JP7259226B2 - シート - Google Patents

シート Download PDF

Info

Publication number
JP7259226B2
JP7259226B2 JP2018145088A JP2018145088A JP7259226B2 JP 7259226 B2 JP7259226 B2 JP 7259226B2 JP 2018145088 A JP2018145088 A JP 2018145088A JP 2018145088 A JP2018145088 A JP 2018145088A JP 7259226 B2 JP7259226 B2 JP 7259226B2
Authority
JP
Japan
Prior art keywords
sheet
mass
less
cellulose
pulp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018145088A
Other languages
English (en)
Other versions
JP2019031770A (ja
Inventor
寛一 砂川
頼宏 桝本
速雄 伏見
実央 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Oji Paper Co Ltd
Oji Holdings Corp
Original Assignee
Oji Holdings Corp
Oji Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oji Holdings Corp, Oji Paper Co Ltd filed Critical Oji Holdings Corp
Publication of JP2019031770A publication Critical patent/JP2019031770A/ja
Application granted granted Critical
Publication of JP7259226B2 publication Critical patent/JP7259226B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Nonwoven Fabrics (AREA)
  • Paper (AREA)

Description

本発明は、シートに関する。
近年、石油資源の代替及び環境意識の高まりから、再生産可能な天然繊維を利用した材料が着目されている。天然繊維の中でも、繊維径が10μm以上50μm以下の繊維状セルロース、特に木材由来の繊維状セルロース(パルプ)は、主に紙製品としてこれまで幅広く使用されてきた。
繊維状セルロースとしては、繊維径が5μm以下の微細繊維状セルロースも知られている。また、このような微細繊維状セルロースから構成されるシートや、微細繊維状セルロース含有シートと樹脂を含む複合シート及び成形体が開発されている。微細繊維状セルロースを含有するシートや成形体においては、繊維同士の接点が著しく増加することから、引張強度等が大きく向上することが知られている。
例えば、特許文献1には、平均繊維径0.1~20μmのセルロース繊維と平均繊維径100nm未満のセルロースナノファイバーとを抄紙した不織布が記載されている。また、特許文献2には、数平均繊維幅2nm以上1000nm未満の第1の繊維と、数平均繊維幅1000nm以上100000nm以下であり、かつ数平均繊維長が0.1~20mmである第2の繊維とを含有する不織布に樹脂を含有させた複合体が記載されている。
特開2012-036517号公報 特開2015-025033号公報
本発明者らは、生産性と強度のバランスに優れた微細繊維状セルロース含有シートを提供することを目的として検討を進めた。
[1] 繊維幅が100nm以下であって、かつ化学変性された第1セルロース繊維と、繊維幅が1μm以上100μm以下の第2セルロース繊維と、を含むシートであって、上記第1セルロース繊維の含有率が上記シート全体の1質量%以上30質量%以下であるシート。
[2] 上記第1セルロース繊維の繊維幅が8nm以下である、[1]に記載のシート。
[3] ポリアミドポリアミンエピハロヒドリンを含む、[1]または[2]に記載のシート。
[4] 第2セルロース繊維は、針葉樹パルプ及び広葉樹パルプを含む[1]~[3]のいずれかに記載のシート。
[5] 第2セルロース繊維は、針葉樹パルプ及び広葉樹パルプを含み、
針葉樹パルプの含有量をN、広葉樹パルプの含有量をLとした場合、N/Lの値が1以上8以下である[1]~[4]のいずれかに記載のシート。
[6] 針葉樹パルプと広葉樹パルプの混合体のカナダ標準フリーネスが600ml以下である[4]または[5]に記載のシート。
[7] 針葉樹パルプと広葉樹パルプの混合体の変則フリーネスが800ml以下である[4]または[5]に記載のシート。
[8] 下記式で算出される比引張弾性率の上昇率が25%より大きい[1]~[7]のいずれかに記載のシート;
比引張弾性率の上昇率(%)=(シートの比引張弾性率-コントロールシートの比引張弾性率)/コントロールシートの比引張弾性率×100
ここで、コントロールシートとは第1セルロース繊維を配合しないで作製したシートである。
本発明によれば、生産性と強度のバランスに優れた微細繊維状セルロース含有シートを得ることができる。
図1は、リン酸基を有する繊維原料に対するNaOH滴下量と電気伝導度の関係を示すグラフである。 図2は、カルボキシ基を有する繊維原料に対するNaOH滴下量と電気伝導度の関係を示すグラフである。
以下において、本発明について詳細に説明する。以下に記載する構成要件の説明は、代表的な実施形態や具体例に基づいてなされることがあるが、本発明はそのような実施形態に限定されるものではない。
(シート)
本発明は、繊維幅が100nm以下であって、かつ化学変性された第1セルロース繊維と、繊維幅が1μm以上100μm以下の第2セルロース繊維と、を含むシートに関する。上記シートは、第1セルロース繊維の含有率がシート全体の1質量%以上30質量%以下である。本明細書においては、繊維幅が100nm以下の繊維状セルロースは、微細繊維状セルロースということもあり、また上記シートは、微細繊維状セルロース含有シートということもある。
本発明のシートは上記構成を有するものであるため、生産性と強度のバランスに優れている。このため、安価、かつ高い強度が求められる工業製品の用途において、とくに好ましく用いられる。
本発明のシートの引張強度は、15MPa以上であることが好ましく、20MPa以上であることが好ましく、30MPa以上であることがより好ましい。また、シートの引張強度の上限値に特に制限はないが、例えば、500MPa以下とすることができる。
引張強さ(単位はN/m)は、たとえばJIS P 8113に準拠し、引張試験機テンシロン(エー・アンド・デイ社製)を用いて測定される。この引張強さを試験片の厚みで除し、引張強度(単位はMPa)を算出する。なお、引張強さを測定する際には、23℃、相対湿度50%で24時間調湿したものを試験片として用いる。
本発明のシートの引張弾性率は、1.5GPa以上であることが好ましく、2.0GPa以上であることがより好ましく、3.0GPa以上であることがさらに好ましい。また、シートの引張弾性率の上限値に特に制限はないが、例えば、50GPa以下とすることができる。
引張弾性率は、たとえばJIS P 8113に準拠し、引張試験機テンシロン(エー・アンド・デイ社製)を用いて引張弾性率を測定できる。ここで、弾性率は、SSカーブにおける正の最大の傾き値から計算した値である。また、引張弾性率を測定する際には、23℃、相対湿度50%で24時間調湿したものを試験片として用いる。
第1セルロース繊維を配合しないで作製したコントロールシートを基準とした比引張弾性率の上昇率は、25%以上であることが好ましく、30%以上であることがより好ましく、35%以上であることがさらに好ましい。なお、比引張弾性率の上昇率とは、以下の式で算出される値である。
比引張弾性率の上昇率(%)=(シートの比引張弾性率-コントロールシートの比引張弾性率)/コントロールシートの比引張弾性率×100
ここで、コントロールシートとは第1セルロース繊維を配合しないで作製したシートである。
本発明のシートの比引張弾性率は、8.0kNm/gよりも大きいことが好ましく、8.5kNm/gよりも大きいことがより好ましく、9.0kNm/gよりも大きいことがさらに好ましく、10.0kNm/gよりも大きいことが特に好ましい。なお、本発明のシートの比引張弾性率の上限は特に限定されるものではないが、たとえば、100kNm/gとすることができる。本明細書において、比引張弾性率は、シートの引張弾性率(GPa)を密度(g/cm3)で除すことにより算出される値である。
本発明のシートの層間強度は、750J/m2以上であることが好ましく、1200J/m2以上であることがより好ましく、1500J/m2以上であることがさらに好ましい。また、シートの層間強度の上限値に特に制限はないが、例えば、7000J/m2以下とすることができる。なお、本明細書において、シートの層間強度は、シートの厚み方向の強度を意味する。
層間強度は、たとえばJ TAPPI 18-2に準拠し、インターナルボンドテスター(熊谷理機工業社製)を用いて測定できる。また、層間強度を測定する際には、23℃、相対湿度50%で24時間調湿したシートを試験片として用いる。
シートの生産性は、たとえば、シートを抄紙する際のスラリーの脱水時間を短縮することにより高めることができる。スラリーの脱水時間を短くすることで、シートの生産効率が高まり、シートをより安価に供給することが可能となる。なお、スラリーの生産性は、固形分濃度を0.5質量%に調整したスラリー250gをワイヤー(ハイク・ワグナー社製、HT2525-30)上に流し、水が引くまでの時間(ワイヤー上のパルプスラリーから水が抜け、パルプ表面から光沢が消えるまでの時間)を測定することで評価することができる。水が引くまでの時間は、30分未満であることが好ましく、10分未満であることがより好ましく、1分未満であることがさらに好ましく、30秒以下であることが特に好ましい。
本発明のシートの厚みは特に限定されるものではないが、5μm以上であることが好ましく、10μm以上であることがより好ましく、15μm以上であることがさらに好ましい。またシートの厚みの上限値は、特に限定されないが、たとえば1000μm以下とすることができる。なお、シートの厚みは、触針式厚さ計(マール社製、ミリトロン1202D)で測定することができる。
本発明のシートの坪量は、6g/m2以上であることが好ましく、13g/m2以上であることがより好ましく、19g/m2以上であることがさらに好ましい。また、シートの坪量は、500g/m2以下であることが好ましく、300g/m2以下であることがより好ましい。ここで、シートの坪量は、JIS P 8124に準拠し、算出することができる。
本発明のシートの密度は、0.1g/cm3以上であることが好ましく、0.2g/cm3以上であることがより好ましい。また、本発明のシートの密度は、5g/cm3以下であることが好ましい。ここで、シートの密度は、JIS P 8118:2014に準拠し、算出することができる。
(第1セルロース繊維)
本発明のシートは、繊維幅が100nm以下の第1セルロース繊維を含む。なお、本明細書においては、第1セルロース繊維を、微細繊維状セルロースまたは微細セルロース繊維ともいう。本発明においては、強度を向上させる観点から、第1セルロース繊維の繊維幅が8nm以下であることがとくに好ましい。
第1セルロース繊維の含有量は、上述のとおり、シートの全質量に対して、1質量%以上であり、2質量%以上であることがより好ましく、5質量%以上であることがさらに好ましい。なお、強度をより向上させる観点からは、第1セルロース繊維の含有量をシート全体に対して15質量%以上とすることもできる。また、第1セルロース繊維の含有量は、シートの全質量に対して、30質量%以下であり、25質量%以下であることがより好ましい。また、生産性を向上させる観点からは、第1セルロース繊維の含有量をシート全体に対して18質量%以下とすることもできる。
