JP7253725B2 - power generation system - Google Patents

power generation system Download PDF

Info

Publication number
JP7253725B2
JP7253725B2 JP2020013975A JP2020013975A JP7253725B2 JP 7253725 B2 JP7253725 B2 JP 7253725B2 JP 2020013975 A JP2020013975 A JP 2020013975A JP 2020013975 A JP2020013975 A JP 2020013975A JP 7253725 B2 JP7253725 B2 JP 7253725B2
Authority
JP
Japan
Prior art keywords
power
conditioner
measurement result
cubicle
control unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020013975A
Other languages
Japanese (ja)
Other versions
JP2021121150A (en
Inventor
勇次 小林
泰生 奥田
修平 西川
敏 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2020013975A priority Critical patent/JP7253725B2/en
Priority to PCT/JP2021/000283 priority patent/WO2021153173A1/en
Publication of JP2021121150A publication Critical patent/JP2021121150A/en
Application granted granted Critical
Publication of JP7253725B2 publication Critical patent/JP7253725B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

本開示は、電力を制御する発電システムに関する。 The present disclosure relates to power generation systems that control power .

太陽光発電システムにおいて、余剰電力が商用電力線に逆潮流させ電力会社に売電される。一方、逆潮流による電力系統の電圧変動を抑制するために、太陽光発電システムから電力会社への逆潮流が回避される。例えば、太陽電池の発電電力を制御するパワーコンデショナには、当該パワーコンデショナの出力を制御する発電制御装置が接続され、発電制御装置は、消費電力の計測値と発電電力の計測値とをもとに、出力指令値を算出してパワーコンディショナに出力する(例えば、特許文献1参照)。 In a photovoltaic power generation system, surplus power is reverse-flowed to a commercial power line and sold to a power company. On the other hand, in order to suppress voltage fluctuations in the power system due to reverse power flow, reverse power flow from the photovoltaic power generation system to the power company is avoided. For example, a power conditioner that controls the power generated by a solar cell is connected to a power generation control device that controls the output of the power conditioner. Based on this, an output command value is calculated and output to the power conditioner (see Patent Document 1, for example).

特許第6364567号公報Japanese Patent No. 6364567

工場、大型商業施設、病院、オフィスビル、ホテル、店舗などの受電容量が50kVA以上4000kVA以下の小中規模施設には、キュービクル式高圧受電設備(以下、「キュービクル」という)が設置されることがある。キュービクルは、高圧で受電するための機器一式を金属製の外箱に収めた変電設備であり、6600Vで受電した高圧電力を100Vまたは200Vに変圧して施設に供給する。また、施設には、施設において施設において使用された電力を計測する電力量計も設置され、電力量計は、小売電気事業者によって電力売買取引のために使用される。さらに、太陽光発電システムは、目的が売電から自家消費に移行しつつある。自家消費の場合、売買電の電力を計測し、逆潮流が発生しないように発電電力を調整するための計測制御装置が必要となる。前述の太陽光発電システムにこれらの設備が接続されると、設備の規模が大きくなる。 Cubicle-type high-voltage power receiving equipment (hereinafter referred to as "cubicle") is often installed in small and medium-sized facilities such as factories, large-scale commercial facilities, hospitals, office buildings, hotels, and stores with a power receiving capacity of 50 kVA or more and 4000 kVA or less. be. A cubicle is a substation facility in which a set of equipment for receiving high-voltage power is housed in a metal outer box. The facility is also equipped with a watt-hour meter that measures the power used in the facility at the facility, and the watt-hour meter is used by retail electricity utilities for power trading. Furthermore, the purpose of photovoltaic power generation systems is shifting from selling power to self-consumption. In the case of self-consumption, a measurement control device is required to measure the power of purchased power and adjust the generated power so that reverse power flow does not occur. When these facilities are connected to the photovoltaic power generation system described above, the scale of the facilities increases.

本開示はこうした状況に鑑みなされたものであり、その目的は、発電システムにおける設備の規模の拡大を抑制する技術を提供することにある。 The present disclosure has been made in view of such circumstances, and an object thereof is to provide a technique for suppressing expansion of the scale of facilities in a power generation system.

上記課題を解決するために、本開示のある態様の発電システムは、電力系統からの高圧の交流電力を変圧し、変圧した交流電力を出力する、売買電の電力を計測するための機能が含まれていないキュービクルと、発電装置において発電された直流電力を交流電力に変換して出力するパワーコンディショナと、キュービクルとパワーコンディショナとに接続され、キュービクルあるいはパワーコンディショナからの交流電力を負荷機器に供給する分電盤と、電力系統に対して売買電される電力を計測し、計測結果をパワーコンディショナに送信する電力量計とを備える。パワーコンディショナは、電力量計から計測結果を受けつける入力部と、入力部において受けつけた計測結果をもとに、売電とならないように、直流電力から交流電力への変換を制御する制御部と、を備える。 In order to solve the above problems, a power generation system according to one aspect of the present disclosure includes functions for transforming high-voltage AC power from a power system, outputting the transformed AC power, and measuring the power of the purchased power. a power conditioner that converts the DC power generated in the power generator into AC power and outputs it, and the cubicle and the power conditioner are connected to output the AC power from the cubicle or the power conditioner to the load equipment and a power meter that measures the power that is bought and sold to the power system and transmits the measurement result to the power conditioner. The power conditioner consists of an input unit that receives the measurement results from the watt-hour meter, and a control unit that controls the conversion from DC power to AC power based on the measurement results received by the input unit so that power is not sold. , provided.

本開示の別の態様もまた、発電システムである。この発電システムは、電力系統からの高圧の交流電力を変圧し、変圧した交流電力を出力する、売買電の電力を計測するための機能が含まれていないキュービクルと、発電装置において発電された直流電力を交流電力に変換して出力するパワーコンディショナと、キュービクルとパワーコンディショナとに接続され、キュービクルあるいはパワーコンディショナからの交流電力を負荷機器に供給する分電盤と、電力系統に対して売買電される電流を計測し、計測結果をパワーコンディショナに送信する電流センサとを備える。パワーコンディショナは、電流センサから計測結果を受けつける入力部と、入力部において受けつけた計測結果をもとに、売電とならないように、直流電力から交流電力への変換を制御する制御部と、を備える。 Another aspect of the disclosure is also a power generation system. This power generation system transforms high-voltage AC power from the power grid, outputs the transformed AC power , and includes a cubicle that does not include a function for measuring the power of the purchased power, and a direct current generated by the power generation device. A power conditioner that converts electric power into AC power and outputs it, a distribution board that is connected to the cubicle and the power conditioner and supplies the AC power from the cubicle or the power conditioner to load devices, and a power system and a current sensor that measures a current that is bought and sold and transmits the measurement result to the power conditioner. The power conditioner includes an input unit that receives the measurement result from the current sensor, a control unit that controls conversion from DC power to AC power so as not to sell power based on the measurement result received at the input unit, Prepare.

本開示のさらに別の態様もまた、発電システムである。この発電システムは、電力系統からの高圧の交流電力を変圧し、変圧した交流電力を出力する、売買電の電力を計測するための機能が含まれていないキュービクルと、発電装置において発電された直流電力を交流電力に変換して出力するメインパワーコンディショナと、発電装置において発電された直流電力を交流電力に変換して出力するスレーブパワーコンディショナと、キュービクルとメインパワーコンディショナとスレーブパワーコンディショナとに接続され、キュービクルあるいはメインパワーコンディショナあるいはスレーブパワーコンディショナからの交流電力を負荷機器に供給する分電盤と、電力系統に対して売買電される電力を計測し、計測結果をメインパワーコンディショナに送信する電力量計とを備える。メインパワーコンディショナは、電力量計から計測結果を受けつける入力部と、入力部において受けつけた計測結果をもとに、売電とならないように、直流電力から交流電力への変換を制御する制御部とを備える。メインパワーコンディショナは、変換の動作をスレーブパワーコンディショナに指示する。 Yet another aspect of the present disclosure is also a power generation system. This power generation system transforms high-voltage AC power from the power grid, outputs the transformed AC power , and includes a cubicle that does not include a function for measuring the power of the purchased power, and a direct current generated by the power generation device. A main power conditioner that converts electric power into AC power and outputs it, a slave power conditioner that converts the DC power generated by the generator into AC power and outputs it, and a cubicle, main power conditioner, and slave power conditioner. A distribution board that supplies AC power from cubicles, main power conditioners, or slave power conditioners to load equipment, and the power that is bought and sold to the power system is measured, and the measurement results are used as the main power and a power meter that transmits to the conditioner. The main power conditioner has an input unit that receives measurement results from the watt-hour meter, and a control unit that controls the conversion from DC power to AC power based on the measurement results received at the input unit so that power is not sold. and The main inverter directs the operation of the conversion to the slave inverters.

