。
[Preparation of binder resin]
<Acrylic polymer (1)>
90.94 parts by weight of n-butyl acrylate, 5 parts by weight of 2-ethylhexyl acrylate, 4 parts by weight of acrylic acid, and 0.06 parts by weight of 4-hydroxyethyl acrylate were added to a reaction vessel equipped with a cooling pipe, a stirrer, a thermometer, and a dropping funnel. parts, 4 parts by mass of a 2,2′-azobisisobutylnitrile solution (solid content: 2.5% by mass) as a polymerization initiator, and 100 parts by mass of ethyl acetate, and after replacing the inside of the reaction vessel with nitrogen, By polymerizing at 65° C. for 10 hours, an acrylic polymer (1) having a weight average molecular weight of 1,600,000 was obtained.

<ウレタン系重合体(1)>
反応容器に、OD-X‐688(DIC社製脂肪族系ポリエステル、数平均分子量2000)60質量部と、OD-X-2523(DIC社製脂肪族ポリエステル、数平均分子量3500)40質量部とを混合し、減圧条件下にて100℃に加熱することにより、水分率が0.05質量%になるまで脱水した。
<Urethane polymer (1)>
In a reaction vessel, 60 parts by weight of OD-X-688 (aliphatic polyester manufactured by DIC, number average molecular weight 2000) and 40 parts by weight of OD-X-2523 (aliphatic polyester manufactured by DIC, number average molecular weight 3500) and dehydrated by heating to 100° C. under reduced pressure until the moisture content reached 0.05% by mass.

次に、前記脂肪族ポリカーボネートポリオール及び前記ポリエステルポリオールの混合物を70℃まで冷却したものと、4,4’-ジフェニルメタンジイソシアネート10質量部とを混合した後、100℃まで昇温し、3時間反応させた後、65℃まで冷却し、酢酸エチルを110質量部を供給することで、水酸基を有する数平均分子量2万のウレタン系重合体(1)を得た。 Next, after cooling the mixture of the aliphatic polycarbonate polyol and the polyester polyol to 70° C. and mixing 10 parts by mass of 4,4′-diphenylmethane diisocyanate, the temperature is raised to 100° C. and reacted for 3 hours. After cooling to 65° C., 110 parts by mass of ethyl acetate was supplied to obtain a urethane polymer (1) having a number average molecular weight of 20,000 and having hydroxyl groups.

(導電性緩衝材組成物の作成)
[導電性緩衝材組成物(1A)の作成]
前記アクリル系重合体(1)100質量部(固形分50質量部)に対して、ガラスフレーク粉に銀メッキを施した導電性粒子(主面厚み:2μm、主面の平均径:80μm、導電性粒子中の銀メッキ含有量:20質量%)を50質量部、中空粒子(球状、平均粒径45μm、密度0.03g/cm)を2.0質量部、バーノックD-40(DIC(株)製、トリレンジイソシアネートのトリメチロールプロパンアダクト体、イソシアネート基含有率7質量%、不揮発分40質量%) 2.0質量部を配合し、酢酸エチルで固形分濃度を50質量%に調整し、分散攪拌機で混合して導電性緩衝材組成物(1A)を作成した。
(Preparation of conductive cushioning material composition)
[Preparation of conductive buffer material composition (1A)]
Conductive particles obtained by silver-plating glass flake powder (main surface thickness: 2 μm, average diameter of main surface: 80 μm, conductive 50 parts by mass of hollow particles (spherical, average particle size 45 μm, density 0.03 g/cm 2 ), Barnock D-40 (DIC ( Co., Ltd., trimethylolpropane adduct of tolylene diisocyanate, isocyanate group content 7% by mass, non-volatile content 40% by mass). , and mixed with a dispersion stirrer to prepare a conductive buffer material composition (1A).

[導電性緩衝材組成物(2A)の作成]
前記アクリル系重合体(1)100質量部(固形分50質量部)に対して、ガラスフレーク粉に銀メッキを施した導電性粒子(主面厚み:2μm、主面の平均径:80μm、導電性粒子中の銀メッキ含有量:20質量%)を75質量部、中空粒子(球状、平均粒径45μm、密度0.03g/cm)を2.0質量部、バーノックD-40(DIC(株)製、トリレンジイソシアネートのトリメチロールプロパンアダクト体、イソシアネート基含有率7質量%、不揮発分40質量%) 2.0質量部を配合し、酢酸エチルで固形分濃度を50質量%に調整し、分散攪拌機で混合して導電性緩衝材組成物(2A)を作成した。
[Preparation of conductive buffer material composition (2A)]
Conductive particles obtained by silver-plating glass flake powder (main surface thickness: 2 μm, average diameter of main surface: 80 μm, conductive 75 parts by mass of hollow particles (spherical, average particle size 45 μm, density 0.03 g/cm 2 ), 2.0 parts by mass of Barnock D-40 (DIC ( Co., Ltd., trimethylolpropane adduct of tolylene diisocyanate, isocyanate group content 7% by mass, non-volatile content 40% by mass). , and mixed with a dispersion stirrer to prepare a conductive buffer material composition (2A).