微細繊維状セルロースを得るための繊維状セルロース原料としては特に限定されないが、入手しやすく安価である点から、パルプを用いることが好ましい。パルプとしては、木材パルプ、非木材パルプ、脱墨パルプを挙げることができる。木材パルプとしては例えば、広葉樹クラフトパルプ(LBKP)、針葉樹クラフトパルプ(NBKP)、サルファイトパルプ(SP)、溶解パルプ(DP)、ソーダパルプ(AP)、未晒しクラフトパルプ(UKP)、酸素漂白クラフトパルプ(OKP)等の化学パルプ等が挙げられる。また、セミケミカルパルプ(SCP)、ケミグラウンドウッドパルプ(CGP)等の半化学パルプ、砕木パルプ(GP)、サーモメカニカルパルプ(TMP、BCTMP)等の機械パルプ等が挙げられるが、特に限定されない。非木材パルプとしてはコットンリンターやコットンリント等の綿系パルプ、麻、麦わら、バガス等の非木材系パルプ、ホヤや海草等から単離されるセルロース、キチン、キトサン等が挙げられるが、特に限定されない。脱墨パルプとしては古紙を原料とする脱墨パルプが挙げられるが、特に限定されない。本実施態様のパルプは上記の1種を単独で用いてもよいし、2種以上混合して用いてもよい。上記パルプの中で、入手のしやすさという点で、セルロースを含む木材パルプ、脱墨パルプが好ましい。木材パルプの中でも化学パルプはセルロース比率が大きいため、繊維微細化(解繊)時の微細繊維状セルロースの収率が高く、またパルプ中のセルロースの分解が小さく、軸比の大きい長繊維の微細繊維状セルロースが得られる点で好ましい。中でもクラフトパルプ、サルファイトパルプが最も好ましく選択される。軸比の大きい長繊維の微細繊維状セルロースを用いると高強度のシートが得られる傾向がある。
第1セルロース繊維の平均繊維幅は、電子顕微鏡で観察して、100nm以下である。平均繊維幅は、好ましくは2nm以上100nm以下、より好ましくは2nm以上50nm以下であり、さらに好ましくは2nm以上10nm以下であるが、特に限定されない。第1セルロース繊維の平均繊維幅が2nm未満であると、セルロース分子として水に溶解しているため、微細繊維状セルロースとしての物性(強度や剛性、寸法安定性)が発現しにくくなる傾向がある。なお、微細繊維状セルロースは、たとえば繊維幅が100nm以下である単繊維状のセルロースである。
微細繊維状セルロースの電子顕微鏡観察による平均繊維幅の測定は以下のようにして行う。濃度0.05質量%以上0.1質量%以下の微細繊維状セルロースの水系懸濁液を調製し、この懸濁液を親水化処理したカーボン膜被覆グリッド上にキャストしてTEM観察用試料とする。幅の広い繊維を含む場合には、ガラス上にキャストした表面のSEM像を観察してもよい。構成する繊維の幅に応じて1000倍、5000倍、10000倍あるいは50000倍のいずれかの倍率で電子顕微鏡画像による観察を行う。但し、試料、観察条件や倍率は下記の条件を満たすように調整する。
(1)観察画像内の任意箇所に一本の直線Xを引き、該直線Xに対し、20本以上の繊維が交差する。
(2)同じ画像内で該直線と垂直に交差する直線Yを引き、該直線Yに対し、20本以上の繊維が交差する。
上記条件を満足する観察画像に対し、直線X、直線Yと交錯する繊維の幅を目視で読み取る。こうして少なくとも重なっていない表面部分の画像を3組以上観察し、各々の画像に対して、直線X、直線Yと交錯する繊維の幅を読み取る。このように少なくとも20本×2×3=120本の繊維幅を読み取る。微細繊維状セルロースの平均繊維幅はこのように読み取った繊維幅の平均値である。
第1セルロース繊維の繊維長は特に限定されないが、0.1μm以上1000μm以下が好ましく、0.1μm以上800μm以下がさらに好ましく、0.1μm以上600μm以下が特に好ましい。繊維長を上記範囲内とすることにより、微細繊維状セルロースの結晶領域の破壊を抑制でき、また微細繊維状セルロースのスラリー粘度を適切な範囲とすることができる。なお、微細繊維状セルロースの繊維長は、TEM、SEM、AFMによる画像解析より求めることができる。
微細繊維状セルロースはI型結晶構造を有していることが好ましい。ここで、微細繊維状セルロースがI型結晶構造をとっていることは、グラファイトで単色化したCuKα(λ=1.5418Å)を用いた広角X線回折写真より得られる回折プロファイルにおいて同定できる。具体的には、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークをもつことから同定することができる。
微細繊維状セルロースに占めるI型結晶構造の割合は30%以上であることが好ましく、より好ましくは50%以上、さらに好ましくは70%以上である。この場合、耐熱性と低線熱膨張率発現の点でさらに優れた性能が期待できる。結晶化度については、X線回折プロファイルを測定し、そのパターンから常法により求められる(Seagalら、Textile Research Journal、29巻、786ページ、1959年)。
微細繊維状セルロースは、化学変性されて置換基を有するものである。置換基はアニオン基であることが好ましい。アニオン基としては、例えば、リン酸基又はリン酸基に由来する置換基(単にリン酸基ということもある)、カルボキシ基又はカルボキシ基に由来する置換基(単にカルボキシ基ということもある)、及び、スルホン基又はスルホン基に由来する置換基(単にスルホン基ということもある)から選択される少なくとも1種であることが好ましく、リン酸基及びカルボキシ基から選択される少なくとも1種であることがより好ましく、リン酸基であることが特に好ましい。すなわち、本発明で用いられる微細繊維状セルロースはリン酸化セルロースであることが好ましい。
微細繊維状セルロースは、リン酸基又はリン酸基に由来する置換基を有するものであることが好ましい。リン酸基はリン酸からヒドロキシ基を取り除いたものにあたる、2価の官能基である。具体的には-PO32で表される基である。リン酸基に由来する置換基は、リン酸基が縮重合した基、リン酸基の塩、リン酸エステル基などの置換基が含まれ、イオン性置換基であっても、非イオン性置換基であってもよい。
本発明では、リン酸基又はリン酸基に由来する置換基は、下記式(1)で表される置換基であってもよい。
Figure 0007259226000001
式(1)中、a、b及びnは自然数である(ただし、a=b×mである)。α1、α2、・・・、αn及びα’のうちの少なくとも1つはO-であり、残りはR、ORのいずれかである。各αn及びα’の全てがO-であっても構わない。nが2以上であり、α’がR又はORである場合には、各αnのうちの少なくとも1つがO-で残りがR又はORである。nが2以上であり、α’がO-である場合には、各αnは全てRであってもよいし、全てORであってもよいし、少なくとも1つがO-で残りがR又はORであってもよい。Rは、各々、水素原子、飽和-直鎖状炭化水素基、飽和-分岐鎖状炭化水素基、飽和-環状炭化水素基、不飽和-直鎖状炭化水素基、不飽和-分岐鎖状炭化水素基、芳香族基、及びこれらの誘導基である。
飽和-直鎖状炭化水素基としては、メチル基、エチル基、n-プロピル基、又はn-ブチル基等が挙げられるが、特に限定されない。飽和-分岐鎖状炭化水素基としては、i-プロピル基、又はt-ブチル基等が挙げられるが、特に限定されない。飽和-環状炭化水素基としては、シクロペンタン基、又はシクロヘキサン基等が挙げられるが、特に限定されない。不飽和-直鎖状炭化水素基としては、ビニル基、又はアリル基等が挙げられるが、特に限定されない。不飽和-分岐鎖状炭化水素基としては、i-プロペニル基、又は3-ブテニル基等が挙げられるが、特に限定されない。飽和-環状炭化水素基芳香族基としては、フェニル基、又はナフタレン基等が挙げられるが、特に限定されない。
また、Rにおける誘導体としては、各種炭化水素基の主鎖又は側鎖に対し、カルボキシ基、ヒドロキシ基、又はアミノ基などの官能基のうち、少なくとも1種類が付加又は置換した状態の官能基が挙げられるが、特に限定されない。また、Rの主鎖を構成する炭素原子数は特に限定されないが、20以下であることが好ましく、10以下であることがより好ましい。Rの主鎖を構成する炭素原子数が20を超えると、Rを含むリンオキソ酸基の分子が大きくなりすぎて、繊維原料に浸透しにくくなり、微細セルロース繊維の収率が低下するおそれがある。
βb+は有機物又は無機物からなる1価以上の陽イオンである。有機物からなる1価以上の陽イオンとしては、脂肪族アンモニウム、又は芳香族アンモニウムが挙げられ、無機物からなる1価以上の陽イオンとしては、ナトリウム、カリウム、若しくはリチウム等のアルカリ金属のイオンや、カルシウム、若しくはマグネシウム等の2価金属の陽イオン、又は水素イオン等が挙げられるが、特に限定されない。これらは1種又は2種類以上を組み合わせて適用することもできる。有機物又は無機物からなる1価以上の陽イオンとしては、βを含む繊維原料を加熱した際に黄変しにくく、また工業的に利用し易いナトリウム、又はカリウムのイオンが好ましいが、特に限定されない。
<リン酸基導入工程>
リン酸基導入工程は、セルロースを含む繊維原料に対し、リン酸基を有する化合物及びその塩から選択される少なくとも1種(以下、「リン酸化試薬」又は「化合物A」という)を反応させることにより行うことができる。このようなリン酸化試薬は、乾燥状態または湿潤状態の繊維原料に粉末や水溶液の状態で混合してもよい。また別の例としては、繊維原料のスラリーにリン酸化試薬の粉末や水溶液を添加してもよい。
リン酸基導入工程は、セルロースを含む繊維原料に対し、リン酸基を有する化合物及びその塩から選択される少なくとも1種(リン酸化試薬又は化合物A)を反応させることにより行うことができる。なお、この反応は、尿素及びその誘導体から選択される少なくとも1種(以下、「化合物B」という)の存在下で行ってもよい。
化合物Aを化合物Bの共存下で繊維原料に作用させる方法の一例としては、乾燥状態または湿潤状態の繊維原料に化合物Aおよび化合物Bの粉末や水溶液を混合する方法が挙げられる。また別の例としては、繊維原料のスラリーに化合物Aおよび化合物Bの粉末や水溶液を添加する方法が挙げられる。これらのうち、反応の均一性が高いことから、乾燥状態の繊維原料に化合物Aおよび化合物Bの水溶液を添加する方法、または湿潤状態の繊維原料に化合物Aおよび化合物Bの粉末や水溶液を添加する方法が好ましい。また、化合物Aと化合物Bは同時に添加してもよいし、別々に添加してもよい。また、初めに反応に供試する化合物Aと化合物Bを水溶液として添加して、圧搾により余剰の薬液を除いてもよい。繊維原料の形態は綿状や薄いシート状であることが好ましいが、特に限定されない。
本実施態様で使用する化合物Aは、リン酸基を有する化合物及びその塩から選択される少なくとも1種である。
リン酸基を有する化合物としては、リン酸、リン酸のリチウム塩、リン酸のナトリウム塩、リン酸のカリウム塩、リン酸のアンモニウム塩などが挙げられるが、特に限定されない。リン酸のリチウム塩としては、リン酸二水素リチウム、リン酸水素二リチウム、リン酸三リチウム、ピロリン酸リチウム、またはポリリン酸リチウムなどが挙げられる。リン酸のナトリウム塩としてはリン酸二水素ナトリウム、リン酸水素二ナトリウム、リン酸三ナトリウム、ピロリン酸ナトリウム、またはポリリン酸ナトリウムなどが挙げられる。リン酸のカリウム塩としてはリン酸二水素カリウム、リン酸水素二カリウム、リン酸三カリウム、ピロリン酸カリウム、またはポリリン酸カリウムなどが挙げられる。リン酸のアンモニウム塩としては、リン酸二水素アンモニウム、リン酸水素二アンモニウム、リン酸三アンモニウム、ピロリン酸アンモニウム、ポリリン酸アンモニウムなどが挙げられる。
これらのうち、リン酸基の導入の効率が高く、後述する解繊工程で解繊効率がより向上しやすく、低コストであり、かつ工業的に適用しやすい観点から、リン酸、リン酸のナトリウム塩、またはリン酸のカリウム塩、リン酸のアンモニウム塩が好ましい。リン酸二水素ナトリウム、またはリン酸水素二ナトリウムがより好ましい。
また、反応の均一性が高まり、かつリン酸基導入の効率が高くなることから化合物Aは水溶液として用いることが好ましい。化合物Aの水溶液のpHは特に限定されないが、リン酸基の導入の効率が高くなることから7以下であることが好ましく、パルプ繊維の加水分解を抑える観点からpH3以上pH7以下がさらに好ましい。化合物Aの水溶液のpHは例えば、リン酸基を有する化合物のうち、酸性を示すものとアルカリ性を示すものを併用し、その量比を変えて調整してもよい。化合物Aの水溶液のpHは、リン酸基を有する化合物のうち、酸性を示すものに無機アルカリまたは有機アルカリを添加すること等により調整してもよい。
繊維原料に対する化合物Aの添加量は特に限定されないが、化合物Aの添加量をリン原子量に換算した場合、繊維原料(絶乾質量)に対するリン原子の添加量は0.5質量%以上100質量%以下が好ましく、1質量%以上50質量%以下がより好ましく、2質量%以上30質量%以下が最も好ましい。繊維原料に対するリン原子の添加量が上記範囲内であれば、微細繊維状セルロースの収率をより向上させることができる。繊維原料に対するリン原子の添加量を100質量%以下とすることにより、収率向上の効果とコストのバランスをとることができる。一方、セルロース繊維に対するリン原子の添加量を上記下限値以上とすることにより、収率を高めることができる。
本実施態様で使用する化合物Bとしては、尿素、ビウレット、1-フェニル尿素、1-ベンジル尿素、1-メチル尿素、1-エチル尿素などが挙げられる。
