JP7258381B2 - Method for improving RH refining effect using hydrogen gas - Google Patents

Method for improving RH refining effect using hydrogen gas Download PDF

Info

Publication number
JP7258381B2
JP7258381B2 JP2022029212A JP2022029212A JP7258381B2 JP 7258381 B2 JP7258381 B2 JP 7258381B2 JP 2022029212 A JP2022029212 A JP 2022029212A JP 2022029212 A JP2022029212 A JP 2022029212A JP 7258381 B2 JP7258381 B2 JP 7258381B2
Authority
JP
Japan
Prior art keywords
vacuum
molten steel
refining
decarburization
hydrogen gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022029212A
Other languages
Japanese (ja)
Other versions
JP2023020853A (en
Inventor
劉建華
張碩
何楊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology of Beijing
Original Assignee
University of Science and Technology of Beijing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology of Beijing filed Critical University of Science and Technology of Beijing
Publication of JP2023020853A publication Critical patent/JP2023020853A/en
Application granted granted Critical
Publication of JP7258381B2 publication Critical patent/JP7258381B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/06Deoxidising, e.g. killing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/068Decarburising
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

本発明は鉄鋼冶金の技術分野に属し、水素ガスを用いてRH精錬効果を向上させる方法に関する。 The present invention belongs to the technical field of iron and steel metallurgy, and relates to a method for improving RH refining effect using hydrogen gas.

RH精錬炉は最初に単一の脱気装置として、今日まで脱炭、脱気、温度制御、介在物除去などの様々な冶金機能を有する精錬装置が進んでいる。 The RH smelting furnace was originally a single degassing device, and has been developed to date as a refining device having various metallurgical functions such as decarburization, degassing, temperature control, and inclusion removal.

しかしながら、従来のRH精錬過程に以下の問題がある。 However, the conventional RH refining process has the following problems.

RH精錬過程に大きな温度降下が存在する。連続鋳造時に溶鋼温度が低すぎると、ノズル詰まりが発生しやすく、鋳造が中断されてしまい、鋳片表面にスラグ巻き込み、割れなどの欠陥が発生しやすい。従来の方法はアルミニウム発熱剤によって昇温するが、溶鋼の清浄度を悪化させやすい。 There is a large temperature drop in the RH refining process. If the molten steel temperature is too low during continuous casting, nozzle clogging is likely to occur, casting is interrupted, and defects such as slag entrainment and cracks are likely to occur on the surface of the cast slab. The conventional method raises the temperature with an aluminum exothermic agent, which tends to deteriorate the cleanliness of the molten steel.

RH精錬脱炭技術の進化が高機能化しているが、科学技術の継続的な進歩に伴い、人々から炭素含有量の降下が要求されつづ、中国国内の製鋼所に依然として、製造される鋼材の炭素含有量が基準に達しないという問題がある。 The evolution of RH refining and decarburization technology has become highly functional, but with the continuous progress of science and technology, people continue to demand that the carbon content be lowered. There is a problem that the carbon content does not reach the standard.

RH精錬装置は溶鋼の循環流動を駆動することにより溶鋼の撹拌を促進し、介在物の衝突、重合、成長の除去を強化する。しかし、RH精錬後期に鋼中の介在物を除去する速度が著しく低下し、介在物を深く除去することを実現しにくい。 The RH refining system promotes molten steel agitation by driving the circulatory flow of the molten steel and enhances the removal of inclusion collision, polymerization and growth. However, the removal rate of inclusions in the steel is remarkably reduced in the latter stage of RH refining, making it difficult to achieve deep removal of inclusions.

現在、水素ガスの吹き付けにより上記技術課題を解決することも言及されているが、水素ガスを吹き付けるタイミングを把握しにくい。例えば、「水素ガス吹きつけ法でRH脱気装置における超低炭素鋼の脱炭速度を向上させる」及び「RHに水素ガスを吹き付けて超低炭素鋼を製造する」において、水素ガスを吹き付けるタイミングは脱炭処理の後期であり、水素ガスと溶鋼中の溶存酸素との反応及び真空チャンバの上吹き酸素ガスとの二次燃焼放熱により溶鋼温度を共に高めることを想到しなく、脱炭反応を同時に促進し、脱炭エンド酸素を低下させ、脱酸素剤の使用量を減少させ、鋼中の脱酸生成物の数を低減することも想到しないことが明らかであるが、溶存水素は後々、介在物の除去過程において鋼中にも介在物を核として分散した大量の微細気泡を生成することができ、これらの微細気泡は分散分布しているため、衝突して鋼中の介在物を捕捉する効率が非常に高く、介在物の深くの除去を実現することができる。 At present, it is also mentioned that the above technical problem is solved by spraying hydrogen gas, but it is difficult to grasp the timing of spraying hydrogen gas. For example, in "improving the decarburization rate of ultra-low carbon steel in the RH degassing apparatus by the hydrogen gas blowing method" and "manufacturing ultra-low carbon steel by blowing hydrogen gas to RH", the timing of blowing hydrogen gas is the latter stage of the decarburization process, and the reaction between the hydrogen gas and the dissolved oxygen in the molten steel and the secondary combustion heat radiation with the top-blown oxygen gas in the vacuum chamber both raise the temperature of the molten steel. At the same time, it is clear that it is not conceivable to promote decarburization end oxygen, reduce the amount of deoxidizing agent used, and reduce the number of deoxidation products in steel, but dissolved hydrogen will later become inclusions. In the process of removing inclusions, it is possible to generate a large amount of fine bubbles dispersed with inclusions as nuclei in steel. is very high, and deep removal of inclusions can be achieved.

かかる技術課題を解決するため、本発明は水素ガスを利用してアルゴンの代わりに水素ガスを上昇ガスとして上昇管に吹き付け、及び上昇ガスを水素ガスからアルゴンに切り替えるタイミングを制御することにより実現される。 In order to solve this technical problem, the present invention is realized by using hydrogen gas, blowing the hydrogen gas as rising gas instead of argon onto the riser, and controlling the timing of switching the rising gas from hydrogen gas to argon. be.

本発明はRH精錬過程に大きな温度降下が存在し、製造される鋼材の炭素含有量が基準に達しず、RH精錬の後期に鋼中の介在物を除去する速度が遅く、介在物の深く除去を効果的に行いにくいという技術課題を解決しようとする。 In the present invention, there is a large temperature drop in the RH refining process, the carbon content of the produced steel does not reach the standard, the speed of removing inclusions in the steel is slow in the latter stage of RH refining, and the removal of inclusions is deep. We try to solve the technical problem that it is difficult to effectively perform

解題を解決するための手段Means to solve the problem

上記技術課題を解決するために、本発明は溶鋼の昇温、脱炭の促進、介在物の浮上の促進、溶鋼の清浄度の高め、一部のアルゴンの代替、精錬コストの低減を図るために、RH精錬途中にアルゴンの代わりに水素ガスを上昇ガスとして用い、真空脱炭を行い、上昇ガスをアルゴンに切り替え、真空脱ガス及び介在物除去を行い、最後にアルミニウムを添加して脱酸する、水素ガスを用いてRH精錬効果を向上させる方法を提供する。 In order to solve the above technical problems, the present invention aims to raise the temperature of molten steel, promote decarburization, promote the floating of inclusions, improve the cleanliness of molten steel, replace some argon, and reduce refining costs. Second, hydrogen gas is used as the ascending gas instead of argon during RH refining, vacuum decarburization is performed, the ascending gas is switched to argon, vacuum degassing and inclusion removal are performed, and finally aluminum is added to deoxidize. To provide a method for improving the RH refining effect using hydrogen gas.

前記RH精錬途中にアルゴンの代わりに水素ガスを上昇ガスとして用い、水素ガスと溶鋼中の溶存酸素との反応及び真空チャンバの上吹き酸素ガスとの二次燃焼により放熱し、溶鋼温度を2~10℃高め、アルミニウムの発熱剤の使用量を8~40kg低減することが好ましい。 During the RH refining, hydrogen gas is used as the ascending gas instead of argon, and heat is released by the reaction between the hydrogen gas and dissolved oxygen in the molten steel and secondary combustion with the top-blown oxygen gas in the vacuum chamber, and the molten steel temperature is reduced to 2 to 2. It is preferable to raise the temperature by 10° C. and reduce the amount of aluminum exothermic agent used by 8 to 40 kg.

前記真空脱炭は、真空槽中の水素が溶鋼に析出した分散微細水素気泡により、鋼中の炭素と酸素との反応動力学を促進し、脱炭速度を5%~20%高めることが好ましい。 In the vacuum decarburization, it is preferable that the hydrogen in the vacuum tank promotes reaction kinetics between carbon and oxygen in the steel and the decarburization rate by 5% to 20% by dispersing fine hydrogen bubbles precipitated in the molten steel. .

前記上昇ガスをアルゴンに切り替えることは真空脱炭を10~25分行った後、又は脱炭が完全に完了すると発生することが好ましい。 Switching the rising gas to argon preferably occurs after 10-25 minutes of vacuum decarburization or when decarburization is fully completed.

前記真空脱ガスは真空処理により溶鋼に溶存した水素を脱着することであり、前記介在物除去は溶存水素を脱着する時に溶鋼に介在物を核として分散微細気泡を生成し、微細気泡が衝突して鋼中の介在物を捕捉し、介在物の重合成長を促進し、介在物の浮上の除去を促進し、全酸素含有量を10%~35%低減することであることが好ましい。 The vacuum degassing is to desorb hydrogen dissolved in molten steel by vacuum treatment, and the removal of inclusions generates dispersed microbubbles with inclusions as nuclei in molten steel when desorbing dissolved hydrogen, and the microbubbles collide. It is preferable to capture the inclusions in the steel, promote the polymerization growth of the inclusions, promote the removal of floating inclusions, and reduce the total oxygen content by 10% to 35%.