[導電性緩衝材組成物(3A)の作成]
前記アクリル系重合体(1)100質量部(固形分50質量部)に対して、ガラスフレーク粉に銀メッキを施した導電性粒子(主面厚み:2μm、主面の平均径:40μm、導電性粒子中の銀メッキ含有量:20質量%)を50質量部、中空粒子(球状、平均粒径45μm、密度0.03g/cm)を2.0質量部、バーノックD-40(DIC(株)製、トリレンジイソシアネートのトリメチロールプロパンアダクト体、イソシアネート基含有率7質量%、不揮発分40質量%) 2.0質量部を配合し、酢酸エチルで固形分濃度を50質量%に調整し、分散攪拌機で混合して導電性緩衝材組成物(3A)を作成した。
[Preparation of conductive buffer material composition (3A)]
Conductive particles (thickness of main surface: 2 μm, average diameter of main surface: 40 μm, conductive 50 parts by mass of hollow particles (spherical, average particle size 45 μm, density 0.03 g/cm 2 ), Barnock D-40 (DIC ( Co., Ltd., trimethylolpropane adduct of tolylene diisocyanate, isocyanate group content 7% by mass, non-volatile content 40% by mass). , and mixed with a dispersion stirrer to prepare a conductive buffer material composition (3A).

[導電性緩衝材組成物(4A)の作成]
前記アクリル系重合体(1)100質量部(固形分50質量部)に対して、ガラスフレーク粉に銀メッキを施した導電性粒子(主面厚み:2μm、主面の平均径:40μm、導電性粒子中の銀メッキ含有量:20質量%)を75質量部、中空粒子(球状、平均粒径45μm、密度0.03g/cm)を2.0質量部、バーノックD-40(DIC(株)製、トリレンジイソシアネートのトリメチロールプロパンアダクト体、イソシアネート基含有率7質量%、不揮発分40質量%) 2.0質量部を配合し、酢酸エチルで固形分濃度を50質量%に調整し、分散攪拌機で混合して導電性緩衝材組成物(4A)を作成した。
[Preparation of conductive buffer material composition (4A)]
Conductive particles (thickness of main surface: 2 μm, average diameter of main surface: 40 μm, conductive 75 parts by mass of hollow particles (spherical, average particle size 45 μm, density 0.03 g/cm 2 ), 2.0 parts by mass of Barnock D-40 (DIC ( Co., Ltd., trimethylolpropane adduct of tolylene diisocyanate, isocyanate group content 7% by mass, non-volatile content 40% by mass). , and mixed with a dispersion stirrer to prepare a conductive buffer material composition (4A).

[導電性緩衝材組成物(5A)の作成]
前記ウレタン系重合体(1)100質量部(固形分50質量部)に対して、ガラスフレーク粉に銀メッキを施した導電性粒子(主面厚み:2μm、主面の平均径:80μm、導電性粒子中の銀メッキ含有量:20質量%)を50質量部、中空粒子(球状、平均粒径45μm、密度0.03g/cm)を2.0質量部、バーノックD-40(DIC(株)製、トリレンジイソシアネートのトリメチロールプロパンアダクト体、イソシアネート基含有率7質量%、不揮発分40質量%) 3.0質量部を配合し、酢酸エチルで固形分濃度を50質量%に調整し、分散攪拌機で混合して導電性緩衝材組成物(5A)を作成した。
[Preparation of conductive buffer material composition (5A)]
Conductive particles (main surface thickness: 2 μm, average diameter of main surface: 80 μm, conductive 50 parts by mass of hollow particles (spherical, average particle size 45 μm, density 0.03 g/cm 2 ), Barnock D-40 (DIC ( Co., Ltd., trimethylolpropane adduct of tolylene diisocyanate, isocyanate group content 7% by mass, non-volatile content 40% by mass) 3.0 parts by mass, and ethyl acetate to adjust the solid content concentration to 50% by mass. , and mixed with a dispersion stirrer to prepare a conductive buffer material composition (5A).

[導電性緩衝材組成物(6A)の作成]
前記アクリル系重合体(1)100質量部(固形分50質量部)に対して、ガラスフレーク粉に銀メッキを施した導電性粒子(主面厚み:2μm、主面の平均径:80μm、導電性粒子中の銀メッキ含有量:20質量%)を50質量部、中空粒子(球状、平均粒径45μm、密度0.03g/cm)を1.0質量部、バーノックD-40(DIC(株)製、トリレンジイソシアネートのトリメチロールプロパンアダクト体、イソシアネート基含有率7質量%、不揮発分40質量%) 2.0質量部を配合し、酢酸エチルで固形分濃度を50質量%に調整し、分散攪拌機で混合して導電性緩衝材組成物(6A)を作成した。
[Preparation of conductive buffer material composition (6A)]
Conductive particles obtained by silver-plating glass flake powder (main surface thickness: 2 μm, average diameter of main surface: 80 μm, conductive 50 parts by mass of hollow particles (spherical, average particle diameter 45 μm, density 0.03 g/cm 2 ), Barnock D-40 (DIC ( Co., Ltd., trimethylolpropane adduct of tolylene diisocyanate, isocyanate group content 7% by mass, non-volatile content 40% by mass). , and mixed with a dispersion stirrer to prepare a conductive buffer material composition (6A).