化合物Bは化合物A同様に水溶液として用いることが好ましい。また、反応の均一性が高まることから化合物Aと化合物Bの両方が溶解した水溶液を用いることが好ましい。繊維原料(絶乾質量)に対する化合物Bの添加量は1質量%以上500質量%以下であることが好ましく、10質量%以上400質量%以下であることがより好ましく、100質量%以上350質量%以下であることがさらに好ましく、150質量%以上300質量%以下であることが特に好ましい。
化合物Aと化合物Bの他に、アミド類またはアミン類を反応系に含んでもよい。アミド類としては、ホルムアミド、ジメチルホルムアミド、アセトアミド、ジメチルアセトアミドなどが挙げられる。アミン類としては、メチルアミン、エチルアミン、トリメチルアミン、トリエチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、ピリジン、エチレンジアミン、ヘキサメチレンジアミンなどが挙げられる。これらの中でも、特にトリエチルアミンは良好な反応触媒として働くことが知られている。
リン酸基導入工程においては加熱処理を施すことが好ましい。加熱処理温度は、繊維の熱分解や加水分解反応を抑えながら、リン酸基を効率的に導入できる温度を選択することが好ましい。具体的には50℃以上300℃以下であることが好ましく、100℃以上250℃以下であることがより好ましく、130℃以上200℃以下であることがさらに好ましい。また、加熱には減圧乾燥機、赤外線加熱装置、マイクロ波加熱装置を用いてもよい。
加熱処理の際、化合物Aを添加した繊維原料スラリーに水が含まれている間において、繊維原料を静置する時間が長くなると、乾燥に伴い水分子と溶存する化合物Aが繊維原料表面に移動する。そのため、繊維原料中の化合物Aの濃度にムラが生じる可能性があり、繊維表面へのリン酸基の導入が均一に進行しない恐れがある。乾燥による繊維原料中の化合物Aの濃度ムラ発生を抑制するためには、ごく薄いシート状の繊維原料を用いるか、ニーダー等で繊維原料と化合物Aを混練又は攪拌しながら加熱乾燥又は減圧乾燥させる方法を採ればよい。
加熱処理に用いる加熱装置としては、スラリーが保持する水分及びリン酸基などの繊維の水酸基への付加反応で生じる水分を常に装置系外に排出できる装置であることが好ましく、例えば送風方式のオーブン等が好ましい。装置系内の水分を常に排出すれば、リン酸エステル化の逆反応であるリン酸エステル結合の加水分解反応を抑制できることに加えて、繊維中の糖鎖の酸加水分解を抑制することもでき、軸比の高い微細繊維を得ることができる。
加熱処理の時間は、加熱温度にも影響されるが繊維原料スラリーから実質的に水分が除かれてから1秒以上300分以下であることが好ましく、1秒以上1000秒以下であることがより好ましく、10秒以上800秒以下であることがさらに好ましい。本発明では、加熱温度と加熱時間を適切な範囲とすることにより、リン酸基の導入量を好ましい範囲内とすることができる。
リン酸基導入工程は、少なくとも1回行えば良いが、複数回繰り返すこともできる。この場合、より多くのリン酸基が導入されるので好ましい。本発明においては、例えば、リン酸基導入工程を2回行うことも好ましい態様である。
リン酸基の導入量は、微細繊維状セルロース1g(質量)あたり0.10mmol/g以上であることが好ましく、0.20mmol/g以上であることがより好ましく、0.50mmol/g以上であることがさらに好ましく、1.00mmol/g以上であることが特に好ましい。また、リン酸基の導入量は、微細繊維状セルロース1g(質量)あたり5.20mmol/g以下であることが好ましく、3.65mmol/g以下であることがより好ましく、3.00mmol/g以下であることがさらに好ましい。リン酸基の導入量を上記範囲内とすることにより、繊維原料の微細化を容易にし、微細繊維状セルロースの安定性を高めることができる。また、リン酸基の導入量を上記範囲内とすることにより、電池用セパレータ塗液用増粘剤として良好な特性を発揮することができる。なお、本明細書において、微細繊維状セルロースが有するリン酸基の含有量(リン酸基の導入量)は、後述するように微細繊維状セルロースが有するリン酸基の強酸性基量と等しい。
リン酸基の繊維原料への導入量は、伝導度滴定法により測定することができる。具体的には、解繊処理工程により微細化を行い、得られた微細繊維状セルロース含有スラリーをイオン交換樹脂で処理した後、水酸化ナトリウム水溶液を加えながら電気伝導度の変化を求めることにより、導入量を測定することができる。
伝導度滴定では、アルカリを加えていくと、図1に示した曲線を与える。最初は、急激に電気伝導度が低下する(以下、「第1領域」という)。その後、わずかに伝導度が上昇を始める(以下、「第2領域」という)。さらにその後、伝導度の増分が増加する(以下、「第3領域」という)。すなわち、3つの領域が現れる。なお、第2領域と第3領域の境界点は、伝導度の2回微分値、すなわち伝導度の増分(傾き)の変化量が最大となる点で定義される。このうち、第1領域で必要としたアルカリ量が、滴定に使用したスラリー中の強酸性基量と等しく、第2領域で必要としたアルカリ量が滴定に使用したスラリー中の弱酸性基量と等しくなる。リン酸基が縮合を起こす場合、見かけ上弱酸性基が失われ、第1領域に必要としたアルカリ量と比較して第2領域に必要としたアルカリ量が少なくなる。一方、強酸性基量は、縮合の有無に関わらずリン原子の量と一致することから、単にリン酸基導入量(またはリン酸基量)、または置換基導入量(または置換基量)と言った場合は、強酸性基量のことを表す。すなわち、図1に示した曲線の第1領域で必要としたアルカリ量(mmol)を、滴定対象スラリー中の固形分(g)で除して、置換基導入量(mmol/g)とする。
<カルボキシ基導入工程>
微細繊維状セルロースがカルボキシ基を有するものである場合、カルボキシ基導入工程を経ることで微細繊維状セルロースにカルボキシ基を導入することができる。カルボキシ基導入工程では、TEMPO酸化処理などの酸化処理やカルボン酸由来の基を有する化合物、その誘導体、またはその酸無水物もしくはその誘導体によって繊維原料を処理することで、微細繊維状セルロースにカルボキシ基を導入することができる。
カルボキシ基を有する化合物としては特に限定されないが、マレイン酸、コハク酸、フタル酸、フマル酸、グルタル酸、アジピン酸、イタコン酸等のジカルボン酸化合物やクエン酸、アコニット酸等トリカルボン酸化合物が挙げられる。
カルボキシ基を有する化合物の酸無水物としては特に限定されないが、無水マレイン酸、無水コハク酸、無水フタル酸、無水グルタル酸、無水アジピン酸、無水イタコン酸等のジカルボン酸化合物の酸無水物が挙げられる。
カルボキシ基を有する化合物の誘導体としては特に限定されないが、カルボキシ基を有する化合物の酸無水物のイミド化物、カルボキシ基を有する化合物の酸無水物の誘導体が挙げられる。カルボキシ基を有する化合物の酸無水物のイミド化物としては特に限定されないが、マレイミド、コハク酸イミド、フタル酸イミド等のジカルボン酸化合物のイミド化物が挙げられる。
カルボキシ基を有する化合物の酸無水物の誘導体としては特に限定されない。例えば、ジメチルマレイン酸無水物、ジエチルマレイン酸無水物、ジフェニルマレイン酸無水物等の、カルボキシ基を有する化合物の酸無水物の少なくとも一部の水素原子が置換基(例えば、アルキル基、フェニル基等)で置換されたものが挙げられる。
カルボキシ基導入工程において、TEMPO酸化処理を行う場合、その処理をpHが6以上8以下の条件で行うことも好ましい。このような処理工程は中性TEMPO酸化処理ともいう。中性TEMPO酸化処理は、例えば、リン酸ナトリウム緩衝液(pH=6.8)に、パルプと、触媒としてTEMPO(2,2,6,6-テトラメチルピペリジン-1-オキシル)等のニトロキシラジカル、犠牲試薬として次亜塩素酸ナトリウムを添加することで行うことができる。さらに亜塩素酸ナトリウムを共存させることによって、酸化の過程で発生するアルデヒドを、効率的にカルボキシ基まで酸化することが出来る。
カルボキシ基の導入量は、微細繊維状セルロース1g(質量)あたり0.10mmol/g以上であることが好ましく、0.20mmol/g以上であることがより好ましく、0.50mmol/g以上であることがさらに好ましく、1.00mmol/g以上であることが特に好ましい。また、カルボキシ基の導入量は、3.65mmol/g以下であることが好ましく、3.50mmol/g以下であることがより好ましく、3.00mmol/g以下であることがさらに好ましい。
カルボキシ基の導入量は伝導度滴定法で測定することができる。伝導度滴定法による測定の際には、得られた微細繊維状セルロース含有スラリーに、水酸化ナトリウム水溶液を加えながら伝導度の変化を求めることにより、導入量を測定する。
伝導度滴定法では、アルカリを加えていくと、図2に示した曲線を与える。この曲線は、電気伝導度が減少した後、伝導度の増分(傾き)がほぼ一定となるまでを第1領域、その後、伝導度の増分(傾き)が増加する第2領域に区分される。なお、第1領域、第2領域の境界点は、伝導度の2回微分値、すなわち伝導度の増分(傾き)の変化量が最大となる点で定義される。図2で示した曲線の第1領域で必要としたアルカリ量(mmol)を、滴定対象の微細繊維状セルロース含有スラリー中の固形分(g)で除して、カルボキシ基の導入量(mmol/g)とする。
<アルカリ処理>
微細繊維状セルロースを製造する場合、リン酸基導入工程やカルボキシ基導入工程といった置換基導入工程と、後述する解繊処理工程との間にアルカリ処理を行ってもよい。アルカリ処理の方法としては、特に限定されないが、例えば、アルカリ溶液中に、イオン性置換基導入繊維を浸漬する方法が挙げられる。
アルカリ溶液に含まれるアルカリ化合物は、特に限定されないが、無機アルカリ化合物であってもよいし、有機アルカリ化合物であってもよい。アルカリ溶液における溶媒としては水または有機溶媒のいずれであってもよい。溶媒は、極性溶媒(水、またはアルコール等の極性有機溶媒)が好ましく、少なくとも水を含む水系溶媒がより好ましい。
また、アルカリ溶液のうちでは、汎用性が高いことから、水酸化ナトリウム水溶液、または水酸化カリウム水溶液が特に好ましい。
アルカリ処理工程におけるアルカリ溶液の温度は特に限定されないが、5℃以上80℃以下が好ましく、10℃以上60℃以下がより好ましい。
アルカリ処理工程におけるアルカリ溶液への浸漬時間は特に限定されないが、5分以上30分以下が好ましく、10分以上20分以下がより好ましい。
アルカリ処理におけるアルカリ溶液の使用量は特に限定されないが、イオン性置換基導入繊維の絶対乾燥質量に対して100質量%以上100000質量%以下であることが好ましく、1000質量%以上10000質量%以下であることがより好ましい。
アルカリ処理工程におけるアルカリ溶液使用量を減らすために、アルカリ処理工程の前に、イオン性置換基導入繊維を水や有機溶媒により洗浄しても構わない。アルカリ処理後には、取り扱い性を向上させるために、解繊処理工程の前に、アルカリ処理済みイオン性置換基導入繊維を水や有機溶媒により洗浄することが好ましい。
<解繊処理>
イオン性置換基導入繊維は、解繊処理工程で解繊処理される。解繊処理工程では、通常、解繊処理装置を用いて、繊維を解繊処理して、微細繊維状セルロース含有スラリーを得るが、処理装置、処理方法は、特に限定されない。
解繊処理装置としては、高速解繊機、グラインダー(石臼型粉砕機)、高圧ホモジナイザーや超高圧ホモジナイザー、高圧衝突型粉砕機、ボールミル、ビーズミルなどを使用できる。あるいは、解繊処理装置としては、ディスク型リファイナー、コニカルリファイナー、二軸混練機、振動ミル、高速回転下でのホモミキサー、超音波分散機、またはビーターなど、湿式粉砕する装置等を使用することもできる。解繊処理装置は、上記に限定されるものではない。好ましい解繊処理方法としては、粉砕メディアの影響が少なく、コンタミの心配が少ない高速解繊機、高圧ホモジナイザー、超高圧ホモジナイザーが挙げられる。
解繊処理の際には、繊維原料を、水と有機溶媒を単独または組み合わせて希釈してスラリー状にすることが好ましいが、特に限定されない。分散媒としては、水の他に、極性有機溶剤を使用することができる。好ましい極性有機溶剤としては、アルコール類、ケトン類、エーテル類、ジメチルスルホキシド(DMSO)、ジメチルホルムアミド(DMF)、またはジメチルアセトアミド(DMAc)等が挙げられるが、特に限定されない。アルコール類としては、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、またはt-ブチルアルコール等が挙げられる。ケトン類としては、アセトンまたはメチルエチルケトン(MEK)等が挙げられる。エーテル類としては、ジエチルエーテルまたはテトラヒドロフラン(THF)等が挙げられる。分散媒は1種であってもよいし、2種以上でもよい。また、分散媒中に繊維原料以外の固形分、例えば水素結合性のある尿素などを含んでも構わない。