ステップ1:取鍋台車は溶鋼受け箇所に走行した後に、RH精錬装置上昇管及びRH精錬装置下降管をRH精錬装置取鍋の溶鋼内に挿入するようにRH精錬装置取鍋を持ち上げることと、
ステップ2:RH上昇管エア吹出装置によりRH精錬装置上昇管内に水素ガス上昇ガスを吹き込み、同時に真空システムを起動し、真空引きして、溶鋼の液位を上げることと、
ステップ3:RH処理ステーションに入る溶鋼の初期炭素含有量及び酸素含有量に基づいて上吹き酸素を必要とするか否か及び上吹き酸素ガス量を選択することと、
ステップ4:酸素吹きつけを必要とすれば、RH精錬装置真空チャンバランスは酸素を上吹き、上吹き酸素が完了した後、RH真空チャンバの真空度を高めて、真空脱炭を行なう一方、酸素吹きつけを必要としなければ、3~5分を経てRH真空チャンバの真空度を高めて、真空脱炭を行なうことと、
ステップ5:真空脱炭を10~25分行なった後に上昇ガスをアルゴンに切り替え、真空処理により脱ガスを行ない、介在物を除去することと、
ステップ6:脱炭が完了した後、アルミニウムを添加して脱酸し、真空処理を5~20分継続し、真空破壊して真空処理を完了することと、
を含むことが好ましい。
Step 1: lifting the RH refiner ladle such that the RH refiner riser and the RH refiner downcomer are inserted into the molten steel of the RH refiner ladle after the ladle truck travels to the molten steel receiving location;
Step 2: Blowing hydrogen gas rising gas into the RH refiner riser by means of the RH riser air blower, at the same time activating the vacuum system and evacuating to raise the liquid level of the molten steel;
Step 3: Selecting whether top-blown oxygen is required and the amount of top-blown oxygen gas based on the initial carbon content and oxygen content of the molten steel entering the RH treatment station;
Step 4: If oxygen blowing is required, the RH smelter vacuum chamber balance will top-blown oxygen. If blowing is not required, increasing the vacuum degree of the RH vacuum chamber after 3 to 5 minutes to perform vacuum decarburization;
Step 5: After 10-25 minutes of vacuum decarburization, switching the ascending gas to argon and degassing by vacuum treatment to remove inclusions;
Step 6: After decarburization is completed, add aluminum to deoxidize, continue vacuum treatment for 5-20 minutes, break vacuum to complete vacuum treatment;
is preferably included.

前記RH精錬装置上昇管から溶鋼に水素ガスを吹き付ける流量は50~300m/hであり、上昇ガスとしてのアルゴンの使用量を64~143m低減することが好ましい。 The flow rate for blowing hydrogen gas from the RH refining apparatus riser to the molten steel is 50 to 300 m 3 /h, and it is preferable to reduce the amount of argon used as the rise gas by 64 to 143 m 3 .

二つの放熱領域及び介在物除去領域を含み、前記二つの放熱領域において、一方は溶鋼表面近傍の脱炭放熱領域であり、他方はRH精錬装置上昇管の先端近傍の放熱領域であることが好ましい。 Preferably, it comprises two heat dissipation zones and an inclusion removal zone, one of which is a decarburization heat dissipation zone near the surface of the molten steel, and the other is a heat dissipation zone near the tip of the RH refining apparatus riser in the two heat dissipation zones. .

ステップ2の真空引きの真空度は5~15Kpaであり、ステップ4の真空度は67Paであることが好ましい。 The degree of vacuum in step 2 is preferably 5 to 15 Kpa, and the degree of vacuum in step 4 is preferably 67 Pa.

ステップ6の脱炭が完了した後、溶存酸素が98~200ppmであり、アルミニウムを8~20kg添加して脱酸し、真空処理を5分間継続し、真空破壊して真空処理を完了し、エンドカーボンが0.0006~0.0009%であり、全酸素含有量が6.3~8.5ppmに低下することが好ましい。 After the decarburization in step 6 is completed, the dissolved oxygen is 98-200 ppm, 8-20 kg of aluminum is added to deoxidize, the vacuum treatment is continued for 5 minutes, the vacuum is broken to complete the vacuum treatment, and the end Preferably the carbon is 0.0006-0.0009% and the total oxygen content is reduced to 6.3-8.5 ppm.

本発明の実施例より提供される上記技術内容は少なくとも以下の有益な効果を有する。
(1)本発明はRH精錬途中にアルゴンの代わりに水素ガスを上昇ガスとして用い、水素ガスと溶鋼中の溶存酸素との反応及び真空チャンバの上吹き酸素ガスとの二次燃焼放熱により溶鋼温度を高める。
(2)本発明は真空槽中の水素が溶鋼に析出した分散微細水素気泡により、鋼中の炭素と酸素との反応動力学を促進し、鋼中の溶存水素と溶存酸素の反応により、脱炭エンド酸素を低下させ、脱酸素剤の使用量を減少させ、鋼中の脱酸生成物の数を低減する。
(3)本発明は一定の時間脱炭した後、上昇ガスをアルゴンに切り替え、真空処理により溶鋼に溶存した水素を除去する。溶存水素を脱着する時に溶鋼に介在物を核として分散微細気泡を生成し、微細気泡が衝突して鋼中の介在物を捕捉し、介在物の重合成長を促進し、介在物の浮上の除去を促進する。
The above technical contents provided by the embodiments of the present invention have at least the following beneficial effects.
(1) The present invention uses hydrogen gas as the ascending gas instead of argon during RH refining, and the reaction between the hydrogen gas and dissolved oxygen in the molten steel and secondary combustion heat radiation with the oxygen gas blown upward in the vacuum chamber increase the temperature of the molten steel. increase
(2) The present invention accelerates the reaction kinetics between carbon and oxygen in the steel by dispersing fine hydrogen bubbles that hydrogen precipitates in the molten steel in the vacuum chamber, and the reaction between the dissolved hydrogen and dissolved oxygen in the steel promotes desorption. It lowers carbon end oxygen, reduces the amount of oxygen scavengers used, and reduces the number of deoxidation products in the steel.
(3) In the present invention, after decarburization for a certain period of time, the ascending gas is switched to argon, and the hydrogen dissolved in the molten steel is removed by vacuum treatment. When dissolved hydrogen is desorbed, dispersed microbubbles are generated with inclusions as nuclei in molten steel, and the microbubbles collide to trap inclusions in the steel, promote the polymerization growth of inclusions, and remove the floatation of inclusions. promote

本発明の実施例における技術内容をより明確に説明するために、以下に実施例の説明に必要な図面を簡単に説明し、以下に記載の図面は本発明のいくつかの実施例に過ぎず、当業者にとって、創造的労働をしない前提で、さらにこれらの図面に基づいて他の図面を取得することができることは明らかである。 In order to explain the technical content in the embodiments of the present invention more clearly, the drawings necessary for the description of the embodiments are briefly described below, and the drawings described below are only some embodiments of the present invention. , it is obvious to those skilled in the art that other drawings can be obtained based on these drawings without further creative effort.

図1は本発明の水素ガスを用いてRH精錬効果を向上させる方法の概略図。FIG. 1 is a schematic diagram of the method for improving the RH refining effect using hydrogen gas according to the present invention.

本発明が解決しようとする技術課題、技術内容及び利点をより明確にするために、以下に図面及び具体的な実施例を参照して詳細に説明する。 In order to make the technical problems, technical contents and advantages to be solved by the present invention clearer, the detailed description is given below with reference to the drawings and specific embodiments.

本発明は溶鋼の昇温、脱炭の促進、介在物の浮上の促進、溶鋼の清浄度の高め、一部のアルゴンの代替、精錬コストの低減を図るために、RH精錬途中にアルゴンの代わりに水素ガスを上昇ガスとして用い、真空脱炭を行い、上昇ガスをアルゴンに切り替え、真空脱ガス及び介在物除去を行い、最後にアルミニウムを添加して脱酸する、水素ガスを用いてRH精錬効果を向上させる方法を提出する。 In order to raise the temperature of the molten steel, promote decarburization, promote the floating of inclusions, improve the cleanliness of the molten steel, partially replace argon, and reduce the refining cost, the present invention uses argon instead of argon during RH refining. use hydrogen gas as rising gas to perform vacuum decarburization, switch the rising gas to argon, perform vacuum degassing and inclusion removal, and finally add aluminum to deoxidize, RH refining using hydrogen gas Suggest ways to improve effectiveness.

特に、前記RH精錬途中にアルゴンの代わりに水素ガスを上昇ガスとして用い、水素ガスと溶鋼中の溶存酸素との反応及び真空チャンバの上吹き酸素ガスとの二次燃焼により放熱し、溶鋼温度を2~10℃高め、アルミニウムの発熱剤の使用量を8~40kg低減する。 In particular, hydrogen gas is used as the ascending gas instead of argon during the RH refining, heat is released by the reaction between the hydrogen gas and dissolved oxygen in the molten steel and secondary combustion with the top-blown oxygen gas in the vacuum chamber, and the molten steel temperature is increased. The temperature is raised by 2 to 10°C, and the amount of aluminum exothermic agent used is reduced by 8 to 40 kg.

特に、前記真空脱炭は、真空槽中の水素が溶鋼に析出した分散微細水素気泡により、鋼中の炭素と酸素との反応動力学を促進し、脱炭速度を5%~20%高める。 In particular, the vacuum decarburization accelerates the reaction kinetics of carbon and oxygen in the steel by dispersing fine hydrogen bubbles, which are precipitated in the molten steel by hydrogen in the vacuum tank, and increases the decarburization rate by 5% to 20%.

特に、前記上昇ガスをアルゴンに切り替えることは真空脱炭を10~25分行った後、又は脱炭が完全に完了すると発生する。 Specifically, switching the rising gas to argon occurs after 10-25 minutes of vacuum decarburization or when decarburization is fully completed.