なお、以上の構成要素の任意の組合せ、本開示の表現を方法、装置、システム、コンピュータプログラム、またはコンピュータプログラムを記録した記録媒体などの間で変換したものもまた、本開示の態様として有効である。 It should be noted that any combination of the above-described components and expressions of the present disclosure converted between methods, devices, systems, computer programs, recording media recording computer programs, etc. are also effective as aspects of the present disclosure. be.

本開示によれば、発電システムにおける設備の規模の拡大を抑制できる。 According to the present disclosure, it is possible to suppress the expansion of the scale of equipment in the power generation system.

実施例1の比較対象となる発電システムの構成を示す図である。1 is a diagram showing the configuration of a power generation system to be compared with Example 1. FIG. 実施例1に係る発電システムの構成を示す図である。1 is a diagram showing a configuration of a power generation system according to Example 1; FIG. 図3(a)-(b)は、図2の制御部に保持されるテーブルのデータ構造を示す図である。3(a) and 3(b) are diagrams showing data structures of tables held in the control unit of FIG. 2. FIG. 図4(a)-(b)は、図2の発電システムによる処理手順を示すフローチャートである。FIGS. 4(a) and 4(b) are flow charts showing processing procedures by the power generation system of FIG. 実施例2に係る発電システムの構成を示す図である。FIG. 7 is a diagram showing the configuration of a power generation system according to Example 2; 図6(a)-(b)は、図5の制御部に保持されるテーブルのデータ構造を示す図である。FIGS. 6A and 6B are diagrams showing data structures of tables held in the control unit of FIG. 図7(a)-(b)は、図5の発電システムによる処理手順を示すフローチャートである。7(a) and 7(b) are flow charts showing processing procedures by the power generation system of FIG.

(実施例1)
本開示の実施例を具体的に説明する前に、本実施例の概要を説明する。実施例1は、太陽電池システム等の発電システムに関する。小中規模施設には、電力系統から高圧電力が供給され、キュービクルにより高圧電力を変圧する。変圧された電力は、小中規模施設内の分電盤を介して負荷機器に供給される。一方、小中規模施設に発電システムが導入される場合、太陽電池等の発電装置はパワーコンディショナに接続され、パワーコンディショナは分電盤に接続される。パワーコンディショナは、例えば、発電装置において発電された直流電力を交流電力に変換して分電盤に出力する。このような発電システムでは、発電装置において発電された電力がパワーコンディショナ、分電盤、キュービクルを介して電力系統に逆潮流されることによって、売電がなされる。
(Example 1)
Before specifically describing the embodiments of the present disclosure, an outline of the present embodiments will be described. Example 1 relates to a power generation system such as a solar cell system. High-voltage power is supplied from the power system to small and medium-sized facilities, and the high-voltage power is transformed by cubicles. The transformed electric power is supplied to load equipment through distribution boards in small and medium-sized facilities. On the other hand, when a power generation system is introduced into a small and medium-sized facility, a power generation device such as a solar cell is connected to a power conditioner, and the power conditioner is connected to a distribution board. The power conditioner, for example, converts the DC power generated by the power generator into AC power and outputs the AC power to the distribution board. In such a power generation system, the power generated by the power generation device is sold by reverse power flow to the power system via the power conditioner, the distribution board, and the cubicle.

しかしながら、電力の買取価格の下落が進むことによって、発電システムの目的が、売電から自家消費に移行しつつある。発電システムの自家消費を実現する場合、電力系統への逆潮流の発生を防止するために、キュービクル内に逆潮流継電器(RPR)が設けられる。RPRが動作するとパワーコンディショナを停止させる必要があるので、それを防ぐために、キュービクル内に計測制御装置が設けられる。計測制御装置は、売買電の電力を計測して、逆潮流が発生しないように発電電力を調節するための指令を生成し、指令をパワーコンディショナに出力する。 However, as the purchase price of electricity continues to decline, the purpose of power generation systems is shifting from selling electricity to self-consumption. When realizing self-consumption of the power generation system, a reverse power flow relay (RPR) is provided in the cubicle to prevent the occurrence of reverse power flow into the power system. Since it is necessary to stop the power conditioner when the RPR operates, a measurement control device is provided in the cubicle to prevent this. The measurement control device measures the power of the purchased power, generates a command for adjusting the generated power so that reverse power flow does not occur, and outputs the command to the power conditioner.

また、キュービクルには、小中規模施設において使用された電力を計測するための電力量計も設置される。電力量計は、小売電気事業者による確認のために使用され、計測制御装置は、パワーコンディショナの制御のために使用されており、それらの使用用途は異なる。しかしながら、いずれも電力を計測する機能を備えているので、同一の機能を有する複数の装置が発電システム内に含まれるといえる。発電システムにおける設備の規模の拡大を抑制するためには、同一の機能を有する複数の装置が発電システム内に含まれないような構成が望ましい。 The cubicle is also equipped with a watt-hour meter for measuring the power used in the small and medium-sized facilities. Electricity meters are used for confirmation by electric power retailers, and measurement control devices are used for controlling power conditioners, and their uses are different. However, since each of them has a function of measuring electric power, it can be said that a plurality of devices having the same function are included in the power generation system. In order to suppress the expansion of the scale of equipment in the power generation system, it is desirable that the power generation system does not include a plurality of devices having the same function.

本実施例における発電システムでは、キュービクル内に計測制御装置が設けられず、計測制御装置のうち、逆潮流が発生しないようにパワーコンディショナの動作を制御するための機能がパワーコンディショナ内に設けられる。また、パワーコンディショナには、電力量計の計測結果を電力量計から受けつけるための機能も設けられ、パワーコンディショナは、電力量計の計測結果をもとに、逆潮流が発生しないように動作する。 In the power generation system of the present embodiment, no measurement control device is provided in the cubicle, and a function for controlling the operation of the power conditioner so as not to generate reverse power flow is provided in the power conditioner among the measurement control devices. be done. In addition, the power conditioner is equipped with a function to receive the measurement result of the power meter from the power meter. Operate.

図1は、比較対象となる発電システム1の構成を示す。発電システム1は、電力系統10、キュービクル20、電力量計30、分電盤40、負荷機器50、発電装置60、パワーコンディショナ70を含む。キュービクル20は、計測制御部22、RPR24を含み、パワーコンディショナ70は、入力部74、変換部72を含む。発電システム1は、前述のごとく、受電容量が50kVA以上4000kVA以下の小中規模施設に設けられる。小中規模施設の一例は、工場、大型商業施設、病院、オフィスビル、ホテル、店舗などである。 FIG. 1 shows the configuration of a power generation system 1 to be compared. The power generation system 1 includes a power system 10 , a cubicle 20 , a power meter 30 , a distribution board 40 , a load device 50 , a power generator 60 and a power conditioner 70 . The cubicle 20 includes a measurement control section 22 and an RPR 24 , and the power conditioner 70 includes an input section 74 and a conversion section 72 . As described above, the power generation system 1 is installed in a small-medium scale facility with a power receiving capacity of 50 kVA or more and 4000 kVA or less. Examples of small and medium-sized facilities are factories, large commercial facilities, hospitals, office buildings, hotels, shops, and the like.

電力系統10は電力会社等によって提供される。ここでは、6600Vの高圧電力が提供される場合を想定する。キュービクル20は、前述のごとく、変電機能を有し、6600Vでの高圧電力と、100Vまたは200Vの電力との間の変圧を実行する。分電盤40は、キュービクル20に接続され、キュービクル20を介して電力系統10に接続される。また、分電盤40は、負荷機器50を接続し、負荷機器50に電力を供給する。負荷機器50は分電盤40から供給される電力を消費する機器である。負荷機器50は、空調機器(エアコン)、テレビジョン受信装置(テレビ)、照明装置、冷蔵庫等の機器を含む。ここでは、分電盤40に1つの負荷機器50が接続されているが、分電盤40に複数の負荷機器50が接続されてもよい。 The power system 10 is provided by a power company or the like. Here, it is assumed that high voltage power of 6600V is provided. As described above, the cubicle 20 has a transformer function and performs transformation between high voltage power at 6600V and power at 100V or 200V. The distribution board 40 is connected to the cubicle 20 and connected to the power system 10 via the cubicle 20 . Moreover, the distribution board 40 connects the load device 50 and supplies power to the load device 50 . The load device 50 is a device that consumes power supplied from the distribution board 40 . The load device 50 includes devices such as an air conditioner (air conditioner), a television receiver (television), a lighting device, and a refrigerator. Although one load device 50 is connected to the distribution board 40 here, a plurality of load devices 50 may be connected to the distribution board 40 .