本発明では、微細繊維状セルロースを濃縮、乾燥させた後に解繊処理を行ってもよい。この場合、濃縮、乾燥の方法は特に限定されないが、例えば、微細繊維状セルロースを含有するスラリーに濃縮剤を添加する方法、一般に用いられる脱水機、プレス、乾燥機を用いる方法等が挙げられる。また、公知の方法、例えばWO2014/024876、WO2012/107642、およびWO2013/121086に記載された方法を用いることができる。また、濃縮した微細繊維状セルロースをシート化してもよい。該シートを粉砕して解繊処理を行うこともできる。
微細繊維状セルロースを粉砕する際に粉砕に用いる装置としては、高速解繊機、グラインダー(石臼型粉砕機)、高圧ホモジナイザー、超高圧ホモジナイザー、高圧衝突型粉砕機、ボールミル、ビーズミル、ディスク型リファイナー、コニカルリファイナー、二軸混練機、振動ミル、高速回転下でのホモミキサー、超音波分散機、ビーターなど、湿式粉砕する装置等を使用することもできるが特に限定されない。また、処理条件も好ましい重合度が得られる条件であれば特に限定されない。
(第2セルロース繊維)
本発明のシートは、第2セルロース繊維を含む。第2セルロース繊維は、繊維幅が1μm以上100μm以下であるセルロース繊維である。第2セルロース繊維は、繊維幅が1000nmより大きく100μm以下であるセルロース繊維であることが好ましい。本明細書では、第2セルロース繊維を粗大セルロース繊維や粗大繊維状セルロースともいう。
本実施形態においては、たとえば上記に繊維状セルロース原料として例示したパルプを、第2セルロース繊維として用いることができる。これにより、製造コストをさらに抑えることができる。パルプの繊維幅は、たとえば15μm以上であり、20μm以上であることが生産性を向上させる観点から好ましい。一方で、パルプの繊維幅は、たとえば100μm以下である。
パルプ繊維の繊維幅は、カヤーニオートメーション社のカヤーニ繊維長測定器(FS-200形)を用いて測定することができる。ここで、パルプ繊維の繊維幅とは、セルロース繊維の幹繊維における繊維幅である。たとえば、パルプ繊維がフィブリルセルロース繊維である場合には、フィブリル化して分枝化した繊維の繊維幅ではなく、主軸を構成している幹繊維の繊維幅をパルプ繊維の繊維幅という。
第2セルロース繊維の含有量は、シートの全質量に対して、50質量%以上であることが好ましく、65質量%以上であることがより好ましく、75質量%以上であることがさらに好ましい。なお、生産性をより向上させる観点からは、第2セルロース繊維の含有量をシート全体に対して85質量%以上とすることもできる。また、第2セルロース繊維の含有量は、シートの全質量に対して、99質量%以下であり、95質量%以下であることがより好ましい。また、強度を向上させる観点からは、第2セルロース繊維の含有量をシート全体に対して85質量%以下とすることもできる。
第2セルロース繊維は、針葉樹パルプ及び広葉樹パルプを含むことが好ましい。さらに、本発明のシートにおいて、針葉樹パルプの含有量(質量部)をN、広葉樹パルプの含有量(質量部)をLとした場合、N/Lの値は、1以上であることが好ましく、1.5以上であることがより好ましく、2以上であることがさらに好ましく、3以上であることが特に好ましい。また、N/Lの値は、8以下であることが好ましく、7以下であることがより好ましい。本発明のシートにおいては、針葉樹パルプとの広葉樹パルプの含有量を上記範囲内とし、さらに、そこに微細繊維状セルロースを混合することで、シートの比引張弾性率が効果的に高められる。
なお、本発明のシートにおいて、針葉樹パルプの含有量と広葉樹パルプの含有量の比率は、例えば、JIS P 8120:1998に準拠して、シートから離解し染色した繊維を顕微鏡下で定量することで求めることができる。
針葉樹パルプと広葉樹パルプの混合体のカナダ標準フリーネスは600ml以下であることが好ましく、550ml以下であることがより好ましく、500ml以下であることがさらに好ましい。なお、針葉樹パルプと広葉樹パルプの混合体のカナダ標準フリーネスの下限値は特に限定されるものではないが、50ml以上であることが好ましい。なお、カナダ標準フリーネスは、JIS P 8121-1995に準じて、カナダ標準ろ水度法により測定される濾水度である。
また、針葉樹パルプと広葉樹パルプの混合体の変則フリーネスは、800ml以下であってもよい。この場合、針葉樹パルプと広葉樹パルプの混合体の変則フリーネスは、700ml以下であることが好ましく、650ml以下であることがより好ましい。なお、針葉樹パルプと広葉樹パルプの混合体の変則フリーネスは、200ml以上であることが好ましい。変則フリーネスが上記範囲のパルプ繊維は、高叩解パルプであると言うことができ、このようなパルプとしては、たとえばグラシンパルプを挙げることができる。高叩解パルプの濾水度は、一般的なカナダ標準ろ水度法では測定が難しいため、変則フリーネスが測定される。変則フリーネスは、JIS P 8121-1995に規定のカナダ標準ろ水度法において、パルプ濃度を0.3質量%から0.03質量%に変更し、JIS規格スクリーンプレートから80メッシュワイヤーに変更して測定した濾水度である。
本発明のシートが高叩解パルプを含む場合、これによりシートの強度をより効果的に向上させることができる。高叩解パルプの繊維幅は、たとえば1μm以上であり、5μm以上であることが生産性を向上させる観点から好ましい。一方で、高叩解パルプの繊維幅は、たとえば15μm未満である。
パルプの叩解は、たとえば解繊処理装置を用いて行うことができる。解繊処理装置としては特に限定されない。例えば、高速解繊機、グラインダー(石臼型粉砕機)、高圧ホモジナイザーや超高圧ホモジナイザー、クレアミックス、高圧衝突型粉砕機、ボールミル、ビーズミル、ディスク型リファイナー、コニカルリファイナーが挙げられる。また、二軸混練機、振動ミル、高速回転下でのホモミキサー、超音波分散機、ビーター等、湿式粉砕する装置等を適宜使用することができる。
(比率)
第1セルロース繊維の含有量をC1とし、第2セルロース繊維の含有量をC2とした場合、C1/(C1+C2)は、0.01以上であることが好ましく、0.05以上であることがより好ましく、0.08以上であることがとくに好ましい。一方で、C1/(C1+C2)は、0.3以下であることが好ましく、0.25以下であることがより好ましい。これにより、シートの生産性と強度のバランスをより効果的に向上させることができる。
ここで、シート中の第1セルロース繊維は、たとえば走査電子顕微鏡(日立ハイテクノロジーズ社製、S-3600N)にて観察することが可能である。また、第2セルロース繊維は、たとえば高分解能電界放出型走査電子顕微鏡(日立製作所製、S-5200)にて観察することが可能である。このような観察により、各繊維の体積比率から質量比率を算出してもよい。但し、後述するようなシートの製造工程における、各セルロース繊維の混合比は、シートにおける第1セルロース繊維と第2セルロース繊維の比率と同等である。
(ポリアミドポリアミンエピハロヒドリン)
本発明のシートは、たとえばポリアミンポリアミドエピハロヒドリンをさらに含有することができる。これにより、シートの強度をさらに向上させることが可能となる。ポリアミンポリアミドエピハロヒドリンは、脂肪族二塩基性カルボン酸又はその誘導体と、ポリアルキレンポリアミンを加熱縮合させてポリアミドポリアミンを合成し、次いで該ポリアミドポリアミンとエピハロヒドリンを反応させることで得られるカチオン性熱硬化性樹脂である。なお、ポリアミンポリアミドエピハロヒドリンは水性樹脂であるから、シート形成用スラリーにはポリアミンポリアミドエピハロヒドリンを水溶液として添加することもできる。
ポリアミンポリアミドエピハロヒドリンとしては、例えば、ポリアミンポリアミドエピクロロヒドリン、ポリアミンポリアミドエピブロモヒドリン、ポリアミンポリアミドエピヨードヒドリン等を挙げることができる。
ポリアミンポリアミドエピハロヒドリンの含有量は、シートの全質量に対して、0.05質量%以上であることが好ましく、0.1質量%以上であることがより好ましく、0.3質量%以上であることがさらに好ましい。
(その他の繊維)
本発明のシートは第1セルロース繊維と第2セルロース繊維以外に、その他のセルロース繊維を含んでいてもよい。その他のセルロース繊維としては、たとえば第2セルロース繊維を叩解して繊維幅を100nmより大きく1000nm未満とした、高叩解パルプを挙げることができる。ここで、その他の繊維の繊維幅とは、セルロース繊維の幹繊維における繊維幅である。たとえば、その他の繊維がフィブリル化セルロース繊維である場合には、フィブリル化して分枝化した繊維の繊維幅ではなく、幹繊維の繊維幅をその他の繊維の繊維幅という。
その他のセルロース繊維の叩解は、たとえば解繊処理装置を用いて行うことができる。解繊処理装置としては特に限定されない。例えば、高速解繊機、グラインダー(石臼型粉砕機)、高圧ホモジナイザーや超高圧ホモジナイザー、クレアミックス、高圧衝突型粉砕機、ボールミル、ビーズミル、ディスク型リファイナー、コニカルリファイナーが挙げられる。また、二軸混練機、振動ミル、高速回転下でのホモミキサー、超音波分散機、ビーター等、湿式粉砕する装置等を適宜使用することができる。
(任意成分)
本発明のシートには、上述した成分以外の任意成分が含まれていてもよい。任意成分としては、たとえば、親水性樹脂、防腐剤、消泡剤、潤滑剤、紫外線吸収剤、染料、顔料、安定剤、界面活性剤、サイズ剤、歩留まり向上剤、嵩高剤、濾水性向上剤、pH調整剤、蛍光増白剤、ピッチコントロール剤、スライムコントロール剤、消泡剤、保水剤、分散剤等を挙げることができる。
また、本発明のシートには、熱可塑性樹脂エマルジョン、熱硬化性樹脂エマルジョン、光硬化性樹脂エマルジョン等が添加されてもよい。熱可塑性樹脂エマルジョン、熱硬化性樹脂エマルジョン、光硬化性樹脂エマルジョンの具体例としては、特開2009-299043号公報に記載のものが挙げられる。
(シートの製造方法)
シートの製造工程は、繊維幅が100nm以下であって、かつ化学変性された第1セルロース繊維と、繊維幅が1μm以上100μm以下の第2セルロース繊維と、を含むスラリーを得る工程と、このスラリーを基材上に塗工する工程、又は、スラリーを抄紙する工程を含む。本発明の最も好ましい製造工程は、生産性の面から、スラリーを抄紙によりシートを得る方法である。
スラリーを得る工程では、第2セルロース繊維として、針葉樹パルプと広葉樹パルプを混合する工程を含むことが好ましく、その後に、第1セルロース繊維を加えて混合する工程を含むことが好ましい。針葉樹パルプと広葉樹パルプを混合する工程では、必要に応じて、叩解処理工程を設けることが好ましく、叩解処理工程では、所望のフリーネスとなるようにパルプ繊維に叩解処理を施すことが好ましい。
<塗工工程>
塗工工程は、第1セルロース繊維と、第2セルロース繊維と、を含むスラリーを基材上に塗工し、これを乾燥して形成されたシートを基材から剥離することによりシートを得る工程である。塗工装置と長尺の基材を用いることで、シートを連続的に生産することができる。
塗工工程で用いる基材の材質は、特に限定されないが、スラリーに対する濡れ性が高いものの方が乾燥時のシートの収縮等を抑制することができて良いが、乾燥後に形成されたシートが容易に剥離できるものを選択することが好ましい。中でも樹脂板又は金属板が好ましいが、特に限定されない。例えばアクリル板、ポリエチレンテレフタレート板、塩化ビニル板、ポリスチレン板、ポリ塩化ビニリデン板等の樹脂板や、アルミ板、亜鉛板、銅板、鉄板等の金属板及び、それらの表面を酸化処理したもの、ステンレス板、真ちゅう板等を用いることができる。
塗工工程において、スラリーの粘度が低く、基材上で展開してしまう場合、所定の厚み、坪量のシートを得るため、基材上に堰止用の枠を固定して使用してもよい。堰止用の枠の質は特に限定されないが、乾燥後に付着するシートの端部が容易に剥離できるものを選択することが好ましい。中でも樹脂板または金属板を成形したものが好ましいが、特に限定されない。例えばアクリル板、ポリエチレンテレフタレート板、塩化ビニル板、ポリスチレン板、ポリ塩化ビニリデン板等の樹脂板や、アルミ板、亜鉛板、銅板、鉄板等の金属板及び、それらの表面を酸化処理したもの、ステンレス板、真ちゅう板等を成形したものを用いることができる。
スラリーを塗工する塗工機としては、例えば、ロールコーター、グラビアコーター、ダイコーター、カーテンコーター、エアドクターコーター等を使用することができる。厚みをより均一にできることから、ダイコーター、カーテンコーター、スプレーコーターが好ましい。
塗工温度は特に限定されないが、20℃以上45℃以下であることが好ましく、25℃以上40℃以下であることがより好ましく、27℃以上35℃以下であることがさらに好ましい。塗工温度が上記下限値以上であれば、スラリーを容易に塗工でき、上記上限値以下であれば、塗工中の分散媒の揮発を抑制できる。