[導電性緩衝材組成物(7A)の作成]
前記アクリル系重合体(1)100質量部(固形分50質量部)に対して、ガラスフレーク粉に銀メッキを施した導電性粒子(主面厚み:2μm、主面の平均径:80μm、導電性粒子中の銀メッキ含有量:20質量%)を50質量部、中空粒子(球状、平均粒径20μm、密度0.07g/cm)を2.0質量部、バーノックD-40(DIC(株)製、トリレンジイソシアネートのトリメチロールプロパンアダクト体、イソシアネート基含有率7質量%、不揮発分40質量%) 2.0質量部を配合し、酢酸エチルで固形分濃度を50質量%に調整し、分散攪拌機で混合して導電性緩衝材組成物(7A)を作成した。
[Preparation of conductive buffer material composition (7A)]
Conductive particles (thickness of main surface: 2 μm, average diameter of main surface: 80 μm, conductive 50 parts by mass of hollow particles (spherical, average particle diameter 20 μm, density 0.07 g/cm 2 ), Barnock D-40 (DIC ( Co., Ltd., trimethylolpropane adduct of tolylene diisocyanate, isocyanate group content 7% by mass, non-volatile content 40% by mass). , and mixed with a dispersion stirrer to prepare a conductive buffer material composition (7A).

[導電性緩衝材組成物(8A)の作成]
前記アクリル系重合体(1)100質量部(固形分50質量部)に対して、数珠状導電性粒子として福田金属箔粉工業社製ニッケル粉NI255T(d50:26.0μm)50質量部、中空粒子(球状、平均粒径45μm、密度0.03g/cm)を2.0質量部、バーノックD-40(DIC(株)製、トリレンジイソシアネートのトリメチロールプロパンアダクト体、イソシアネート基含有率7質量%、不揮発分40質量%) 2.0質量部を配合し、酢酸エチルで固形分濃度を50質量%に調整し、分散攪拌機で混合して導電性緩衝材組成物(8A)を作成した。
[Preparation of conductive buffer material composition (8A)]
For 100 parts by mass of the acrylic polymer (1) (50 parts by mass of solid content), 50 parts by mass of nickel powder NI255T (d50: 26.0 μm) manufactured by Fukuda Metal Foil & Powder Co., Ltd. as beaded conductive particles, hollow 2.0 parts by mass of particles (spherical, average particle size 45 μm, density 0.03 g/cm 2 ), Barnock D-40 (manufactured by DIC Corporation, trimethylolpropane adduct of tolylene diisocyanate, isocyanate group content 7 % by mass, non-volatile content 40% by mass), the solid content concentration was adjusted to 50% by mass with ethyl acetate, and mixed with a dispersion stirrer to prepare a conductive buffer material composition (8A). .

[導電性緩衝材組成物(9A)の作成]
前記アクリル系重合体(1)100質量部(固形分50質量部)に対して、ガラスフレーク粉に銀メッキを施した導電性粒子(主面厚み:2μm、主面の平均径:15μm、導電性粒子中の銀メッキ含有量:20質量%)を50質量部、中空粒子(球状、平均粒径45μm、密度0.03g/cm)を2.0質量部、バーノックD-40(DIC(株)製、トリレンジイソシアネートのトリメチロールプロパンアダクト体、イソシアネート基含有率7質量%、不揮発分40質量%) 2.0質量部を配合し、酢酸エチルで固形分濃度を50質量%に調整し、分散攪拌機で混合して導電性緩衝材組成物(9A)を作成した。
[Preparation of conductive buffer material composition (9A)]
Conductive particles obtained by silver-plating glass flake powder (main surface thickness: 2 μm, average diameter of main surface: 15 μm, conductive 50 parts by mass of hollow particles (spherical, average particle size 45 μm, density 0.03 g/cm 2 ), Barnock D-40 (DIC ( Co., Ltd., trimethylolpropane adduct of tolylene diisocyanate, isocyanate group content 7% by mass, non-volatile content 40% by mass). , and mixed with a dispersion stirrer to prepare a conductive buffer material composition (9A).

[導電性緩衝材組成物(10A)の作成]
前記アクリル系重合体(1)100質量部(固形分50質量部)に対して、ガラスフレーク粉に銀メッキを施した導電性粒子(主面厚み:2μm、主面の平均径:80μm、導電性粒子中の銀メッキ含有量:20質量%)を8質量部、中空粒子(球状、平均粒径45μm、密度0.03g/cm)を2.0質量部、バーノックD-40(DIC(株)製、トリレンジイソシアネートのトリメチロールプロパンアダクト体、イソシアネート基含有率7質量%、不揮発分40質量%) 2.0質量部を配合し、酢酸エチルで固形分濃度を50質量%に調整し、分散攪拌機で混合して導電性緩衝材組成物(10A)を作成した。
[Preparation of conductive buffer material composition (10A)]
Conductive particles obtained by silver-plating glass flake powder (main surface thickness: 2 μm, average diameter of main surface: 80 μm, conductive 8 parts by mass of hollow particles (spherical, average particle size 45 μm, density 0.03 g/cm 2 ), Barnock D-40 (DIC ( Co., Ltd., trimethylolpropane adduct of tolylene diisocyanate, isocyanate group content 7% by mass, non-volatile content 40% by mass). , and mixed with a dispersion stirrer to prepare a conductive buffer material composition (10A).