電力量計30は、キュービクル20に接続されたデジタル式の電力量計であり、例えばスマートメータである。電力量計30は、電力系統10から入ってくる順潮流の電力、あるいは電力系統10へ出て行く逆潮流の電力とを計測可能である。前者が買電電力あるいは順潮流電力に相当し、後者が売電電力あるいは逆潮流電力に相当する。電力量計30は、小売電気事業者によって確認されるために小中規模施設に設置される。 The power meter 30 is a digital power meter connected to the cubicle 20, such as a smart meter. The watt-hour meter 30 can measure forward flow power coming from the power system 10 or reverse power flow going out to the power system 10 . The former corresponds to purchased power or forward flow power, and the latter corresponds to sold power or reverse flow power. Electricity meters 30 are installed in small and medium-sized facilities for verification by retail electricity suppliers.

発電装置60は、例えば太陽電池であり、再生可能エネルギー発電装置である。発電装置60は、光起電力効果を利用し、光エネルギーを直接電力に変換する。太陽電池として、シリコン太陽電池、化合物半導体などを素材にした太陽電池、色素増感型(有機太陽電池)等が使用される。再生可能エネルギーである太陽光の強さは天候および時刻とともに変動するので、発電装置60において発電される電力も変動する。発電装置60は、発電した直流電力をパワーコンディショナ70に出力する。 The power generation device 60 is, for example, a solar cell, and is a renewable energy power generation device. The power generator 60 utilizes the photovoltaic effect to convert light energy directly into electrical power. As solar cells, silicon solar cells, solar cells using compound semiconductors as materials, dye-sensitized solar cells (organic solar cells), and the like are used. Since the intensity of sunlight, which is renewable energy, fluctuates with the weather and the time of day, the power generated by the power generator 60 also fluctuates. The power generator 60 outputs the generated DC power to the power conditioner 70 .

パワーコンディショナ70の変換部72は、DC-DCコンバータおよびDC-ACインバータの機能を有し、発電装置60から出力される直流電力を、所望の電圧値の直流電力に変換し、変換した直流電力を交流電力に変換する。変換部72は、変換した交流電力を分電盤40に出力する。発電装置60において発電した電力を売電する場合、分電盤40は、変換部72からの交流電力をキュービクル20を介して電力系統10に出力する。しかしながら、本実施例は、売電ではなく自家消費を前提とするので、分電盤40は、変換部72からの交流電力を負荷機器50に供給する。 The conversion unit 72 of the power conditioner 70 has the functions of a DC-DC converter and a DC-AC inverter, converts the DC power output from the power generation device 60 into DC power of a desired voltage value, and converts the converted DC Converts electrical power to AC power. The converter 72 outputs the converted AC power to the distribution board 40 . When selling the power generated by the power generation device 60 , the distribution board 40 outputs the AC power from the conversion unit 72 to the power system 10 via the cubicle 20 . However, since this embodiment assumes self-consumption rather than selling power, the distribution board 40 supplies the AC power from the conversion unit 72 to the load device 50 .

自家消費を前提とする場合、電力の逆潮流を防止するために、キュービクル20にRPR24が設けられる。RPR24は、分電盤40から電力系統10に向かう方向、つまり逆潮流の交流電力を検出した際に動作する継電器である。RPR24は、例えば、逆潮流の電流が流れた場合に、接点信号をパワーコンディショナ70に送信し、パワーコンディショナ70は発電を停止する。このように、RPR24は、電力系統10への逆潮流が発生した場合に動作することによって、逆潮流発生の場合に発電装置60、パワーコンディショナ70からの送電を停止し、電力系統10への逆潮流を防止する。 Assuming self-consumption, the cubicle 20 is provided with an RPR 24 in order to prevent reverse power flow. The RPR 24 is a relay that operates when AC power in a direction from the distribution board 40 to the power system 10, that is, in a reverse power flow is detected. For example, when a reverse current flows, the RPR 24 transmits a contact signal to the power conditioner 70, and the power conditioner 70 stops power generation. In this way, the RPR 24 operates when a reverse power flow to the power system 10 occurs, thereby stopping power transmission from the power generator 60 and the power conditioner 70 when a reverse power flow occurs, Prevent reverse power flow.

計測制御部22は、電力系統10から入ってくる順潮流の電力、あるいは電力系統10へ出て行く逆潮流の電力とを計測可能であり、計測結果をもとに変換部72での変換を制御するための指令(以下、「出力指令値」という)を生成する。例えば、計測制御部22は、順潮流の電力が第1所定値よりも小さい場合、逆潮流の発生を防止するために、変換部72から出力される交流電力を小さくするような出力指令値を生成する。また、計測制御部22は、順潮流の電力が第2所定値よりも大きい場合、変換部72から出力される交流電力を大きくするような出力指令値を生成する。第2所定値は第1所定値よりも大きな値に設定される。このような計測制御部22における制御には公知の技術が使用されればよい。計測制御部22は、パワーコンディショナ70と通信線により接続されており、通信線を介してパワーコンディショナ70に出力指令値を送信する。 The measurement control unit 22 can measure forward power flow power coming from the power system 10 or reverse power flow power going out to the power system 10, and performs conversion in the conversion unit 72 based on the measurement results. A command for control (hereinafter referred to as "output command value") is generated. For example, when the power of the forward power flow is smaller than the first predetermined value, the measurement control unit 22 sets an output command value that reduces the AC power output from the conversion unit 72 in order to prevent the occurrence of reverse power flow. Generate. Moreover, the measurement control unit 22 generates an output command value that increases the AC power output from the conversion unit 72 when the power of the forward power flow is greater than the second predetermined value. The second predetermined value is set to a value greater than the first predetermined value. A known technique may be used for such control in the measurement control unit 22 . The measurement control unit 22 is connected to the power conditioner 70 via a communication line, and transmits an output command value to the power conditioner 70 via the communication line.

パワーコンディショナ70の入力部74は、通信線を介してキュービクル20に接続されており、出力指令値を受信する。変換部72は、入力部74において受信した出力指令値の内容にしたがって、交流電力の出力を制御する。このような構成において、計測制御部22と電力量計30は、電力系統10から入ってくる順潮流の電力、あるいは電力系統10へ出て行く逆潮流の電力とを計測しており、同様の機能を有する。前述のごとく、発電システム1における設備の規模の拡大を抑制するためには、同一の機能を有する複数の装置が発電システム1内に含まれないような構成が望ましい。 An input section 74 of the power conditioner 70 is connected to the cubicle 20 via a communication line and receives an output command value. Conversion unit 72 controls the output of AC power according to the content of the output command value received at input unit 74 . In such a configuration, the measurement control unit 22 and the watt-hour meter 30 measure the forward flow power coming from the power system 10 or the reverse power flow going out to the power system 10 . have a function. As described above, in order to suppress the expansion of the scale of facilities in the power generation system 1, it is desirable that the power generation system 1 does not include a plurality of devices having the same function.

図2は、発電システム1000の構成を示す。発電システム1000は、電力系統100、キュービクル200、電力量計300、分電盤400、負荷機器500、発電装置600、パワーコンディショナ700、蓄電池800を含む。キュービクル200は、RPR204を含み、パワーコンディショナ700は、変換部702、入力部704、制御部706を含む。発電システム1000は、前述の発電システム1と同様に、受電容量が50kVA以上4000kVA以下の小中規模施設に設けられる。 FIG. 2 shows the configuration of the power generation system 1000. As shown in FIG. A power generation system 1000 includes a power system 100 , a cubicle 200 , a power meter 300 , a distribution board 400 , a load device 500 , a power generator 600 , a power conditioner 700 and a storage battery 800 . Cubicle 200 includes RPR 204 , and power conditioner 700 includes conversion section 702 , input section 704 and control section 706 . The power generation system 1000, like the power generation system 1 described above, is installed in a small-medium scale facility with a power receiving capacity of 50 kVA or more and 4000 kVA or less.

電力系統100は、前述の電力系統10と同様に、電力系統10は電力会社等によって提供される6600Vの高圧電力である。キュービクル200は、前述のごとく、変電機能を有し、6600Vの高圧電力と、100Vまたは200Vの電力との間の変圧を実行するとともに、電力の逆潮流を防止するためのRPR204を有する。RPR204はこれまでのRPR24と同一である。分電盤400は、キュービクル200に接続され、キュービクル200を介して電力系統100に接続される。また、分電盤400は、負荷機器500を接続し、負荷機器500に電力を供給する。負荷機器500は、前述の負荷機器50と同一である。 The electric power system 100, like the electric power system 10 described above, is a 6600 V high-voltage power provided by an electric power company or the like. As described above, the cubicle 200 has a power transformation function, performs transformation between high voltage power of 6600V and power of 100V or 200V, and has an RPR 204 for preventing reverse power flow. RPR204 is the same as the previous RPR24. Distribution board 400 is connected to cubicle 200 and connected to power grid 100 via cubicle 200 . Moreover, the distribution board 400 connects the load device 500 and supplies power to the load device 500 . The load device 500 is the same as the load device 50 described above.