特に、前記真空脱ガスは真空処理により溶鋼に溶存した水素を脱着することであり、前記介在物除去は溶存水素を脱着する時に溶鋼に介在物を核として分散微細気泡を生成し、微細気泡が衝突して鋼中の介在物を捕捉し、介在物の重合成長を促進し、介在物の浮上の除去を促進し、全酸素含有量を10%~35%低減する。 In particular, the vacuum degassing is to desorb hydrogen dissolved in molten steel by vacuum treatment, and the removal of inclusions generates dispersed microbubbles with inclusions as nuclei in molten steel when the dissolved hydrogen is desorbed. It collides and traps inclusions in the steel, promotes the polymerization growth of inclusions, promotes the removal of inclusions' floatation, and reduces the total oxygen content by 10% to 35%.

特に、ステップ1:取鍋台車は溶鋼受け箇所に走行した後に、RH精錬装置上昇管及びRH精錬装置下降管をRH精錬装置取鍋の溶鋼内に挿入するようにRH精錬装置取鍋を持ち上げることと、
ステップ2:RH上昇管エア吹出装置によりRH精錬装置上昇管内に水素ガス上昇ガスを吹き込み、同時に真空システムを起動し、真空引きして、溶鋼の液位を上げることと、
ステップ3:RH処理ステーションに入る溶鋼の初期炭素含有量及び酸素含有量に基づいて上吹き酸素を必要とするか否か及び上吹き酸素ガス量を選択することと、
ステップ4:酸素吹きつけを必要とすれば、RH精錬装置真空チャンバランスは酸素を上吹き、上吹き酸素が完了した後、RH真空チャンバの真空度を高めて、真空脱炭を行なう一方、酸素吹きつけを必要としなければ、3~5分を経てRH真空チャンバの真空度を高めて、真空脱炭を行なうことと、
ステップ5:真空脱炭を10~25分行なった後に上昇ガスをアルゴンに切り替え、真空処理により脱ガスを行ない、介在物を除去することと、
ステップ6:脱炭が完了した後、アルミニウムを添加して脱酸し、真空処理を5~20分継続し、真空破壊して真空処理を完了することと、
を含む。
In particular, step 1: lifting the RH refiner ladle such that the RH refiner riser and the RH refiner downcomer are inserted into the molten steel of the RH refiner ladle after the ladle truck travels to the molten steel receiving location. and,
Step 2: Blowing hydrogen gas rising gas into the RH refiner riser by means of the RH riser air blower, at the same time activating the vacuum system and evacuating to raise the liquid level of the molten steel;
Step 3: Selecting whether top-blown oxygen is required and the amount of top-blown oxygen gas based on the initial carbon content and oxygen content of the molten steel entering the RH treatment station;
Step 4: If oxygen blowing is required, the RH smelter vacuum chamber balance will top-blown oxygen. If blowing is not required, increasing the vacuum degree of the RH vacuum chamber after 3 to 5 minutes to perform vacuum decarburization;
Step 5: After 10-25 minutes of vacuum decarburization, switching the ascending gas to argon and degassing by vacuum treatment to remove inclusions;
Step 6: After decarburization is completed, add aluminum to deoxidize, continue vacuum treatment for 5-20 minutes, break vacuum to complete vacuum treatment;
including.

特に、前記RH精錬装置上昇管から溶鋼に水素ガスを吹き付ける流量は50~300m/hであり、上昇ガスとしてのアルゴンの使用量を64~143m低減する。 In particular, the flow rate of the hydrogen gas blowing from the RH refining apparatus riser to the molten steel is 50-300 m 3 /h, which reduces the amount of argon used as the rise gas by 64-143 m 3 .

特に、二つの放熱領域及び介在物除去領域を含み、前記二つの放熱領域において、一方は溶鋼表面近傍の脱炭放熱領域であり、他方はRH精錬装置上昇管の先端近傍の放熱領域である。 In particular, it includes two heat dissipation zones and an inclusion removal zone, one of which is a decarburization heat dissipation zone near the molten steel surface and the other is a heat dissipation zone near the tip of the RH refiner riser.

特に、ステップ2の真空引きの真空度は5~15Kpaであり、ステップ4の真空度は67Paである。 In particular, the degree of vacuum in step 2 is 5 to 15 Kpa, and the degree of vacuum in step 4 is 67 Pa.

特に、ステップ6の脱炭が完了した後、溶存酸素が98~200ppmであり、アルミニウムを8~20kg添加して脱酸し、真空処理を5分間継続し、真空破壊して真空処理を完了し、エンドカーボンが0.0006~0.0009%であり、全酸素含有量が6.3~8.5ppmに低下する。 In particular, after the decarburization in step 6 is completed, the dissolved oxygen is 98-200 ppm, 8-20 kg of aluminum is added to deoxidize, the vacuum treatment is continued for 5 minutes, and the vacuum is broken to complete the vacuum treatment. , the end carbon is 0.0006-0.0009% and the total oxygen content is reduced to 6.3-8.5 ppm.

具体的には、水素ガスを用いてRH精錬効果を向上させる方法について以下の実施例及び図面を組み合わせて説明する。 Specifically, a method for improving the RH refining effect using hydrogen gas will be described in combination with the following examples and drawings.

中国国内のある製鋼所の150tRH精錬装置は、RH処理ステーションに入る溶鋼の初期温度が1630℃を求め、RH処理ステーションに入る溶鋼の実際温度が1610℃であり、RH処理ステーションに入る溶鋼の初期炭素含有量が0.038%であり、RH処理ステーションに入る溶鋼の初期酸素の含有量が550ppmであり、ターゲット炭素の含有量が0.001%である。 A 150tRH refining unit in a steel mill in China requires that the initial temperature of molten steel entering the RH treatment station is 1630°C, the actual temperature of the molten steel entering the RH treatment station is 1610°C, and the initial temperature of the molten steel entering the RH treatment station is 1630°C. The carbon content is 0.038%, the initial oxygen content of molten steel entering the RH treatment station is 550 ppm, and the target carbon content is 0.001%.

図1に示すように、取鍋台車は溶鋼受け箇所に走行した後にRH精錬装置取鍋8を所定の浸漬深さに上げる。 As shown in FIG. 1, the ladle truck raises the RH refining ladle 8 to a predetermined immersion depth after traveling to the molten steel receiving location.

RH上昇管エア吹出装置6はRH精錬装置上昇管7によってRH真空チャンバ2に吹き込まれたHの流量が300m/hであり、同時に真空システムを起動し、8000Paまで真空引きしてRH精錬装置真空チャンバランス1によって酸素を吹き付け、酸素を94m吹き付ける。ここで、放熱領域5において、主に水素ガスと溶鋼中の溶存酸素との放熱反応が発生する。脱炭放熱領域3において、主に水素気泡が発生して炭素と酸素との反応動力学を促進し、主に水素ガス及び上吹き酸素ガスの二次燃焼が発生する。 The RH riser air blowing device 6 has a flow rate of 300 m 3 /h of H 2 blown into the RH vacuum chamber 2 by the RH refining device riser 7. At the same time, the vacuum system is started to evacuate to 8000 Pa to perform RH refining. Oxygen is blown by the apparatus vacuum chamber balance 1, blowing 94 m 3 of oxygen. Here, in the heat dissipation region 5, a heat dissipation reaction mainly occurs between the hydrogen gas and dissolved oxygen in the molten steel. In the decarburization heat dissipation region 3, mainly hydrogen bubbles are generated to promote the reaction kinetics of carbon and oxygen, and secondary combustion mainly of hydrogen gas and top-blown oxygen gas occurs.

上吹き酸素が完了した後、RH真空チャンバ2の真空度を到達真空度67Paまでに高めて、さらに真空脱炭を行なう。 After the top-blown oxygen is completed, the degree of vacuum in the RH vacuum chamber 2 is raised to a final degree of vacuum of 67 Pa, and vacuum decarburization is further performed.

20分間脱炭した後に上昇ガスをアルゴンに切り替え、真空処理によりRH真空チャンバ2、RH精錬装置上昇管7、RH精錬装置下降管4で溶鋼に溶存した水素を脱出し、RH精錬装置下降管4の介在物除去領域9で介在物を除去する。 After decarburizing for 20 minutes, the ascending gas is switched to argon, and the hydrogen dissolved in the molten steel is escaped by vacuum processing in the RH vacuum chamber 2, the RH refining apparatus ascending pipe 7, and the RH refining apparatus descending pipe 4, and the RH refining equipment descending pipe 4 Inclusion removal area 9 removes inclusions.

脱炭が完了した後に、溶存酸素は98ppmとなり、アルミニウムを10kg添加して脱酸素を行なう。 After decarburization is completed, the dissolved oxygen reaches 98 ppm, and 10 kg of aluminum is added for deoxidization.

真空処理を5分間継続し、真空破壊して真空処理を完了する。エンドカーボンは0.0008%である。 The vacuum treatment is continued for 5 minutes and the vacuum is broken to complete the vacuum treatment. End carbon is 0.0008%.

精錬周期内に溶鋼温度を6℃高め、全酸素含有量を6.5ppmまで低下させ、脱炭速度を5%~20%向上させ、合計でアルゴン使用量を125m減少させ、アルミニウムの使用量を28kg低減する。 Within the refining cycle, the molten steel temperature is increased by 6℃, the total oxygen content is reduced to 6.5ppm, the decarburization rate is improved by 5%-20%, the total argon consumption is reduced by 125m3 , and the aluminum consumption is is reduced by 28 kg.