[導電性緩衝材組成物(11A)の作成]
前記アクリル系重合体(1)100質量部(固形分50質量部)に対して、ガラスフレーク粉に銀メッキを施した導電性粒子(主面厚み:2μm、主面の平均径:80μm、導電性粒子中の銀メッキ含有量:20質量%)を110質量部、中空粒子(球状、平均粒径45μm、密度0.03g/cm)を2.0質量部、バーノックD-40(DIC(株)製、トリレンジイソシアネートのトリメチロールプロパンアダクト体、イソシアネート基含有率7質量%、不揮発分40質量%) 2.0質量部を配合し、酢酸エチルで固形分濃度を50質量%に調整し、分散攪拌機で混合して導電性緩衝材組成物(11A)を作成した。
[Preparation of conductive buffer material composition (11A)]
Conductive particles obtained by silver-plating glass flake powder (main surface thickness: 2 μm, average diameter of main surface: 80 μm, conductive 110 parts by weight of hollow particles (spherical, average particle size: 45 μm, density: 0.03 g/cm 2 ), Barnock D-40 (DIC ( Co., Ltd., trimethylolpropane adduct of tolylene diisocyanate, isocyanate group content 7% by mass, non-volatile content 40% by mass). , and mixed with a dispersion stirrer to prepare a conductive buffer material composition (11A).

[導電性緩衝材組成物(12A)の作成]
前記アクリル系重合体(1)100質量部(固形分50質量部)に対して、ガラスフレーク粉に銀メッキを施した導電性粒子(主面厚み:2μm、主面の平均径:80μm、導電性粒子中の銀メッキ含有量:20質量%)を50質量部、中空粒子(球状、平均粒径45μm、密度0.03g/cm)0.15質量部、バーノックD-40(DIC(株)製、トリレンジイソシアネートのトリメチロールプロパンアダクト体、イソシアネート基含有率7質量%、不揮発分40質量%) 2.0質量部を配合し、酢酸エチルで固形分濃度を50質量%に調整し、分散攪拌機で混合して導電性緩衝材組成物(12A)を作成した。
[Preparation of conductive buffer material composition (12A)]
Conductive particles obtained by silver-plating glass flake powder (main surface thickness: 2 μm, average diameter of main surface: 80 μm, conductive 50 parts by mass of hollow particles (spherical, average particle size: 45 μm, density: 0.03 g/cm 2 ), Barnock D-40 (DIC Corporation ), trimethylolpropane adduct of tolylene diisocyanate, isocyanate group content 7% by mass, non-volatile content 40% by mass) 2.0 parts by mass, adjusted to a solid content concentration of 50% by mass with ethyl acetate, A conductive buffer material composition (12A) was prepared by mixing with a dispersing stirrer.

[導電性緩衝材組成物(13A)の作成]
前記アクリル系重合体(1)100質量部(固形分50質量部)に対して、ガラスフレーク粉に銀メッキを施した導電性粒子(主面厚み:2μm、主面の平均径:80μm、導電性粒子中の銀メッキ含有量:20質量%)を50質量部、中空粒子(球状、平均粒径45μm、密度0.03g/cm)8質量部、バーノックD-40(DIC(株)製、トリレンジイソシアネートのトリメチロールプロパンアダクト体、イソシアネート基含有率7質量%、不揮発分40質量%) 2.0質量部を配合し、酢酸エチルで固形分濃度を50質量%に調整し、分散攪拌機で混合して導電性緩衝材組成物(13A)を作成した。
[Preparation of conductive buffer material composition (13A)]
Conductive particles obtained by silver-plating glass flake powder (main surface thickness: 2 μm, average diameter of main surface: 80 μm, conductive 50 parts by mass of hollow particles (spherical, average particle size: 45 μm, density: 0.03 g/cm 2 ), 8 parts by mass of Barnock D-40 (manufactured by DIC Corporation). , Trimethylolpropane adduct of tolylene diisocyanate, isocyanate group content 7% by mass, non-volatile matter 40% by mass) 2.0 parts by mass, adjusted to a solid content concentration of 50% by mass with ethyl acetate, and a dispersion stirrer to prepare a conductive buffer material composition (13A).

