WO2018225455A1 - Power management system, power storage system, transmission method, and program - Google Patents

Power management system, power storage system, transmission method, and program Download PDF

Info

Publication number
WO2018225455A1
WO2018225455A1 PCT/JP2018/018573 JP2018018573W WO2018225455A1 WO 2018225455 A1 WO2018225455 A1 WO 2018225455A1 JP 2018018573 W JP2018018573 W JP 2018018573W WO 2018225455 A1 WO2018225455 A1 WO 2018225455A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
storage system
power storage
state
consumer
Prior art date
Application number
PCT/JP2018/018573
Other languages
French (fr)
Japanese (ja)
Inventor
篠崎 聡
工藤 貴弘
杉本 敏
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2018225455A1 publication Critical patent/WO2018225455A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/20Smart grids as enabling technology in buildings sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/12Energy storage units, uninterruptible power supply [UPS] systems or standby or emergency generators, e.g. in the last power distribution stages

Definitions

  • the present disclosure relates to a power management system, a power storage system, a transmission method, and a program for managing power.
  • a power management system including a control device that controls equipment installed in a consumer has been proposed.
  • Devices include, for example, distributed power sources such as solar cells, storage batteries, and fuel cells, and home appliances.
  • a control device is connected to a host smart server.
  • the smart server comprehensively manages a plurality of consumers (see, for example, Patent Document 1).
  • the present disclosure has been made in view of such a situation, and an object thereof is to provide a technique for diversifying the operation state of the power storage system.
  • a power management system is a power management system that is connected to a power system and controls the operation of a power storage system installed in a consumer.
  • a generating unit that generates information on the information
  • a transmitting unit that transmits the information generated in the generating unit to the power storage system.
  • the information regarding the operating state of the power storage system is the first state in which discharging from the power storage system is prohibited when power is sold from the consumer to the power system, or when power is sold from the consumer to the power system.
  • a second state in which discharging from the power storage system is permitted is included.
  • This power storage system is a power storage system connected to an electric power system and installed at a consumer, and operates based on information received at the receiving unit and information received at the receiving unit.
  • a processing unit The information regarding the operating state of the power storage system is the first state in which discharging from the power storage system is prohibited when power is sold from the customer to the power system, or when power is sold from the customer to the power system. Includes a second state in which discharge from the power storage system is permitted.
  • Still another aspect of the present disclosure is a transmission method.
  • This method is a transmission method in a power management system that is connected to an electric power system and controls the operation of a power storage system installed in a consumer.
  • the method includes a step of generating information on an operation state of the power storage system, and the generated information And transmitting to the power storage system.
  • the information regarding the operating state of the power storage system is the first state in which discharging from the power storage system is prohibited when power is sold from the consumer to the power system, or when power is sold from the consumer to the power system.
  • a second state in which discharging from the power storage system is permitted is included.
  • the operation state of the power storage system can be diversified.
  • FIGS. 5A to 5C are diagrams showing an outline of the operation of the power storage system of FIG.
  • FIGS. 6A to 6D are diagrams showing various arrangements of the power management system server in the VPP system of FIG.
  • FIGS. 8A and 8B are flowcharts showing a procedure for selecting an operation state in the power management system server of FIG. It is a flowchart which shows the process sequence in the control apparatus of FIG.
  • the embodiment relates to VPP (Virtual Power Plant) that integrates and controls devices such as scattered small-scale photovoltaic power generation systems, power storage systems, fuel cell systems, and the like, and power demand control.
  • the VPP controls devices such as a photovoltaic power generation system, a power storage system, and a fuel cell system via a network, thereby causing them to function as a single power plant.
  • devices such as a photovoltaic power generation system, a power storage system, and a fuel cell system are installed in each consumer.
  • the consumer is a facility that is supplied with electric power from an electric power company or the like, such as a house, an office, a store, a factory, or a park. Such consumer equipment is controlled by a power management system.
  • the power management system discharges the power storage system during a time period when the amount of power consumed by the consumer is large, or charges the power storage system at night when the electricity charge of the power system is low.
  • the group management system is also connected to a host system of a power retailer.
  • the operator who manages the group management system has a contract with the power retailer, and the host system outputs a request corresponding to the contract to the group management system.
  • the group management system instructs each of the plurality of power management systems to control power to be sold to the power retailer in response to a request from the host system. For example, the group management system requests the power management system to perform control so as to suppress the power purchase in the consumer when the power generated at the power plant is tight.
  • the power storage system In a consumer, when the solar cell system and the power storage system are connected to the power system, if the power from the solar cell system is sold to the power system, the power storage system is used to prevent a decrease in the selling price due to double power generation. The discharge from is generally stopped. For this reason, in the message transmitted from the power management system to the power storage system, there is no need for a message for instructing the power storage system to discharge when power is sold to the power system, and such a message is defined. Absent. In such a situation, when the power management system receives an instruction to increase the amount of power sold from the group management system, the power management system cannot discharge the power storage system and cannot meet the request of the group management system. On the other hand, even if the power selling price decreases due to double power generation, there is a case where a contract is made for the consumer to discharge the power storage system in response to a request from the group management system.
  • the power management system defines three types of states as the operation state of the power storage system during power sale.
  • the three types of states are indicated from the first state to the third state.
  • the first state is a state in which discharge is prohibited during power sale
  • the second state is a state in which discharge is allowed only during consumption of power during power sale
  • the third state is unlimited during power sale. This is a state in which discharge is permitted.
  • the first state corresponds to the operation so far
  • the second state corresponds to double power generation.
  • the power management system grasps that power is being sold by receiving information on the current state from each of the devices provided in the consumer, for example, a smart meter and a power storage system.
  • the power management system transmits information for instructing to change the first state to the second state or the third state to the power storage system.
  • the power storage system operates by changing the first state to the second state or the third state according to the received information.
  • FIG. 1 shows a configuration of a VPP system 100 according to the embodiment.
  • the VPP system 100 is generically referred to as a first group management system server 12a, a second group management system server 12b, an Mth group management system server 12m, and a power management system server 14 collectively referred to as a host system server 10 and a group management system server 12.
  • First power management system server 14a, second power management system server 14b, and Nth power management system server 14n is installed in the first consumer 16a
  • the second power management system server 14b is installed in the second consumer 16b
  • the Nth power management system server 14n is the Nth consumer 16n.
  • the first consumer 16a, the second consumer 16b, and the Nth consumer 16n are collectively referred to as the consumer 16.
  • the number of group management system servers 12 is not limited to “M”, and the number of power management system servers 14 and consumers 16 is not limited to “N”.
  • the consumer 16 is, for example, a detached house, an apartment house such as a condominium, a store such as a convenience store or a supermarket, a commercial facility such as a building, and a factory. It is a facility.
  • the consumer 16 is installed with devices such as an air conditioner (air conditioner), a television receiver (television), a lighting device, a power storage system, and a heat pump water heater. These devices are connected to an electric power system of an electric power company or the like, thereby receiving commercial power and consuming electric power.
  • a device that is assumed to have a relatively large reduction in power consumption is useful, but a device that is assumed to have a large reduction amount may be used.
  • the device may include a renewable energy power generation device such as a solar cell system or a fuel cell system.
  • the power management system server 14 is a computer for executing processing of the power management system, and is installed in the customer 16, for example.
  • the power management system server 14 has a function as, for example, a HEMS (Home Energy Management System) controller. Therefore, the power management system server 14 can communicate with various devices in the customer 16 by HAN (Home Area Network), and controls these devices.
  • the power management system server 14 controls the operation of the power storage system, for example, discharging and charging. Further, the power management system server 14 may control the interconnection between the equipment installed in the consumer 16 and the power system.
  • the power management system server 14 disconnects the device and the power system at the time of a power failure, and connects the device and the power system at the time of power recovery.
  • the group management system server 12 is a computer for executing processing of the group management system.
  • the group management system server 12 manages the plurality of power management system servers 14 by connecting the plurality of power management system servers 14.
  • the group management system server 12 comprehensively manages a plurality of devices connected to each of the plurality of power management system servers 14.
  • the plurality of group management system servers 12 are connected to the host system server 10.
  • the host system server 10 is a computer for executing processing of a business operator such as a power retail business operator. As described above, there is a contract between the power retailer and the group management system provider, and the upper system server 10 outputs a request corresponding to the contract to the group management system server 12.
  • One group management system server 12 may be connected to a plurality of higher system servers 10.
  • the group management system server 12 consumes the electric power discharged from the power storage system within the consumer 16 or within the consumer 16
  • the power management system server 14 is controlled so as to suppress power consumption in the system. Further, when the power generation of the entire customer group managed by the host system increases and the supply exceeds the demand, the group management system server 12 increases the charge to the power storage system or increases the demand in the customer 16. The power management system server 14 is controlled.
  • FIG. 2 shows the configuration of the customer 16.
  • the customer 16 is provided with a power system 30, a smart meter 32, a distribution board 34, a load 36, a solar cell system 38, a power storage system 40, and a power management system server 14.
  • the solar cell system 38 includes a PV (Photovoltaics) 200, a PV DC (Direct Current) / DC202, and a PV DC / AC (Alternating Current) 204
  • the power storage system 40 includes an SB (Storage Battery) 210, an SB. DC / DC 212 for operation, bidirectional DC / AC inverter 214, and control device 216.
  • the group management system server 12 is connected to the power management system server 14 via the network 18.
  • the smart meter 32 is connected to the power system 30 and is a digital watt-hour meter.
  • the smart meter 32 can measure the power amount of the tidal current entering from the power system 30 and the power amount of the reverse power flowing out to the power system 30.
  • the smart meter 32 has a communication function and can communicate with the power management system server 14.
  • PV200 is a solar cell and a renewable energy power generation device.
  • the PV 200 uses the photovoltaic effect to convert light energy directly into electric power.
  • As the solar cell a silicon solar cell, a solar cell made of a compound semiconductor, a dye-sensitized type (organic solar cell), or the like is used.
  • the PV 200 is connected to the PV DC / DC 202 and outputs the generated DC power to the PV DC / DC 202.
  • PV DC / DC 202 is a DC-DC converter, which converts DC power output from PV 200 into DC power having a desired voltage value, and outputs the converted DC power to PV DC / AC 204.
  • the PV DC / DC 202 is constituted by, for example, a boost chopper.
  • the PV DC / DC 202 is controlled by MPPT (Maximum Power Point Tracking) so that the output power of the PV 200 is maximized.
  • the PV DC / AC 204 is a DC-AC inverter, converts the DC power output from the PV DC / DC 202 into AC power, and outputs the AC power to the distribution line 42.
  • the distribution line 42 connects the smart meter 32 and the distribution board 34, and branches from the intersection P between them to connect the DC / AC 204 for PV.
  • the distribution board 34 is connected to the distribution line 42 and to the load 36.
  • the distribution board 34 supplies power to the load 36.
  • the load 36 is a device that consumes electric power supplied via the distribution line 42.
  • the load 36 includes devices such as a refrigerator, an air conditioner, and lighting.
  • one load 36 is connected to the distribution board 34, but a plurality of loads 36 may be connected to the distribution board 34.
  • SB210 is a storage battery capable of charging and discharging electric power, and includes a lithium ion storage battery, a nickel hydride storage battery, a lead storage battery, an electric double layer capacitor, a lithium ion capacitor, and the like.
  • the SB 210 is connected to the DC / DC 212 for SB.
  • the SB DC / DC 212 is a DC-DC converter, and performs conversion between the DC power on the SB 210 side and the DC power on the bidirectional DC / AC inverter 214 side.
  • the bidirectional DC / AC inverter 214 is connected between the SB DC / DC 212 and the distribution board 34.
  • the bidirectional DC / AC inverter 214 converts AC power from the distribution board 34 into DC power, and outputs the converted DC power to the SB DC / DC 212.
  • the bidirectional DC / AC inverter 214 converts the DC power from the SB DC / DC 212 into AC power and outputs the converted AC power to the distribution board 34. That is, the SB 210 is charged and discharged by the bidirectional DC / AC inverter 214.
  • Such control of the bidirectional DC / AC inverter 214 is performed by the control device 216. Control by the control device 216 will be described later.
  • the PV 200, the PV DC / DC 202, and the PV DC / AC 204 may be integrally formed, and even in this case, this is referred to as a solar cell system 38.
  • the SB 210, the SB DC / DC 212, the bidirectional DC / AC inverter 214, and the control device 216 may be stored in one housing. Even in this case, this is referred to as the power storage system 40.
  • the first measurement point 220 is arranged between the smart meter 32 and the intersection P in the distribution line 42.
  • the first measurement point 220 is a sensor that measures the power value of the passing power.
  • the passing electric power includes electric power from the intersection P toward the smart meter 32 and electric power from the smart meter 32 toward the intersection P.
  • the former corresponds to power sales and the latter corresponds to power purchases.
  • the first measurement point 220 may measure only the power value corresponding to the power sale.
  • a well-known technique should just be used for the measurement of an electric power value, description is abbreviate
  • Such a first measurement point 220 can be said to be a measurement point capable of measuring the power sold to the power system 30.
  • the first measurement point 220 outputs the measured power value to the control device 216.
  • the second measurement point 222 is arranged between the intersection P and the distribution board 34 in the distribution line 42.
  • the second measurement point 222 is a sensor that measures the power value of the electric power that passes through in the same manner as the first measurement point 220.
  • the passing power includes the power from the distribution board 34 toward the intersection P and the power from the intersection P toward the distribution board 34.
  • the second measurement point 222 may measure only the power value from the intersection P toward the distribution board 34.
  • Such a second measurement point 222 can be said to be a measurement point at which the power consumed in the load 36 and the power storage system 40 can be measured.
  • the second measurement point 222 outputs the measured power value to the control device 216.
  • the power management system server 14 is connected to the smart meter 32, the solar cell system 38, and the power storage system 40 via a network such as HAN, and can communicate with each other. Hereinafter, the description of the communication between the power management system server 14 and the solar cell system 38 is omitted.
  • the power management system server 14 is also connected to the group management system server 12 via the network 18. In order to explain the processing and communication in the power management system server 14, FIG. 3 is used here.
  • FIG. 3 shows the configuration of the power management system server 14, the smart meter 32, and the control device 216.
  • the power management system server 14 includes a service cooperation unit 300 and a control unit 302, and the control unit 302 includes a reception unit 500, a processing unit 502, a generation unit 504, and a transmission unit 506.
  • the control device 216 includes a reception unit 400, a processing unit 402, a generation unit 404, a transmission unit 406, and an acquisition unit 408.