電力量計300は、キュービクル200に接続されたデジタル式の電力量計であり、例えばスマートメータである。電力量計300は、前述の電力量計30と同様の計測機能を有し、電力系統100から入ってくる順潮流の電力、あるいは電力系統100へ出て行く逆潮流の電力とを計測可能である。前者が買電電力あるいは順潮流電力に相当し、後者が売電電力あるいは逆潮流電力に相当する。つまり、電力量計300は、電力系統100に対して売買電される電力を計測する。 The watt-hour meter 300 is a digital watt-hour meter connected to the cubicle 200, such as a smart meter. The watt-hour meter 300 has a measurement function similar to that of the watt-hour meter 30 described above, and is capable of measuring forward flow power coming from the power system 100 or reverse flow power going out to the power system 100 . be. The former corresponds to purchased power or forward flow power, and the latter corresponds to sold power or reverse flow power. That is, the watt-hour meter 300 measures the power that is bought and sold with respect to the power system 100 .

発電装置600は、前述の発電装置60と同一であり、例えば太陽電池のような再生可能エネルギー発電装置である。発電装置600は、発電した直流電力をパワーコンディショナ700に出力する。パワーコンディショナ700は、発電装置600と分電盤400との間に配置される。変換部702は、DC-DCコンバータおよびDC-ACインバータの機能を有し、発電装置600から出力される直流電力を、所望の電圧値の直流電力に変換し、変換した直流電力を交流電力に変換する。変換部702は、変換した交流電力を分電盤400に出力する。これまでと同様に、売電ではなく自家消費を前提とするので、分電盤400は、変換部702からの交流電力を負荷機器500に供給する。 The power generation device 600 is the same as the power generation device 60 described above, and is a renewable energy power generation device such as a solar cell. Power generator 600 outputs the generated DC power to power conditioner 700 . Power conditioner 700 is arranged between power generator 600 and distribution board 400 . The conversion unit 702 has the functions of a DC-DC converter and a DC-AC inverter, converts the DC power output from the power generation device 600 into DC power of a desired voltage value, and converts the converted DC power into AC power. Convert. Conversion unit 702 outputs the converted AC power to distribution board 400 . As before, since it is assumed that the electric power is not sold but is self-consumed, the distribution board 400 supplies the AC power from the conversion unit 702 to the load device 500 .

電力量計300は、通信線を介してパワーコンディショナ700に接続され、パワーコンディショナ700との間の通信を実行する。また、電力量計300は、無線回線を介してパワーコンディショナ700に接続され、パワーコンディショナ700との間の無線通信を実行してもよい。電力量計300は、計測結果をパワーコンディショナ700に送信する。ここで、計測結果の送信は定期的になされてもよく、変化が予め定めた範囲よりも大きくなった場合になされてもよい。 The power meter 300 is connected to the power conditioner 700 via a communication line and communicates with the power conditioner 700 . Also, watt-hour meter 300 may be connected to power conditioner 700 via a wireless link and perform wireless communication with power conditioner 700 . The power meter 300 transmits the measurement result to the power conditioner 700 . Here, the transmission of the measurement result may be performed periodically, or may be performed when the change exceeds a predetermined range.

パワーコンディショナ700の入力部704は、通信線あるいは無線回線を介して電力量計300に接続されており、計測結果を受信する。入力部704における通信機能はオプション部材で構成されてもよく、オプション部材の通信装置がパワーコンディショナ700に接続されてもよい。 An input unit 704 of the power conditioner 700 is connected to the power meter 300 via a communication line or wireless line, and receives measurement results. The communication function in the input unit 704 may be configured by an optional member, and the communication device of the optional member may be connected to the power conditioner 700 .

制御部706は、入力部704において受けつけた計測結果をもとに、電力系統100に対して売電とならないように変換部702における変換を制御する。変換を制御することは、変換部702から出力する交流電力の大きさを制御することに相当する。図3(a)-(b)は、制御部706に保持されるテーブルのデータ構造を示す。図3(a)に示されるテーブルでは、計測結果に含まれる電力値が「売電」である場合の制御「出力を低減」と、計測結果に含まれる電力値が「買電」である場合の制御「通常制御」とが示される。 Based on the measurement results received by the input unit 704 , the control unit 706 controls conversion by the conversion unit 702 so as not to sell power to the power system 100 . Controlling the conversion corresponds to controlling the magnitude of the AC power output from the conversion unit 702 . 3A and 3B show the data structure of tables held in the control unit 706. FIG. In the table shown in FIG. 3( a ), the control “reduce output” when the power value included in the measurement result is “power selling” and the control when the power value included in the measurement result is “power purchase” control "normal control" is shown.

制御部706は、変換部702から受けつけた計測結果に含まれる電力値が「買電」である場合、通常制御の実行を決定する。通常制御として、制御部706は、発電装置600の出力電力が最大になるようMPPT(Maximum Power Point Tracking)制御を変換部702に対して実行する。MPPTについては公知の技術が使用されればよく、通常制御としてMPPT制御以外の制御が実行されてもよい。一方、制御部706は、変換部702から受けつけた計測結果に含まれる電力値が「売電」である場合、出力を低減させることを決定する。その際、制御部706は、出力される交流電力を1/X倍となるように変換部702を制御する。「X」は、予め定められた固定値であってもよく、電力値が大きくなるほど大きくなるような値であってもよい。このように制御部706は、計測結果が売電を示す場合に買電を示すようになるように変換部702における変換を制御する。 Control unit 706 determines execution of normal control when the power value included in the measurement result received from conversion unit 702 is “purchased power”. As normal control, the control unit 706 performs MPPT (Maximum Power Point Tracking) control on the conversion unit 702 so that the output power of the power generation device 600 is maximized. A known technique may be used for MPPT, and control other than MPPT control may be executed as normal control. On the other hand, when the power value included in the measurement result received from conversion unit 702 is “selling power”, control unit 706 determines to reduce the output. At that time, the control unit 706 controls the conversion unit 702 so that the output AC power is 1/X times. “X” may be a predetermined fixed value, or may be a value that increases as the power value increases. In this way, the control unit 706 controls the conversion in the conversion unit 702 so that when the measurement result indicates selling power, it indicates buying power.

図3(b)は、図3(a)とは別のテーブルである。図3(b)に示されるテーブルでは、計測結果に含まれる電力値が「売電」である場合に、蓄電池800への充電が可能であるときの制御「充電」と、蓄電池800への充電が不可能であるときの制御「出力を低減」とが示される。また、計測結果に含まれる電力値が「買電」である場合の制御「通常制御」も示される。ここでは、図2に示されるように、蓄電池800がパワーコンディショナ700に接続される。蓄電池800は、電力を充放電可能であり、リチウムイオン蓄電池、ニッケル水素蓄電池、鉛蓄電池、電気二重層キャパシタ、リチウムイオンキャパシタ等を含む。蓄電池800はパワーコンディショナ700に内蔵されてもよい。 FIG. 3(b) is a different table from FIG. 3(a). In the table shown in FIG. 3(b), when the power value included in the measurement result is "sold", the control "charge" when the storage battery 800 can be charged and the control "charge" when the storage battery 800 can be charged. The control "reduce output" is shown when is not possible. In addition, the control “normal control” when the power value included in the measurement result is “purchased power” is also shown. Here, as shown in FIG. 2, storage battery 800 is connected to power conditioner 700 . The storage battery 800 can charge and discharge electric power, and includes a lithium ion storage battery, a nickel metal hydride storage battery, a lead storage battery, an electric double layer capacitor, a lithium ion capacitor, and the like. Storage battery 800 may be built into power conditioner 700 .

制御部706は、変換部702から受けつけた計測結果に含まれる電力値が「買電」である場合、これまでと同様に通常制御の実行を決定し、変換部702を運転させる。一方、制御部706は、変換部702から受けつけた計測結果に含まれる電力値が「売電」である場合、蓄電池800の空き容量を確認し、空き容量がある場合に充電可能と判定し、満充電の場合に充電不可能と判定する。充電可能である場合、制御部706は、直流電力を蓄電池800に充電させる。充電不可能である場合、制御部706は、出力を低減することを決定する。その際、制御部706は、変換部702における変換を低減させる。蓄電池800に充電させる場合、蓄電池800は、充電にともなって空き容量ありの状態から満充電の状態に変化しうる。このような状況において、制御部706は、蓄電池800が満充電になると、充電を停止させるとともに、出力を低減する。 When the power value included in the measurement result received from conversion unit 702 is “purchased power”, control unit 706 determines execution of normal control and causes conversion unit 702 to operate as before. On the other hand, when the power value included in the measurement result received from the conversion unit 702 is “selling”, the control unit 706 checks the free space of the storage battery 800, and determines that charging is possible when there is free space. When the battery is fully charged, it is determined that the battery cannot be charged. If it is chargeable, control unit 706 causes storage battery 800 to be charged with DC power. If charging is not possible, the control unit 706 decides to reduce the power. At that time, the control unit 706 reduces conversion in the conversion unit 702 . When the storage battery 800 is charged, the storage battery 800 can change from a state with free capacity to a fully charged state as the battery is charged. In such a situation, control unit 706 stops charging and reduces output when storage battery 800 is fully charged.