[導電性緩衝材組成物(14A)の作成]
前記アクリル系重合体(1)100質量部(固形分50質量部)に対して、ガラスフレーク粉に銀メッキを施した導電性粒子(主面厚み:4μm、主面の平均径:80μm、導電性粒子中の銀メッキ含有量:20質量%)を50質量部、中空粒子(球状、平均粒径45μm、密度0.03g/cm)を2.0質量部、バーノックD-40(DIC(株)製、トリレンジイソシアネートのトリメチロールプロパンアダクト体、イソシアネート基含有率7質量%、不揮発分40質量%) 2.0質量部を配合し、酢酸エチルで固形分濃度を50質量%に調整し、分散攪拌機で混合して導電性緩衝材組成物(1A)を作成した。
[Preparation of conductive buffer material composition (14A)]
Conductive particles (thickness of main surface: 4 μm, average diameter of main surface: 80 μm, conductive 50 parts by mass of hollow particles (spherical, average particle size 45 μm, density 0.03 g/cm 2 ), Barnock D-40 (DIC ( Co., Ltd., trimethylolpropane adduct of tolylene diisocyanate, isocyanate group content 7% by mass, non-volatile content 40% by mass). , and mixed with a dispersion stirrer to prepare a conductive buffer material composition (1A).

[導電性緩衝材組成物(15A)の作成]
前記アクリル系重合体(1)100質量部(固形分50質量部)に対して、鱗片状のニッケル粉に銀メッキを施した導電性粒子(主面厚み:1μm、主面の平均径:70μm、導電性粒子中の銀メッキ含有量:20質量%)を50質量部、中空粒子(球状、平均粒径45μm、密度0.03g/cm)を2.0質量部、バーノックD-40(DIC(株)製、トリレンジイソシアネートのトリメチロールプロパンアダクト体、イソシアネート基含有率7質量%、不揮発分40質量%) 2.0質量部を配合し、酢酸エチルで固形分濃度を50質量%に調整し、分散攪拌機で混合して導電性緩衝材組成物(1A)を作成した。
[Preparation of conductive buffer material composition (15A)]
Conductive particles (thickness of main surface: 1 μm, average diameter of main surface: 70 μm , Silver plating content in conductive particles: 20% by mass), 2.0 parts by mass of hollow particles (spherical, average particle diameter 45 μm, density 0.03 g/cm 2 ), Barnock D-40 ( DIC Corporation, trimethylolpropane adduct of tolylene diisocyanate, isocyanate group content 7% by mass, non-volatile content 40% by mass). The ingredients were adjusted and mixed with a dispersion stirrer to prepare a conductive buffer material composition (1A).

(実施例1)
導電性緩衝材組成物(1A)をニッパ社製剥離フィルム「PET75×1 A3」上に乾燥後の厚さが200μmになるようにコンマコーターで塗工し、60℃の乾燥器中で10分間乾燥させた。ニッパ社製剥離フィルム「PET38×1 A3」に貼り合わせしたのち、40℃で48時間養生して、実施例1の導電性緩衝材を作成した。
(Example 1)
The conductive buffer material composition (1A) was coated on a release film “PET75×1 A3” manufactured by Nippa with a comma coater so that the thickness after drying was 200 μm, and placed in a dryer at 60 ° C. for 10 minutes. dried. After bonding to a release film "PET38×1 A3" manufactured by Nippa Co., Ltd., it was cured at 40° C. for 48 hours to prepare the conductive cushioning material of Example 1.

(実施例2)
導電性緩衝材組成物(1A)の代わりに、導電性緩衝材組成物(2A)を用いた以外は実施例1と同様に実施例2の導電性緩衝材を作成した。
(Example 2)
A conductive buffer material of Example 2 was prepared in the same manner as in Example 1, except that the conductive buffer material composition (2A) was used instead of the conductive buffer material composition (1A).

(実施例3)
導電性緩衝材組成物(1A)の代わりに、導電性緩衝材組成物(3A)を用いた以外は実施例1と同様に実施例3の導電性緩衝材を作成した。
(Example 3)
A conductive buffer material of Example 3 was prepared in the same manner as in Example 1 except that the conductive buffer material composition (3A) was used instead of the conductive buffer material composition (1A).

(実施例4)
導電性緩衝材組成物(1A)の代わりに、導電性緩衝材組成物(4A)を用いた以外は実施例1と同様に実施例4の導電性緩衝材を作成した。
(Example 4)
A conductive buffer material of Example 4 was prepared in the same manner as in Example 1, except that the conductive buffer material composition (4A) was used instead of the conductive buffer material composition (1A).

(実施例5)
導電性緩衝材組成物(1A)の代わりに、導電性緩衝材組成物(5A)を用いた以外は実施例1と同様に実施例5の導電性緩衝材を作成した。
(Example 5)
A conductive buffer material of Example 5 was prepared in the same manner as in Example 1 except that the conductive buffer material composition (5A) was used instead of the conductive buffer material composition (1A).

(実施例6)
導電性緩衝材組成物(1A)の代わりに、導電性緩衝材組成物(6A)を用いた以外は実施例1と同様に実施例6の導電性緩衝材を作成した。
(Example 6)
A conductive buffer material of Example 6 was prepared in the same manner as in Example 1 except that the conductive buffer material composition (6A) was used instead of the conductive buffer material composition (1A).

(実施例7)
導電性緩衝材組成物(1A)の代わりに、導電性緩衝材組成物(7A)を用いた以外は実施例1と同様に実施例6の導電性緩衝材を作成した。
(Example 7)
A conductive buffer material of Example 6 was prepared in the same manner as in Example 1 except that the conductive buffer material composition (7A) was used instead of the conductive buffer material composition (1A).