  • the service cooperation unit 300 executes processing for realizing bidirectional cooperation with a service such as VPP. Further, the service cooperation unit 300 provides the service with the device profile registered in the power management system server 14.
  • the communication unit 508 communicates with a group management system server 12 (not shown).
  • a receiving unit (not shown) in the communication unit 508 receives a message including a request from the group management system server 12 which is an external server installed outside the customer 16 in which the power storage system 40 is installed. The request is, for example, an increase or decrease in demand at the customer 16.
  • the service cooperation unit 300 outputs the request received by the communication unit 508 to the control unit 302.
  • the control unit 302 executes processing for realizing cooperation with devices installed in the customer 16, for example, the smart meter 32, the solar cell system 38, and the power storage system 40. Through the cooperation, the control unit 302 collects information from the device and controls the device.
  • communication between the control unit 302 and each device is performed by a method according to a predetermined protocol.
  • the predetermined protocol is, for example, “ECHONET Lite” or “ECHONET”. However, the predetermined protocol is not limited to these.
  • the first state is a state in which discharging from the power storage system 40 is prohibited when selling power to the power system 30.
  • the second state is a state in which discharging from the power storage system 40 is permitted in the range of the amount of power consumed by the load 36 connected to the power storage system 40.
  • the third state is a state in which the power storage system 40 is allowed to discharge more than the amount of power consumed by the load 36 connected to the power storage system 40. The operation of the power storage system 40 corresponding to the first state to the third state will be described later.
  • the receiving unit 500 in the control unit 302 receives a value from the smart meter 32, for example, a power sale amount or a power purchase amount, and also receives a power storage amount from the control device 216. These receptions are made periodically, for example, once every 30 minutes.
  • the processing unit 502 derives a demand amount that can be increased or decreased by the customer 16 based on the value from the smart meter 32 and the amount of stored electricity. Since a known technique may be used for deriving such a demand amount, a description thereof is omitted here.
  • the processing unit 502 determines switching from the first state to the second state or the third state.
  • whether the state is the second state or the third state is determined by a contract made in advance. If the requested amount of reduction in demand is within the range of demand that can be reduced, the processing unit 502 determines to maintain the first state, and the amount of reduction in demand that is requested can be reduced. If the amount is out of the range, the switching from the first state to the second state or the third state may be determined.
  • the generation unit 504 generates a message regarding the operation state of the power storage system 40.
  • FIG. 4 shows a message format used in the power management system server 14. In the message, a data field is arranged after the message type field. The message type field indicates the type of message, and here an operation state instruction is shown. The data field indicates data to be notified, and here, one of the first state to the third state is indicated.
  • the generation unit 504 generates an operation state instruction message of the power storage system 40 based on the request received by the communication unit 508.
  • the transmission unit 506 transmits an operation state instruction message of the power storage system 40 to the control device 216.
  • the receiving unit 400 of the control device 216 receives an operation state instruction message of the power storage system 40.
  • the processing unit 402 recognizes that it is an operation state instruction based on the message type field, and changes the operation state from the first state to the second state or the third state based on the data field. Recognize The processing unit 402 operates to control the power storage system 40 based on the recognized operating state. In order to explain the operation, FIGS. 5A to 5C are used here.
  • FIGS. 5A to 5C show an outline of the operation of the power storage system 40.
  • the power system 30, the smart meter 32, the distribution board 34, the load 36, the solar cell system 38, and the power storage system 40 are connected in the same manner as in FIG.
  • FIG. 5A shows an outline of the operation when the operation state indicates the first state.
  • the first state is a state in which discharging from the power storage system 40 is prohibited when selling power to the power system 30.
  • the processing unit 402 stops discharging from the bidirectional DC / AC inverter 214 in the first state.
  • the electric power A1 from the solar cell system 38 is branched at the intersection P, the electric power A2 is directed to the distribution board 34, and the electric power A3 is directed to the smart meter 32.
  • the electric power A2 is consumed in the load 36.
  • the first measurement point 220 measures the electric power A3 and outputs the measurement result to the control device 216.
  • the acquisition unit 408 of the control device 216 acquires the measurement result.
  • the processing unit 402 continues to stop discharging from the bidirectional DC / AC inverter 214 when the electric power A3 is directed from the intersection P to the smart meter 32 in the measurement result at the first measurement point 220.
  • the electric power A3 is directed from the intersection P toward the smart meter 32, this corresponds to a state where electric power is sold to the electric power system 30.
  • FIG. 5 (b) shows an outline of the operation when the operation state indicates the second state.
  • the second state is a state in which discharging from the power storage system 40 is permitted within the range of the amount of power consumed by the load 36 connected to the power storage system 40.
  • the processing unit 402 causes the bidirectional DC / AC inverter 214 to perform discharging in the second state. Due to the discharge, the electric power B ⁇ b> 1 from the power storage system 40 goes to the load 36 through the distribution board 34. On the other hand, the electric power A1 from the solar cell system 38 is branched at the intersection P, the electric power A4 is directed to the distribution board 34, and the electric power A5 is directed to the smart meter 32.
  • the electric power A4 corresponds to the amount of electric power consumed by the load 36 that is insufficient with only the electric power B1. Therefore, the electric power A4 is smaller than the electric power A2 in FIG. As a result, the electric power A5 becomes larger than the electric power A3 in FIG.
  • the second measurement point 222 measures the electric power A4 and outputs the measurement result to the control device 216.
  • the acquisition unit 408 of the control device 216 acquires the measurement result.
  • the processing unit 402 causes the power A4 from the intersection P to the distribution board 34 to be zero, or the power A4 to travel from the intersection P to the distribution board 34.
  • the bidirectional DC / AC inverter 214 is caused to discharge.
  • the processing unit 402 when the power is moving from the distribution board 34 toward the intersection P, causes the bidirectional DC / DC to be directed from the intersection P to the distribution board 34.
  • the amount of discharge from the AC inverter 214 is reduced.
  • the electric power A4 is directed from the intersection P toward the distribution board 34, this corresponds to a state in which the electric power discharged from the power storage system 40 is consumed only by the load 36 without going to the electric power system 30.
  • FIG. 5C shows an outline of the operation when the operation state indicates the third state.
  • the third state is a state in which the power storage system 40 is allowed to discharge more than the amount of power consumed by the load 36 connected to the power storage system 40. Therefore, the processing unit 402 causes the bidirectional DC / AC inverter 214 to perform discharge regardless of the measurement results of the first measurement point 220 and the second measurement point 222.
  • the electric power B2 from the power storage system 40 is branched in the distribution board 34, the electric power B3 goes to the load 36, and the electric power B4 goes to the smart meter 32. Since the load 36 operates with the electric power B3, the electric power A1 from the solar cell system 38 goes from the intersection P to the smart meter 32. Therefore, the electric power A1 and the electric power B4 are directed to the electric power system 30.
  • the generation unit 404 may generate a message for reporting the processing result to the control unit 302.
  • the format of the message is the same as in FIG. 4, but the processing report is shown in the message type field, and the processing result is shown in the data field.
  • the generation unit 404 outputs a data request message to the transmission unit 406.
  • the transmission unit 406 transmits a processing report message to the control unit 302.
  • the receiving unit 500 of the control unit 302 receives a process report message.
  • the generation unit 504 may generate a message for requesting the smart meter 32 to notify the power sale amount or the power sale amount in order to grasp whether the power sale is being performed or the power purchase is being performed.
  • the format of the message at that time is the same as in FIG. 4, but the data request indicates the message type field, and the power sale amount or the power purchase amount is indicated in the data field.
  • the generation unit 504 outputs a data request message to the transmission unit 506.
  • the transmission unit 506 transmits a data request message to the smart meter 32.
  • the smart meter 32 When the smart meter 32 receives the data request message, the smart meter 32 recognizes that the request is a data request based on the message type field, and should notify the power sale amount or the power purchase amount based on the data field. Recognize The smart meter 32 generates a message for responding to the data request.
  • the format of the message is the same as in FIG. 4, but the data response is shown in the message type field, and the amount of power sold or purchased is shown in the data field. Here, it is assumed that the amount of power sold is shown.
  • the smart meter 32 transmits a data response message to the control unit 302.
  • the receiving unit 500 of the control unit 302 receives a data response message.
  • the processing unit 502 recognizes that the response is a data response based on the message type field, and acquires the power sale amount based on the data field. As a result, the processing unit 502 recognizes that power is being sold.
  • the generation unit 504 generates a message for requesting the control device 216 to notify the storage amount of the SB 210 and the like.
  • the format of the message is the same as in FIG. 4, but the message type field indicates the data request, and the data field indicates the type of information to be notified.
  • the generation unit 504 outputs a data request message to the transmission unit 506.
  • the transmission unit 506 transmits a data request message to the control device 216.
  • the receiving unit 400 of the control device 216 receives a data request message.
  • the processing unit 402 recognizes that the data request is based on the message type field, and recognizes that the requested information should be notified based on the data field.
  • the generation unit 404 generates a message for responding to the data request.
  • the message format is the same as in FIG. 4, but the data response is shown in the message type field, and information such as the amount of electricity stored in the SB 210 is shown in the data field. This information is acquired by the processing unit 402.
  • the generation unit 404 outputs a data response message to the transmission unit 406.
  • the transmission unit 406 transmits a data response message to the control unit 302.
  • the receiving unit 500 of the control unit 302 receives a data response message.
  • the processing unit 502 recognizes that the response is a data response based on the message type field, and acquires information such as the storage amount of the SB 210 based on the data field.
  • the processing unit 502 receives a request for an increase in the amount of electric power sold from the service cooperation unit 300 and then grasps that the electric power is being sold, and grasps information such as the amount of electric power sold and the amount of electricity stored in the SB 210. To do.
  • the subject of the apparatus, system, or method in the present disclosure includes a computer.
  • the computer executes the program, the main function of the apparatus, system, or method according to the present disclosure is realized.
  • the computer includes a processor that operates according to a program as a main hardware configuration.
  • the processor may be of any type as long as the function can be realized by executing the program.
  • the processor includes one or a plurality of electronic circuits including a semiconductor integrated circuit (IC) or an LSI (Large Scale Integration).
  • the plurality of electronic circuits may be integrated on one chip or provided on a plurality of chips.
  • the plurality of chips may be integrated into one device, or may be provided in a plurality of devices.
  • the program is recorded on a non-transitory recording medium such as a ROM, an optical disk, or a hard disk drive that can be read by a computer.
  • the program may be stored in advance in a recording medium, or may be supplied to the recording medium via a wide area communication network including the Internet.
  • FIGS. 6A to 6D show various arrangements of the power management system server 14 in the VPP system 100.
  • FIG. 6A shows a case where the power management system server 14 is arranged in the customer 16 and is the same as before.
  • the service cooperation unit 300 and the control unit 302 of the power management system server 14 are configured as separate devices, and only the control unit 302 is arranged in the customer 16. This is a case where it is arranged outside the house 16.
  • FIG. 6C shows a case where the power management system server 14 is arranged outside the consumer 16 and a GW (Gateway) 20 is arranged in the consumer 16.
  • the power management system server 14 and the GW 20 are connected, and a device (not shown) is connected to the GW 20.
  • FIG. 6D shows a case where the function of the power management system server 14 is included in the group management system server 12 and the GW 20 is arranged at the customer 16.
  • the group management system server 12 and the GW 20 are connected, and a device (not shown) is connected to the GW 20.
  • FIG. 7 is a sequence diagram showing an instruction procedure in the VPP system 100.
  • the smart meter 32 transmits the value of the smart meter 32 to the power management system server 14 (S10).
  • the power storage system 40 transmits the amount of power storage to the power management system server 14 (S12).
  • the group management system server 12 transmits a demand reduction request to the power management system server 14 (S14).
  • the power management system server 14 transmits an operation state instruction to the power storage system 40 (S16).
  • FIGS. 8A to 8B are flowcharts showing the operation state selection procedure in the power management system server 14.
  • the processing unit 502 puts the power storage system 40 into the first state (S50), and the service cooperation unit 300 does not receive a demand reduction request from the group management system server 12 (N in S52). ), The processing unit 502 returns to Step 50. If the service cooperation unit 300 receives the demand reduction request from the group management system server 12 (Y in S52), the processing unit 502 sets the power storage system 40 to the second state (S54). If instructed (Y in S56), the process returns to step 54. If not instructed (N in S56), the process returns to step 50.
  • the processing unit 502 puts the power storage system 40 into the first state (S70), and the service cooperation unit 300 does not accept the demand reduction request from the group management system server 12 (N in S72). ), The processing unit 502 returns to Step 70. If the service cooperation unit 300 receives the demand reduction request from the group management system server 12 (Y in S72), the processing unit 502 places the power storage system 40 in the third state (S74). If instructed (Y in S76), the process returns to step 74. If not instructed (N in S76), the process returns to step 70.
  • FIG. 9 is a flowchart showing a processing procedure in the control device 216.
  • the processing unit 402 stops discharging (S102).
  • the processing unit 402 performs discharge so that the direction of power does not become the direction of the power system 30 ( S106).
  • the processing unit 402 performs discharge (S108).
  • the power storage system 40 can be controlled from the power management system server 14. Moreover, since the production
  • any one of the first state to the third state is included in the message, it can operate according to the instruction.
  • the operation is based on the measurement result from the first measurement point 220.
  • the operation is based on the measurement result from the second measurement point 222.
  • the operation according to the state can be executed.
  • the power management system server 14 is a power management system server 14 that is connected to the power system 30 and controls the operation of the power storage system 40 installed in the customer 16.
  • a generation unit 504 that generates information on the transmission
  • a transmission unit 506 that transmits information generated by the generation unit 504 to the power storage system 40.
  • the information regarding the operation state of the power storage system 40 is the first state in which discharging from the power storage system 40 is prohibited when power is being sold from the customer 16 to the power grid 30, or the power sale from the customer 16 to the power grid 30. Including a second state in which discharging from the power storage system 40 is permitted.
  • the second state may be a state in which discharge is permitted within the range of the amount of power consumed by the load 36 connected to the power storage system 40.
  • the second state may include a third state in which discharge exceeding the amount of power consumed by the load 36 connected to the power storage system 40 is permitted.
  • the first state is a state in which the power storage system 40 is operated based on the measurement result from the first measurement point 220 that can measure the power sold to the power system 30, and the second state is the power storage system 40.
  • the power storage system 40 may be operated based on the measurement result from the second measurement point 222 that can measure the power consumed by the load 36 and the power storage system 40 connected to the power supply.
  • the third state can measure the power consumed in the first measurement point 220 that can measure the power sold to the power system 30, the load 36 connected to the power storage system 40, and the power storage system 40.