中国国内のある製鋼所の120tRH精錬装置は、RH処理ステーションに入る溶鋼の初期温度が1630℃を求め、実際のRH処理ステーションに入る溶鋼の温度が1612℃であり、RH処理ステーションに入る溶鋼の初期炭素含有量が0.04%であり、RH処理ステーションに入る溶鋼の初期酸素の含有量が532ppmであり、ターゲット炭素の含有量が0.001%である。 A 120tRH refining unit in a steel mill in China requires an initial temperature of 1630°C for molten steel entering the RH treatment station, and the actual temperature of molten steel entering the RH treatment station is 1612°C. The initial carbon content is 0.04%, the initial oxygen content of molten steel entering the RH treatment station is 532 ppm, and the target carbon content is 0.001%.

図1に示すように、取鍋台車は溶鋼受け箇所に走行した後にRH精錬装置取鍋8を所定の浸漬深さに上げる。 As shown in FIG. 1, the ladle truck raises the RH refining ladle 8 to a predetermined immersion depth after traveling to the molten steel receiving location.

RH上昇管エア吹出装置6はRH精錬装置上昇管7によってRH真空チャンバ2に吹き込まれたHの流量が300m/hであり、同時に真空システムを起動し、8000Paまで真空引きしてRH精錬装置真空チャンバランス1によって酸素を吹き付け、酸素を85m吹き付ける。ここで、放熱領域5において、主に水素ガスと溶鋼中の溶存酸素との放熱反応が発生する。脱炭放熱領域3において、主に水素気泡が発生して炭素と酸素との反応動力学を促進し、主に水素ガス及び上吹き酸素ガスの二次燃焼が発生する。 The RH riser air blowing device 6 has a flow rate of 300 m 3 /h of H 2 blown into the RH vacuum chamber 2 by the RH refining device riser 7. At the same time, the vacuum system is started to evacuate to 8000 Pa to perform RH refining. Oxygen is blown by the apparatus vacuum chamber balance 1, and 85 m 3 of oxygen are blown. Here, in the heat dissipation region 5, a heat dissipation reaction mainly occurs between the hydrogen gas and dissolved oxygen in the molten steel. In the decarburization heat dissipation region 3, mainly hydrogen bubbles are generated to promote the reaction kinetics of carbon and oxygen, and secondary combustion mainly of hydrogen gas and top-blown oxygen gas occurs.

上吹き酸素が完了した後、RH真空チャンバ2の真空度を到達真空度67Paまでに高めて、さらに真空脱炭を行なう。 After the top-blown oxygen is completed, the degree of vacuum in the RH vacuum chamber 2 is raised to a final degree of vacuum of 67 Pa, and vacuum decarburization is further performed.

20分間脱炭した後に上昇ガスをアルゴンに切り替え、真空処理によりRH真空チャンバ2、RH精錬装置上昇管7、RH精錬装置下降管4で溶鋼に溶存した水素を脱出し、RH精錬装置下降管4の介在物除去領域9で介在物を除去する。 After decarburizing for 20 minutes, the ascending gas is switched to argon, and the hydrogen dissolved in the molten steel is escaped by vacuum processing in the RH vacuum chamber 2, the RH refining apparatus ascending pipe 7, and the RH refining apparatus descending pipe 4, and the RH refining equipment descending pipe 4 Inclusion removal area 9 removes inclusions.

脱炭が完了した後に、溶存酸素は110ppmとなり、アルミニウムを8kg添加して脱酸素を行なう。 After decarburization is completed, the dissolved oxygen reaches 110 ppm, and 8 kg of aluminum is added for deoxidization.

真空処理を5分間継続し、真空破壊して真空処理を完了する。エンドカーボンは0.0007%である。 The vacuum treatment is continued for 5 minutes and the vacuum is broken to complete the vacuum treatment. End carbon is 0.0007%.

精錬周期内に溶鋼温度を8℃高め、全酸素含有量を7.8ppmまで低下させ、脱炭速度を5%~20%向上させ、合計でアルゴン使用量を102m減少させ、アルミニウムの使用量を23kg低減する。 Within the refining cycle, the molten steel temperature is increased by 8℃, the total oxygen content is reduced to 7.8ppm, the decarburization rate is improved by 5%~20%, the total amount of argon used is reduced by 102m3 , and the amount of aluminum used. is reduced by 23 kg.

中国国内のある製鋼所の150tRH精錬装置は、RH処理ステーションに入る溶鋼の初期温度が1630℃を求め、実際のRH処理ステーションに入る溶鋼の温度が1620℃であり、RH処理ステーションに入る溶鋼の初期炭素含有量が0.045%であり、RH処理ステーションに入る溶鋼の初期酸素の含有量が523ppmであり、ターゲット炭素の含有量が0.001%である。 A 150tRH refining unit in a steel mill in China requires that the initial temperature of molten steel entering the RH treatment station is 1630°C. The initial carbon content is 0.045%, the initial oxygen content of molten steel entering the RH treatment station is 523 ppm, and the target carbon content is 0.001%.

図1に示すように、取鍋台車は溶鋼受け箇所に走行した後にRH精錬装置取鍋8を所定の浸漬深さに上げる。 As shown in FIG. 1, the ladle truck raises the RH refining ladle 8 to a predetermined immersion depth after traveling to the molten steel receiving location.

RH上昇管エア吹出装置6はRH精錬装置上昇管7によってRH真空チャンバ2に吹き込まれたHの流量が300m/hであり、同時に真空システムを起動し、8000Paまで真空引きしてRH精錬装置真空チャンバランス1によって酸素を吹き付け、酸素を99m吹き付ける。ここで、放熱領域5において、主に水素ガスと溶鋼中の溶存酸素との放熱反応が発生する。脱炭放熱領域3において、主に水素気泡が発生して炭素と酸素との反応動力学を促進し、主に水素ガス及び上吹き酸素ガスの二次燃焼が発生する。 The RH riser air blowing device 6 has a flow rate of 300 m 3 /h of H 2 blown into the RH vacuum chamber 2 by the RH refining device riser 7. At the same time, the vacuum system is started to evacuate to 8000 Pa to perform RH refining. Oxygen is blown by the apparatus vacuum chamber balance 1, blowing 99 m 3 of oxygen. Here, in the heat dissipation region 5, a heat dissipation reaction mainly occurs between the hydrogen gas and dissolved oxygen in the molten steel. In the decarburization heat dissipation region 3, mainly hydrogen bubbles are generated to promote the reaction kinetics of carbon and oxygen, and secondary combustion mainly of hydrogen gas and top-blown oxygen gas occurs.

上吹き酸素が完了した後、RH真空チャンバ2の真空度を到達真空度67Paまでに高めて、さらに真空脱炭を行なう。 After the top-blown oxygen is completed, the degree of vacuum in the RH vacuum chamber 2 is raised to a final degree of vacuum of 67 Pa, and vacuum decarburization is further performed.

23分間脱炭した後に上昇ガスをアルゴンに切り替え、真空処理によりRH真空チャンバ2、RH精錬装置上昇管7、RH精錬装置下降管4で溶鋼に溶存した水素を脱出し、RH精錬装置下降管4の介在物除去領域9で介在物を除去する。 After decarburizing for 23 minutes, the ascending gas is switched to argon, and hydrogen dissolved in the molten steel is escaped by vacuum processing in the RH vacuum chamber 2, the RH refiner ascender 7, and the RH refiner descender 4, and the RH refiner descender 4 Inclusion removal area 9 removes inclusions.

脱炭が完了した後に、溶存酸素は124ppmとなり、アルミニウムを10kg添加して脱酸素を行なう。 After decarburization is completed, the dissolved oxygen reaches 124 ppm, and 10 kg of aluminum is added for deoxidization.

真空処理を5分間継続し、真空破壊して真空処理を完了する。エンドカーボンは0.0006%である。 The vacuum treatment is continued for 5 minutes and the vacuum is broken to complete the vacuum treatment. End carbon is 0.0006%.

精錬周期内に溶鋼温度を8℃高め、全酸素含有量を8.5ppmまで低下させ、脱炭速度を5%~20%向上させ、合計でアルゴン使用量を115m減少させ、アルミニウムの使用量を28kg低減する。 Within the refining cycle, the molten steel temperature is increased by 8℃, the total oxygen content is reduced to 8.5ppm, the decarburization rate is improved by 5%~20%, the total argon consumption is reduced by 115m3 , and the aluminum consumption is is reduced by 28 kg.

中国国内のある製鋼所の150tRH精錬装置は、RH処理ステーションに入る溶鋼の初期温度が1630℃を求め、実際のRH処理ステーションに入る溶鋼の温度が1610℃であり、RH処理ステーションに入る溶鋼の初期炭素含有量が0.042%であり、RH処理ステーションに入る溶鋼の初期酸素の含有量が520ppmであり、ターゲット炭素の含有量が0.001%である。 A 150tRH refining equipment in a steel mill in China requires that the initial temperature of molten steel entering the RH treatment station is 1630°C. The initial carbon content is 0.042%, the initial oxygen content of molten steel entering the RH treatment station is 520 ppm, and the target carbon content is 0.001%.

図1に示すように、取鍋台車は溶鋼受け箇所に走行した後にRH精錬装置取鍋8を所定の浸漬深さに上げる。 As shown in FIG. 1, the ladle truck raises the RH refining ladle 8 to a predetermined immersion depth after traveling to the molten steel receiving location.

RH上昇管エア吹出装置6はRH精錬装置上昇管7によってRH真空チャンバ2に吹き込まれたHの流量が300m/hであり、同時に真空システムを起動し、8000Paまで真空引きしてRH精錬装置真空チャンバランス1によって酸素を吹き付け、酸素を115m吹き付ける。ここで、放熱領域5において、主に水素ガスと溶鋼中の溶存酸素との放熱反応が発生する。脱炭放熱領域3において、主に水素気泡が発生して炭素と酸素との反応動力学を促進し、主に水素ガス及び上吹き酸素ガスの二次燃焼が発生する。 The RH riser air blowing device 6 has a flow rate of 300 m 3 /h of H 2 blown into the RH vacuum chamber 2 by the RH refining device riser 7. At the same time, the vacuum system is started to evacuate to 8000 Pa to perform RH refining. Oxygen is blown by the apparatus vacuum chamber balance 1, blowing 115 m 3 of oxygen. Here, in the heat dissipation region 5, a heat dissipation reaction mainly occurs between the hydrogen gas and dissolved oxygen in the molten steel. In the decarburization heat dissipation region 3, mainly hydrogen bubbles are generated to promote the reaction kinetics of carbon and oxygen, and secondary combustion mainly of hydrogen gas and top-blown oxygen gas occurs.