塗工工程においては、シートの仕上がり坪量が6g/m2以上500g/m2以下、好ましくは19g/m2以上300g/m2以下になるようにスラリーを塗工することが好ましい。坪量が上記範囲内となるように塗工することで、強度に優れたシートが得られる。
塗工工程は、基材上に塗工したスラリーを乾燥させる工程を含むことが好ましい。乾燥方法としては、特に限定されないが、非接触の乾燥方法でも、シートを拘束しながら乾燥する方法の何れでもよく、これらを組み合わせてもよい。
非接触の乾燥方法としては、特に限定されないが、熱風、赤外線、遠赤外線または近赤外線により加熱して乾燥する方法(加熱乾燥法)、真空にして乾燥する方法(真空乾燥法)を適用することができる。加熱乾燥法と真空乾燥法を組み合わせてもよいが、通常は、加熱乾燥法が適用される。赤外線、遠赤外線または近赤外線による乾燥は、赤外線装置、遠赤外線装置または近赤外線装置を用いて行うことができるが、特に限定されない。加熱乾燥法における加熱温度は特に限定されないが、20℃以上150℃以下とすることが好ましく、25℃以上105℃以下とすることがより好ましい。加熱温度を上記下限値以上とすれば、分散媒を速やかに揮発させることができ、上記上限値以下であれば、加熱に要するコストの抑制及び微細繊維状セルロースが熱によって変色することを抑制できる。
<抄紙工程>
シートの製造工程は、第1セルロース繊維と、第2セルロース繊維と、を含むスラリーを抄紙する工程を含んでもよい。抄紙工程で抄紙機としては、長網式、円網式、傾斜式等の連続抄紙機、これらを組み合わせた多層抄き合わせ抄紙機等が挙げられる。抄紙工程では、手抄き等公知の抄紙を行ってもよい。
抄紙工程では、スラリーをワイヤー上で濾過、脱水して湿紙状態のシートを得た後、プレス、乾燥することでシートを得る。スラリーを濾過、脱水する場合、濾過時の濾布としては特に限定されないが、微細繊維状セルロースや他の成分は通過せず、かつ濾過速度が遅くなりすぎないことが重要である。このような濾布としては特に限定されないが、有機ポリマーからなるシート、織物、多孔膜が好ましい。有機ポリマーとしては特に限定されないが、ポリエチレンテレフタレートやポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン(PTFE)等のような非セルロース系の有機ポリマーが好ましい。具体的には孔径0.1μm以上20μm以下、例えば1μmのポリテトラフルオロエチレンの多孔膜、孔径0.1μm以上20μm以下、例えば1μmのポリエチレンテレフタレートやポリエチレンの織物等が挙げられるが、特に限定されない。
スラリーからシートを製造する方法としては、特に限定されないが、例えばWO2011/013567に記載の製造装置を用いる方法等が挙げられる。この製造装置は、微細繊維状セルロースを含むスラリーを無端ベルトの上面に吐出し、吐出されたスラリーから分散媒を搾水してウェブを生成する搾水セクションと、ウェブを乾燥させて繊維シートを生成する乾燥セクションとを備えている。搾水セクションから乾燥セクションにかけて無端ベルトが配設され、搾水セクションで生成されたウェブが無端ベルトに載置されたまま乾燥セクションに搬送される。
採用できる脱水方法としては特に限定されないが、紙の製造で通常に使用している脱水方法が挙げられ、長網、円網、傾斜ワイヤーなどで脱水した後、ロールプレスで脱水する方法が好ましい。また、乾燥方法としては特に限定されないが、紙の製造で用いられている方法が挙げられ、例えば、シリンダードライヤー、ヤンキードライヤー、熱風乾燥、近赤外線ヒーター、赤外線ヒーターなどの方法が好ましい。
(積層シート)
本発明は、上述したシートの少なくとも一方の面側に塗布層をさらに有する積層シートに関するものでもある。塗布層は、上述したシートの少なくとも一方の面上に直接積層されるものであることが好ましい。
塗布層は、バインダー、顔料などを含んでもよい。また、必要に応じて、分散剤、保水剤、消泡剤、着色剤等の通常用いられている各種助剤が適宜使用できる。
本発明に使用できるバインダーとしては、カゼイン、澱粉、変性澱粉、ポリビニルアルコールなどの水溶性高分子、またはポリエステル系樹脂、ポリウレタン系樹脂、スチレン-ブタジエン系樹脂、酢酸ビニル系樹脂、エチレン-酢酸ビニル系樹脂、アクリロニトリル-ブタジエン系樹脂、ポリエチレン系樹脂、ポリプロピレン系樹脂、カルボキシメチルセルロース系樹脂、ポリアミド系樹脂、塩化ビニル系樹脂、塩化ビニリデン系樹脂、フッ素系樹脂、シリコーン系樹脂等が使用できる。
本発明において使用できる顔料としてはカオリン、炭酸カルシウム、炭酸マグネシウム、酸化マグネシウム、水酸化アルミニウム、アルミナ、シリカ、アルミノ珪酸マグネシウム、珪酸カルシウム、ホワイトカーボン、ベントナイト、ゼオライト、セリサイト、スメクタイト、硫酸カルシウム、硫酸バリウム、合成マイカ、二酸化チタン、酸化亜鉛などの無機顔料、さらにはポリイソプレン、ポリネオプレン、ポリブタジエン等のポリジエン類、ポリブテン、ポリイソブチレン、ポリプロピレン等のポリアルケン類、酢酸ビニル、スチレン、(メタ)アクリル酸、(メタ)アクリル酸アルキルエステル、(メタ)アクリルアミド、メチルビニルエーテル等のビニル系モノマーの重合体や共重合体類、ポリウレタン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、尿素系樹脂、メラミン系樹脂、ベンゾグアナミン系樹脂等の各種の密実型、中空型あるいは貫通孔型粒子等の有機顔料が挙げられ、顔料の1種又は2種以上を使用することができる。
塗布層の坪量は、特に限定されるものではないが、0.05g/m2以上であることが好ましく、0.1g/m2以上であることがより好ましく、0.2g/m2以上であることがさらに好ましい。また塗布層の坪量の上限値は、特に限定されないが、たとえば10g/m2以下とすることができる。
塗布層は、含浸処理、スプレー処理などや、一般に公知の塗工装置、例えばサイズプレスコーター、ブレードコーター、エアーナイフコーター、ロールコーター、リバースロールコーター、バーコーター、カーテンコーター、スロットダイコーター、グラビアコーター、チャンプレックスコーター、ブラシコーター、スライドビードコーター、ツーロールあるいはメータリングブレード方式のサイズプレスコーター、ビルブレードコーター、ショートドウェルコーター、ゲートロールコーター、キャレンダーによるニップコーター等が適宜用いられる。
本発明のシートは、本発明の効果を損なわない限りにおいて必要に応じて平滑化処理を行ってもよい。平滑化処理は通常のスーパーキャレンダー、グロスキャレンダー、ソフトキャレンダー等の平滑化処理装置を用いることができる。
(用途)
本発明のシートは、本発明の微細セルロース繊維含有シートは、単独で又は他の材料と組み合わせて、印刷用の紙、フィルター、セパレーター、粒子担持シート、包装材、ダンボールなどの種々の紙製品、湿式、乾式不織布、おむつ、家電の部材、各種の乗り物や建物の内装材、外装材などに使用することもできる。
以下に実施例と比較例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
〔実施例1〕
<第1セルロース繊維(1)の作製>
針葉樹クラフトパルプ100質量部(絶乾質量)を、リン酸二水素アンモニウムと尿素の混合水溶液に含浸させ、リン酸二水素アンモニウム49質量部、尿素130質量部となるように圧搾し、薬液含浸パルプを得た。得られた薬液含浸パルプを105℃の乾燥機で乾燥し、水分を蒸発させてプレ乾燥させた。その後、140℃に設定した送風乾燥機で10分間加熱し、パルプ中のセルロースにリン酸基を導入し、リン酸化パルプを得た。
得られたリン酸化パルプをパルプ質量で100g分取し、10Lのイオン交換水を注ぎ、撹拌して均一に分散させた後、濾過脱水して、脱水シートを得る工程を2回繰り返した。次いで、得られた脱水シートを10Lのイオン交換水で希釈し、撹拌しながら、1Nの水酸化ナトリウム水溶液を少しずつ添加し、pHが12以上13以下のパルプスラリーを得た。その後、このパルプスラリーを脱水し、脱水シートを得た後、10Lのイオン交換水を添加した。撹拌して均一に分散させた後、濾過脱水して、脱水シートを得る工程を2回繰り返した。
得られた脱水シートに対し、先と同様にして、リン酸基を導入する工程、濾過脱水する工程を繰り返し、二回リン酸化セルロースの脱水シートを得た。得られた脱水シートの赤外線吸収スペクトルをFT-IRで測定した。その結果、1230cm-1以上1290cm-1以下にリン酸基に基づく吸収が観察され、リン酸基の付加が確認された。
<機械処理>
得られた二回リン酸化セルロースの脱水シートにイオン交換水を添加し、固形分濃度が2質量%のスラリーを調製した。このスラリーを、湿式微粒化装置(スギノマシン社製、アルティマイザー)で245MPaの圧力にて3回処理し、微細繊維状セルロースである第1セルロース繊維(1)を含む、第1セルロース繊維分散液(1)を得た。なお、第1セルロース繊維(1)は、そのリン酸基量が0.98mmol/gであって、繊維幅は3nm程度であった。
<第2セルロース繊維(1)の準備>
第2セルロース繊維(1)としては、針葉樹クラフトパルプを使用した。第2セルロース繊維(1)の繊維幅は30μm程度であった。
<シート化>
第1セルロース繊維分散液(1)と、第2セルロース分散液(1)と、ポリアミンポリアミド・エピクロロヒドリンと、を混合して抄紙用スラリーを得た。抄紙用スラリーは、第1セルロース繊維(1)を10質量部、第2セルロース繊維(1)を90質量部、ポリアミンポリアミド・エピクロロヒドリン(星光PMC株式会社製、湿潤紙力剤WS4030)を0.5質量部含み、固形分濃度が0.3質量%である水分散液とした。
この抄紙用スラリーを、角型手抄き装置を用い、ワイヤー上で抄紙・脱水し、湿潤シートを得た。湿潤シートを、ヤンキードライヤーにて温度110℃で乾燥して、坪量30g/m2のシートを作製した。
〔実施例2〕
シート化工程にて用いられる抄紙用スラリーとして、第1セルロース繊維(1)を20質量部、第2セルロース繊維(1)を80質量部、ポリアミンポリアミド・エピクロロヒドリン(星光PMC株式会社製、湿潤紙力剤WS4030)を0.5質量部含むものを用いた以外は、実施例1と同様にしてシート化工程を行い、シートを得た。
〔実施例3〕
シート化工程にて用いられる抄紙用スラリーとして、第1セルロース繊維(1)を20質量部、第2セルロース繊維(1)を80質量部含み、ポリアミンポリアミド・エピクロロヒドリンを含まないものを用いた以外は、実施例1と同様にしてシート化工程を行い、シートを得た。
〔実施例4〕
<第2セルロース繊維(2)の作成>
針葉樹晒クラフトパルプを濃度4.0質量%になるように水を加えて、分散した後、ダブルディスクレファイナーで1回処理をし、第2セルロース繊維(2)を得た。第2セルロース繊維(2)の繊維幅は10μm程度であった。
<シート化工程>
抄紙用スラリーとして、第1セルロース繊維(1)を10質量部、第2セルロース繊維(2)を90質量部、ポリアミンポリアミド・エピクロロヒドリン(星光PMC株式会社製、湿潤紙力剤WS4030)を0.5質量部含むものを用いた以外は、実施例1と同様にしてシート化工程を行い、シートを得た。
〔実施例5〕
<第1セルロース繊維(2)の作成>
乾燥質量100質量部相当の未乾燥の針葉樹晒クラフトパルプとTEMPO(2,2,6,6-テトラメチルピペリジン-1-オキシル)1.6質量部と、臭化ナトリウム10質量部とを水10000質量部に分散させた。次いで、13質量%の次亜塩素酸ナトリウム水溶液を、1.0gのパルプに対して次亜塩素酸ナトリウムの量が3.5mmolになるように加えて反応を開始した。反応中は1.0Mの水酸化ナトリウム水溶液を滴下してpHを10以上11以下に保ち、pHに変化が見られなくなった時点で反応終了と見なし、パルプにカルボキシ基を導入した。このパルプスラリーを脱水し、脱水シートを得た後、5000質量部のイオン交換水を注ぎ、攪拌して均一に分散させた後、濾過脱水して、脱水シートを得る工程を2回繰り返し、カルボキシ基変性セルロース繊維を得た。
得られたカルボキシ基変性セルロースの脱水シートにイオン交換水を添加し、固形分濃度が2質量%のスラリーを調製した。このスラリーを、湿式微粒化装置(スギノマシン社製、アルティマイザー)で245MPaの圧力にて3回処理し、微細繊維状セルロースである第1セルロース繊維(2)を含む、第1セルロース繊維分散液(2)を得た。なお、第1セルロース繊維(2)は、そのカルボキシ基量が1.01mmol/gであって、繊維幅は3nm程度であった。
<シート化工程>