(実施例8)
乾燥後の厚さを100μmにしたこと以外は実施例1と同様に実施例8の導電性緩衝材を作成した
(Example 8)
A conductive buffer material of Example 8 was prepared in the same manner as in Example 1 except that the thickness after drying was 100 μm.

(実施例9)
乾燥後の厚さを300μmにしたこと以外は実施例1と同様に実施例9の導電性緩衝材を作成した。
(Example 9)
A conductive cushioning material of Example 9 was produced in the same manner as in Example 1, except that the thickness after drying was 300 μm.

(実施例10)
導電性緩衝材組成物(1A)の代わりに、導電性緩衝材組成物(14A)を用いた以外は実施例1と同様に実施例10の導電性緩衝材を作成した。
(Example 10)
A conductive buffer material of Example 10 was prepared in the same manner as in Example 1 except that the conductive buffer material composition (14A) was used instead of the conductive buffer material composition (1A).

(実施例11)
導電性緩衝材組成物(1A)の代わりに、導電性緩衝材組成物(15A)を用いた以外は実施例1と同様に実施例11の導電性緩衝材を作成した。
(Example 11)
A conductive buffer material of Example 11 was prepared in the same manner as in Example 1 except that the conductive buffer material composition (15A) was used instead of the conductive buffer material composition (1A).

(比較例1)
導電性緩衝材組成物(8A)を用いたこと以外は実施例1と同様に比較例1の導電性緩衝材を作成した。
(Comparative example 1)
A conductive buffer material of Comparative Example 1 was prepared in the same manner as in Example 1 except that the conductive buffer material composition (8A) was used.

(比較例2)
導電性緩衝材組成物(9A)を用いたこと以外は実施例1と同様に比較例2の導電性緩衝材を作成した。
(Comparative example 2)
A conductive buffer material of Comparative Example 2 was prepared in the same manner as in Example 1 except that the conductive buffer material composition (9A) was used.

(比較例3)
導電性緩衝材組成物(10A)を用いたこと以外は実施例1と同様に比較例3の導電性緩衝材を作成した。
(Comparative Example 3)
A conductive buffer material of Comparative Example 3 was prepared in the same manner as in Example 1 except that the conductive buffer material composition (10A) was used.

(比較例4)
導電性緩衝材組成物(11A)を用いたこと以外は実施例1と同様に比較例4の導電性緩衝材の作成を行った。しかし、導電性緩衝材組成物は塗工できず、導電性緩衝材の作成はできなかった。
(Comparative Example 4)
A conductive buffer material of Comparative Example 4 was produced in the same manner as in Example 1 except that the conductive buffer material composition (11A) was used. However, the conductive buffer material composition could not be applied, and the conductive buffer material could not be produced.

(比較例5)
導電性緩衝材組成物(12A)を用いたこと以外は実施例1と同様に比較例5の導電性緩衝材を作成した。
(Comparative Example 5)
A conductive buffer material of Comparative Example 5 was prepared in the same manner as in Example 1 except that the conductive buffer material composition (12A) was used.

(比較例6)
導電性緩衝材組成物(13A)を用いたこと以外は実施例1と同様に比較例6の導電性緩衝材の作成を行った。しかし、導電性緩衝材組成物は塗工できず、導電性緩衝材の作成はできなかった。
(Comparative Example 6)
A conductive buffer material of Comparative Example 6 was produced in the same manner as in Example 1 except that the conductive buffer material composition (13A) was used. However, the conductive buffer material composition could not be applied, and the conductive buffer material could not be produced.

[Z軸方向導電性の評価方法(抵抗値の測定)]
30mm幅×30mm幅の導電性緩衝材の一方の面に、縦30mm×横30mmの真鍮製電極を貼付した。
前記導電性緩衝材の他方の面に縦25mm×横25mmの銅箔(厚さ35μm)を貼付した。
23℃及び50%RHの環境下、前記真鍮製電極の上面から、面圧20Nの荷重をかけた状態で、真鍮製電極と銅箔とに端子を接続し、ミリオームメーター(株式会社エヌエフ回路設計ブロック製)を用いて10μAの電流を流し、その抵抗値を測定した。前記抵抗値が0.5Ω以下である場合を、導電性に優れるものと評価した。
[Evaluation method of Z-axis direction conductivity (measurement of resistance value)]
A brass electrode measuring 30 mm long by 30 mm wide was attached to one surface of a conductive cushioning material measuring 30 mm wide by 30 mm wide.
A copper foil (thickness: 35 μm) of 25 mm long×25 mm wide was attached to the other surface of the conductive cushioning material.
In an environment of 23 ° C. and 50% RH, a terminal is connected to the brass electrode and the copper foil with a surface pressure of 20 N applied from the upper surface of the brass electrode, and a milliohm meter (NF Circuit Design Co., Ltd.) (manufactured by Block) was used to pass a current of 10 μA, and the resistance value was measured. When the resistance value was 0.5Ω or less, the conductivity was evaluated as being excellent.