上吹き酸素が完了した後、RH真空チャンバ2の真空度を到達真空度67Paまでに高めて、さらに真空脱炭を行なう。 After the top-blown oxygen is completed, the degree of vacuum in the RH vacuum chamber 2 is raised to a final degree of vacuum of 67 Pa, and vacuum decarburization is further performed.

18分間脱炭した後に上昇ガスをアルゴンに切り替え、真空処理によりRH真空チャンバ2、RH精錬装置上昇管7、RH精錬装置下降管4で溶鋼に溶存した水素を脱出し、RH精錬装置下降管4の介在物除去領域9で介在物を除去する。 After decarburizing for 18 minutes, the ascending gas is switched to argon, and the hydrogen dissolved in the molten steel is escaped by vacuum processing in the RH vacuum chamber 2, the RH refiner ascender 7, and the RH refiner descender 4, and the RH refiner descender 4. Inclusion removal area 9 removes inclusions.

脱炭が完了した後に、溶存酸素は100ppmとなり、アルミニウムを10kg添加して脱酸素を行なう。 After decarburization is completed, the dissolved oxygen reaches 100 ppm, and 10 kg of aluminum is added to deoxidize.

真空処理を5分間継続し、真空破壊して真空処理を完了する。エンドカーボンは0.0007%である。 The vacuum treatment is continued for 5 minutes and the vacuum is broken to complete the vacuum treatment. End carbon is 0.0007%.

精錬周期内に溶鋼温度を6℃高め、全酸素含有量を7.8ppmまで低下させ、脱炭速度を5%~20%向上させ、合計でアルゴン使用量を95m減少させ、アルミニウムの使用量を23kg低減する。 Within the refining cycle, the molten steel temperature is increased by 6℃, the total oxygen content is reduced to 7.8ppm, the decarburization rate is improved by 5%~20%, the total argon consumption is reduced by 95m3 , and the aluminum consumption is is reduced by 23 kg.

中国国内のある製鋼所の150tRH精錬装置は、RH処理ステーションに入る溶鋼の初期温度が1630℃を求め、実際のRH処理ステーションに入る溶鋼の温度が1610℃であり、RH処理ステーションに入る溶鋼の初期炭素含有量が0.038%であり、RH処理ステーションに入る溶鋼の初期酸素の含有量が580ppmであり、ターゲット炭素の含有量が0.001%である。 A 150tRH refining equipment in a steel mill in China requires that the initial temperature of molten steel entering the RH treatment station is 1630°C. The initial carbon content is 0.038%, the initial oxygen content of molten steel entering the RH treatment station is 580 ppm, and the target carbon content is 0.001%.

図1に示すように、取鍋台車は溶鋼受け箇所に走行した後にRH精錬装置取鍋8を所定の浸漬深さに上げる。 As shown in FIG. 1, the ladle truck raises the RH refining ladle 8 to a predetermined immersion depth after traveling to the molten steel receiving location.

RH上昇管エア吹出装置6はRH精錬装置上昇管7によってRH真空チャンバ2に吹き込まれたHの流量が300m/hであり、同時に真空システムを起動し、8000Paまで真空引きしてRH精錬装置真空チャンバランス1によって酸素を吹き付け、酸素を59m吹き付ける。ここで、放熱領域5において、主に水素ガスと溶鋼中の溶存酸素との放熱反応が発生する。脱炭放熱領域3において、主に水素気泡が発生して炭素と酸素との反応動力学を促進し、主に水素ガス及び上吹き酸素ガスの二次燃焼が発生する。 The RH riser air blowing device 6 has a flow rate of 300 m 3 /h of H 2 blown into the RH vacuum chamber 2 by the RH refining device riser 7. At the same time, the vacuum system is started to evacuate to 8000 Pa to perform RH refining. Blow oxygen by means of the apparatus vacuum chamber balance 1, blow 59 m 3 of oxygen. Here, in the heat dissipation region 5, a heat dissipation reaction mainly occurs between the hydrogen gas and dissolved oxygen in the molten steel. In the decarburization heat dissipation region 3, mainly hydrogen bubbles are generated to promote the reaction kinetics of carbon and oxygen, and secondary combustion mainly of hydrogen gas and top-blown oxygen gas occurs.

上吹き酸素が完了した後、RH真空チャンバ2の真空度を到達真空度67Paまでに高めて、さらに真空脱炭を行なう。 After the top-blown oxygen is completed, the degree of vacuum in the RH vacuum chamber 2 is raised to a final degree of vacuum of 67 Pa, and vacuum decarburization is further performed.

20分間脱炭した後に上昇ガスをアルゴンに切り替え、真空処理によりRH真空チャンバ2、RH精錬装置上昇管7、RH精錬装置下降管4で溶鋼に溶存した水素を脱出し、RH精錬装置下降管4の介在物除去領域9で介在物を除去する。 After decarburizing for 20 minutes, the ascending gas is switched to argon, and the hydrogen dissolved in the molten steel is escaped by vacuum processing in the RH vacuum chamber 2, the RH refining apparatus ascending pipe 7, and the RH refining apparatus descending pipe 4, and the RH refining equipment descending pipe 4 Inclusion removal area 9 removes inclusions.

脱炭が完了した後に、溶存酸素は110ppmとなり、アルミニウムを10kg添加して脱酸素を行なう。 After decarburization is completed, the dissolved oxygen reaches 110 ppm, and 10 kg of aluminum is added for deoxidization.

真空処理を5分間継続し、真空破壊して真空処理を完了する。エンドカーボンは0.0008%である。 The vacuum treatment is continued for 5 minutes and the vacuum is broken to complete the vacuum treatment. End carbon is 0.0008%.

精錬周期内に溶鋼温度を8℃高め、全酸素含有量を7.2ppmまで低下させ、脱炭速度を5%~20%向上させ、合計でアルゴン使用量を103m減少させ、アルミニウムの使用量を26kg低減する。 Within the refining cycle, the molten steel temperature is increased by 8℃, the total oxygen content is reduced to 7.2ppm, the decarburization rate is improved by 5%~20%, the total argon consumption is reduced by 103m3 , and the aluminum consumption is is reduced by 26 kg.

中国国内のある製鋼所の150tRH精錬装置は、RH処理ステーションに入る溶鋼の初期温度が1630℃を求め、実際のRH処理ステーションに入る溶鋼の温度が1610℃であり、RH処理ステーションに入る溶鋼の初期炭素含有量が0.038%であり、RH処理ステーションに入る溶鋼の初期酸素の含有量が570ppmであり、ターゲット炭素の含有量が0.001%である。 A 150tRH refining equipment in a steel mill in China requires that the initial temperature of molten steel entering the RH treatment station is 1630°C. The initial carbon content is 0.038%, the initial oxygen content of molten steel entering the RH treatment station is 570 ppm, and the target carbon content is 0.001%.

図1に示すように、取鍋台車は溶鋼受け箇所に走行した後にRH精錬装置取鍋8を所定の浸漬深さに上げる。 As shown in FIG. 1, the ladle truck raises the RH refining ladle 8 to a predetermined immersion depth after traveling to the molten steel receiving location.

RH上昇管エア吹出装置6はRH精錬装置上昇管7によってRH真空チャンバ2に吹き込まれたHの流量が300m/hであり、同時に真空システムを起動し、8000Paまで真空引きしてRH精錬装置真空チャンバランス1によって酸素を吹き付け、酸素を105m吹き付ける。ここで、放熱領域5において、主に水素ガスと溶鋼中の溶存酸素との放熱反応が発生する。脱炭放熱領域3において、主に水素気泡が発生して炭素と酸素との反応動力学を促進し、主に水素ガス及び上吹き酸素ガスの二次燃焼が発生する。 The RH riser air blowing device 6 has a flow rate of 300 m 3 /h of H 2 blown into the RH vacuum chamber 2 by the RH refining device riser 7. At the same time, the vacuum system is started to evacuate to 8000 Pa to perform RH refining. Blow oxygen by means of the apparatus vacuum chamber balance 1, blow 105 m 3 of oxygen. Here, in the heat dissipation region 5, a heat dissipation reaction mainly occurs between the hydrogen gas and dissolved oxygen in the molten steel. In the decarburization heat dissipation region 3, mainly hydrogen bubbles are generated to promote the reaction kinetics of carbon and oxygen, and secondary combustion mainly of hydrogen gas and top-blown oxygen gas occurs.

上吹き酸素が完了した後、RH真空チャンバ2の真空度を到達真空度67Paまでに高めて、さらに真空脱炭を行なう。 After the top-blown oxygen is completed, the degree of vacuum in the RH vacuum chamber 2 is raised to a final degree of vacuum of 67 Pa, and vacuum decarburization is further performed.

20分間脱炭した後に上昇ガスをアルゴンに切り替え、真空処理によりRH真空チャンバ2、RH精錬装置上昇管7、RH精錬装置下降管4で溶鋼に溶存した水素を脱出し、RH精錬装置下降管4の介在物除去領域9で介在物を除去する。 After decarburizing for 20 minutes, the ascending gas is switched to argon, and the hydrogen dissolved in the molten steel is escaped by vacuum processing in the RH vacuum chamber 2, the RH refining apparatus ascending pipe 7, and the RH refining apparatus descending pipe 4, and the RH refining equipment descending pipe 4 Inclusion removal area 9 removes inclusions.