  • the power storage system 40 may be operated independently of the measurement result from the second measurement point 222.
  • a communication unit 508 that receives information from the group management system server 12 installed outside the customer 16 may be further provided.
  • the generation unit 504 may generate information regarding the operation state of the power storage system 40 based on the information received by the communication unit 508.
  • This power storage system 40 is a power storage system 40 that is connected to the power system 30 and installed in the customer 16.
  • the power storage system 40 receives the information related to the operation state of the power storage system 40, and the receiver 400 receives the information.
  • a processing unit 402 that operates based on the information.
  • the information regarding the operation state of the power storage system 40 is the first state in which discharging from the power storage system 40 is prohibited when selling power from the consumer 16 to the power grid 30 or selling from the consumer 16 to the power grid 30.
  • a second state in which discharging from the power storage system 40 is permitted when electricity is being performed is included.
  • the second state may be a state in which discharging of the power storage system 40 is permitted within the range of the amount of power consumed by the load 36 connected to the power storage system 40.
  • the second state may include a third state in which discharge of the power storage system 40 is permitted exceeding the amount of power consumed by the load 36 connected to the power storage system 40.
  • the processing unit 402 When the information received by the receiving unit 400 indicates the first state, the processing unit 402 operates based on a measurement result from the first measurement point 220 that can measure the power sold to the power system 30.
  • the load 36 connected to the power storage system 40 and the power consumed by the power storage system 40 can be measured from the second measurement point 222 that can be measured. You may operate based on the measurement result.
  • the processing unit 402 When the information received by the receiving unit 400 indicates the first state, the processing unit 402 operates based on a measurement result from the first measurement point 220 that can measure the power sold to the power system 30. When the information received by the receiving unit 400 indicates the third state, it is possible to measure the power consumed at the first measurement point 220, the load 36 connected to the power storage system 40, and the power storage system 40. The operation may be performed independently of the measurement result from the second measurement point 222.
  • Still another aspect of the present disclosure is a transmission method.
  • This method is a transmission method in the power management system server 14 that is connected to the power system 30 and controls the operation of the power storage system 40 installed in the consumer 16, and is a step of generating information related to the operating state of the power storage system 40. And a step of transmitting the generated information to the power storage system 40.
  • the information regarding the operation state of the power storage system 40 is the first state in which discharging from the power storage system 40 is prohibited when power is being sold from the customer 16 to the power grid 30, or the power sale from the customer 16 to the power grid 30. Including a second state in which discharging from the power storage system 40 is permitted.
  • the first state is defined as a state in which discharging from the power storage system 40 is prohibited when power is sold to the power system 30.
  • the second state is defined as a state in which discharging is permitted within the range of the amount of power consumed by the load 36 connected to the power storage system 40.
  • the third state is defined as a state in which discharge exceeding the amount of power consumed by the load 36 connected to the power storage system 40 is permitted.
  • any one of the first state to the third state specified by such a definition is included in the operation state instruction message.
  • the present invention is not limited to this.
  • the first state is based on the measurement result from the first measurement point 220 that can measure the power sold to the power grid 30 when the power grid 30 is sold.
  • the second state is from the second measurement point 222 that can measure the power consumed in the power storage system 40 and the load 36 connected to the power storage system 40 when selling power to the power system 30. It may be defined as a state in which the power storage system 40 is operated based on the measurement result.
  • the information regarding the operation state of the power storage system 40 is independent of the measurement results from the first measurement point 220 and the second measurement point 222 when the power grid 30 is selling power. 40 may be defined as a state of operating. Even in this case, one of the first state to the third state specified by such a definition is included in the operation state instruction message.
  • the processing unit 402 of the control device 216 executes processing by changing from the first state to the second state or from the first state to the third state in accordance with the message of the operation state instruction. According to this modification, the degree of freedom of configuration can be expanded.
  • the first state to the third state are defined as the operation state.
  • the first state and the second state may be defined as the operation state.
  • the second state may be the same as the second state so far, or may be the same as the third state so far. According to this modification, processing can be simplified.
  • a solar cell system 38 is installed in the consumer 16.
  • the present invention is not limited thereto, and for example, a renewable energy power generation device different from the solar cell system 38 may be installed in the consumer 16.
  • An example of such a power generator is a fuel cell system. According to this modification, the degree of freedom of configuration can be improved.
  • the operation state of the power storage system can be diversified.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Economics (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

According to the present invention, a power management system server 14 is connected to a power system and controls the operation of a power storage system installed in a power-consuming residence. A generation unit 504 generates information about the operation state of the power storage system. A transmission unit 506 transmits, to the power storage system, the information generated in the generation unit 504. The information about the operation state of the power storage system includes: a first state in which power is prevented from being discharged from the power storage system when the power is sold from the power-consuming residence to the power system; or a second state in which power is allowed to be discharged from the power storage system when the power is sold from the power-consuming residence to the power system.

Description

電力管理システム、蓄電システム、送信方法、プログラムPower management system, power storage system, transmission method, program
 本開示は、電力を管理する電力管理システム、蓄電システム、送信方法、プログラムに関する。 The present disclosure relates to a power management system, a power storage system, a transmission method, and a program for managing power.
 需要家に設置された機器を制御する制御装置を備える電力管理システムが提案されている。機器は、例えば、太陽電池、蓄電池、燃料電池等の分散電源、家電機器を含む。このような制御装置は、上位のスマートサーバに接続される。スマートサーバは、複数の需要家を統括的に管理する(例えば、特許文献1参照)。 A power management system including a control device that controls equipment installed in a consumer has been proposed. Devices include, for example, distributed power sources such as solar cells, storage batteries, and fuel cells, and home appliances. Such a control device is connected to a host smart server. The smart server comprehensively manages a plurality of consumers (see, for example, Patent Document 1).
特開2014-33591号公報JP 2014-33591 A
 需要家において、太陽電池システムと蓄電システムが電力系統に接続されている場合、太陽電池システムからの電力が電力系統に売電されていると、蓄電システムからの放電が一般的に停止される。そのため、電力系統への売電がなされている場合に蓄電システムに放電を指示するためのメッセージは定義されていない。このような状況において、上位のサーバから売電量増加の指示を受けつけても、電力管理システムのサーバは、売電量を増加させるように蓄電システムを制御できない。 In the consumer, when the solar cell system and the power storage system are connected to the power system, if the power from the solar cell system is sold to the power system, the discharge from the power storage system is generally stopped. Therefore, a message for instructing the power storage system to discharge when power is sold to the power system is not defined. In such a situation, even if an instruction to increase the amount of power sold is received from a host server, the server of the power management system cannot control the power storage system so as to increase the amount of power sold.
 本開示はこうした状況に鑑みなされたものであり、その目的は、蓄電システムの動作状態を多様化させる技術を提供することにある。 The present disclosure has been made in view of such a situation, and an object thereof is to provide a technique for diversifying the operation state of the power storage system.
 上記課題を解決するために、本開示のある態様の電力管理システムは、電力系統に接続され、需要家に設置された蓄電システムの動作を制御する電力管理システムであって、蓄電システムの動作状態に関する情報を生成する生成部と、生成部において生成した情報を蓄電システムに送信する送信部とを備える。蓄電システムの動作状態に関する情報は、需要家から電力系統に売電を行っている場合に蓄電システムからの放電を禁止する第1状態、あるいは需要家から電力系統に売電を行っている場合に蓄電システムからの放電を許可する第2状態を含む。 In order to solve the above-described problem, a power management system according to an aspect of the present disclosure is a power management system that is connected to a power system and controls the operation of a power storage system installed in a consumer. A generating unit that generates information on the information, and a transmitting unit that transmits the information generated in the generating unit to the power storage system. The information regarding the operating state of the power storage system is the first state in which discharging from the power storage system is prohibited when power is sold from the consumer to the power system, or when power is sold from the consumer to the power system. A second state in which discharging from the power storage system is permitted is included.
 本開示の別の態様は、蓄電システムである。この蓄電システムは、電力系統に接続され、需要家に設置された蓄電システムであって、本蓄電システムの動作状態に関する情報を受信する受信部と、受信部において受信した情報をもとに動作する処理部とを備える。蓄電システムの動作状態に関する情報は、需要家から電力系統に売電を行っている場合に本蓄電システムからの放電を禁止する第1状態、あるいは需要家から電力系統に売電を行っている場合に本蓄電システムからの放電を許可する第2状態を含む。 Another aspect of the present disclosure is a power storage system. This power storage system is a power storage system connected to an electric power system and installed at a consumer, and operates based on information received at the receiving unit and information received at the receiving unit. A processing unit. The information regarding the operating state of the power storage system is the first state in which discharging from the power storage system is prohibited when power is sold from the customer to the power system, or when power is sold from the customer to the power system. Includes a second state in which discharge from the power storage system is permitted.
 本開示のさらに別の態様は、送信方法である。この方法は、電力系統に接続され、需要家に設置された蓄電システムの動作を制御する電力管理システムにおける送信方法であって、蓄電システムの動作状態に関する情報を生成するステップと、生成した情報を蓄電システムに送信するステップとを備える。蓄電システムの動作状態に関する情報は、需要家から電力系統に売電を行っている場合に蓄電システムからの放電を禁止する第1状態、あるいは需要家から電力系統に売電を行っている場合に蓄電システムからの放電を許可する第2状態を含む。 Still another aspect of the present disclosure is a transmission method. This method is a transmission method in a power management system that is connected to an electric power system and controls the operation of a power storage system installed in a consumer. The method includes a step of generating information on an operation state of the power storage system, and the generated information And transmitting to the power storage system. The information regarding the operating state of the power storage system is the first state in which discharging from the power storage system is prohibited when power is sold from the consumer to the power system, or when power is sold from the consumer to the power system. A second state in which discharging from the power storage system is permitted is included.
 なお、以上の構成要素の任意の組合せ、本開示の表現を方法、装置、システム、コンピュータプログラム、またはコンピュータプログラムを記録した記録媒体などの間で変換したものもまた、本開示の態様として有効である。 It should be noted that any combination of the above-described constituent elements, the expression of the present disclosure converted between methods, apparatuses, systems, computer programs, or recording media on which the computer programs are recorded are also effective as an aspect of the present disclosure. is there.
 本開示によれば、蓄電システムの動作状態を多様化できる。 According to the present disclosure, the operation state of the power storage system can be diversified.
実施例に係るVPPシステムの構成を示す図である。It is a figure which shows the structure of the VPP system which concerns on an Example. 図1の需要家の構成を示す図である。It is a figure which shows the structure of the consumer of FIG. 図2の電力管理システムサーバ、スマートメータ、制御装置の構成を示す図である。It is a figure which shows the structure of the power management system server of FIG. 2, a smart meter, and a control apparatus. 図2の電力管理システムサーバにおいて使用されるメッセージのフォーマットを示す図である。It is a figure which shows the format of the message used in the power management system server of FIG. 図5(a)-(c)は、図2の蓄電システムの動作概要を示す図である。FIGS. 5A to 5C are diagrams showing an outline of the operation of the power storage system of FIG. 図6(a)-(d)は、図1のVPPシステムにおける電力管理システムサーバの様々な配置を示す図である。FIGS. 6A to 6D are diagrams showing various arrangements of the power management system server in the VPP system of FIG. 図1のVPPシステムにおける指示手順を示すシーケンス図である。It is a sequence diagram which shows the instruction | indication procedure in the VPP system of FIG. 図8(a)-(b)は、図3の電力管理システムサーバにおける動作状態の選択手順を示すフローチャートである。FIGS. 8A and 8B are flowcharts showing a procedure for selecting an operation state in the power management system server of FIG. 図3の制御装置における処理手順を示すフローチャートである。It is a flowchart which shows the process sequence in the control apparatus of FIG.
 本開示の実施例を具体的に説明する前に、本実施例の概要を説明する。実施例は、点在する小規模な太陽光発電システム、蓄電システム、燃料電池システム等の機器と、電力の需要抑制を統合して制御するVPP(Virtual Power Plant)に関する。VPPは、太陽光発電システム、蓄電システム、燃料電池システム等の機器をネットワークを介して制御することによって、これらを1つの発電所のようにまとめて機能させる。ここで、太陽光発電システム、蓄電システム、燃料電池システム等の機器は各需要家に設置される。需要家は、電力会社等からの電力の供給を受けている施設であり、例えば、住宅、事務所、店舗、工場、公園などである。このような需要家における機器は電力管理システムによって制御される。電力管理システムは、需要家における電力の消費量が大きい時間帯において蓄電システムを放電させたり、電力系統の電気料金が安価である夜間において蓄電システムを充電させたりする。 DETAILED DESCRIPTION Before an embodiment of the present disclosure is specifically described, an outline of the embodiment will be described. The embodiment relates to VPP (Virtual Power Plant) that integrates and controls devices such as scattered small-scale photovoltaic power generation systems, power storage systems, fuel cell systems, and the like, and power demand control. The VPP controls devices such as a photovoltaic power generation system, a power storage system, and a fuel cell system via a network, thereby causing them to function as a single power plant. Here, devices such as a photovoltaic power generation system, a power storage system, and a fuel cell system are installed in each consumer. The consumer is a facility that is supplied with electric power from an electric power company or the like, such as a house, an office, a store, a factory, or a park. Such consumer equipment is controlled by a power management system. The power management system discharges the power storage system during a time period when the amount of power consumed by the consumer is large, or charges the power storage system at night when the electricity charge of the power system is low.
 複数の電力管理システムは、群管理システムに接続される。また、群管理システムは、電力小売事業者の上位システムにも接続される。群管理システムを管理する事業者は、電力小売事業者と契約を結んでおり、上位システムは、契約に応じた要求を群管理システムに出力する。群管理システムは、上位システムからの要求に応じて電力小売事業者に売電するように、複数の電力管理システムのそれぞれに対して制御を指示する。例えば、群管理システムは、発電所において発電される電力が逼迫する場合、需要家における買電を抑制させたりするように制御することを電力管理システムに要求する。 Multiple power management systems are connected to the group management system. The group management system is also connected to a host system of a power retailer. The operator who manages the group management system has a contract with the power retailer, and the host system outputs a request corresponding to the contract to the group management system. The group management system instructs each of the plurality of power management systems to control power to be sold to the power retailer in response to a request from the host system. For example, the group management system requests the power management system to perform control so as to suppress the power purchase in the consumer when the power generated at the power plant is tight.