本開示における装置、システム、または方法の主体は、コンピュータを備えている。このコンピュータがプログラムを実行することによって、本開示における装置、システム、または方法の主体の機能が実現される。コンピュータは、プログラムにしたがって動作するプロセッサを主なハードウェア構成として備える。プロセッサは、プログラムを実行することによって機能を実現することができれば、その種類は問わない。プロセッサは、半導体集積回路(IC)、またはLSI(Large Scale Integration)を含む1つまたは複数の電子回路で構成される。複数の電子回路は、1つのチップに集積されてもよいし、複数のチップに設けられてもよい。複数のチップは1つの装置に集約されていてもよいし、複数の装置に備えられていてもよい。プログラムは、コンピュータが読み取り可能なROM、光ディスク、ハードディスクドライブなどの非一時的記録媒体に記録される。プログラムは、記録媒体に予め格納されていてもよいし、インターネット等を含む広域通信網を介して記録媒体に供給されてもよい。 The subject of an apparatus, system, or method in this disclosure comprises a computer. The main functions of the device, system, or method of the present disclosure are realized by the computer executing the program. A computer has a processor that operates according to a program as its main hardware configuration. Any type of processor can be used as long as it can implement functions by executing a program. The processor is composed of one or more electronic circuits including a semiconductor integrated circuit (IC) or LSI (Large Scale Integration). A plurality of electronic circuits may be integrated on one chip or may be provided on a plurality of chips. A plurality of chips may be integrated into one device, or may be provided in a plurality of devices. The program is recorded in a non-temporary recording medium such as a computer-readable ROM, optical disk, hard disk drive, or the like. The program may be pre-stored in a recording medium, or may be supplied to the recording medium via a wide area network including the Internet.

以上の構成による発電システム1000の動作を説明する。図4(a)-(b)は、発電システム1000による処理手順を示すフローチャートである。図4(a)において、入力部704は、電力値を受けつける(S10)。電力値が売電を示す場合(S12のY)、制御部706は、変換部702からの出力を低減させる(S14)。電力値が売電を示さない場合(S12のN)、制御部706は、通常制御を実行する(S16)。 The operation of the power generation system 1000 configured as above will be described. 4(a) and 4(b) are flow charts showing processing procedures by the power generation system 1000. FIG. In FIG. 4A, the input unit 704 receives a power value (S10). If the power value indicates power selling (Y of S12), control unit 706 reduces the output from conversion unit 702 (S14). If the power value does not indicate power selling (N of S12), the control unit 706 performs normal control (S16).

図4(b)において、入力部704は、電力値を受けつける(S30)。電力値が売電を示す場合(S32のY)、蓄電池800が充電可であれば(S34のY)、制御部706は、蓄電池800を充電させる(S36)。蓄電池800が充電可でなければ(S34のN)、制御部706は、変換部702からの出力を低減させる(S38)。電力値が売電を示さない場合(S32のN)、制御部706は、通常制御を実行する(S40)。 In FIG. 4B, the input unit 704 receives the power value (S30). If the power value indicates power selling (Y of S32), and if the storage battery 800 can be charged (Y of S34), the control unit 706 charges the storage battery 800 (S36). If the storage battery 800 is not chargeable (N of S34), the control unit 706 reduces the output from the conversion unit 702 (S38). If the power value does not indicate power selling (N of S32), control unit 706 performs normal control (S40).

本実施例によれば、電力量計300から受けつけた計測結果をもとに、売電とならないように変換部702における変換をパワーコンディショナ700において制御するので、キュービクル200における計測機能を不要にできる。また、キュービクル200における計測機能が不要になるので、発電システム1000における設備の規模の拡大を抑制できる。また、電力量計300からの電力値を使用するので、発電システム1000を安価に構成できる。 According to this embodiment, the power conditioner 700 controls the conversion in the conversion unit 702 based on the measurement result received from the watt-hour meter 300 so as not to sell the power. can. In addition, since the cubicle 200 does not need a measurement function, it is possible to suppress an increase in the scale of equipment in the power generation system 1000 . Moreover, since the power value from the watt-hour meter 300 is used, the power generation system 1000 can be configured at low cost.

また、計測結果が売電を示す場合に買電を示すようになるように変換部702における変換を制御するので、逆潮流の発生を抑制できる。また、計測結果が売電を示す場合に蓄電池800への充電を実行するので、逆潮流の発生を抑制できる。 In addition, since the conversion in the conversion unit 702 is controlled so that the power purchase is indicated when the measurement result indicates the power sale, the occurrence of reverse power flow can be suppressed. In addition, since the storage battery 800 is charged when the measurement result indicates that power is to be sold, the occurrence of reverse power flow can be suppressed.

本開示の一態様の概要は、次の通りである。本開示のある態様のパワーコンディショナ(700)は、発電装置(600)と電力系統(100)との間に配置されるパワーコンディショナ(700)であって、発電装置(600)において発電された直流電力を交流電力に変換する変換部(702)と、電力系統(100)に対して売買電される電力を計測する電力量計(300)から計測結果を受けつける入力部(704)と、入力部(704)において受けつけた計測結果をもとに、売電とならないように変換部(702)における変換を制御する制御部(706)と、を備える。 A summary of one aspect of the present disclosure is as follows. A power conditioner (700) according to an aspect of the present disclosure is a power conditioner (700) disposed between a power generator (600) and a power system (100), wherein power is generated in the power generator (600). a conversion unit (702) that converts DC power into AC power; an input unit (704) that receives measurement results from a watt-hour meter (300) that measures the power that is bought and sold to the power system (100); A control unit (706) that controls conversion in the conversion unit (702) so as not to sell power based on the measurement result received by the input unit (704).

制御部(706)は、計測結果が売電を示す場合に買電を示すようになるように変換部(702)における変換を制御してもよい。 The control unit (706) may control the conversion in the conversion unit (702) so that the power purchase is indicated when the measurement result indicates the power sale.

制御部(706)は、計測結果が売電を示す場合に蓄電池への充電を実行してもよい。 The control unit (706) may charge the storage battery when the measurement result indicates power selling.

本開示のさらに別の態様は、発電システムである。この発電システムは、発電装置(600)と、発電装置(600)と電力系統(100)との間に配置されるパワーコンディショナ(700)と、電力系統(100)に対して売買電される電力を計測する電力量計(300)とを備える。パワーコンディショナ(700)は、発電装置(600)において発電された直流電力を交流電力に変換する変換部(702)と、電力量計(300)から計測結果を受けつける入力部(704)と、入力部(704)において受けつけた計測結果をもとに、売電とならないように変換部(702)における変換を制御する制御部(706)と、を備える。 Yet another aspect of the present disclosure is a power generation system. This power generation system includes a power generator (600), a power conditioner (700) arranged between the power generator (600) and the power system (100), and power being traded to the power system (100). and a watt-hour meter (300) for measuring electric power. The power conditioner (700) includes a conversion unit (702) that converts DC power generated in the power generator (600) into AC power, an input unit (704) that receives measurement results from the watt-hour meter (300), A control unit (706) that controls conversion in the conversion unit (702) so as not to sell power based on the measurement result received by the input unit (704).

パワーコンディショナ(700)に接続される蓄電池をさらに備えてもよい。 A storage battery connected to the power conditioner (700) may be further provided.

(実施例2)
次に、実施例2を説明する。実施例2は、実施例1と同様に、太陽電池システム等の発電システムに関する。実施例1では、発電システムにおける設備の規模の拡大を抑制するために、変換部の変換の制御を決定するための機能をパワーコンディショナに備えることによって、電力量計における計測結果をパワーコンディショナに入力させている。実施例2では、実施例1と同様に、変換部の変換の制御を決定するための機能をパワーコンディショナに備える。しかしながら、実施例2では、実施例1とは異なって電力値とは異なった値が使用される。ここでは、実施例1との差異を中心に説明する。
(Example 2)
Next, Example 2 will be described. Example 2, like Example 1, relates to a power generation system such as a solar cell system. In the first embodiment, in order to suppress the expansion of the scale of facilities in the power generation system, the power conditioner is provided with a function for determining the conversion control of the conversion unit. is input to In the second embodiment, as in the first embodiment, the power conditioner is provided with a function for determining conversion control of the conversion unit. However, in Example 2, unlike Example 1, a different value for the power value is used. Here, the description will focus on the differences from the first embodiment.