脱炭が完了した後に、溶存酸素は200ppmとなり、アルミニウムを20kg添加して脱酸素を行なう。 After decarburization is completed, the dissolved oxygen reaches 200 ppm, and 20 kg of aluminum is added for deoxidization.

真空処理を5分間継続し、真空破壊して真空処理を完了する。エンドカーボンは0.0009%である。 The vacuum treatment is continued for 5 minutes and the vacuum is broken to complete the vacuum treatment. End carbon is 0.0009%.

精錬周期内に溶鋼温度を9℃高め、全酸素含有量を8.1ppmまで低下させ、脱炭速度を5%~20%向上させ、合計でアルゴン使用量を105m減少させ、アルミニウムの使用量を18kg低減する。 Within the refining cycle, the molten steel temperature is raised by 9℃, the total oxygen content is lowered to 8.1ppm, the decarburization rate is improved by 5%-20%, the total argon consumption is reduced by 105m3 , and the aluminum consumption is is reduced by 18 kg.

中国国内のある製鋼所の150tRH精錬装置は、RH処理ステーションに入る溶鋼の初期温度が1630℃を求め、実際のRH処理ステーションに入る溶鋼の温度が1610℃であり、RH処理ステーションに入る溶鋼の初期炭素含有量が0.035%であり、RH処理ステーションに入る溶鋼の初期酸素の含有量が550ppmであり、ターゲット炭素の含有量が0.001%である。 A 150tRH refining equipment in a steel mill in China requires that the initial temperature of molten steel entering the RH treatment station is 1630°C. The initial carbon content is 0.035%, the initial oxygen content of molten steel entering the RH treatment station is 550 ppm, and the target carbon content is 0.001%.

図1に示すように、取鍋台車は溶鋼受け箇所に走行した後にRH精錬装置取鍋8を所定の浸漬深さに上げる。 As shown in FIG. 1, the ladle truck raises the RH refining ladle 8 to a predetermined immersion depth after traveling to the molten steel receiving location.

RH上昇管エア吹出装置6はRH精錬装置上昇管7によってRH真空チャンバ2に吹き込まれたHの流量が300m/hであり、同時に真空システムを起動し、8000Paまで真空引きしてRH精錬装置真空チャンバランス1によって酸素を吹き付け、酸素を70m吹き付ける。ここで、放熱領域5において、主に水素ガスと溶鋼中の溶存酸素との放熱反応が発生する。脱炭放熱領域3において、主に水素気泡が発生して炭素と酸素との反応動力学を促進し、主に水素ガス及び上吹き酸素ガスの二次燃焼が発生する。 The RH riser air blowing device 6 has a flow rate of 300 m 3 /h of H 2 blown into the RH vacuum chamber 2 by the RH refining device riser 7. At the same time, the vacuum system is started to evacuate to 8000 Pa to perform RH refining. Oxygen is blown by the apparatus vacuum chamber balance 1, blowing 70 m 3 of oxygen. Here, in the heat dissipation region 5, a heat dissipation reaction mainly occurs between the hydrogen gas and dissolved oxygen in the molten steel. In the decarburization heat dissipation region 3, mainly hydrogen bubbles are generated to promote the reaction kinetics of carbon and oxygen, and secondary combustion mainly of hydrogen gas and top-blown oxygen gas occurs.

上吹き酸素が完了した後、RH真空チャンバ2の真空度を到達真空度67Paまでに高めて、さらに真空脱炭を行なう。 After the top-blown oxygen is completed, the degree of vacuum in the RH vacuum chamber 2 is raised to a final degree of vacuum of 67 Pa, and vacuum decarburization is further performed.

15分間脱炭した後に上昇ガスをアルゴンに切り替え、真空処理によりRH真空チャンバ2、RH精錬装置上昇管7、RH精錬装置下降管4で溶鋼に溶存した水素を脱出し、RH精錬装置下降管4の介在物除去領域9で介在物を除去する。 After decarburizing for 15 minutes, the ascending gas is switched to argon, and the hydrogen dissolved in the molten steel is escaped by vacuum processing in the RH vacuum chamber 2, the RH refining apparatus ascending pipe 7, and the RH refining apparatus descending pipe 4, and the RH refining equipment descending pipe 4 Inclusion removal area 9 removes inclusions.

脱炭が完了した後に、溶存酸素は100ppmとなり、アルミニウムを10kg添加して脱酸素を行なう。 After decarburization is completed, the dissolved oxygen reaches 100 ppm, and 10 kg of aluminum is added to deoxidize.

真空処理を5分間継続し、真空破壊して真空処理を完了する。エンドカーボンは0.0009%である。 The vacuum treatment is continued for 5 minutes and the vacuum is broken to complete the vacuum treatment. End carbon is 0.0009%.

精錬周期内に溶鋼温度を5℃高め、全酸素含有量を7.7ppmまで低下させ、脱炭速度を5%~20%向上させ、合計でアルゴン使用量を80m減少させ、アルミニウムの使用量を25kg低減する。 Within the refining cycle, the molten steel temperature is increased by 5℃, the total oxygen content is reduced to 7.7ppm, the decarburization rate is improved by 5%~20%, the total argon consumption is reduced by 80m3 , and the aluminum consumption is is reduced by 25 kg.

中国国内のある製鋼所の120tRH精錬装置は、RH処理ステーションに入る溶鋼の初期温度が1630℃を求め、実際のRH処理ステーションに入る溶鋼の温度が1610℃であり、RH処理ステーションに入る溶鋼の初期炭素含有量が0.032%であり、RH処理ステーションに入る溶鋼の初期酸素の含有量が610ppmであり、ターゲット炭素の含有量が0.001%である。 A 120tRH refining unit in a steel mill in China requires an initial temperature of 1630°C for molten steel entering the RH treatment station, and the actual temperature of molten steel entering the RH treatment station is 1610°C. The initial carbon content is 0.032%, the initial oxygen content of molten steel entering the RH treatment station is 610 ppm, and the target carbon content is 0.001%.

図1に示すように、取鍋台車は溶鋼受け箇所に走行した後にRH精錬装置取鍋8を所定の浸漬深さに上げる。 As shown in FIG. 1, the ladle truck raises the RH refining ladle 8 to a predetermined immersion depth after traveling to the molten steel receiving location.

RH上昇管エア吹出装置6はRH精錬装置上昇管7によってRH真空チャンバ2に吹き込まれたHの流量が200m/hであり、同時に真空システムを起動し、8000Paまで真空引きしてRH精錬装置真空チャンバランス1によって酸素を吹き付け、酸素を37m吹き付ける。ここで、放熱領域5において、主に水素ガスと溶鋼中の溶存酸素との放熱反応が発生する。脱炭放熱領域3において、主に水素気泡が発生して炭素と酸素との反応動力学を促進し、主に水素ガス及び上吹き酸素ガスの二次燃焼が発生する。 The RH riser air blowing device 6 has a flow rate of 200 m 3 /h of H 2 blown into the RH vacuum chamber 2 by the RH refining device riser 7. At the same time, the vacuum system is started to evacuate to 8000 Pa to perform RH refining. Blow oxygen by means of the apparatus vacuum chamber balance 1, blow 37 m 3 of oxygen. Here, in the heat dissipation region 5, a heat dissipation reaction mainly occurs between the hydrogen gas and dissolved oxygen in the molten steel. In the decarburization heat dissipation region 3, mainly hydrogen bubbles are generated to promote the reaction kinetics of carbon and oxygen, and secondary combustion mainly of hydrogen gas and top-blown oxygen gas occurs.

上吹き酸素が完了した後、RH真空チャンバ2の真空度を到達真空度67Paまでに高めて、さらに真空脱炭を行なう。 After the top-blown oxygen is completed, the degree of vacuum in the RH vacuum chamber 2 is raised to a final degree of vacuum of 67 Pa, and vacuum decarburization is further performed.

20分間脱炭した後に上昇ガスをアルゴンに切り替え、真空処理によりRH真空チャンバ2、RH精錬装置上昇管7、RH精錬装置下降管4で溶鋼に溶存した水素を脱出し、RH精錬装置下降管4の介在物除去領域9で介在物を除去する。 After decarburizing for 20 minutes, the ascending gas is switched to argon, and the hydrogen dissolved in the molten steel is escaped by vacuum processing in the RH vacuum chamber 2, the RH refining apparatus ascending pipe 7, and the RH refining apparatus descending pipe 4, and the RH refining equipment descending pipe 4 Inclusion removal area 9 removes inclusions.

脱炭が完了した後に、溶存酸素は100ppmとなり、アルミニウムを8kg添加して脱酸素を行なう。 After decarburization is completed, the dissolved oxygen reaches 100 ppm, and 8 kg of aluminum is added for deoxidization.

真空処理を5分間継続し、真空破壊して真空処理を完了する。エンドカーボンは0.0007%である。 The vacuum treatment is continued for 5 minutes and the vacuum is broken to complete the vacuum treatment. End carbon is 0.0007%.

精錬周期内に溶鋼温度を5℃高め、全酸素含有量を6.9ppmまで低下させ、脱炭速度を5%~20%向上させ、合計でアルゴン使用量を64m減少させ、アルミニウムの使用量を20kg低減する。 Within the refining cycle, the molten steel temperature is increased by 5℃, the total oxygen content is reduced to 6.9ppm, the decarburization rate is improved by 5%-20%, the total argon consumption is reduced by 64m3 , and the aluminum consumption is is reduced by 20 kg.

中国国内のある製鋼所の150tRH精錬装置は、RH処理ステーションに入る溶鋼の初期温度が1630℃を求め、実際のRH処理ステーションに入る溶鋼の温度が1610℃であり、RH処理ステーションに入る溶鋼の初期炭素含有量が0.044%であり、RH処理ステーションに入る溶鋼の初期酸素の含有量が480ppmであり、ターゲット炭素の含有量が0.001%である。 A 150tRH refining equipment in a steel mill in China requires that the initial temperature of molten steel entering the RH treatment station is 1630°C. The initial carbon content is 0.044%, the initial oxygen content of molten steel entering the RH treatment station is 480 ppm, and the target carbon content is 0.001%.