 需要家において、太陽電池システムと蓄電システムが電力系統に接続されている場合、太陽電池システムからの電力が電力系統に売電されていると、ダブル発電による売電価格の低下を防ぐために蓄電システムからの放電が一般的に停止される。そのため、電力管理システムから蓄電システムに送信されるメッセージにおいて、電力系統への売電がなされている場合に蓄電システムに放電を指示するためのメッセージは不要であり、そのようなメッセージは定義されていない。このような状況において、電力管理システムが群管理システムから売電量増加の指示を受けつけた場合、電力管理システムは蓄電システムを放電させることができず、群管理システムの要求に応じることができない。一方、ダブル発電によって売電価格が低下する場合であっても、群管理システムの要求に応じて蓄電システムを放電させた方が需要家にとって得になる契約がなされていることもある。 In a consumer, when the solar cell system and the power storage system are connected to the power system, if the power from the solar cell system is sold to the power system, the power storage system is used to prevent a decrease in the selling price due to double power generation. The discharge from is generally stopped. For this reason, in the message transmitted from the power management system to the power storage system, there is no need for a message for instructing the power storage system to discharge when power is sold to the power system, and such a message is defined. Absent. In such a situation, when the power management system receives an instruction to increase the amount of power sold from the group management system, the power management system cannot discharge the power storage system and cannot meet the request of the group management system. On the other hand, even if the power selling price decreases due to double power generation, there is a case where a contract is made for the consumer to discharge the power storage system in response to a request from the group management system.
 このような状況に対応するために、本実施例に係る電力管理システムでは、売電中における蓄電システムの動作状態として3種類の状態を規定する。3種類の状態は第1状態から第3状態と示される。第1状態は売電中に放電を禁止する状態であり、第2状態は売電中に負荷での消費に限定して放電を許可する状態であり、第3状態は売電中に制限なく放電を許可する状態である。ここで、第1状態はこれまでの動作に相当し、第2状態はダブル発電に相当する。電力管理システムは、需要家に備えられた機器、例えば、スマートメータ、蓄電システムのそれぞれから現在の状態に関する情報を受信することによって、売電中であることを把握する。その状況下において、上位システム、群管理システムからの要求に応じて、電力管理システムは、第1状態を第2状態あるいは第3状態に変えることを指示するための情報を蓄電システムに送信する。蓄電システムは、受けつけた情報に応じて、第1状態を第2状態あるいは第3状態に変えて動作する。 In order to cope with such a situation, the power management system according to the present embodiment defines three types of states as the operation state of the power storage system during power sale. The three types of states are indicated from the first state to the third state. The first state is a state in which discharge is prohibited during power sale, the second state is a state in which discharge is allowed only during consumption of power during power sale, and the third state is unlimited during power sale. This is a state in which discharge is permitted. Here, the first state corresponds to the operation so far, and the second state corresponds to double power generation. The power management system grasps that power is being sold by receiving information on the current state from each of the devices provided in the consumer, for example, a smart meter and a power storage system. Under the circumstances, in response to a request from the host system and the group management system, the power management system transmits information for instructing to change the first state to the second state or the third state to the power storage system. The power storage system operates by changing the first state to the second state or the third state according to the received information.
 図1は、実施例に係るVPPシステム100の構成を示す。VPPシステム100は、上位システムサーバ10、群管理システムサーバ12と総称される第1群管理システムサーバ12a、第2群管理システムサーバ12b、第M群管理システムサーバ12m、電力管理システムサーバ14と総称される第1電力管理システムサーバ14a、第2電力管理システムサーバ14b、第N電力管理システムサーバ14nを含む。ここで、第1電力管理システムサーバ14aは第1需要家16aに設置され、第2電力管理システムサーバ14bは第2需要家16bに設置され、第N電力管理システムサーバ14nは第N需要家16nに設置され、第1需要家16a、第2需要家16b、第N需要家16nは需要家16と総称される。群管理システムサーバ12の数は「M」に限定されず、電力管理システムサーバ14と需要家16の数は「N」に限定されない。 FIG. 1 shows a configuration of a VPP system 100 according to the embodiment. The VPP system 100 is generically referred to as a first group management system server 12a, a second group management system server 12b, an Mth group management system server 12m, and a power management system server 14 collectively referred to as a host system server 10 and a group management system server 12. First power management system server 14a, second power management system server 14b, and Nth power management system server 14n. Here, the first power management system server 14a is installed in the first consumer 16a, the second power management system server 14b is installed in the second consumer 16b, and the Nth power management system server 14n is the Nth consumer 16n. The first consumer 16a, the second consumer 16b, and the Nth consumer 16n are collectively referred to as the consumer 16. The number of group management system servers 12 is not limited to “M”, and the number of power management system servers 14 and consumers 16 is not limited to “N”.
 需要家16は、例えば、一戸建ての住宅、マンションなどの集合住宅、コンビニエンスストアまたはスーパーマーケットなどの店舗、ビルなどの商用施設、工場であり、前述のごとく、電力会社等からの電力の供給を受けている施設である。需要家16には、空調機器(エアコン)、テレビジョン受信装置(テレビ)、照明装置、蓄電システム、ヒートポンプ給湯機等の機器が設置される。これらの機器は、電力事業者等の電力系統に接続されることによって、商用電力の供給を受けて、電力を消費する。機器として、電力使用の削減量が比較的大きいと想定される機器が有用であるが、削減量があまり大きくないと想定される機器であってもよい。機器に、太陽電池システム、燃料電池システム等の再生可能エネルギー発電装置が含まれてもよい。 The consumer 16 is, for example, a detached house, an apartment house such as a condominium, a store such as a convenience store or a supermarket, a commercial facility such as a building, and a factory. It is a facility. The consumer 16 is installed with devices such as an air conditioner (air conditioner), a television receiver (television), a lighting device, a power storage system, and a heat pump water heater. These devices are connected to an electric power system of an electric power company or the like, thereby receiving commercial power and consuming electric power. As the device, a device that is assumed to have a relatively large reduction in power consumption is useful, but a device that is assumed to have a large reduction amount may be used. The device may include a renewable energy power generation device such as a solar cell system or a fuel cell system.
 電力管理システムサーバ14は、電力管理システムの処理を実行するためのコンピュータであり、例えば、需要家16内に設置される。電力管理システムサーバ14は、例えば、HEMS(Home Energy Management System)コントローラとしての機能を有する。そのため、電力管理システムサーバ14は、HAN(Home Area Network)により需要家16内の各種機器と通信可能であり、これらの機器を制御する。電力管理システムサーバ14は、蓄電システムの動作、例えば、放電、充電を制御する。また、電力管理システムサーバ14は、需要家16に設置された機器と電力系統との間の連系を制御してもよい。電力管理システムサーバ14は、停電時に機器と電力系統との間を解列し、復電時に機器と電力系統との間を連系する。 The power management system server 14 is a computer for executing processing of the power management system, and is installed in the customer 16, for example. The power management system server 14 has a function as, for example, a HEMS (Home Energy Management System) controller. Therefore, the power management system server 14 can communicate with various devices in the customer 16 by HAN (Home Area Network), and controls these devices. The power management system server 14 controls the operation of the power storage system, for example, discharging and charging. Further, the power management system server 14 may control the interconnection between the equipment installed in the consumer 16 and the power system. The power management system server 14 disconnects the device and the power system at the time of a power failure, and connects the device and the power system at the time of power recovery.
 群管理システムサーバ12は、群管理システムの処理を実行するためのコンピュータである。群管理システムサーバ12は、複数の電力管理システムサーバ14を接続することによって、複数の電力管理システムサーバ14を管理する。その結果、群管理システムサーバ12は、複数の電力管理システムサーバ14のそれぞれに接続される複数の機器を統括的に管理する。複数の群管理システムサーバ12は、上位システムサーバ10に接続される。上位システムサーバ10は、電力小売事業者等の事業者の処理を実行するためのコンピュータである。前述のごとく、電力小売事業者と群管理システムの事業者の間では契約が結ばれており、上位システムサーバ10は、契約に応じた要求を群管理システムサーバ12に出力する。1つの群管理システムサーバ12が複数の上位システムサーバ10に接続されてもよい。 The group management system server 12 is a computer for executing processing of the group management system. The group management system server 12 manages the plurality of power management system servers 14 by connecting the plurality of power management system servers 14. As a result, the group management system server 12 comprehensively manages a plurality of devices connected to each of the plurality of power management system servers 14. The plurality of group management system servers 12 are connected to the host system server 10. The host system server 10 is a computer for executing processing of a business operator such as a power retail business operator. As described above, there is a contract between the power retailer and the group management system provider, and the upper system server 10 outputs a request corresponding to the contract to the group management system server 12. One group management system server 12 may be connected to a plurality of higher system servers 10.
 このような構成によって、上位システムが管理する需要家群全体の電力需要が逼迫する場合、群管理システムサーバ12は、蓄電システムから放電した電力を需要家16内で消費させたり、需要家16内での電力消費を抑制させたりするように電力管理システムサーバ14を制御する。また、上位システムが管理する需要家群全体の発電が増加し、供給が需要を上回る場合、群管理システムサーバ12は、蓄電システムへの充電を増やしたり、需要家16内での需要を増大させたりするように電力管理システムサーバ14を制御する。 With such a configuration, when the power demand of the entire customer group managed by the host system is tight, the group management system server 12 consumes the electric power discharged from the power storage system within the consumer 16 or within the consumer 16 The power management system server 14 is controlled so as to suppress power consumption in the system. Further, when the power generation of the entire customer group managed by the host system increases and the supply exceeds the demand, the group management system server 12 increases the charge to the power storage system or increases the demand in the customer 16. The power management system server 14 is controlled.
 図2は、需要家16の構成を示す。需要家16には、電力系統30、スマートメータ32、分電盤34、負荷36、太陽電池システム38、蓄電システム40、電力管理システムサーバ14が設置される。また、太陽電池システム38は、PV(Photovoltaics)200、PV用DC(Direct Current)/DC202、PV用DC/AC(Alternating Current)204を含み、蓄電システム40は、SB(Storage Battery)210、SB用DC/DC212、双方向DC/ACインバータ214、制御装置216を含む。さらに、電力管理システムサーバ14には、ネットワーク18を介して群管理システムサーバ12が接続される。 FIG. 2 shows the configuration of the customer 16. The customer 16 is provided with a power system 30, a smart meter 32, a distribution board 34, a load 36, a solar cell system 38, a power storage system 40, and a power management system server 14. The solar cell system 38 includes a PV (Photovoltaics) 200, a PV DC (Direct Current) / DC202, and a PV DC / AC (Alternating Current) 204, and the power storage system 40 includes an SB (Storage Battery) 210, an SB. DC / DC 212 for operation, bidirectional DC / AC inverter 214, and control device 216. Further, the group management system server 12 is connected to the power management system server 14 via the network 18.
 スマートメータ32は、電力系統30に接続され、デジタル式の電力量計である。スマートメータ32は、電力系統30から入ってくる潮流の電力量と、電力系統30へ出て行く逆潮流の電力量とを計測可能である。スマートメータ32は、通信機能を有し、電力管理システムサーバ14と通信可能である。 The smart meter 32 is connected to the power system 30 and is a digital watt-hour meter. The smart meter 32 can measure the power amount of the tidal current entering from the power system 30 and the power amount of the reverse power flowing out to the power system 30. The smart meter 32 has a communication function and can communicate with the power management system server 14.
 PV200は、太陽電池であり、再生可能エネルギー発電装置である。PV200は、光起電力効果を利用し、光エネルギーを直接電力に変換する。太陽電池として、シリコン太陽電池、化合物半導体などを素材にした太陽電池、色素増感型(有機太陽電池)等が使用される。PV200は、PV用DC/DC202に接続され、発電した直流電力をPV用DC/DC202に出力する。 PV200 is a solar cell and a renewable energy power generation device. The PV 200 uses the photovoltaic effect to convert light energy directly into electric power. As the solar cell, a silicon solar cell, a solar cell made of a compound semiconductor, a dye-sensitized type (organic solar cell), or the like is used. The PV 200 is connected to the PV DC / DC 202 and outputs the generated DC power to the PV DC / DC 202.
 PV用DC/DC202は、DC-DCコンバータであり、PV200から出力される直流電力を、所望の電圧値の直流電力に変換し、変換した直流電力をPV用DC/AC204に出力する。PV用DC/DC202は、例えば、昇圧チョッパで構成される。PV用DC/DC202は、PV200の出力電力が最大になるようMPPT(Maximum Power Point Tracking)制御される。PV用DC/AC204は、DC-ACインバータであり、PV用DC/DC202から出力される直流電力を交流電力に変換し、交流電力を配電線42に出力する。 PV DC / DC 202 is a DC-DC converter, which converts DC power output from PV 200 into DC power having a desired voltage value, and outputs the converted DC power to PV DC / AC 204. The PV DC / DC 202 is constituted by, for example, a boost chopper. The PV DC / DC 202 is controlled by MPPT (Maximum Power Point Tracking) so that the output power of the PV 200 is maximized. The PV DC / AC 204 is a DC-AC inverter, converts the DC power output from the PV DC / DC 202 into AC power, and outputs the AC power to the distribution line 42.
 配電線42は、スマートメータ32と分電盤34とを結ぶとともに、それらの間における交点Pから分岐してPV用DC/AC204も結ぶ。分電盤34は、配電線42に接続されるとともに、負荷36を接続する。分電盤34は、負荷36に電力を供給する。負荷36は、配電線42を介して供給される電力を消費する機器である。負荷36は、冷蔵庫、エアコン、照明等の機器を含む。ここでは、分電盤34に1つの負荷36が接続されているが、分電盤34に複数の負荷36が接続されてもよい。 The distribution line 42 connects the smart meter 32 and the distribution board 34, and branches from the intersection P between them to connect the DC / AC 204 for PV. The distribution board 34 is connected to the distribution line 42 and to the load 36. The distribution board 34 supplies power to the load 36. The load 36 is a device that consumes electric power supplied via the distribution line 42. The load 36 includes devices such as a refrigerator, an air conditioner, and lighting. Here, one load 36 is connected to the distribution board 34, but a plurality of loads 36 may be connected to the distribution board 34.
 SB210は、電力を充放電可能な蓄電池であり、リチウムイオン蓄電池、ニッケル水素蓄電池、鉛蓄電池、電気二重層キャパシタ、リチウムイオンキャパシタ等を含む。SB210はSB用DC/DC212に接続される。SB用DC/DC212は、DC-DCコンバータであり、SB210側の直流電力と、双方向DC/ACインバータ214側の直流電力との間の変換を実行する。 SB210 is a storage battery capable of charging and discharging electric power, and includes a lithium ion storage battery, a nickel hydride storage battery, a lead storage battery, an electric double layer capacitor, a lithium ion capacitor, and the like. The SB 210 is connected to the DC / DC 212 for SB. The SB DC / DC 212 is a DC-DC converter, and performs conversion between the DC power on the SB 210 side and the DC power on the bidirectional DC / AC inverter 214 side.