[段差追従性の評価方法]
実施例及び比較例で得た導電性緩衝材を5cm×5cmに裁断し、剥離フィルムを剥がしたものを、厚さ20mmのアクリルパネル7cm×7cmの中央部に貼り合わせた。
縦4cm及び横5cmのガラス板の額縁部に、厚さ100μm及び幅4mmの加飾層(黒色)を有するパネルを用意した。
前記で貼り合せて得た導電性緩衝材のもう一方の面の剥離フィルムを剥がし、前記パネルの表面(加飾層を有する側の面)を貼付した。
前記加飾層に起因する段差部と、粘接着シートを構成する粘着剤層との界面及びその周辺を、パネル板側から光学顕微鏡を用いて観察し、下記基準で評価した。
[Method for evaluating step followability]
The conductive cushioning materials obtained in Examples and Comparative Examples were cut into a size of 5 cm×5 cm, the release film was peeled off, and the piece was attached to the center of a 20 mm thick acrylic panel of 7 cm×7 cm.
A panel having a decorative layer (black) with a thickness of 100 µm and a width of 4 mm was prepared on the frame portion of a glass plate with a length of 4 cm and a width of 5 cm.
The release film on the other side of the conductive cushioning material obtained by pasting was peeled off, and the surface of the panel (the side having the decorative layer) was pasted.
The interface between the step portion caused by the decorative layer and the pressure-sensitive adhesive layer constituting the pressure-sensitive adhesive sheet and its surroundings were observed from the panel plate side using an optical microscope and evaluated according to the following criteria.

〇:前記段差部と導電性緩衝材層との界面に気泡は無かった。
△:前記段差部と導電性緩衝材層との界面にごくわずかな気泡はあったものの、目視できる気泡は無かった。
×:前記段差部と導電性緩衝材層との界面に気泡があり、目視できるレベルであった。
Good: No bubbles were found at the interface between the stepped portion and the conductive buffer material layer.
Δ: Although there were very few air bubbles at the interface between the stepped portion and the conductive buffer material layer, no air bubbles were visible.
x: Air bubbles were present at the interface between the stepped portion and the conductive buffer material layer, and were at a visible level.

Figure 0007263924000001
Figure 0007263924000001

Figure 0007263924000002
Figure 0007263924000002

Figure 0007263924000003
Figure 0007263924000003

Claims (8)

少なくとも1種のバインダー樹脂、少なくとも1種の導電性粒子(A)、及び少なくとも1種の中空粒子を含有し、前記導電性粒子(A)の含有量が、前記バインダー樹脂100質量部(固形分)に対して50~200質量部であり、前記中空粒子の含有量が、前記バインダー樹脂100質量部(固形分)に対して0.5~5質量部であり、前記導電性粒子(A)の形状は鱗片状、フレーク状又はプレート状であり、前記導電性粒子(A)の形状において面積が最大となる面を主面としたとき、その主面に対する厚さが0.5~6.0μmであり、かつ前記導電性粒子(A)の厚さに対する前記主面の平均径の比率が10~100であることを特徴とする導電性緩衝材。 It contains at least one binder resin, at least one conductive particle (A), and at least one hollow particle, and the content of the conductive particles (A) is 100 parts by mass of the binder resin (solid content ), the content of the hollow particles is 0.5 to 5 parts by mass with respect to 100 parts by mass (solid content) of the binder resin, and the conductive particles (A) is scale-like, flake-like, or plate-like, and when the surface having the largest area in the shape of the conductive particles (A) is taken as the main surface, the thickness with respect to the main surface is 0.5 to 6.5 mm. 0 μm, and the ratio of the average diameter of the main surface to the thickness of the conductive particles (A) is 10-100. 前記導電性粒子(A)が基材となる粒子に金属メッキ処理を施した導電性粒子である請求項1に記載の導電性緩衝材。 2. The conductive cushioning material according to claim 1, wherein the conductive particles (A) are conductive particles obtained by subjecting a base material to a metal plating treatment. 前記導電性粒子(A)の基材が、ガラス、シリカ、アルミナ、雲母及びジルコニアからなる群より選ばれた少なくとも1種を主成分とするものであり、前記導電性粒子(A)に施す金属メッキに用いる金属が、銀、金、白金、パラジウム、ニッケル、銅及びアルミニウムからなる群より選ばれた少なくとも1種を主成分とするものである請求項1又は2に記載の導電性緩衝材。 The base material of the conductive particles (A) is mainly composed of at least one selected from the group consisting of glass, silica, alumina, mica and zirconia, and the metal applied to the conductive particles (A) 3. The conductive cushioning material according to claim 1, wherein the metal used for plating is mainly composed of at least one selected from the group consisting of silver, gold, platinum, palladium, nickel, copper and aluminum. 前記導電性粒子(A)の主面の平均粒子径が10~200μmである請求項1~3のいずれか一項に記載の導電性緩衝材。 The conductive cushioning material according to any one of claims 1 to 3, wherein the conductive particles (A) have an average particle size of 10 to 200 µm on the main surface. 前記中空粒子の平均粒径が10μm~200μmである請求項1~4のいずれか一項に記載の導電性緩衝材。 The conductive cushioning material according to any one of claims 1 to 4, wherein the hollow particles have an average particle size of 10 µm to 200 µm. 前記バインダー樹脂がアクリル系、ウレタン系、ゴム系であることを特徴とする請求項1~5のいずれか一項に記載の導電性緩衝材。 The conductive cushioning material according to any one of claims 1 to 5, wherein the binder resin is acrylic, urethane or rubber. 請求項1~6のいずれかに一項に記載の導電性緩衝材の片面又は両面に、粘着剤層を有する積層体。 A laminate having an adhesive layer on one or both sides of the conductive cushioning material according to any one of claims 1 to 6. 前記粘着剤層がアクリル重合体を含有するアクリル系粘着剤と少なくとも1種の導電性粒子(B)を含有することを特徴とする請求項7に記載の積層体。 8. The laminate according to claim 7, wherein the pressure-sensitive adhesive layer contains an acrylic pressure-sensitive adhesive containing an acrylic polymer and at least one conductive particle (B).
JP2019102575A 2019-05-31 2019-05-31 Conductive cushioning material Active JP7263924B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019102575A JP7263924B2 (en) 2019-05-31 2019-05-31 Conductive cushioning material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019102575A JP7263924B2 (en) 2019-05-31 2019-05-31 Conductive cushioning material