抄紙用スラリーとして、第1セルロース繊維(2)を20質量部、第2セルロース繊維(1)を80質量部、ポリアミンポリアミド・エピクロロヒドリン(星光PMC株式会社製、湿潤紙力剤WS4030)を0.5質量部含むものを用いた以外は、実施例1と同様にしてシート化工程を行い、シートを得た。
〔比較例1〕
シート化工程にて用いられる抄紙用スラリーとして、第1セルロース繊維(1)を100質量部、ポリアミンポリアミド・エピクロロヒドリン(星光PMC株式会社製、湿潤紙力剤WS4030)を0.5質量部含み、第2セルロース繊維を含まないものを用いた以外は、実施例1と同様にしてシート化工程を行った。
〔比較例2〕
シート化工程にて用いられる抄紙用スラリーとして、第1セルロース繊維(2)を100質量部、ポリアミンポリアミド・エピクロロヒドリン(星光PMC株式会社製、湿潤紙力剤WS4030)を0.5質量部含み、第2セルロース繊維を含まないものを用いた以外は、実施例1と同様にしてシート化工程を行った。
〔比較例3〕
シート化工程にて用いられる抄紙用スラリーとして、第2セルロース繊維(1)を100質量部、ポリアミンポリアミド・エピクロロヒドリン(星光PMC株式会社製、湿潤紙力剤WS4030)を0.5質量部含み、第1セルロース繊維を含まないものを用いた以外は、実施例1と同様にしてシート化工程を行い、シートを得た。
〔比較例4〕
シート化工程にて用いられる抄紙用スラリーとして、第2セルロース繊維(2)を100質量部、ポリアミンポリアミド・エピクロロヒドリン(星光PMC株式会社製、湿潤紙力剤WS4030)を0.5質量部含み、第1セルロース繊維を含まないものを用いた以外は、実施例1と同様にしてシート化工程を行い、シートを得た。
〔比較例5〕
<未変性微細セルロース繊維の作成>
針葉樹晒クラフトパルプを濃度4.0質量%になるように水を加えて、分散した後、ダブルディスクレファイナーで5時間連続循環叩解を行い、未変性微細セルロース繊維を得た。得られた未変性微細セルロース繊維の繊維幅は、350nm程度であった。
<シート化工程>
シート化工程にて用いられる抄紙用スラリーとして、未変性微細セルロース繊維を20質量部、第2セルロース繊維(1)を80質量部、ポリアミンポリアミド・エピクロロヒドリン(星光PMC株式会社製、湿潤紙力剤WS4030)を0.5質量部含み、第1セルロース繊維を含まないものを用いた以外は、実施例1と同様にしてシート化工程を行い、シートを得た。
〔実施例101〕
<第2セルロース繊維(3)の準備>
第2セルロース繊維(3)としては、針葉樹クラフトパルプ(NBKP)80質量部と広葉樹クラフトパルプ20質量部(LBKP)を混合したものを使用した。第2セルロース繊維(3)の平均繊維幅は30μm程度、カナダ標準フリーネスは450mlであった。
<シート化>
第1セルロース繊維分散液(1)と、第2セルロース分散液(3)と、ポリアミンポリアミド・エピクロロヒドリンと、を混合して抄紙用スラリーを得た。抄紙用スラリーは、第1セルロース繊維(1)を20質量部、第2セルロース繊維(3)を80質量部、ポリアミンポリアミド・エピクロロヒドリン(星光PMC株式会社製、湿潤紙力剤WS4030)を0.5質量部含み、固形分濃度が0.5質量%である水分散液とした。
この抄紙用スラリーを、角型手抄き装置を用い、ワイヤー上で抄紙・脱水し、湿潤シートを得た。湿潤シートを、ヤンキードライヤーにて温度110℃で乾燥して、坪量20g/m2のシートを作製した。
なお、実施例101のコントロールシートとして、第2セルロース繊維(3)を100質量部と、ポリアミンポリアミド・エピクロロヒドリンを0.5質量部含む抄紙用スラリーから上記と同様の方法でシートを作製した。
〔実施例102〕
<第2セルロース繊維(3)の準備>において、NBKPとLBKPの混合比を60:40(NBKP:LBKP)とし、第2セルロース繊維(4)として用いた以外は実施例101と同様にしてシートを得た。第2セルロース繊維(4)の平均繊維幅は30μm程度であった。
なお、実施例102のコントロールシートとして、第2セルロース繊維(4)を100質量部と、ポリアミンポリアミド・エピクロロヒドリンを0.5質量部含む抄紙用スラリーから上記と同様の方法でシートを作製した。
〔実施例103〕
<第2セルロース繊維(3)の準備>において、NBKPとLBKPの混合比を50:50(NBKP:LBKP)とし、第2セルロース繊維(5)として用いた以外は実施例101と同様にしてシートを得た。第2セルロース繊維(5)の平均繊維幅は30μm程度であった。
なお、実施例103のコントロールシートとして、第2セルロース繊維(5)を100質量部と、ポリアミンポリアミド・エピクロロヒドリンを0.5質量部含む抄紙用スラリーから上記と同様の方法でシートを作製した。
〔実施例104〕
<第2セルロース繊維(6)の作製>
針葉樹晒クラフトパルプ60質量部と広葉樹晒クラフトパルプ40質量部の合計濃度が4.0質量%になるように水を加えて分散した後、ダブルディスクレファイナーで1回処理をし、高叩解パルプスラリーを作製した。この高叩解パルプスラリーを、第2セルロース繊維(6)とした。第2セルロース繊維(6)の平均繊維幅は15μm程度、変則フリーネスは570mlであった。なお、変則フリーネスは、JIS P 8121-1995に規定のカナダ標準ろ水度法において、パルプ濃度を0.3質量%から0.03質量%に変更し、JIS規格スクリーンプレートから80メッシュワイヤーに変更して測定したフリーネスである。
<シート化>において、抄紙用スラリーを、第1セルロース繊維(1)を20質量部、第2セルロース繊維(6)を80質量部、ポリアミンポリアミド・エピクロロヒドリンを0.5質量部含む水分散液とした以外は、実施例101と同様にして坪量20g/m2のシートを得た。
なお、実施例104のコントロールシートとして、第2セルロース繊維(6)を100質量部と、ポリアミンポリアミド・エピクロロヒドリンを0.5質量部含む抄紙用スラリーから上記と同様の方法でシートを作製した。
〔実施例105〕
<シート化>において、抄紙用スラリーを、第1セルロース繊維(1)を10質量部、第2セルロース繊維(6)を90質量部、ポリアミンポリアミド・エピクロロヒドリン(星光PMC株式会社製、湿潤紙力剤WS4030)を0.5質量部含む水分散液とした以外は、実施例104と同様にして坪量20g/m2のシートを得た。
なお、実施例105のコントロールシートは、実施例104のコントロールシートとした。
〔測定方法〕
<置換基量の測定>
リン酸基の導入量は、セルロースをイオン交換水で含有量が0.2質量%となるように希釈した後、イオン交換樹脂による処理、アルカリを用いた滴定によって測定した。イオン交換樹脂による処理では、0.2質量%セルロース含有スラリーに体積で1/10の強酸性イオン交換樹脂(オルガノ株式会社製、アンバージェット1024:コンディショング済)を加え、1時間振とう処理を行った。その後、目開き90μmのメッシュ上に注ぎ、樹脂とスラリーを分離した。アルカリを用いた滴定では、イオン交換後の繊維状セルロース含有スラリーに、0.1Nの水酸化ナトリウム水溶液を加えながら、スラリーが示す電気伝導度の値の変化を計測した。すなわち、図1に示した曲線の第1領域で必要としたアルカリ量(mmol)を、滴定対象スラリー中の固形分(g)で除して、置換基導入量(mmol/g)とした。
カルボキシ基導入量は、図2(カルボキシ基)に示した曲線の第1領域で必要としたアルカリ量(mmol)を、滴定対象スラリー中の固形分(g)で除して、置換基導入量(mmol/g)とした。
<繊維幅の測定>
第1セルロース繊維及び第2セルロース繊維の繊維幅は下記の方法で測定した。
微細繊維状セルロース分散液の上澄み液を濃度が0.01質量%以上0.1質量%以下となるように水で希釈し、親水化処理したカーボングリッド膜に滴下した。乾燥後、酢酸ウラニルで染色し、透過型電子顕微鏡(日本電子社製、JEOL-2000EX)により観察した。
<フリーネス>
カナダ標準フリーネスは、JIS P 8121-1995に準じて、カナダ標準ろ水度法により測定される値である。高叩解パルプの濾水度は、一般的なカナダ標準ろ水度法では測定が難しいため、変則フリーネスの測定方法で測定した。具体的には、JIS P 8121-1995に規定のカナダ標準ろ水度法において、パルプ濃度を0.3質量%から0.03質量%に変更し、JIS規格スクリーンプレートから80メッシュワイヤーに変更して測定した濾水度を変則フリーネスとした。
〔評価〕
実施例及び比較例のそれぞれで作製したシートについて、以下の評価方法に従って評価を実施した。
<生産性>
シートの作成時に、抄紙用スラリー(固形分濃度0.5質量%)250gをワイヤー(ハイク・ワグナー社製、 HT2525-30)上に流してから、水が引くまでの時間(ワイヤー上のパルプスラリーから水が抜け、パルプ表面から光沢が消えるまでの時間)を計測した。以下の基準に基づいて、生産性を評価した。なお、水が引くまでの時間が短いほど、生産性が高いこととなる。
A:30秒以下
B:30秒以上1分未満
C:1分以上30分未満
D:30分以上
<引張強度>
JIS P 8113に準拠し、引張試験機テンシロン(エー・アンド・デイ社製)を用いて引張強さ(単位はN/m)を測定した。この引張強さを試験片の厚みで除し、引張強度(単位はMPa)を算出した。なお、引張強さを測定する際には、23℃、相対湿度50%で24時間調湿したものを試験片として用いた。
測定結果から、以下の基準に基づいて、引張強度を評価した。
A:25MPa以上
B:20MPa以上25MPa未満
C:15MPa以上20MPa未満
D:15MPa未満
<引張弾性率>
JIS P 8113に準拠し、引張試験機テンシロン(エー・アンド・デイ社製)を用いて引張弾性率を測定した。なお、弾性率は、SSカーブにおける正の最大の傾き値から計算した値である。なお、引張弾性率を測定する際には、23℃、相対湿度50%で24時間調湿したものを試験片として用いた。
測定結果から、以下の基準に基づいて、引張弾性率を評価した。
A:2.5GPa以上
B:2.0GPa以上2.5GPa未満
C:1.5GPa以上2.0GPa未満
D:1.5GPa未満
<比引張弾性率>
試験片の長さを80mm、チャック間距離を50mmとした以外はJIS P 8113に準拠し、引張試験機テンシロン(エー・アンド・デイ社製)を用いて引張弾性率を測定した。なお、弾性率は、SSカーブにおける正の最大の傾き値から計算した値である。なお、引張弾性率を測定する際には、23℃、相対湿度50%で24時間調湿したものを試験片として用いた。その後、を以下の式を用いて比引張弾性率を算出した。なお、試験片の密度はJIS P 8118:2014に準拠して測定したものである。
比引張弾性率(kNm/g)=シートの引張弾性率(GPa)/密度(g/cm3) さらに、比引張弾性率を以下の基準で評価した。
A:10kNm/gを超える
B:10kNm/g以下で8.5kNm/gを超える
C:8.5kNm/g以下で7kNm/gを超える
D:7kNm/g以下
[比引張弾性率の上昇率]
比引張弾性率の上昇率を以下の式を用いて算出した。
比引張弾性率の上昇率(%)=(シートの比引張弾性率-コントロールシートの比引張弾性率)/コントロールシートの比引張弾性率×100
なお、コントロールシートとは第1セルロース繊維を配合しないで作製したシートである。例えば、実施例101では、NBKP80質量部と、LBKP20質量部を混合したスラリーから形成したシートがコントロールシートとなる。
さらに、比引張弾性率の上昇率を以下の基準で評価した。
A:35%を超える
B:35%以下で25%を超える
C:25%以下で15%を超える
D:15%以下
<層間強度>
J TAPPI 18-2に準拠し、インターナルボンドテスターNo.2085(熊谷理機工業株式会社製)を用いてシートの層間強度(シートの厚み方向の強度)を測定した。なお、層間強度を測定する際には、23℃、相対湿度50%で24時間調湿したものを試験片として用いた。
測定結果から、以下の基準に基づいて、層間強度を評価した。
A:1500J/m2以上
B:1200J/m2以上1500J/m2未満
C:750J/m2以上1200J/m2未満
D:750J/m2未満
Figure 0007259226000002
Figure 0007259226000003
実施例では、いずれも優れた生産性と引張強度が実現されていた。また、いずれの実施例においても、引張弾性率や層間強度の評価において良好な結果が得られた。
一方で、比較例1、2では、第2セルロース繊維を含まず、かつ多量の第1セルロース繊維を含んでいたことから、実施例と比較して生産性に劣る結果となった。比較例3~5では、第1セルロース繊維を含まないことから、実施例と比較して引張強度と引張弾性率が劣る結果となった。また、比較例3~4では、層間強度においても実施例と比較して劣っていた。
中でも、実施例101~105においては、比引張弾性率が高く、かつ、比引張弾性率の上昇率が高かった。