 双方向DC/ACインバータ214は、SB用DC/DC212と分電盤34との間に接続される。双方向DC/ACインバータ214は、分電盤34からの交流電力を直流電力に変換し、変換した直流電力をSB用DC/DC212に出力する。また、双方向DC/ACインバータ214は、SB用DC/DC212からの直流電力を交流電力に変換し、変換した交流電力を分電盤34に出力する。つまり、双方向DC/ACインバータ214によってSB210は充放電される。このような双方向DC/ACインバータ214の制御は制御装置216によってなされる。制御装置216による制御については後述する。ここで、PV200、PV用DC/DC202、PV用DC/AC204は一体的に形成されてもよく、その場合であっても、これを太陽電池システム38と呼ぶ。また、SB210、SB用DC/DC212、双方向DC/ACインバータ214、制御装置216は1つの筐体に格納されてもよく、その場合であっても、これを蓄電システム40と呼ぶ。 The bidirectional DC / AC inverter 214 is connected between the SB DC / DC 212 and the distribution board 34. The bidirectional DC / AC inverter 214 converts AC power from the distribution board 34 into DC power, and outputs the converted DC power to the SB DC / DC 212. The bidirectional DC / AC inverter 214 converts the DC power from the SB DC / DC 212 into AC power and outputs the converted AC power to the distribution board 34. That is, the SB 210 is charged and discharged by the bidirectional DC / AC inverter 214. Such control of the bidirectional DC / AC inverter 214 is performed by the control device 216. Control by the control device 216 will be described later. Here, the PV 200, the PV DC / DC 202, and the PV DC / AC 204 may be integrally formed, and even in this case, this is referred to as a solar cell system 38. In addition, the SB 210, the SB DC / DC 212, the bidirectional DC / AC inverter 214, and the control device 216 may be stored in one housing. Even in this case, this is referred to as the power storage system 40.
 第1計測点220は、配電線42において、スマートメータ32と交点Pとの間に配置される。第1計測点220は、通過する電力の電力値を計測するセンサである。ここで、通過する電力には、交点Pからスマートメータ32に向かう電力と、スマートメータ32から交点Pに向かう電力とが含まれる。前者が売電に相当し、後者が買電に相当する。第1計測点220は、売電に相当する電力値のみを計測してもよい。また、電力値の計測には公知の技術が使用されればよいので、ここでは説明を省略する。このような第1計測点220は、電力系統30に売電している電力を計測可能な計測点であるといえる。第1計測点220は、計測した電力値を制御装置216に出力する。 The first measurement point 220 is arranged between the smart meter 32 and the intersection P in the distribution line 42. The first measurement point 220 is a sensor that measures the power value of the passing power. Here, the passing electric power includes electric power from the intersection P toward the smart meter 32 and electric power from the smart meter 32 toward the intersection P. The former corresponds to power sales and the latter corresponds to power purchases. The first measurement point 220 may measure only the power value corresponding to the power sale. Moreover, since a well-known technique should just be used for the measurement of an electric power value, description is abbreviate | omitted here. Such a first measurement point 220 can be said to be a measurement point capable of measuring the power sold to the power system 30. The first measurement point 220 outputs the measured power value to the control device 216.
 第2計測点222は、配電線42において、交点Pと分電盤34との間に配置される。第2計測点222は、第1計測点220と同様に通過する電力の電力値を計測するセンサである。ここでも、通過する電力には、分電盤34から交点Pに向かう電力と、交点Pから分電盤34に向かう電力とが含まれる。第2計測点222は、交点Pから分電盤34に向かう電力値のみを計測してもよい。このような第2計測点222は、負荷36と蓄電システム40とにおいて消費している電力を計測可能な計測点であるといえる。第2計測点222は、計測した電力値を制御装置216に出力する。 The second measurement point 222 is arranged between the intersection P and the distribution board 34 in the distribution line 42. The second measurement point 222 is a sensor that measures the power value of the electric power that passes through in the same manner as the first measurement point 220. Here again, the passing power includes the power from the distribution board 34 toward the intersection P and the power from the intersection P toward the distribution board 34. The second measurement point 222 may measure only the power value from the intersection P toward the distribution board 34. Such a second measurement point 222 can be said to be a measurement point at which the power consumed in the load 36 and the power storage system 40 can be measured. The second measurement point 222 outputs the measured power value to the control device 216.
 電力管理システムサーバ14は、HAN等のネットワークを介して、スマートメータ32、太陽電池システム38、蓄電システム40に接続され、それぞれと通信可能である。以下では、電力管理システムサーバ14と太陽電池システム38との間の通信は説明を省略する。また、電力管理システムサーバ14は、ネットワーク18を介して群管理システムサーバ12にも接続される。電力管理システムサーバ14における処理および通信を説明するために、ここでは、図3を使用する。 The power management system server 14 is connected to the smart meter 32, the solar cell system 38, and the power storage system 40 via a network such as HAN, and can communicate with each other. Hereinafter, the description of the communication between the power management system server 14 and the solar cell system 38 is omitted. The power management system server 14 is also connected to the group management system server 12 via the network 18. In order to explain the processing and communication in the power management system server 14, FIG. 3 is used here.
 図3は、電力管理システムサーバ14、スマートメータ32、制御装置216の構成を示す。電力管理システムサーバ14は、サービス連携部300、制御部302を含み、制御部302は、受信部500、処理部502、生成部504、送信部506を含む。制御装置216は、受信部400、処理部402、生成部404、送信部406、取得部408を含む。 FIG. 3 shows the configuration of the power management system server 14, the smart meter 32, and the control device 216. The power management system server 14 includes a service cooperation unit 300 and a control unit 302, and the control unit 302 includes a reception unit 500, a processing unit 502, a generation unit 504, and a transmission unit 506. The control device 216 includes a reception unit 400, a processing unit 402, a generation unit 404, a transmission unit 406, and an acquisition unit 408.
 サービス連携部300は、VPPのようなサービスとの双方向連携を実現するための処理を実行する。また、サービス連携部300は、電力管理システムサーバ14に登録されている機器のプロファイルをサービスへ提供する。これらのような処理を群管理システムとの間で実行するために、通信部508は、図示しない群管理システムサーバ12と通信する。通信部508における受信部(図示せず)は、蓄電システム40が設置された需要家16の外に設置された外部サーバである群管理システムサーバ12からの要求が含まれたメッセージを受信する。要求は、例えば、需要家16における需要量の増加あるいは減少である。サービス連携部300は、通信部508において受信した要求を制御部302に出力する。 The service cooperation unit 300 executes processing for realizing bidirectional cooperation with a service such as VPP. Further, the service cooperation unit 300 provides the service with the device profile registered in the power management system server 14. In order to execute processing such as these with the group management system, the communication unit 508 communicates with a group management system server 12 (not shown). A receiving unit (not shown) in the communication unit 508 receives a message including a request from the group management system server 12 which is an external server installed outside the customer 16 in which the power storage system 40 is installed. The request is, for example, an increase or decrease in demand at the customer 16. The service cooperation unit 300 outputs the request received by the communication unit 508 to the control unit 302.
 制御部302は、需要家16に設置された機器、例えば、スマートメータ32、太陽電池システム38、蓄電システム40との連携を実現するための処理を実行する。連携によって、制御部302は、機器から情報を収集したり、機器を制御したりする。ここで、制御部302と各機器との間の通信は、所定のプロトコルにしたがった方式でなされる。所定のプロトコルは、例えば、「ECHONET Lite」、「ECHONET」である。しかしながら、所定のプロトコルはこれらに限定されない。 The control unit 302 executes processing for realizing cooperation with devices installed in the customer 16, for example, the smart meter 32, the solar cell system 38, and the power storage system 40. Through the cooperation, the control unit 302 collects information from the device and controls the device. Here, communication between the control unit 302 and each device is performed by a method according to a predetermined protocol. The predetermined protocol is, for example, “ECHONET Lite” or “ECHONET”. However, the predetermined protocol is not limited to these.
 ここで、制御部302が通信する蓄電システム40の動作状態として、第1状態から第3状態の3種類が定義される。第1状態は、電力系統30に売電を行っている場合に蓄電システム40からの放電を禁止する状態である。初期状態として、蓄電システム40は第1状態で動作している。第2状態は、蓄電システム40に接続された負荷36が消費する電力量の範囲で蓄電システム40からの放電を許可する状態である。第3状態は、蓄電システム40に接続された負荷36が消費する電力量を超えた放電を蓄電システム40に許可する状態である。第1状態から第3状態に対応した蓄電システム40の動作については後述する。 Here, three kinds of states from the first state to the third state are defined as the operation states of the power storage system 40 with which the control unit 302 communicates. The first state is a state in which discharging from the power storage system 40 is prohibited when selling power to the power system 30. As an initial state, the power storage system 40 is operating in the first state. The second state is a state in which discharging from the power storage system 40 is permitted in the range of the amount of power consumed by the load 36 connected to the power storage system 40. The third state is a state in which the power storage system 40 is allowed to discharge more than the amount of power consumed by the load 36 connected to the power storage system 40. The operation of the power storage system 40 corresponding to the first state to the third state will be described later.
 制御部302における受信部500は、スマートメータ32からの値、例えば、売電量あるいは買電量を受信するとともに、制御装置216からの蓄電量を受信する。これらの受信は、定期的、例えば30分に1回なされる。処理部502は、スマートメータ32からの値と蓄電量とをもとに、需要家16において増加可能な需要量あるいは減少可能な需要量を導出する。このような需要量の導出には公知の技術が使用されればよいので、ここでは説明を省略する。 The receiving unit 500 in the control unit 302 receives a value from the smart meter 32, for example, a power sale amount or a power purchase amount, and also receives a power storage amount from the control device 216. These receptions are made periodically, for example, once every 30 minutes. The processing unit 502 derives a demand amount that can be increased or decreased by the customer 16 based on the value from the smart meter 32 and the amount of stored electricity. Since a known technique may be used for deriving such a demand amount, a description thereof is omitted here.
 制御部302においてサービス連携部300からの要求、例えば需要量の減少の要求を受けつけると、処理部502は、第1状態から第2状態あるいは第3状態への切り替えを決定する。ここで、第2状態であるか、第3状態であるかは、予めなされた契約によって決められる。処理部502は、要求された需要量の減少量が、減少可能な需要量の範囲内であれば、第1状態の維持を決定し、要求された需要量の減少量が、減少可能な需要量の範囲外であれば、第1状態から第2状態あるいは第3状態への切り替えを決定してもよい。 When the control unit 302 receives a request from the service cooperation unit 300, for example, a request for a reduction in demand, the processing unit 502 determines switching from the first state to the second state or the third state. Here, whether the state is the second state or the third state is determined by a contract made in advance. If the requested amount of reduction in demand is within the range of demand that can be reduced, the processing unit 502 determines to maintain the first state, and the amount of reduction in demand that is requested can be reduced. If the amount is out of the range, the switching from the first state to the second state or the third state may be determined.
 生成部504は、蓄電システム40の動作状態に関するメッセージを生成する。図4は、電力管理システムサーバ14において使用されるメッセージのフォーマットを示す。メッセージでは、メッセージ種別のフィールドに続いてデータのフィールドが配置される。メッセージ種別のフィールドは、メッセージの種別を示しており、ここでは動作状態指示が示される。データのフィールドは、通知してほしいデータを示し、ここでは第1状態から第3状態のいずれかが示される。図3に戻る。このように、生成部504は、通信部508が受信した要求をもとに、蓄電システム40の動作状態指示のメッセージを生成する。送信部506は、蓄電システム40の動作状態指示のメッセージを制御装置216に送信する。 The generation unit 504 generates a message regarding the operation state of the power storage system 40. FIG. 4 shows a message format used in the power management system server 14. In the message, a data field is arranged after the message type field. The message type field indicates the type of message, and here an operation state instruction is shown. The data field indicates data to be notified, and here, one of the first state to the third state is indicated. Returning to FIG. As described above, the generation unit 504 generates an operation state instruction message of the power storage system 40 based on the request received by the communication unit 508. The transmission unit 506 transmits an operation state instruction message of the power storage system 40 to the control device 216.
 制御装置216の受信部400は、蓄電システム40の動作状態指示のメッセージを受信する。処理部402は、メッセージ種別のフィールドをもとには動作状態指示であることを認識し、データのフィールドをもとに、第1状態から第2状態あるいは第3状態に動作状態を変更することを認識する。処理部402は、認識した動作状態をもとに蓄電システム40を制御するように動作する。その動作を説明するために、ここでは図5(a)-(c)を使用する。 The receiving unit 400 of the control device 216 receives an operation state instruction message of the power storage system 40. The processing unit 402 recognizes that it is an operation state instruction based on the message type field, and changes the operation state from the first state to the second state or the third state based on the data field. Recognize The processing unit 402 operates to control the power storage system 40 based on the recognized operating state. In order to explain the operation, FIGS. 5A to 5C are used here.
 図5(a)-(c)は、蓄電システム40の動作概要を示す。図示のごとく、電力系統30、スマートメータ32、分電盤34、負荷36、太陽電池システム38、蓄電システム40は、図2と同様に接続される。図5(a)は、動作状態が第1状態を示している場合の動作概要を示す。前述のごとく、第1状態は、電力系統30に売電を行っている場合に蓄電システム40からの放電を禁止する状態である。処理部402は、第1状態において双方向DC/ACインバータ214からの放電を停止させる。放電の停止によって、太陽電池システム38からの電力A1は交点Pにおいて分岐され、電力A2が分電盤34に向かい、電力A3がスマートメータ32に向かう。電力A2は負荷36において消費される。第1計測点220は電力A3を計測し、計測結果を制御装置216に出力する。制御装置216の取得部408は計測結果を取得する。処理部402は、第1計測点220における計測結果において、電力A3が交点Pからスマートメータ32に向かっている場合に、双方向DC/ACインバータ214からの放電停止を継続させる。電力A3が交点Pからスマートメータ32に向かっている場合は電力系統30に売電している状態に相当する。 FIGS. 5A to 5C show an outline of the operation of the power storage system 40. FIG. As illustrated, the power system 30, the smart meter 32, the distribution board 34, the load 36, the solar cell system 38, and the power storage system 40 are connected in the same manner as in FIG. FIG. 5A shows an outline of the operation when the operation state indicates the first state. As described above, the first state is a state in which discharging from the power storage system 40 is prohibited when selling power to the power system 30. The processing unit 402 stops discharging from the bidirectional DC / AC inverter 214 in the first state. By stopping the discharge, the electric power A1 from the solar cell system 38 is branched at the intersection P, the electric power A2 is directed to the distribution board 34, and the electric power A3 is directed to the smart meter 32. The electric power A2 is consumed in the load 36. The first measurement point 220 measures the electric power A3 and outputs the measurement result to the control device 216. The acquisition unit 408 of the control device 216 acquires the measurement result. The processing unit 402 continues to stop discharging from the bidirectional DC / AC inverter 214 when the electric power A3 is directed from the intersection P to the smart meter 32 in the measurement result at the first measurement point 220. When the electric power A3 is directed from the intersection P toward the smart meter 32, this corresponds to a state where electric power is sold to the electric power system 30.