Publications (2)

Publication Number Publication Date
JP2020198344A JP2020198344A (en) 2020-12-10
JP7263924B2 true JP7263924B2 (en) 2023-04-25

Family

ID=73648188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019102575A Active JP7263924B2 (en) 2019-05-31 2019-05-31 Conductive cushioning material

Country Status (1)

Country Link
JP (1) JP7263924B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004189938A (en) 2002-12-12 2004-07-08 Nippon Sheet Glass Co Ltd Conductive molded resin part
JP2009543356A (en) 2006-07-04 2009-12-03 スリーエム イノベイティブ プロパティズ カンパニー Electromagnetic wave shielding gasket having elasticity and adhesiveness
JP2016092193A (en) 2014-11-04 2016-05-23 日東電工株式会社 Adhesive conductive cushioning material
JP2018129493A (en) 2017-02-10 2018-08-16 東洋インキScホールディングス株式会社 Method for manufacturing component-mounted board

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5904978A (en) * 1995-12-15 1999-05-18 W. L. Gore & Associates, Inc. Electrically conductive polytetrafluoroethylene article

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004189938A (en) 2002-12-12 2004-07-08 Nippon Sheet Glass Co Ltd Conductive molded resin part
JP2009543356A (en) 2006-07-04 2009-12-03 スリーエム イノベイティブ プロパティズ カンパニー Electromagnetic wave shielding gasket having elasticity and adhesiveness
JP2016092193A (en) 2014-11-04 2016-05-23 日東電工株式会社 Adhesive conductive cushioning material
JP2018129493A (en) 2017-02-10 2018-08-16 東洋インキScホールディングス株式会社 Method for manufacturing component-mounted board

Also Published As

Publication number Publication date
JP2020198344A (en) 2020-12-10

Similar Documents

Publication Publication Date Title
KR101534644B1 (en) Electroconductive thin adhesive sheet
CN106424711B (en) Electrically conductive microparticle and its manufacturing method, electroconductive resin constituent, conductive sheet and electromagnetic shielding sheet
CN101309993A (en) Adhesive composition, circuit connecting material, connecting structure and circuit member connecting method
KR102649655B1 (en) Adhesive composition
KR101819529B1 (en) Conductive adhesive sheet and electronic device
JP6597927B1 (en) Electromagnetic shielding sheet and electromagnetic shielding wiring circuit board
JP2020170706A (en) Conductive material
JP2013055058A (en) Circuit connection material and connection structure of circuit member
CN103177795A (en) Circuit connecting material, connector and method of manufacturing the connector
JP6354526B2 (en) Electromagnetic shielding sheet and printed wiring board
JP6337630B2 (en) Circuit connection material and circuit connection structure
JP2017193717A (en) Conductive resin composition, conductive adhesive sheet, electromagnetic wave shield sheet and printed wiring board
JP7263924B2 (en) Conductive cushioning material
JP2014001297A (en) Conductive adhesive tape
KR101131163B1 (en) Anisotropic conductive film composition for improvement of adhesion and anisotropic conductive film using it
CN105163478A (en) Pressure-sensitive electromagnetic protection film
CN103173144A (en) Composition for anisotropic conductive adhesive film, anisotropic conductive adhesive film and semiconductor device
JP6566008B2 (en) Electromagnetic shielding sheet and printed wiring board
KR20070013473A (en) Anisotropic conductive film, and method for preparing the same
WO2015105098A1 (en) Connection method and assembly
KR20140019290A (en) Anisotropic conductive material and method for producing same
CN112105699B (en) Conductive adhesive sheet
KR102530373B1 (en) Conductive adhesive sheet
CN110218524A (en) Foam shape conductive adhesive film precursor composition, foam shape conductive adhesive film and the adhesive tape of uV curable
WO2015119221A1 (en) Electrically conductive adhesive tape

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230327

R151 Written notification of patent or utility model registration

Ref document number: 7263924

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151