図5は、発電システム1000の構成を示す。発電システム1000は、電力系統100、キュービクル200、電力量計300、分電盤400、負荷機器500、発電装置600、パワーコンディショナ700、蓄電池800、電流センサ900を含む。キュービクル200は、RPR204を含み、パワーコンディショナ700は、変換部702、入力部704、制御部706を含む。 FIG. 5 shows the configuration of the power generation system 1000. As shown in FIG. A power generation system 1000 includes a power system 100 , a cubicle 200 , a power meter 300 , a distribution board 400 , a load device 500 , a power generator 600 , a power conditioner 700 , a storage battery 800 , and a current sensor 900 . Cubicle 200 includes RPR 204 , and power conditioner 700 includes conversion section 702 , input section 704 and control section 706 .

電流センサ900は、キュービクル200と分電盤400との間に配置され、電力系統100から入ってくる順潮流の電流、あるいは電力系統100へ出て行く逆潮流の電流とを計測可能である。前者が買電電流あるいは順潮流電流に相当し、後者が売電電流あるいは逆潮流電流に相当する。つまり、電流センサ900は、電力系統100に対して売買電される電流を計測する。 The current sensor 900 is arranged between the cubicle 200 and the distribution board 400 and is capable of measuring the forward flow current coming from the power system 100 or the reverse flow current going out to the power system 100 . The former corresponds to the purchased current or the forward current, and the latter corresponds to the sold current or the reverse current. In other words, the current sensor 900 measures the current that is bought and sold with respect to the power system 100 .

電流センサ900は、通信線を介してパワーコンディショナ700に接続され、パワーコンディショナ700との間の通信を実行する。また、電流センサ900は、無線回線を介してパワーコンディショナ700に接続され、パワーコンディショナ700との間の無線通信を実行してもよい。電流センサ900は、計測結果をパワーコンディショナ700に送信する。ここで、計測結果の送信は定期的になされてもよく、変化が予め定めた範囲よりも大きくなった場合になされてもよい。 Current sensor 900 is connected to power conditioner 700 via a communication line and performs communication with power conditioner 700 . Further, current sensor 900 may be connected to power conditioner 700 via a wireless line and perform wireless communication with power conditioner 700 . Current sensor 900 transmits the measurement result to power conditioner 700 . Here, the transmission of the measurement result may be performed periodically, or may be performed when the change exceeds a predetermined range.

パワーコンディショナ700の入力部704は、通信線あるいは無線回線を介して電流センサ900に接続されており、計測結果を受信する。制御部706は、入力部704において受けつけた計測結果をもとに、電力系統100に対して売電とならないように変換部702における変換を制御する。図6(a)-(b)は、制御部706に保持されるテーブルのデータ構造を示す。図6(a)に示されるテーブルでは、計測結果に含まれる電流値が「売電」である場合の制御「出力を低減」と、計測結果に含まれる電流値が「買電」である場合の制御「通常制御」とが示される。 An input unit 704 of the power conditioner 700 is connected to the current sensor 900 via a communication line or wireless line and receives measurement results. Based on the measurement results received by the input unit 704 , the control unit 706 controls conversion by the conversion unit 702 so as not to sell power to the power system 100 . 6A and 6B show data structures of tables held in the control unit 706. FIG. In the table shown in FIG. 6( a ), the control “reduce output” when the current value included in the measurement result is “selling power” and the control “reduce output” when the current value included in the measurement result is “purchasing power” control "normal control" is shown.

制御部706は、変換部702から受けつけた計測結果に含まれる電流値が「買電」である場合、通常制御の実行を決定する。通常制御として、制御部706は、MPPT制御を変換部702に対して実行する。一方、制御部706は、変換部702から受けつけた計測結果に含まれる電流値が「売電」である場合、出力を低減させることを決定する。その際、制御部706は、出力される交流電力を1/X倍となるように変換部702を制御する。「X」は、予め定められた固定値であってもよく、電流値が大きくなるほど大きくなるような値であってもよい。このように制御部706は、計測結果が売電を示す場合に買電を示すようになるように変換部702における変換を制御する。 When the current value included in the measurement result received from the conversion unit 702 is “purchased power”, the control unit 706 determines execution of normal control. As normal control, the control unit 706 performs MPPT control on the conversion unit 702 . On the other hand, the control unit 706 determines to reduce the output when the current value included in the measurement result received from the conversion unit 702 is “selling power”. At that time, the control unit 706 controls the conversion unit 702 so that the output AC power is 1/X times. "X" may be a predetermined fixed value, or may be a value that increases as the current value increases. In this way, the control unit 706 controls the conversion in the conversion unit 702 so that when the measurement result indicates selling power, it indicates buying power.

図6(b)は、図6(a)とは別のテーブルである。図6(b)に示されるテーブルでは、計測結果に含まれる電流値が「売電」である場合に、蓄電池800への充電が可能であるときの制御「充電」と、蓄電池800への充電が不可能であるときの制御「出力を低減」とが示される。また、計測結果に含まれる電流値が「買電」である場合の制御「通常制御」も示される。ここでは、図5に示されるように、蓄電池800がパワーコンディショナ700に接続される。 FIG. 6(b) is a different table from FIG. 6(a). In the table shown in FIG. 6(b), when the current value included in the measurement result is "electricity sale", the control "charge" when the storage battery 800 can be charged and the control "charge" when the storage battery 800 can be charged. The control "reduce output" is shown when is not possible. The control "normal control" when the current value included in the measurement result is "power purchase" is also shown. Here, as shown in FIG. 5, storage battery 800 is connected to power conditioner 700 .

制御部706は、変換部702から受けつけた計測結果に含まれる電流値が「買電」である場合、これまでと同様に通常制御の実行を決定し、変換部702を運転させる。一方、制御部706は、変換部702から受けつけた計測結果に含まれる電流値が「売電」である場合、蓄電池800の空き容量を確認し、空き容量がある場合に充電可能と判定し、満充電の場合に充電不可能と判定する。充電可能である場合、制御部706は、直流電力を蓄電池800に充電させる。充電不可能である場合、制御部706は、出力を低減することを決定する。その際、制御部706は、変換部702における変換を低減させる。蓄電池800に充電させる場合、蓄電池800は、充電にともなって空き容量ありの状態から満充電の状態に変化しうる。このような状況において、制御部706は、蓄電池800が満充電になると、充電を停止させるとともに、出力を低減する。 When the current value included in the measurement result received from conversion unit 702 is “purchased power”, control unit 706 determines execution of normal control and causes conversion unit 702 to operate as before. On the other hand, when the current value included in the measurement result received from the conversion unit 702 is "selling", the control unit 706 checks the free capacity of the storage battery 800, and determines that charging is possible when there is free capacity. When the battery is fully charged, it is determined that the battery cannot be charged. If it is chargeable, control unit 706 causes storage battery 800 to be charged with DC power. If charging is not possible, the control unit 706 decides to reduce the power. At that time, the control unit 706 reduces conversion in the conversion unit 702 . When the storage battery 800 is charged, the storage battery 800 can change from a state with free capacity to a fully charged state as the battery is charged. In such a situation, control unit 706 stops charging and reduces output when storage battery 800 is fully charged.

以上の構成による発電システム1000の動作を説明する。図7(a)-(b)は、発電システム1000による処理手順を示すフローチャートである。図7(a)において、入力部704は、電流値を受けつける(S110)。電流値が売電を示す場合(S112のY)、制御部706は、変換部702からの出力を低減させる(S114)。電流値が売電を示さない場合(S112のN)、制御部706は、通常制御を実行する(S116)。 The operation of the power generation system 1000 configured as above will be described. 7(a) and 7(b) are flow charts showing processing procedures by the power generation system 1000. FIG. In FIG. 7A, the input unit 704 receives a current value (S110). If the current value indicates power selling (Y of S112), the control unit 706 reduces the output from the conversion unit 702 (S114). If the current value does not indicate power selling (N of S112), the control unit 706 performs normal control (S116).

図7(b)において、入力部704は、電流値を受けつける(S130)。電流値が売電を示す場合(S132のY)、蓄電池800が充電可であれば(S134のY)、制御部706は、蓄電池800を充電させる(S136)。蓄電池800が充電可でなければ(S134のN)、制御部706は、変換部702からの出力を低減させる(S138)。電流値が売電を示さない場合(S132のN)、制御部706は、通常制御を実行する(S140)。 In FIG. 7B, the input unit 704 receives the current value (S130). When the current value indicates power selling (Y of S132), if the storage battery 800 is chargeable (Y of S134), the control unit 706 charges the storage battery 800 (S136). If the storage battery 800 is not chargeable (N of S134), the control unit 706 reduces the output from the conversion unit 702 (S138). If the current value does not indicate power selling (N of S132), the control unit 706 performs normal control (S140).