 図5(b)は、動作状態が第2状態を示している場合の動作概要を示す。前述のごとく、第2状態は、蓄電システム40に接続された負荷36が消費する電力量の範囲で蓄電システム40からの放電を許可する状態である。処理部402は、第2状態において双方向DC/ACインバータ214に放電を実行させる。放電によって、蓄電システム40からの電力B1は分電盤34を介して負荷36に向かう。一方、太陽電池システム38からの電力A1は交点Pにおいて分岐され、電力A4が分電盤34に向かい、電力A5がスマートメータ32に向かう。ここで、電力A4は、負荷36において消費される電力のうち、電力B1だけでは不足している分に相当する。そのため、電力A4は図5(a)の電力A2よりも小さい。その結果、電力A5は図5(a)の電力A3よりも大きくなる。 FIG. 5 (b) shows an outline of the operation when the operation state indicates the second state. As described above, the second state is a state in which discharging from the power storage system 40 is permitted within the range of the amount of power consumed by the load 36 connected to the power storage system 40. The processing unit 402 causes the bidirectional DC / AC inverter 214 to perform discharging in the second state. Due to the discharge, the electric power B <b> 1 from the power storage system 40 goes to the load 36 through the distribution board 34. On the other hand, the electric power A1 from the solar cell system 38 is branched at the intersection P, the electric power A4 is directed to the distribution board 34, and the electric power A5 is directed to the smart meter 32. Here, the electric power A4 corresponds to the amount of electric power consumed by the load 36 that is insufficient with only the electric power B1. Therefore, the electric power A4 is smaller than the electric power A2 in FIG. As a result, the electric power A5 becomes larger than the electric power A3 in FIG.
 第2計測点222は電力A4を計測し、計測結果を制御装置216に出力する。制御装置216の取得部408は計測結果を取得する。処理部402は、第2計測点222における計測結果において、交点Pから分電盤34に向かう電力A4がゼロになるように、または、電力A4が交点Pから分電盤34に向かうように、双方向DC/ACインバータ214に放電を実行させる。一方、第2計測点222における計測結果において、電力が分電盤34から交点Pに向かっている場合、処理部402は、電力が交点Pから分電盤34に向かうように、双方向DC/ACインバータ214からの放電量を減少させる。電力A4が交点Pから分電盤34に向かっている場合は、蓄電システム40から放電された電力が電力系統30に向かわずに負荷36だけで消費されている状態に相当する。 The second measurement point 222 measures the electric power A4 and outputs the measurement result to the control device 216. The acquisition unit 408 of the control device 216 acquires the measurement result. In the measurement result at the second measurement point 222, the processing unit 402 causes the power A4 from the intersection P to the distribution board 34 to be zero, or the power A4 to travel from the intersection P to the distribution board 34. The bidirectional DC / AC inverter 214 is caused to discharge. On the other hand, in the measurement result at the second measurement point 222, when the power is moving from the distribution board 34 toward the intersection P, the processing unit 402 causes the bidirectional DC / DC to be directed from the intersection P to the distribution board 34. The amount of discharge from the AC inverter 214 is reduced. When the electric power A4 is directed from the intersection P toward the distribution board 34, this corresponds to a state in which the electric power discharged from the power storage system 40 is consumed only by the load 36 without going to the electric power system 30.
 図5(c)は、動作状態が第3状態を示している場合の動作概要を示す。前述のごとく、第3状態は、蓄電システム40に接続された負荷36が消費する電力量を超えた放電を蓄電システム40に許可する状態である。そのため、処理部402は、第1計測点220および第2計測点222の計測結果に関係なく、双方向DC/ACインバータ214に放電を実行させる。蓄電システム40からの電力B2は分電盤34において分岐され、電力B3が負荷36に向かい、電力B4がスマートメータ32に向かう。負荷36は電力B3で動作するので、太陽電池システム38からの電力A1は交点Pからスマートメータ32に向かう。そのため、電力A1と電力B4が電力系統30に向かう。 FIG. 5C shows an outline of the operation when the operation state indicates the third state. As described above, the third state is a state in which the power storage system 40 is allowed to discharge more than the amount of power consumed by the load 36 connected to the power storage system 40. Therefore, the processing unit 402 causes the bidirectional DC / AC inverter 214 to perform discharge regardless of the measurement results of the first measurement point 220 and the second measurement point 222. The electric power B2 from the power storage system 40 is branched in the distribution board 34, the electric power B3 goes to the load 36, and the electric power B4 goes to the smart meter 32. Since the load 36 operates with the electric power B3, the electric power A1 from the solar cell system 38 goes from the intersection P to the smart meter 32. Therefore, the electric power A1 and the electric power B4 are directed to the electric power system 30.
 処理部402において処理がなされた場合、生成部404は、処理結果を制御部302に報告するためのメッセージを生成してもよい。メッセージのフォーマットは図4と同じであるが、メッセージ種別のフィールドには処理報告が示され、データのフィールドには、処理結果が示される。生成部404は、データ要求のメッセージを送信部406に出力する。送信部406は、処理報告のメッセージを制御部302に送信する。制御部302の受信部500は、処理報告のメッセージを受信する。 When the processing is performed in the processing unit 402, the generation unit 404 may generate a message for reporting the processing result to the control unit 302. The format of the message is the same as in FIG. 4, but the processing report is shown in the message type field, and the processing result is shown in the data field. The generation unit 404 outputs a data request message to the transmission unit 406. The transmission unit 406 transmits a processing report message to the control unit 302. The receiving unit 500 of the control unit 302 receives a process report message.
 生成部504は、売電がなされているかあるいは買電がなされているかを把握するために、売電量あるいは売電量の通知をスマートメータ32に要求するためのメッセージを生成してもよい。その際のメッセージのフォーマットは図4と同じであるが、メッセージ種別のフィールドにはデータ要求が示され、データのフィールドには、売電量あるいは買電量が示される。生成部504は、データ要求のメッセージを送信部506に出力する。送信部506は、データ要求のメッセージをスマートメータ32に送信する。 The generation unit 504 may generate a message for requesting the smart meter 32 to notify the power sale amount or the power sale amount in order to grasp whether the power sale is being performed or the power purchase is being performed. The format of the message at that time is the same as in FIG. 4, but the data request indicates the message type field, and the power sale amount or the power purchase amount is indicated in the data field. The generation unit 504 outputs a data request message to the transmission unit 506. The transmission unit 506 transmits a data request message to the smart meter 32.
 スマートメータ32は、データ要求のメッセージを受信すると、メッセージ種別のフィールドをもとにデータ要求であることを認識し、データのフィールドをもとに、売電量あるいは買電量を通知すべきであることを認識する。スマートメータ32は、データ要求に応答するためのメッセージを生成する。メッセージのフォーマットは図4と同じであるが、メッセージ種別のフィールドにはデータ応答が示され、データのフィールドには、売電量あるいは買電量が示される。ここでは、売電量が示されているとする。スマートメータ32は、データ応答のメッセージを制御部302に送信する。 When the smart meter 32 receives the data request message, the smart meter 32 recognizes that the request is a data request based on the message type field, and should notify the power sale amount or the power purchase amount based on the data field. Recognize The smart meter 32 generates a message for responding to the data request. The format of the message is the same as in FIG. 4, but the data response is shown in the message type field, and the amount of power sold or purchased is shown in the data field. Here, it is assumed that the amount of power sold is shown. The smart meter 32 transmits a data response message to the control unit 302.
 制御部302の受信部500は、データ応答のメッセージを受信する。処理部502は、メッセージ種別のフィールドをもとにデータ応答であることを認識し、データのフィールドをもとに、売電量を取得する。これにより、処理部502は、売電がなされていることを認識する。これに続いて、生成部504は、SB210の蓄電量等の通知を制御装置216に要求するためのメッセージを生成する。メッセージのフォーマットは図4と同じであるが、メッセージ種別のフィールドにはデータ要求が示され、データのフィールドには、通知してほしい情報の種類が示される。生成部504は、データ要求のメッセージを送信部506に出力する。送信部506は、データ要求のメッセージを制御装置216に送信する。 The receiving unit 500 of the control unit 302 receives a data response message. The processing unit 502 recognizes that the response is a data response based on the message type field, and acquires the power sale amount based on the data field. As a result, the processing unit 502 recognizes that power is being sold. Following this, the generation unit 504 generates a message for requesting the control device 216 to notify the storage amount of the SB 210 and the like. The format of the message is the same as in FIG. 4, but the message type field indicates the data request, and the data field indicates the type of information to be notified. The generation unit 504 outputs a data request message to the transmission unit 506. The transmission unit 506 transmits a data request message to the control device 216.
 制御装置216の受信部400は、データ要求のメッセージを受信する。処理部402は、メッセージ種別のフィールドをもとにデータ要求であることを認識し、データのフィールドをもとに、要求された情報を通知すべきであることを認識する。これに続いて、生成部404は、データ要求に応答するためのメッセージを生成する。メッセージのフォーマットは図4と同じであるが、メッセージ種別のフィールドにはデータ応答が示され、データのフィールドには、SB210の蓄電量等の情報が示される。この情報は、処理部402において取得されている。生成部404は、データ応答のメッセージを送信部406に出力する。送信部406は、データ応答のメッセージを制御部302に送信する。 The receiving unit 400 of the control device 216 receives a data request message. The processing unit 402 recognizes that the data request is based on the message type field, and recognizes that the requested information should be notified based on the data field. Following this, the generation unit 404 generates a message for responding to the data request. The message format is the same as in FIG. 4, but the data response is shown in the message type field, and information such as the amount of electricity stored in the SB 210 is shown in the data field. This information is acquired by the processing unit 402. The generation unit 404 outputs a data response message to the transmission unit 406. The transmission unit 406 transmits a data response message to the control unit 302.
 制御部302の受信部500は、データ応答のメッセージを受信する。処理部502は、メッセージ種別のフィールドをもとにデータ応答であることを認識し、データのフィールドをもとに、SB210の蓄電量等の情報を取得する。これらの処理の結果、処理部502は、サービス連携部300から売電量の増加の要求を受けつけてから、売電中であることを把握するとともに、売電量、SB210の蓄電量等の情報を把握する。 The receiving unit 500 of the control unit 302 receives a data response message. The processing unit 502 recognizes that the response is a data response based on the message type field, and acquires information such as the storage amount of the SB 210 based on the data field. As a result of these processes, the processing unit 502 receives a request for an increase in the amount of electric power sold from the service cooperation unit 300 and then grasps that the electric power is being sold, and grasps information such as the amount of electric power sold and the amount of electricity stored in the SB 210. To do.
 本開示における装置、システム、または方法の主体は、コンピュータを備えている。このコンピュータがプログラムを実行することによって、本開示における装置、システム、または方法の主体の機能が実現される。コンピュータは、プログラムにしたがって動作するプロセッサを主なハードウェア構成として備える。プロセッサは、プログラムを実行することによって機能を実現することができれば、その種類は問わない。プロセッサは、半導体集積回路(IC)、またはLSI(Large Scale Integration)を含む1つまたは複数の電子回路で構成される。複数の電子回路は、1つのチップに集積されてもよいし、複数のチップに設けられてもよい。複数のチップは1つの装置に集約されていてもよいし、複数の装置に備えられていてもよい。プログラムは、コンピュータが読み取り可能なROM、光ディスク、ハードディスクドライブなどの非一時的記録媒体に記録される。プログラムは、記録媒体に予め格納されていてもよいし、インターネット等を含む広域通信網を介して記録媒体に供給されてもよい。 The subject of the apparatus, system, or method in the present disclosure includes a computer. When the computer executes the program, the main function of the apparatus, system, or method according to the present disclosure is realized. The computer includes a processor that operates according to a program as a main hardware configuration. The processor may be of any type as long as the function can be realized by executing the program. The processor includes one or a plurality of electronic circuits including a semiconductor integrated circuit (IC) or an LSI (Large Scale Integration). The plurality of electronic circuits may be integrated on one chip or provided on a plurality of chips. The plurality of chips may be integrated into one device, or may be provided in a plurality of devices. The program is recorded on a non-transitory recording medium such as a ROM, an optical disk, or a hard disk drive that can be read by a computer. The program may be stored in advance in a recording medium, or may be supplied to the recording medium via a wide area communication network including the Internet.
 これまでは、電力管理システムサーバ14が需要家16に配置されているとしている。しかしながら、電力管理システムサーバ14の配置はこれに限定されない。ここでは、電力管理システムサーバ14の様々な配置を説明する。図6(a)-(d)は、VPPシステム100における電力管理システムサーバ14の様々な配置を示す。図6(a)は、電力管理システムサーバ14が需要家16に配置される場合であり、これまでと同一である。図6(b)は、電力管理システムサーバ14のうちのサービス連携部300と制御部302とが別々の装置として構成され、制御部302だけが需要家16に配置され、サービス連携部300は需要家16外に配置される場合である。 Until now, it is assumed that the power management system server 14 is located in the customer 16. However, the arrangement of the power management system server 14 is not limited to this. Here, various arrangements of the power management system server 14 will be described. FIGS. 6A to 6D show various arrangements of the power management system server 14 in the VPP system 100. FIG. FIG. 6A shows a case where the power management system server 14 is arranged in the customer 16 and is the same as before. In FIG. 6B, the service cooperation unit 300 and the control unit 302 of the power management system server 14 are configured as separate devices, and only the control unit 302 is arranged in the customer 16. This is a case where it is arranged outside the house 16.