Claims (6)

  1. 繊維幅が100nm以下であって、かつ化学変性された第1セルロース繊維と、
    繊維幅が1μm以上100μm以下の第2セルロース繊維と、
    を含むスラリーから形成されるシートであって、
    前記第2セルロース繊維は、針葉樹パルプ及び広葉樹パルプを含み、
    前記針葉樹パルプと前記広葉樹パルプの混合体の変則フリーネスが800ml以下であり、
    前記第1セルロース繊維の含有率が前記シート全体の質量%以上30質量%以下であるシート。
  2. 前記第1セルロース繊維の繊維幅が8nm以下である、請求項1に記載のシート。
  3. ポリアミドポリアミンエピハロヒドリンを含む、請求項1または2に記載のシート。
  4. 前記針葉樹パルプの含有量をN、前記広葉樹パルプの含有量をLとした場合、N/Lの値が1以上8以下である請求項1~3のいずれか1項に記載のシート。
  5. 前記針葉樹パルプと前記広葉樹パルプの混合体のカナダ標準フリーネスが600ml以下である請求項1~4のいずれか1項に記載のシート。
  6. 下記式で算出される比引張弾性率の上昇率が25%より大きい請求項1~5のいずれか1項に記載のシート;
    比引張弾性率の上昇率(%)=(シートの比引張弾性率-コントロールシートの比引張弾性率)/コントロールシートの比引張弾性率×100
    ここで、コントロールシートとは第1セルロース繊維を配合しないで作製したシートである。
JP2018145088A 2017-08-09 2018-08-01 シート Active JP7259226B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017154249 2017-08-09
JP2017154249 2017-08-09