本実施例によれば、電流センサ900から受けつけた計測結果をもとに、売電とならないように変換部702における変換をパワーコンディショナ700において制御するので、発電システム1000における設備の規模の拡大を抑制できる。また、計測結果が売電を示す場合に買電を示すようになるように変換部702における変換を制御するので、逆潮流の発生を抑制できる。また、計測結果が売電を示す場合に蓄電池800への充電を実行するので、逆潮流の発生を抑制できる。 According to this embodiment, based on the measurement result received from the current sensor 900, the power conditioner 700 controls the conversion in the conversion unit 702 so as not to sell power, so the scale of the equipment in the power generation system 1000 can be expanded. can be suppressed. In addition, since the conversion in the conversion unit 702 is controlled so that the power purchase is indicated when the measurement result indicates the power sale, the occurrence of reverse power flow can be suppressed. In addition, since the storage battery 800 is charged when the measurement result indicates that power is to be sold, the occurrence of reverse power flow can be suppressed.

本開示の一態様の概要は、次の通りである。本開示の別の態様もまた、パワーコンディショナ(700)である。このパワーコンディショナ(700)は、発電装置(600)と電力系統(100)との間に配置されるパワーコンディショナ(700)であって、発電装置(600)において発電された直流電力を交流電力に変換する変換部(702)と、電力系統(100)に対して売買電される電流を計測する電流センサ(900)から計測結果を受けつける入力部(704)と、入力部(704)において受けつけた計測結果をもとに、売電とならないように変換部(702)における変換を制御する制御部(706)と、を備える。 A summary of one aspect of the present disclosure is as follows. Another aspect of the present disclosure is also a power conditioner (700). This power conditioner (700) is a power conditioner (700) arranged between a power generator (600) and a power system (100), and converts DC power generated in the power generator (600) into AC power. In the input unit (704), a conversion unit (702) that converts to electric power, an input unit (704) that receives measurement results from a current sensor (900) that measures the current that is bought and sold to the power system (100), and the input unit (704) A control unit (706) that controls conversion in the conversion unit (702) so as not to sell power based on the received measurement result.

本開示のさらに別の態様もまた、発電システムである。この発電システムは、発電装置(600)と、発電装置(600)と電力系統(100)との間に配置されるパワーコンディショナ(700)と、電力系統(100)に対して売買電される電流を計測する電流センサ(900)とを備える。パワーコンディショナ(700)は、発電装置(600)において発電された直流電力を交流電力に変換する変換部(702)と、電流センサ(900)から計測結果を受けつける入力部(704)と、入力部(704)において受けつけた計測結果をもとに、売電とならないように変換部(702)における変換を制御する制御部(706)と、を備える。 Yet another aspect of the present disclosure is also a power generation system. This power generation system includes a power generator (600), a power conditioner (700) arranged between the power generator (600) and the power system (100), and power being traded to the power system (100). and a current sensor (900) for measuring current. The power conditioner (700) includes a conversion unit (702) that converts DC power generated in the power generation device (600) into AC power, an input unit (704) that receives measurement results from the current sensor (900), an input A control unit (706) that controls conversion in the conversion unit (702) so as not to sell power based on the measurement result received by the unit (704).

以上、本開示を実施例をもとに説明した。この実施例は例示であり、それらの各構成要素あるいは各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本開示の範囲にあることは当業者に理解されるところである。 The present disclosure has been described above based on the embodiments. It should be understood by those skilled in the art that this embodiment is an example, and that various modifications are possible in the combination of each component or each treatment process, and such modifications are within the scope of the present disclosure. .

本実施例1、2における発電システム1000には、1つのパワーコンディショナ700が含まれる。しかしながらこれに限らず例えば、発電システム1000に複数のパワーコンディショナ700が含まれてもよい。その際、複数のパワーコンディショナ700のうちの1つがマスタとして動作し、残りのパワーコンディショナ700がスレーブとして動作する。また、マスタのパワーコンディショナ700に電力量計300が接続され、電力量計300はマスタのパワーコンディショナ700に電力値あるいは電流値を出力する。また、マスタのパワーコンディショナ700はスレーブのパワーコンディショナ700に動作を指示する。本変形例によれば、構成の自由度を向上できる。 One power conditioner 700 is included in the power generation system 1000 in the first and second embodiments. However, for example, the power generation system 1000 may include a plurality of power conditioners 700 . At that time, one of the plurality of power conditioners 700 operates as a master, and the remaining power conditioners 700 operate as slaves. A power meter 300 is connected to the power conditioner 700 of the master, and the power meter 300 outputs a power value or a current value to the power conditioner 700 of the master. Also, the master power conditioner 700 instructs the slave power conditioner 700 to operate. According to this modified example, the degree of freedom in configuration can be improved.

実施例1、2における制御部706は、変換部702から出力される交流電力の大きさを制御する機能を有する。しかしながらこれに限らず例えば、パワーコンディショナ700には、タッチパネル機能を備えた表示部が備えられており、変換部702における機能の有効/無効が表示部により設定可能であってもよい。また、パワーコンディショナ700には外部の装置が接続可能であり、変換部702における機能の有効/無効が外部の装置により設定可能であってもよい。本変形例によれば、構成の自由度を向上できる。 The control unit 706 in Examples 1 and 2 has a function of controlling the magnitude of AC power output from the conversion unit 702 . However, the present invention is not limited to this, for example, the power conditioner 700 may be provided with a display unit having a touch panel function, and enabling/disabling of functions in the conversion unit 702 may be set by the display unit. Also, an external device may be connected to the power conditioner 700, and enabling/disabling of functions in the conversion unit 702 may be set by the external device. According to this modified example, the degree of freedom in configuration can be improved.

実施例1、2におけるパワーコンディショナ700は、インターネット上の小売電気事業者のサーバに接続されてもよい。この場合、パワーコンディショナ700は、計測結果の大きさに応じて、遠隔出力制御の指令に対して、出力される交流電力を制御してもよい。本変形例によれば、売電していなければ、100%で交流電力を出力できる。 The power conditioner 700 in Examples 1 and 2 may be connected to a retail electricity supplier's server on the Internet. In this case, the power conditioner 700 may control the output AC power in response to the remote output control command according to the magnitude of the measurement result. According to this modification, AC power can be output at 100% if power is not sold.

実施例1、2における発電システム1000は、パワーコンディショナ700に接続される表示装置を備えてもよい。表示装置は、計測結果をもとに算出した売買電電力と、発電電力の情報を表示する。本変形例によれば、構成の自由度を向上できる。 The power generation system 1000 in Examples 1 and 2 may include a display device connected to the power conditioner 700 . The display device displays information on the purchased power calculated based on the measurement results and the generated power. According to this modified example, the degree of freedom in configuration can be improved.

1 発電システム、 10 電力系統、 20 キュービクル、 22 計測制御部、 24 RPR、 30 電力量計、 40 分電盤、 50 負荷機器、 60 発電装置、 70 パワーコンディショナ、 72 変換部、 74 入力部、 100 電力系統、 200 キュービクル、 204 RPR、 300 電力量計、 400 分電盤、 500 負荷機器、 600 発電装置、 700 パワーコンディショナ、 702 変換部、 704 入力部、 706 制御部、 800 蓄電池、 1000 発電システム。 1 power generation system, 10 power system, 20 cubicle, 22 measurement control unit, 24 RPR, 30 power meter, 40 distribution board, 50 load device, 60 power generation device, 70 power conditioner, 72 conversion unit, 74 input unit, 100 power system 200 cubicle 204 RPR 300 power meter 400 distribution board 500 load device 600 power generation device 700 power conditioner 702 conversion unit 704 input unit 706 control unit 800 storage battery 1000 power generation system.