 図6(c)は、電力管理システムサーバ14が需要家16外に配置され、需要家16にGW(Gateway)20が配置される場合である。ここで、電力管理システムサーバ14とGW20が接続されるとともに、GW20には、図示しない機器が接続される。図6(d)は、電力管理システムサーバ14の機能が群管理システムサーバ12に含まれ、需要家16にGW20が配置される場合である。ここで、群管理システムサーバ12とGW20が接続されるとともに、GW20には、図示しない機器が接続される。 FIG. 6C shows a case where the power management system server 14 is arranged outside the consumer 16 and a GW (Gateway) 20 is arranged in the consumer 16. Here, the power management system server 14 and the GW 20 are connected, and a device (not shown) is connected to the GW 20. FIG. 6D shows a case where the function of the power management system server 14 is included in the group management system server 12 and the GW 20 is arranged at the customer 16. Here, the group management system server 12 and the GW 20 are connected, and a device (not shown) is connected to the GW 20.
 以上の構成によるVPPシステム100の動作を説明する。図7は、VPPシステム100における指示手順を示すシーケンス図である。スマートメータ32は電力管理システムサーバ14にスマートメータ32の値を送信する(S10)。蓄電システム40は電力管理システムサーバ14に蓄電量を送信する(S12)。群管理システムサーバ12は電力管理システムサーバ14に需要量減少要求を送信する(S14)。電力管理システムサーバ14は蓄電システム40に動作状態指示を送信する(S16)。 The operation of the VPP system 100 configured as above will be described. FIG. 7 is a sequence diagram showing an instruction procedure in the VPP system 100. The smart meter 32 transmits the value of the smart meter 32 to the power management system server 14 (S10). The power storage system 40 transmits the amount of power storage to the power management system server 14 (S12). The group management system server 12 transmits a demand reduction request to the power management system server 14 (S14). The power management system server 14 transmits an operation state instruction to the power storage system 40 (S16).
 図8(a)-(b)は、電力管理システムサーバ14における動作状態の選択手順を示すフローチャートである。図8(a)において、処理部502は蓄電システム40を第1状態にさせており(S50)、サービス連携部300が群管理システムサーバ12からの需要量減少要求を受けつけなければ(S52のN)、処理部502はステップ50に戻る。サービス連携部300が群管理システムサーバ12からの需要量減少要求を受けつければ(S52のY)、処理部502は蓄電システム40を第2状態にさせる(S54)。指示中であれば(S56のY)、ステップ54に戻り、指示中でなければ(S56のN)、ステップ50に戻る。 FIGS. 8A to 8B are flowcharts showing the operation state selection procedure in the power management system server 14. In FIG. 8A, the processing unit 502 puts the power storage system 40 into the first state (S50), and the service cooperation unit 300 does not receive a demand reduction request from the group management system server 12 (N in S52). ), The processing unit 502 returns to Step 50. If the service cooperation unit 300 receives the demand reduction request from the group management system server 12 (Y in S52), the processing unit 502 sets the power storage system 40 to the second state (S54). If instructed (Y in S56), the process returns to step 54. If not instructed (N in S56), the process returns to step 50.
 図8(b)において、処理部502は蓄電システム40を第1状態にさせており(S70)、サービス連携部300が群管理システムサーバ12からの需要量減少要求を受けつけなければ(S72のN)、処理部502はステップ70に戻る。サービス連携部300が群管理システムサーバ12からの需要量減少要求を受けつければ(S72のY)、処理部502は蓄電システム40を第3状態にさせる(S74)。指示中であれば(S76のY)、ステップ74に戻り、指示中でなければ(S76のN)、ステップ70に戻る。 In FIG. 8 (b), the processing unit 502 puts the power storage system 40 into the first state (S70), and the service cooperation unit 300 does not accept the demand reduction request from the group management system server 12 (N in S72). ), The processing unit 502 returns to Step 70. If the service cooperation unit 300 receives the demand reduction request from the group management system server 12 (Y in S72), the processing unit 502 places the power storage system 40 in the third state (S74). If instructed (Y in S76), the process returns to step 74. If not instructed (N in S76), the process returns to step 70.
 図9は、制御装置216における処理手順を示すフローチャートである。受けつけた動作状態が第1状態である場合(S100のY)、処理部402は放電を停止する(S102)。受けつけた動作状態が第1状態でなく(S100のN)、第2状態である場合(S104のY)、処理部402は、電力の向きが電力系統30方向とならないように放電を実行する(S106)。第2状態でない場合(S104のN)、処理部402は放電を実行する(S108)。 FIG. 9 is a flowchart showing a processing procedure in the control device 216. When the received operation state is the first state (Y in S100), the processing unit 402 stops discharging (S102). When the received operation state is not the first state (N in S100) and is in the second state (Y in S104), the processing unit 402 performs discharge so that the direction of power does not become the direction of the power system 30 ( S106). When the state is not the second state (N in S104), the processing unit 402 performs discharge (S108).
 本実施例によれば、電力系統30に売電を行っている場合に蓄電システム40からの放電を禁止する第1状態、あるいは電力系統30に売電を行っている場合に蓄電システム40からの放電を許可する第2状態をメッセージに含めるので、蓄電システム40の動作状態を多様化できる。また、第1状態あるいは第2状態をメッセージに含めるので、電力管理システムサーバ14から蓄電システム40を制御できる。また、第1状態、あるいは蓄電システム40に接続された負荷36が消費する電力量の範囲で放電を許可する第2状態、蓄電システム40に接続された負荷36が消費する電力量を超えた放電を許可する第3状態をメッセージに含めるので、蓄電システム40の動作状態を多様化できる。また、第1状態から第3状態のいずれかをメッセージに含めるので、電力管理システムサーバ14から蓄電システム40を制御できる。また、生成部504は、通信部508が受信した群管理システムサーバ12からの要求をもとに、蓄電システム40の動作状態に関する情報を生成するので、群管理システムサーバ12からの要求を蓄電システム40の動作に反映させることができる。 According to the present embodiment, the first state in which discharging from the power storage system 40 is prohibited when power is sold to the power system 30, or the power from the power storage system 40 when power is sold to the power system 30. Since the second state permitting discharge is included in the message, the operation state of the power storage system 40 can be diversified. Further, since the first state or the second state is included in the message, the power storage system 40 can be controlled from the power management system server 14. Moreover, the discharge which exceeded the electric energy which the load 36 connected to the 1st state or the load 36 connected to the electrical storage system 40 permits discharge in the 2nd state and the electric power range which the electrical load is connected to the electrical storage system 40 3 is included in the message, the operation state of the power storage system 40 can be diversified. Further, since any one of the first state to the third state is included in the message, the power storage system 40 can be controlled from the power management system server 14. Moreover, since the production | generation part 504 produces | generates the information regarding the operation state of the electrical storage system 40 based on the request | requirement from the group management system server 12 which the communication part 508 received, the request | requirement from the group management system server 12 is received. It can be reflected in 40 operations.
 また、電力系統30に売電を行っている場合に蓄電システム40からの放電を禁止する第1状態、あるいは電力系統30に売電を行っている場合に蓄電システム40からの放電を許可する第2状態がメッセージに含まれるので、蓄電システム40の動作状態を多様化できる。また、第1状態あるいは第2状態がメッセージに含まれるので、指示に応じて動作できる。また、第1状態、あるいは蓄電システム40に接続された負荷36が消費する電力量の範囲で放電を許可する第2状態、蓄電システム40に接続された負荷36が消費する電力量を超えた放電を許可する第3状態がメッセージに含まれるので、蓄電システム40の動作状態を多様化できる。また、第1状態から第3状態のいずれかがメッセージに含まれるので、指示に応じて動作できる。また、第1状態である場合、第1計測点220からの計測結果をもとに動作し、第2状態である場合、第2計測点222からの計測結果をもとに動作するので、動作状態に応じた動作を実行できる。 The first state in which discharge from the power storage system 40 is prohibited when power is sold to the power system 30, or the first state where discharge from the power storage system 40 is permitted when power is sold to the power system 30. Since the two states are included in the message, the operation state of the power storage system 40 can be diversified. Further, since the first state or the second state is included in the message, the operation can be performed according to the instruction. Moreover, the discharge which exceeded the electric energy which the load 36 connected to the 1st state or the load 36 connected to the electrical storage system 40 permits discharge in the 2nd state and the electric power range which the electrical load is connected to the electrical storage system 40 Since the message includes the third state that permits the operation, the operation state of the power storage system 40 can be diversified. In addition, since any one of the first state to the third state is included in the message, it can operate according to the instruction. In the first state, the operation is based on the measurement result from the first measurement point 220. In the second state, the operation is based on the measurement result from the second measurement point 222. The operation according to the state can be executed.
 本開示の一態様の概要は、次の通りである。本開示のある態様の電力管理システムサーバ14は、電力系統30に接続され、需要家16に設置された蓄電システム40の動作を制御する電力管理システムサーバ14であって、蓄電システム40の動作状態に関する情報を生成する生成部504と、生成部504において生成した情報を蓄電システム40に送信する送信部506とを備える。蓄電システム40の動作状態に関する情報は、需要家16から電力系統30に売電を行っている場合に蓄電システム40からの放電を禁止する第1状態、あるいは需要家16から電力系統30に売電を行っている場合に蓄電システム40からの放電を許可する第2状態を含む。 The outline of one aspect of the present disclosure is as follows. The power management system server 14 according to an aspect of the present disclosure is a power management system server 14 that is connected to the power system 30 and controls the operation of the power storage system 40 installed in the customer 16. A generation unit 504 that generates information on the transmission, and a transmission unit 506 that transmits information generated by the generation unit 504 to the power storage system 40. The information regarding the operation state of the power storage system 40 is the first state in which discharging from the power storage system 40 is prohibited when power is being sold from the customer 16 to the power grid 30, or the power sale from the customer 16 to the power grid 30. Including a second state in which discharging from the power storage system 40 is permitted.
 第2状態は、蓄電システム40に接続された負荷36が消費する電力量の範囲で放電を許可する状態であってもよい。 The second state may be a state in which discharge is permitted within the range of the amount of power consumed by the load 36 connected to the power storage system 40.
 第2状態は、蓄電システム40に接続された負荷36が消費する電力量を超えた放電を許可する第3状態を含んでもよい。 The second state may include a third state in which discharge exceeding the amount of power consumed by the load 36 connected to the power storage system 40 is permitted.
 第1状態は、電力系統30に売電している電力を計測可能な第1計測点220からの計測結果をもとに蓄電システム40を動作させる状態であり、第2状態は、蓄電システム40に接続された負荷36と蓄電システム40とにおいて消費している電力を計測可能な第2計測点222からの計測結果をもとに蓄電システム40を動作させる状態であってもよい。 The first state is a state in which the power storage system 40 is operated based on the measurement result from the first measurement point 220 that can measure the power sold to the power system 30, and the second state is the power storage system 40. The power storage system 40 may be operated based on the measurement result from the second measurement point 222 that can measure the power consumed by the load 36 and the power storage system 40 connected to the power supply.
 第3状態は、電力系統30に売電している電力を計測可能な第1計測点220と、蓄電システム40に接続された負荷36と蓄電システム40とにおいて消費している電力を計測可能な第2計測点222からの計測結果に非依存で蓄電システム40を動作させる状態であってもよい。 The third state can measure the power consumed in the first measurement point 220 that can measure the power sold to the power system 30, the load 36 connected to the power storage system 40, and the power storage system 40. The power storage system 40 may be operated independently of the measurement result from the second measurement point 222.
 需要家16の外に設置された群管理システムサーバ12からの情報を受信する通信部508をさらに備えてもよい。生成部504は、通信部508が受信した情報をもとに、蓄電システム40の動作状態に関する情報を生成してもよい。 A communication unit 508 that receives information from the group management system server 12 installed outside the customer 16 may be further provided. The generation unit 504 may generate information regarding the operation state of the power storage system 40 based on the information received by the communication unit 508.
 本開示の別の態様は、蓄電システム40である。この蓄電システム40は、電力系統30に接続され、需要家16に設置された蓄電システム40であって、本蓄電システム40の動作状態に関する情報を受信する受信部400と、受信部400において受信した情報をもとに動作する処理部402とを備える。蓄電システム40の動作状態に関する情報は、需要家16から電力系統30に売電を行っている場合に本蓄電システム40からの放電を禁止する第1状態、あるいは需要家16から電力系統30に売電を行っている場合に本蓄電システム40からの放電を許可する第2状態を含む。 Another aspect of the present disclosure is a power storage system 40. This power storage system 40 is a power storage system 40 that is connected to the power system 30 and installed in the customer 16. The power storage system 40 receives the information related to the operation state of the power storage system 40, and the receiver 400 receives the information. And a processing unit 402 that operates based on the information. The information regarding the operation state of the power storage system 40 is the first state in which discharging from the power storage system 40 is prohibited when selling power from the consumer 16 to the power grid 30 or selling from the consumer 16 to the power grid 30. A second state in which discharging from the power storage system 40 is permitted when electricity is being performed is included.
 第2状態は、蓄電システム40に接続された負荷36が消費する電力量の範囲で蓄電システム40の放電を許可する状態であってもよい。 The second state may be a state in which discharging of the power storage system 40 is permitted within the range of the amount of power consumed by the load 36 connected to the power storage system 40.
 第2状態は、蓄電システム40に接続された負荷36が消費する電力量を超えて蓄電システム40の放電を許可する第3状態を含んでもよい。 The second state may include a third state in which discharge of the power storage system 40 is permitted exceeding the amount of power consumed by the load 36 connected to the power storage system 40.
 処理部402は、受信部400において受信した情報が第1状態を示している場合、電力系統30に売電している電力を計測可能な第1計測点220からの計測結果をもとに動作し、受信部400において受信した情報が第2状態を示している場合、蓄電システム40に接続された負荷36と蓄電システム40とにおいて消費している電力を計測可能な第2計測点222からの計測結果をもとに動作してもよい。 When the information received by the receiving unit 400 indicates the first state, the processing unit 402 operates based on a measurement result from the first measurement point 220 that can measure the power sold to the power system 30. When the information received by the receiving unit 400 indicates the second state, the load 36 connected to the power storage system 40 and the power consumed by the power storage system 40 can be measured from the second measurement point 222 that can be measured. You may operate based on the measurement result.
 処理部402は、受信部400において受信した情報が第1状態を示している場合、電力系統30に売電している電力を計測可能な第1計測点220からの計測結果をもとに動作し、受信部400において受信した情報が第3状態を示している場合、第1計測点220と、蓄電システム40に接続された負荷36と蓄電システム40とにおいて消費している電力を計測可能な第2計測点222からの計測結果に非依存で動作してもよい。 When the information received by the receiving unit 400 indicates the first state, the processing unit 402 operates based on a measurement result from the first measurement point 220 that can measure the power sold to the power system 30. When the information received by the receiving unit 400 indicates the third state, it is possible to measure the power consumed at the first measurement point 220, the load 36 connected to the power storage system 40, and the power storage system 40. The operation may be performed independently of the measurement result from the second measurement point 222.