Publications (2)

Publication Number Publication Date
JP2019031770A JP2019031770A (ja) 2019-02-28
JP7259226B2 true JP7259226B2 (ja) 2023-04-18

Family

ID=65524076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018145088A Active JP7259226B2 (ja) 2017-08-09 2018-08-01 シート

Country Status (1)

Country Link
JP (1) JP7259226B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7187243B2 (ja) * 2018-10-05 2022-12-12 大王製紙株式会社 セルロース繊維の成形体及びその製造方法
JP6607327B1 (ja) * 2019-02-08 2019-11-20 王子ホールディングス株式会社 シート
JP6617843B1 (ja) * 2019-02-08 2019-12-11 王子ホールディングス株式会社 シート
JP6741106B1 (ja) * 2019-03-19 2020-08-19 王子ホールディングス株式会社 シート及びシートの製造方法
JP7452542B2 (ja) 2019-07-01 2024-03-19 王子ホールディングス株式会社 シート及び積層体
JP7499593B2 (ja) 2020-03-31 2024-06-14 大王製紙株式会社 セルロース繊維の成形体及びその製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012087431A (ja) 2010-10-20 2012-05-10 Oji Paper Co Ltd 紙糸用原紙
JP2016166444A (ja) 2011-03-28 2016-09-15 ハリマ化成株式会社 紙または板紙の抄造方法
JP2017124564A (ja) 2016-01-15 2017-07-20 王子ホールディングス株式会社 ヒートシールシートおよびプレススルー包装体
WO2018003492A1 (ja) 2016-06-28 2018-01-04 日本製紙株式会社 全熱交換素子用紙

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012087431A (ja) 2010-10-20 2012-05-10 Oji Paper Co Ltd 紙糸用原紙
JP2016166444A (ja) 2011-03-28 2016-09-15 ハリマ化成株式会社 紙または板紙の抄造方法
JP2017124564A (ja) 2016-01-15 2017-07-20 王子ホールディングス株式会社 ヒートシールシートおよびプレススルー包装体
WO2018003492A1 (ja) 2016-06-28 2018-01-04 日本製紙株式会社 全熱交換素子用紙

Also Published As

Publication number Publication date
JP2019031770A (ja) 2019-02-28

Similar Documents

Publication Publication Date Title
JP7259226B2 (ja) シート
JP7164277B2 (ja) 微細繊維含有シートの製造方法
US11111631B2 (en) Method for producing fibrous cellulose, and fibrous cellulose
JP7006278B2 (ja) シート
JP7294395B2 (ja) パルプ、スラリー、シート、積層体及びパルプの製造方法
JP7120009B2 (ja) シート
JP7120010B2 (ja) シート
JP6617843B1 (ja) シート
JP7044067B2 (ja) 組成物
JP7327340B2 (ja) 繊維状セルロースの製造方法、繊維状セルロース分散液及びシート
JP7346873B2 (ja) シートの製造方法
JP7167528B2 (ja) シート
CN113227492A (zh) 纤维状纤维素、含有纤维状纤维素的物质、成型体及纤维状纤维素的制造方法
JP6607327B1 (ja) シート
JP7119609B2 (ja) シート及びシートの製造方法
JP7346874B2 (ja) 微細繊維状セルロース含有分散液の製造方法及び微細繊維状セルロース含有シートの製造方法
JP7395836B2 (ja) 微細繊維状セルロース含有分散液の製造方法
JP2020172738A (ja) シート及びシートの製造方法
JP7346870B2 (ja) シートの製造方法及びシート
JP7375319B2 (ja) 繊維状セルロース含有シートの製造方法
JP6741106B1 (ja) シート及びシートの製造方法
JP7327236B2 (ja) 繊維状セルロース、繊維状セルロース含有物、成形体及び繊維状セルロースの製造方法
JP7452542B2 (ja) シート及び積層体
JP6978403B2 (ja) 繊維状セルロース含有物、繊維状セルロース含有液状組成物及び成形体
JP2021161353A (ja) 繊維状セルロース、繊維状セルロース含有物及び成形体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230320

R150 Certificate of patent or registration of utility model

Ref document number: 7259226

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150