Claims (5)

電力系統からの高圧の交流電力を変圧し、変圧した交流電力を出力する、売買電の電力を計測するための機能が含まれていないキュービクルと、
発電装置において発電された直流電力を交流電力に変換して出力するパワーコンディショナと、
前記キュービクルと前記パワーコンディショナとに接続され、前記キュービクルあるいは前記パワーコンディショナからの交流電力を負荷機器に供給する分電盤と、
前記電力系統に対して売買電される電力を計測し、計測結果を前記パワーコンディショナに送信する電力量計とを備え、
前記パワーコンディショナは、
前記電力量計から計測結果を受けつける入力部と、
前記入力部において受けつけた前記計測結果をもとに、売電とならないように、直流電力から交流電力への変換を制御する制御部と、
を備えることを特徴とする発電システム。
A cubicle that transforms high-voltage AC power from a power system and outputs the transformed AC power , and that does not include a function for measuring the power of buying and selling power ;
a power conditioner that converts the DC power generated by the power generation device into AC power and outputs the AC power;
a distribution board connected to the cubicle and the power conditioner and supplying AC power from the cubicle or the power conditioner to a load device;
a watt-hour meter that measures the power traded to the power system and transmits the measurement result to the power conditioner;
The power conditioner is
an input unit that receives measurement results from the electricity meter;
a control unit that controls conversion from DC power to AC power so as not to sell power based on the measurement result received by the input unit;
A power generation system comprising:
電力系統からの高圧の交流電力を変圧し、変圧した交流電力を出力する、売買電の電力を計測するための機能が含まれていないキュービクルと、
発電装置において発電された直流電力を交流電力に変換して出力するパワーコンディショナと、
前記キュービクルと前記パワーコンディショナとに接続され、前記キュービクルあるいは前記パワーコンディショナからの交流電力を負荷機器に供給する分電盤と、
前記電力系統に対して売買電される電流を計測し、計測結果を前記パワーコンディショナに送信する電流センサとを備え、
前記パワーコンディショナは、
前記電流センサから計測結果を受けつける入力部と、
前記入力部において受けつけた前記計測結果をもとに、売電とならないように、直流電力から交流電力への変換を制御する制御部と、
を備えることを特徴とする発電システム。
A cubicle that transforms high-voltage AC power from a power system and outputs the transformed AC power , and that does not include a function for measuring the power of buying and selling power ;
a power conditioner that converts the DC power generated by the power generation device into AC power and outputs the AC power;
a distribution board connected to the cubicle and the power conditioner and supplying AC power from the cubicle or the power conditioner to a load device;
a current sensor that measures a current that is bought and sold to the power system and transmits the measurement result to the power conditioner;
The power conditioner is
an input unit that receives measurement results from the current sensor;
a control unit that controls conversion from DC power to AC power so as not to sell power based on the measurement result received by the input unit;
A power generation system comprising:
電力系統からの高圧の交流電力を変圧し、変圧した交流電力を出力する、売買電の電力を計測するための機能が含まれていないキュービクルと、
発電装置において発電された直流電力を交流電力に変換して出力するメインパワーコンディショナと、
発電装置において発電された直流電力を交流電力に変換して出力するスレーブパワーコンディショナと、
前記キュービクルと前記メインパワーコンディショナと前記スレーブパワーコンディショナとに接続され、前記キュービクルあるいは前記メインパワーコンディショナあるいは前記スレーブパワーコンディショナからの交流電力を負荷機器に供給する分電盤と、
前記電力系統に対して売買電される電力を計測し、計測結果を前記メインパワーコンディショナに送信する電力量計とを備え、
前記メインパワーコンディショナは、
前記電力量計から計測結果を受けつける入力部と、
前記入力部において受けつけた前記計測結果をもとに、売電とならないように、直流電力から交流電力への変換を制御する制御部とを備え、
前記メインパワーコンディショナは、変換の動作を前記スレーブパワーコンディショナに指示することを特徴とする発電システム。
A cubicle that transforms high-voltage AC power from a power system and outputs the transformed AC power , and that does not include a function for measuring the power of buying and selling power ;
a main power conditioner that converts the DC power generated by the power generation device into AC power and outputs the AC power;
a slave power conditioner that converts the DC power generated by the power generation device into AC power and outputs the power;
a distribution board connected to the cubicle, the main power conditioner, and the slave power conditioner and supplying AC power from the cubicle, the main power conditioner, or the slave power conditioner to a load device;
a watt-hour meter that measures the power traded to the power system and transmits the measurement result to the main power conditioner;
The main power conditioner is
an input unit that receives measurement results from the electricity meter;
A control unit that controls conversion from DC power to AC power so as not to sell power based on the measurement result received at the input unit,
The power generation system, wherein the main power conditioner instructs the slave power conditioner to perform conversion.
前記制御部は、前記計測結果が買電を示す場合にMPPT(Maximum Power Point Tracking)制御を実行し、前記計測結果が売電を示す場合に買電を示すようになるように変換を制御することを特徴とする請求項1から3のいずれか1項に記載の発電システム。 The control unit executes MPPT (Maximum Power Point Tracking) control when the measurement result indicates power purchase, and controls conversion so as to indicate power purchase when the measurement result indicates power sale. The power generation system according to any one of claims 1 to 3, characterized in that: 蓄電池をさらに備え、
前記制御部は、前記計測結果が買電を示す場合にMPPT(Maximum Power Point Tracking)制御を実行し、前記計測結果が売電を示す場合に前記蓄電池への充電を実行することを特徴とする請求項1から3のいずれか1項に記載の発電システム。
Equipped with a storage battery,
The control unit executes MPPT (Maximum Power Point Tracking) control when the measurement result indicates power purchase, and executes charging of the storage battery when the measurement result indicates power sale. The power generation system according to any one of claims 1 to 3.
JP2020013975A 2020-01-30 2020-01-30 power generation system Active JP7253725B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020013975A JP7253725B2 (en) 2020-01-30 2020-01-30 power generation system
PCT/JP2021/000283 WO2021153173A1 (en) 2020-01-30 2021-01-07 Power conditioner and power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020013975A JP7253725B2 (en) 2020-01-30 2020-01-30 power generation system

Publications (2)

Publication Number Publication Date
JP2021121150A JP2021121150A (en) 2021-08-19
JP7253725B2 true JP7253725B2 (en) 2023-04-07

Family

ID=77078361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020013975A Active JP7253725B2 (en) 2020-01-30 2020-01-30 power generation system

Country Status (2)

Country Link
JP (1) JP7253725B2 (en)
WO (1) WO2021153173A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005245136A (en) 2004-02-26 2005-09-08 Mitsubishi Electric Corp Reverse-tidal-current-preventing systematically interconnecting system
JP2005287300A (en) 2005-06-29 2005-10-13 Aclis:Kk Electric power reduction system for collective housing using solar battery and/or cubicle capable of reducing not only electric power charge but also carbon-dioxide emission amount

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04762U (en) * 1990-04-18 1992-01-07
JP3876562B2 (en) * 1999-03-16 2007-01-31 Jfeスチール株式会社 System linkage method for natural energy power generation equipment
JP2002204531A (en) * 2000-10-31 2002-07-19 Canon Inc Ac-interconnecting device and control method thereof
JP6167756B2 (en) * 2013-08-26 2017-07-26 株式会社ノーリツ Power conditioner and power generation system
JP6527681B2 (en) * 2014-10-09 2019-06-05 シャープ株式会社 POWER CONDITIONER, POWER CONTROL METHOD THEREOF, AND POWER CONTROL SYSTEM
JP6109209B2 (en) * 2015-01-26 2017-04-05 大和ハウス工業株式会社 Power supply system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005245136A (en) 2004-02-26 2005-09-08 Mitsubishi Electric Corp Reverse-tidal-current-preventing systematically interconnecting system
JP2005287300A (en) 2005-06-29 2005-10-13 Aclis:Kk Electric power reduction system for collective housing using solar battery and/or cubicle capable of reducing not only electric power charge but also carbon-dioxide emission amount

Also Published As

Publication number Publication date
WO2021153173A1 (en) 2021-08-05
JP2021121150A (en) 2021-08-19

Similar Documents

Publication Publication Date Title
Ramya Discretionary controller for hybrid energy storage system based on orderly control considering commercial value in decentralised microgrid operation
Kim et al. Energy management based on the photovoltaic HPCS with an energy storage device
US10110004B2 (en) Power management system
JP7289090B2 (en) Control system and control method
Wang et al. Simulation and power quality analysis of a Loose-Coupled bipolar DC microgrid in an office building
JP2014124035A (en) Photovoltaic power generation system and method of selecting facility
JP2020018108A (en) Power storage system
JP7253725B2 (en) power generation system
WO2020162461A1 (en) Power control system and power control method
JP7289076B2 (en) Control system and control method
JP7047224B2 (en) Centralized management device
JP7373194B2 (en) power supply system
JP7203325B2 (en) power system
Kim et al. Power converter design based on RTDS implementation for interconnecting MVDC and LVDC
JP7016060B2 (en) Control system, control method, program
WO2019131227A1 (en) Power control device, power control method, and program
WO2018225455A1 (en) Power management system, power storage system, transmission method, and program
WO2017163747A1 (en) Power storage system, charge/discharge control device, control method therefor, and program
JP2019193317A (en) Power storage system, charge/discharge control device, control method thereof, and program
JP7117546B2 (en) Power control device, power control method
JP2021121151A (en) Power generation system
JP2020054136A (en) Charge power calculation device and storage battery charging system
WO2020153136A1 (en) Control system and program
JP6807550B2 (en) Power management system, power conversion system, program
WO2021053871A1 (en) Control system and control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210121

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210121

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20210205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211007

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220324

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220324

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220404

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220405

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20220506

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20220510

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220913

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20230110

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20230131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230209

C302 Record of communication

Free format text: JAPANESE INTERMEDIATE CODE: C302

Effective date: 20230210

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20230214

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20230314

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20230314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230316

R151 Written notification of patent or utility model registration

Ref document number: 7253725

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151