図1に示すように、取鍋台車は溶鋼受け箇所に走行した後にRH精錬装置取鍋8を所定の浸漬深さに上げる。 As shown in FIG. 1, the ladle truck raises the RH refining ladle 8 to a predetermined immersion depth after traveling to the molten steel receiving location.

RH上昇管エア吹出装置6はRH精錬装置上昇管7によってRH真空チャンバ2に吹き込まれたHの流量が300m/hであり、同時に真空システムを起動し、8000Paまで真空引きしてRH精錬装置真空チャンバランス1によって酸素を吹き付け、酸素を104m吹き付ける。ここで、放熱領域5において、主に水素ガスと溶鋼中の溶存酸素との放熱反応が発生する。脱炭放熱領域3において、主に水素気泡が発生して炭素と酸素との反応動力学を促進し、主に水素ガス及び上吹き酸素ガスの二次燃焼が発生する。 The RH riser air blowing device 6 has a flow rate of 300 m 3 /h of H 2 blown into the RH vacuum chamber 2 by the RH refining device riser 7. At the same time, the vacuum system is started to evacuate to 8000 Pa to perform RH refining. Blow oxygen by means of the apparatus vacuum chamber balance 1, blow 104 m 3 of oxygen. Here, in the heat dissipation region 5, a heat dissipation reaction mainly occurs between the hydrogen gas and dissolved oxygen in the molten steel. In the decarburization heat dissipation region 3, mainly hydrogen bubbles are generated to promote the reaction kinetics of carbon and oxygen, and secondary combustion mainly of hydrogen gas and top-blown oxygen gas occurs.

上吹き酸素が完了した後、RH真空チャンバ2の真空度を到達真空度67Paまでに高めて、さらに真空脱炭を行なう。 After the top-blown oxygen is completed, the degree of vacuum in the RH vacuum chamber 2 is raised to a final degree of vacuum of 67 Pa, and vacuum decarburization is further performed.

20分間脱炭した後に上昇ガスをアルゴンに切り替え、真空処理によりRH真空チャンバ2、RH精錬装置上昇管7、RH精錬装置下降管4で溶鋼に溶存した水素を脱出し、RH精錬装置下降管4の介在物除去領域9で介在物を除去する。 After decarburizing for 20 minutes, the ascending gas is switched to argon, and the hydrogen dissolved in the molten steel is escaped by vacuum processing in the RH vacuum chamber 2, the RH refining apparatus ascending pipe 7, and the RH refining apparatus descending pipe 4, and the RH refining equipment descending pipe 4 Inclusion removal area 9 removes inclusions.

脱炭が完了した後に、溶存酸素は100ppmとなり、アルミニウムを10kg添加して脱酸素を行なう。 After decarburization is completed, the dissolved oxygen reaches 100 ppm, and 10 kg of aluminum is added to deoxidize.

真空処理を5分間継続し、真空破壊して真空処理を完了する。エンドカーボンは0.0007%である。 The vacuum treatment is continued for 5 minutes and the vacuum is broken to complete the vacuum treatment. End carbon is 0.0007%.

精錬周期内に溶鋼温度を8℃高め、全酸素含有量を6.3ppmまで低下させ、脱炭速度を5%~20%向上させ、合計でアルゴン使用量を143m減少させ、アルミニウムの使用量を30kg低減する。 Within the refining cycle, the molten steel temperature is increased by 8℃, the total oxygen content is reduced to 6.3ppm, the decarburization rate is improved by 5%-20%, the total argon consumption is reduced by 143m3 , and the aluminum consumption is reduced. is reduced by 30 kg.

以上から分かるように、本発明の実施例より提供される上記技術内容は、少なくとも以下の有益な効果を有する。 It can be seen from the above that the above technical content provided by the embodiments of the present invention has at least the following beneficial effects.

本発明はRH精錬途中にアルゴンの代わりに水素ガスを上昇ガスとして用いることにより、RH精錬途中の溶鋼の温度補償を実現し、連続鋳造の順行を保証し、ノズルのノジュールを効果的に防止し、同時にアルミニウムの発熱剤の使用量を減少させ、溶鋼の清浄度を高める。真空槽中の水素が溶鋼に析出した分散微細水素気泡により、鋼中の炭素と酸素との反応動力学を促進する。溶存水素を脱着する時に溶鋼に介在物を核として生成された分散微細気泡によって、介在物の浮上の除去を促進する。脱炭終了後のアルミニウム脱酸剤の使用量を減少させ、脱酸介在数を低減する。アルゴンの代わりに水素ガスを用いることによって同時に製造コストを低減させる。 The present invention uses hydrogen gas as rising gas instead of argon during RH refining to realize temperature compensation of molten steel during RH refining, ensure continuous casting forward, and effectively prevent nozzle nodules. At the same time, it reduces the amount of aluminum exothermic agent used and improves the cleanliness of molten steel. Hydrogen in the vacuum chamber accelerates the reaction kinetics of carbon and oxygen in the steel by dispersing fine hydrogen bubbles precipitated in the molten steel. Dispersed micro-bubbles generated in molten steel with inclusions as nuclei during desorption of dissolved hydrogen promote the removal of inclusions. The amount of aluminum deoxidizing agent used after decarburization is reduced to reduce the number of deoxidizing interventions. Using hydrogen gas instead of argon also reduces manufacturing costs.

以上は本発明の好ましい実施形態であり、当業者にとって、本発明の上述した原理を逸脱しない限りにおいて種々の修正及び変更が可能であり、これらの修正及び変更も本発明の保護範囲と見なすべきことを指摘すべきである。 The above are the preferred embodiments of the present invention, and various modifications and changes are possible for those skilled in the art without departing from the above-described principles of the present invention, and these modifications and changes should also be regarded as the protection scope of the present invention. It should be pointed out that

1 RH精錬装置真空チャンバランス
2 RH真空チャンバ
3 脱炭放熱領域
4 RH精錬装置下降管
5 放熱領域
6 RH上昇管エアー吹出装置
7 RH精錬装置上昇管
8 RH精錬装置取鍋
9 介在物除去領域。
1 RH Refiner Vacuum Chamber Balance 2 RH Vacuum Chamber 3 Decarburization Heat Dissipation Zone 4 RH Refiner Downcomer 5 Heat Dissipation Zone 6 RH Riser Air Blower 7 RH Refiner Upcomer 8 RH Refiner Ladle 9 Inclusion Removal Zone.

Claims (10)

溶鋼の昇温、脱炭の促進、介在物の浮上の促進、溶鋼の清浄度を高め、一部のアルゴンの代替、精錬コストの低減を図るために、RH精錬途中にアルゴンの代わりに水素ガスのみを上昇ガスとして用い、真空脱炭を行い、上昇ガスをアルゴンに切り替え、真空脱ガス及び介在物除去を行い、最後にアルミニウムを添加して脱酸することを特徴とする水素ガスを用いてRH精錬効果を向上させる方法。 Hydrogen gas is used instead of argon during RH refining in order to raise the temperature of the molten steel, promote decarburization, promote the floating of inclusions, improve the cleanliness of the molten steel, partially replace argon, and reduce refining costs. using hydrogen gas as the ascending gas, performing vacuum decarburization, switching the ascending gas to argon, performing vacuum degassing and inclusion removal, and finally deoxidizing by adding aluminum. A method for improving the RH refining effect. 前記RH精錬途中にアルゴンの代わりに水素ガスを上昇ガスとして用い、水素ガスと溶鋼中の溶存酸素との反応及び真空チャンバの上吹き酸素ガスとの二次燃焼により放熱し、溶鋼温度を2~10℃高め、アルミニウムの発熱剤の使用量を8~40kg低減することを特徴とする請求項1に記載の水素ガスを用いてRH精錬効果を向上させる方法。 During the RH refining, hydrogen gas is used as the ascending gas instead of argon, and heat is released by the reaction between the hydrogen gas and dissolved oxygen in the molten steel and secondary combustion with the top-blown oxygen gas in the vacuum chamber, and the molten steel temperature is reduced to 2 to 2. The method for improving the RH refining effect using hydrogen gas according to claim 1, characterized in that the temperature is raised by 10°C and the amount of exothermic agent used for aluminum is reduced by 8 to 40 kg. 前記真空脱炭は、真空槽中の水素が溶鋼に析出した分散微細水素気泡により、鋼中の炭素と酸素との反応動力学を促進し、脱炭速度を5%~20%高めることを特徴とする請求項1に記載の水素ガスを用いてRH精錬効果を向上させる方法。 The vacuum decarburization is characterized by accelerating the reaction kinetics between carbon and oxygen in the steel and increasing the decarburization rate by 5% to 20% by dispersing fine hydrogen bubbles that are precipitated in the molten steel. The method for improving the RH refining effect using hydrogen gas according to claim 1. 前記上昇ガスをアルゴンに切り替えることは真空脱炭を10~25分行った後、又は脱炭が完全に完了すると発生することを特徴とする請求項1に記載の水素ガスを用いてRH精錬効果を向上させる方法。 RH refining effect using hydrogen gas according to claim 1, characterized in that switching the rising gas to argon occurs after vacuum decarburization for 10-25 minutes or when decarburization is completely completed how to improve 前記真空脱ガスは真空処理により溶鋼に溶存した水素を脱着することであり、前記介在物除去は溶存水素を脱着する時に溶鋼に介在物を核として分散微細気泡を生成し、微細気泡が衝突して鋼中の介在物を捕捉し、介在物の重合成長を促進し、介在物の浮上の除去を促進し、全酸素含有量を10%~35%低減することを特徴とする請求項1に記載の水素ガスを用いてRH精錬効果を向上させる方法。 The vacuum degassing is to desorb hydrogen dissolved in molten steel by vacuum treatment, and the removal of inclusions generates dispersed microbubbles with inclusions as nuclei in molten steel when desorbing dissolved hydrogen, and the microbubbles collide. It captures inclusions in the steel, promotes polymerization growth of inclusions, promotes removal of floating inclusions, and reduces the total oxygen content by 10% to 35%. A method for improving RH refining efficiency using the described hydrogen gas. ステップ1:取鍋台車は溶鋼受け箇所に走行した後に、RH精錬装置上昇管及びRH精錬装置下降管をRH精錬装置取鍋の溶鋼内に挿入するようにRH精錬装置取鍋を持ち上げることと、
ステップ2:RH上昇管エア吹出装置によりRH精錬装置上昇管内に水素ガス上昇ガスを吹き込み、同時に真空システムを起動し、真空引きして、溶鋼の液位を上げることと、
ステップ3:RH処理ステーションに入る溶鋼の初期炭素含有量及び酸素含有量に基づいて上吹き酸素を必要とするか否か及び上吹き酸素ガス量を選択することと、
ステップ4:酸素吹きつけを必要とすれば、RH精錬装置真空チャンバランスは酸素を上吹き、上吹き酸素が完了した後、RH真空チャンバの真空度を高めて、真空脱炭を行なう一方、酸素吹きつけを必要としなければ、3~5分を経てRH真空チャンバの真空度を高めて、真空脱炭を行なうことと、
ステップ5:真空脱炭を10~25分行なった後に上昇ガスをアルゴンに切り替え、真空処理により脱ガスを行ない、介在物を除去することと、
ステップ6:脱炭が完了した後、アルミニウムを添加して脱酸し、真空処理を5~20分継続し、真空破壊して真空処理を完了することと、
を含むことを特徴とする請求項1から請求項5のいずれか1項に記載の水素ガスを用いてRH精錬効果を向上させる方法。
Step 1: lifting the RH refiner ladle such that the RH refiner riser and the RH refiner downcomer are inserted into the molten steel of the RH refiner ladle after the ladle truck travels to the molten steel receiving location;
Step 2: Blowing hydrogen gas rising gas into the RH refiner riser by means of the RH riser air blower, at the same time activating the vacuum system and evacuating to raise the liquid level of the molten steel;
Step 3: Selecting whether top-blown oxygen is required and the amount of top-blown oxygen gas based on the initial carbon content and oxygen content of the molten steel entering the RH treatment station;
Step 4: If oxygen blowing is required, the RH smelter vacuum chamber balance will top-blown oxygen. If blowing is not required, increasing the vacuum degree of the RH vacuum chamber after 3 to 5 minutes to perform vacuum decarburization;
Step 5: After 10-25 minutes of vacuum decarburization, switching the ascending gas to argon and degassing by vacuum treatment to remove inclusions;
Step 6: After decarburization is completed, add aluminum to deoxidize, continue vacuum treatment for 5-20 minutes, break vacuum to complete vacuum treatment;
A method for improving RH refining effect using hydrogen gas according to any one of claims 1 to 5, comprising:
前記RH精錬装置上昇管から溶鋼に水素ガスを吹き付ける流量は50~300m/hであり、上昇ガスとしてのアルゴンの使用量を64~143m低減することを特徴とする請求項6に記載の水素ガスを用いてRH精錬効果を向上させる方法。 7. The method according to claim 6, characterized in that the flow rate of hydrogen gas sprayed from the RH refining apparatus riser to the molten steel is 50 to 300 m 3 /h, and the amount of argon used as the rise gas is reduced by 64 to 143 m 3 . A method for improving the RH refining effect using hydrogen gas. 二つの放熱領域及び介在物除去領域を含み、前記二つの放熱領域において、一方は溶鋼表面近傍の脱炭放熱領域であり、他方はRH精錬装置上昇管の先端近傍の放熱領域であることを特徴とする請求項6に記載の水素ガスを用いてRH精錬効果を向上させる方法。 It comprises two heat dissipation zones and an inclusion removal zone, wherein one of the two heat dissipation zones is a decarburization heat dissipation zone near the surface of the molten steel, and the other is a heat dissipation zone near the tip of the RH refining device riser pipe. The method for improving the RH refining effect using hydrogen gas according to claim 6. ステップ2の真空引きの真空度は5~15Kpaであり、ステップ4の真空度は67Paであることを特徴とする請求項6に記載の水素ガスを用いてRH精錬効果を向上させる方法。 The method for improving the RH refining effect using hydrogen gas according to claim 6, characterized in that the degree of vacuum in step 2 is 5 to 15 Kpa, and the degree of vacuum in step 4 is 67 Pa. ステップ6の脱炭が完了した後、溶存酸素が98~200ppmであり、アルミニウムを8~20kg添加して脱酸し、真空処理を5分間継続し、真空破壊して真空処理を完了し、エンドカーボンが0.0006~0.0009%であり、全酸素含有量が6.3~8.5ppmに低下することを特徴とする請求項6に記載の水素ガスを用いてRH精錬効果を向上させる方法。 After the decarburization in step 6 is completed, the dissolved oxygen is 98-200 ppm, 8-20 kg of aluminum is added to deoxidize, the vacuum treatment is continued for 5 minutes, the vacuum is broken to complete the vacuum treatment, and the end Improve the RH refining effect using hydrogen gas according to claim 6, characterized in that the carbon is 0.0006-0.0009% and the total oxygen content is reduced to 6.3-8.5 ppm Method.
JP2022029212A 2021-07-28 2022-02-28 Method for improving RH refining effect using hydrogen gas Active JP7258381B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110859960.3A CN113621759B (en) 2021-07-28 2021-07-28 Method for improving RH refining effect by adopting hydrogen
CN202110859960.3 2021-07-28

Publications (2)

Publication Number Publication Date
JP2023020853A JP2023020853A (en) 2023-02-09
JP7258381B2 true JP7258381B2 (en) 2023-04-17

Family

ID=78381412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022029212A Active JP7258381B2 (en) 2021-07-28 2022-02-28 Method for improving RH refining effect using hydrogen gas

Country Status (2)

Country Link
JP (1) JP7258381B2 (en)
CN (1) CN113621759B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114703342B (en) * 2022-04-15 2022-11-08 北京科技大学 Method for removing impurities from molten steel and metallurgical method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001158911A (en) 1999-12-02 2001-06-12 Sumitomo Metal Ind Ltd Method for decarburizing molten steel under vacuum

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0397807A (en) * 1989-09-11 1991-04-23 Kawasaki Steel Corp Method for preventing clogging of lance nozzle in vacuum degassing vessel
JPH0448027A (en) * 1990-06-16 1992-02-18 Nippon Steel Corp Method and device for reduced pressure and vacuum refining of molten steel
EP0486695A4 (en) * 1990-05-31 1993-05-19 Nippon Steel Corporation Process for refining molten metal or alloy
JPH06256836A (en) * 1993-03-01 1994-09-13 Kawasaki Steel Corp Production of high cleanliness and ultra-low carbon steel
CN101603115A (en) * 2009-07-09 2009-12-16 武汉科技大学 A kind of technology that hydrogen is used for steel liquid deoxidation
CN102127618B (en) * 2011-02-28 2012-09-05 钢铁研究总院 Device and method for refining, oxygenating and deeply decarbonizing molten steel in vacuum
CN106086315B (en) * 2016-08-16 2018-04-24 北京科技大学 A kind of method that micro-bubble is generated in molten steel
CN109628705B (en) * 2019-02-26 2021-03-05 太原科技大学 RH refining method of low-carbon stainless steel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001158911A (en) 1999-12-02 2001-06-12 Sumitomo Metal Ind Ltd Method for decarburizing molten steel under vacuum

Also Published As

Publication number Publication date
JP2023020853A (en) 2023-02-09
CN113621759A (en) 2021-11-09
CN113621759B (en) 2022-08-16

Similar Documents

Publication Publication Date Title
JP5082417B2 (en) Method of melting ultra low sulfur low nitrogen high cleanliness steel
JP2007224367A (en) Method for producing high-nitrogen steel
JP7258381B2 (en) Method for improving RH refining effect using hydrogen gas
JP2018066030A (en) Manufacturing method of high cleanliness steel
CN108588338A (en) A kind of VD stoves utilize CO2The method for making steel denitrogenation
CN105543446A (en) High-calcium-aluminum slag ball and preparing method thereof
CN105624367B (en) The purifier and method of a kind of control nitrogen content of molten steel
JP2018016843A (en) Method for melting extra-low-sulfur low-nitrogen steel
JP4207820B2 (en) How to use vacuum degassing equipment
JP2009263783A (en) Method for refining molten steel in rh vacuum degassing apparatus
JP2593175B2 (en) Method for producing ultra-low carbon steel by vacuum degassing
JPS6137912A (en) Method for vacuum-refining molten steel
JPH05239534A (en) Method for melting non-oriented electric steel sheet
JP6547638B2 (en) Method of manufacturing high purity steel
JP2009191290A (en) Method for producing ingot of extra-low carbon steel
KR100399220B1 (en) Refining method for steel sheet manufacturing
JP2767674B2 (en) Refining method of high purity stainless steel
JP3891013B2 (en) Method of refining molten steel with RH degassing equipment
KR20040049621A (en) Method for Heating Inner Portion of RH Degasser
CN114107605B (en) Impurity removing refining method for molten steel
JP3225747B2 (en) Vacuum degassing of molten steel
JPH0718322A (en) Method for refining highly clean aluminum-killed steel
JP2724030B2 (en) Melting method of ultra low carbon steel
CN115820986A (en) Method for stably controlling rare earth yield in vacuum treatment
CN116144938A (en) Device and method for improving electroslag remelting deep desulfurization

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230329

R150 Certificate of patent or registration of utility model

Ref document number: 7258381

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150