 本開示のさらに別の態様は、送信方法である。この方法は、電力系統30に接続され、需要家16に設置された蓄電システム40の動作を制御する電力管理システムサーバ14における送信方法であって、蓄電システム40の動作状態に関する情報を生成するステップと、生成した情報を蓄電システム40に送信するステップとを備える。蓄電システム40の動作状態に関する情報は、需要家16から電力系統30に売電を行っている場合に蓄電システム40からの放電を禁止する第1状態、あるいは需要家16から電力系統30に売電を行っている場合に蓄電システム40からの放電を許可する第2状態を含む。 Still another aspect of the present disclosure is a transmission method. This method is a transmission method in the power management system server 14 that is connected to the power system 30 and controls the operation of the power storage system 40 installed in the consumer 16, and is a step of generating information related to the operating state of the power storage system 40. And a step of transmitting the generated information to the power storage system 40. The information regarding the operation state of the power storage system 40 is the first state in which discharging from the power storage system 40 is prohibited when power is being sold from the customer 16 to the power grid 30, or the power sale from the customer 16 to the power grid 30. Including a second state in which discharging from the power storage system 40 is permitted.
 以上、本開示を実施例をもとに説明した。この実施例は例示であり、それらの各構成要素あるいは各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本開示の範囲にあることは当業者に理解されるところである。 In the above, this indication was demonstrated based on the Example. This embodiment is an exemplification, and it is understood by those skilled in the art that various modifications can be made to each of those components or combinations of processing processes, and such modifications are also within the scope of the present disclosure. .
 本実施例において、第1状態は、電力系統30に売電を行っている場合に蓄電システム40からの放電を禁止する状態であると定義される。また、第2状態は、蓄電システム40に接続された負荷36が消費する電力量の範囲で放電を許可する状態であると定義される。さらに、第3状態は、蓄電システム40に接続された負荷36が消費する電力量を超えた放電を許可する状態であると定義される。また、このような定義で特定される第1状態から第3状態のいずれかが動作状態指示のメッセージに含まれる。しかしながらこれに限らず例えば、第1状態は、電力系統30に売電を行っている場合に電力系統30に売電している電力を計測可能な第1計測点220からの計測結果をもとに蓄電システム40を動作させる状態であると定義されてもよい。また、第2状態は、電力系統30に売電を行っている場合に蓄電システム40に接続された負荷36と蓄電システム40とにおいて消費している電力を計測可能な第2計測点222からの計測結果をもとに蓄電システム40を動作させる状態であると定義されてもよい。さらに、第3状態は、蓄電システム40の動作状態に関する情報は、電力系統30に売電を行っている場合に第1計測点220および第2計測点222からの計測結果に非依存で蓄電システム40を動作させる状態であると定義されてもよい。この場合でも、このような定義で特定される第1状態から第3状態のいずれかが動作状態指示のメッセージに含まれる。その際、制御装置216の処理部402は、動作状態指示のメッセージにしたがって、第1状態から第2状態に変更したり、第1状態から第3状態に変更したりして処理を実行する。本変形例によれば、構成の自由度を拡張できる。 In the present embodiment, the first state is defined as a state in which discharging from the power storage system 40 is prohibited when power is sold to the power system 30. Further, the second state is defined as a state in which discharging is permitted within the range of the amount of power consumed by the load 36 connected to the power storage system 40. Furthermore, the third state is defined as a state in which discharge exceeding the amount of power consumed by the load 36 connected to the power storage system 40 is permitted. Further, any one of the first state to the third state specified by such a definition is included in the operation state instruction message. However, the present invention is not limited to this. For example, the first state is based on the measurement result from the first measurement point 220 that can measure the power sold to the power grid 30 when the power grid 30 is sold. May be defined as a state in which the power storage system 40 is operated. In addition, the second state is from the second measurement point 222 that can measure the power consumed in the power storage system 40 and the load 36 connected to the power storage system 40 when selling power to the power system 30. It may be defined as a state in which the power storage system 40 is operated based on the measurement result. Further, in the third state, the information regarding the operation state of the power storage system 40 is independent of the measurement results from the first measurement point 220 and the second measurement point 222 when the power grid 30 is selling power. 40 may be defined as a state of operating. Even in this case, one of the first state to the third state specified by such a definition is included in the operation state instruction message. At that time, the processing unit 402 of the control device 216 executes processing by changing from the first state to the second state or from the first state to the third state in accordance with the message of the operation state instruction. According to this modification, the degree of freedom of configuration can be expanded.
 本実施例において、動作状態として、第1状態から第3状態が定義される。しかしながらこれに限らず例えば、動作状態として、第1状態と第2状態だけが定義されてもよい。その際、第2状態はこれまでの第2状態と同じであってもよいし、これまでの第3状態と同じであってもよい。本変形例によれば、処理を簡易にできる。 In the present embodiment, the first state to the third state are defined as the operation state. However, not limited to this, for example, only the first state and the second state may be defined as the operation state. At that time, the second state may be the same as the second state so far, or may be the same as the third state so far. According to this modification, processing can be simplified.
 本実施例において、需要家16には太陽電池システム38が設置される。しかしながらこれに限らず例えば、太陽電池システム38とは別の再生可能エネルギー発電装置が需要家16に設置されてもよい。そのような発電装置の一例は燃料電池システムである。本変形例によれば、構成の自由度を向上できる。 In this embodiment, a solar cell system 38 is installed in the consumer 16. However, the present invention is not limited thereto, and for example, a renewable energy power generation device different from the solar cell system 38 may be installed in the consumer 16. An example of such a power generator is a fuel cell system. According to this modification, the degree of freedom of configuration can be improved.
 10 上位システムサーバ、 12 群管理システムサーバ(外部サーバ)、 14 電力管理システムサーバ(電力管理システム)、 16 需要家、 18 ネットワーク、 20 GW、 30 電力系統、 32 スマートメータ、 34 分電盤、 36 負荷、 38 太陽電池システム、 40 蓄電システム、 42 配電線、 100 VPPシステム、 200 PV、 202 PV用DC/DC、 204 PV用DC/AC、 210 SB、 212 SB用DC/DC、 214 双方向DC/ACインバータ、 216 制御装置、 220 第1計測点、 222 第2計測点、 300 サービス連携部、 302 制御部、 400 受信部、 402 処理部、 404 生成部、 406 送信部、 408 取得部、 500 受信部、 502 処理部、 504 生成部、 506 送信部、 508 通信部(受信部)。 10 host system server, 12 group management system server (external server), 14 power management system server (power management system), 16 consumers, 18 network, 20 GW, 30 power system, 32 smart meter, 34 distribution board, 36 Load, 38 solar cell system, 40 power storage system, 42 distribution lines, 100 VPP system, 200 PV, 202 PV DC / DC, 204 PV DC / AC, 210 SB, 212 SB DC / DC, 214 bidirectional DC / AC inverter, 216 control device, 220 first measurement point, 222 second measurement point, 300 service cooperation unit, 302 control unit, 400 reception unit, 402 processing unit, 404 generation unit, 406 transmission Department, 408 obtaining unit, 500 reception unit, 502 processing unit, 504 generating unit, 506 transmission unit, 508 communication unit (receiving unit).
 本開示によれば、蓄電システムの動作状態を多様化できる。 According to the present disclosure, the operation state of the power storage system can be diversified.

Claims (13)

  1.  電力系統に接続され、需要家に設置された蓄電システムの動作を制御する電力管理システムであって、
     前記蓄電システムの動作状態に関する情報を生成する生成部と、
     前記生成部において生成した情報を前記蓄電システムに送信する送信部とを備え、
     前記蓄電システムの動作状態に関する情報は、前記需要家から前記電力系統に売電を行っている場合に前記蓄電システムからの放電を禁止する第1状態、あるいは前記需要家から前記電力系統に売電を行っている場合に前記蓄電システムからの放電を許可する第2状態を含むことを特徴とする電力管理システム。
    A power management system connected to a power system and controlling the operation of a power storage system installed in a consumer,
    A generating unit that generates information about an operating state of the power storage system;
    A transmission unit that transmits the information generated in the generation unit to the power storage system,
    The information related to the operating state of the power storage system is a first state in which discharging from the power storage system is prohibited when selling power from the consumer to the power system, or selling power from the consumer to the power system. A power management system comprising: a second state in which discharge from the power storage system is permitted when the power storage system is performing.
  2.  前記第2状態は、前記蓄電システムに接続された負荷が消費する電力量の範囲で放電を許可する状態であることを特徴とする請求項1に記載の電力管理システム。 The power management system according to claim 1, wherein the second state is a state in which discharging is permitted within a range of power consumed by a load connected to the power storage system.
  3.  前記第2状態は、前記蓄電システムに接続された負荷が消費する電力量を超えた放電を許可する第3状態を含むことを特徴とする請求項1に記載の電力管理システム。 The power management system according to claim 1, wherein the second state includes a third state in which discharge exceeding the amount of power consumed by a load connected to the power storage system is permitted.
  4.  前記第1状態は、前記電力系統に売電している電力を計測可能な第1計測点からの計測結果をもとに前記蓄電システムを動作させる状態であり、
     前記第2状態は、前記蓄電システムに接続された負荷と前記蓄電システムとにおいて消費している電力を計測可能な第2計測点からの計測結果をもとに前記蓄電システムを動作させる状態であることを特徴とする請求項2に記載の電力管理システム。
    The first state is a state in which the power storage system is operated based on a measurement result from a first measurement point capable of measuring the power sold to the power system,
    The second state is a state in which the power storage system is operated based on a measurement result from a second measurement point capable of measuring power consumed in the power storage system and a load connected to the power storage system. The power management system according to claim 2.
  5.  前記第3状態は、前記電力系統に売電している電力を計測可能な第1計測点と、前記蓄電システムに接続された負荷と前記蓄電システムとにおいて消費している電力を計測可能な第2計測点からの計測結果に非依存で前記蓄電システムを動作させる状態であることを特徴とする請求項3に記載の電力管理システム。 The third state is a first measurement point capable of measuring the power sold to the power system, a load connected to the power storage system, and a power consumed in the power storage system. The power management system according to claim 3, wherein the power storage system is in a state in which the power storage system is operated independently of measurement results from two measurement points.
  6.  前記需要家の外に設置された外部サーバからの情報を受信する受信部をさらに備え、
     前記生成部は、前記受信部が受信した情報をもとに、前記蓄電システムの動作状態に関する情報を生成することを特徴とする請求項1から5のいずれか1項に記載の電力管理システム。
    A receiver that receives information from an external server installed outside the consumer;
    6. The power management system according to claim 1, wherein the generation unit generates information related to an operation state of the power storage system based on information received by the reception unit.
  7.  電力系統に接続され、需要家に設置された蓄電システムであって、
     本蓄電システムの動作状態に関する情報を受信する受信部と、
     前記受信部において受信した情報をもとに動作する処理部とを備え、
     前記蓄電システムの動作状態に関する情報は、前記需要家から前記電力系統に売電を行っている場合に本蓄電システムからの放電を禁止する第1状態、あるいは前記需要家から前記電力系統に売電を行っている場合に本蓄電システムからの放電を許可する第2状態を含むことを特徴とする蓄電システム。
    A power storage system connected to a power system and installed at a consumer,
    A receiving unit for receiving information related to the operating state of the power storage system;
    A processing unit that operates based on information received by the receiving unit,
    The information regarding the operating state of the power storage system is the first state in which discharging from the power storage system is prohibited when power is being sold from the consumer to the power system, or power selling from the consumer to the power system. A power storage system including a second state in which discharge from the power storage system is permitted when the power storage is performed.
  8.  前記第2状態は、前記蓄電システムに接続された負荷が消費する電力量の範囲で前記蓄電システムの放電を許可する状態であることを特徴とする請求項7に記載の蓄電システム。 The power storage system according to claim 7, wherein the second state is a state in which discharging of the power storage system is permitted within a range of power consumed by a load connected to the power storage system.
  9.  前記第2状態は、前記蓄電システムに接続された負荷が消費する電力量を超えて前記蓄電システムの放電を許可する第3状態を含むことを特徴とする請求項7に記載の蓄電システム。 The power storage system according to claim 7, wherein the second state includes a third state in which discharging of the power storage system is permitted exceeding an amount of power consumed by a load connected to the power storage system.
  10.  前記処理部は、前記受信部において受信した情報が第1状態を示している場合、前記電力系統に売電している電力を計測可能な第1計測点からの計測結果をもとに動作し、前記受信部において受信した情報が第2状態を示している場合、前記蓄電システムに接続された負荷と前記蓄電システムとにおいて消費している電力を計測可能な第2計測点からの計測結果をもとに動作することを特徴とする請求項8に記載の蓄電システム。 The processing unit operates based on a measurement result from a first measurement point capable of measuring the power sold to the power system when the information received in the reception unit indicates the first state. When the information received by the receiving unit indicates the second state, the measurement result from the second measurement point capable of measuring the power consumed in the load connected to the power storage system and the power storage system is obtained. The power storage system according to claim 8, wherein the power storage system operates based on the above.
  11.  前記処理部は、前記受信部において受信した情報が第1状態を示している場合、前記電力系統に売電している電力を計測可能な第1計測点からの計測結果をもとに動作し、前記受信部において受信した情報が第3状態を示している場合、前記第1計測点と、前記蓄電システムに接続された負荷と前記蓄電システムとにおいて消費している電力を計測可能な第2計測点からの計測結果に非依存で動作することを特徴とする請求項9に記載の蓄電システム。 The processing unit operates based on a measurement result from a first measurement point capable of measuring the power sold to the power system when the information received in the reception unit indicates the first state. When the information received in the receiving unit indicates a third state, the second measurement capable of measuring the power consumed in the first measurement point, the load connected to the power storage system, and the power storage system. The power storage system according to claim 9, wherein the power storage system operates independently of a measurement result from a measurement point.
  12.  電力系統に接続され、需要家に設置された蓄電システムの動作を制御する電力管理システムにおける送信方法であって、
     前記蓄電システムの動作状態に関する情報を生成するステップと、
     生成した情報を前記蓄電システムに送信するステップとを備え、
     前記蓄電システムの動作状態に関する情報は、前記需要家から前記電力系統に売電を行っている場合に前記蓄電システムからの放電を禁止する第1状態、あるいは前記需要家から前記電力系統に売電を行っている場合に前記蓄電システムからの放電を許可する第2状態を含むことを特徴とする送信方法。
    A transmission method in a power management system that is connected to a power system and controls the operation of a power storage system installed in a consumer.
    Generating information on the operating state of the power storage system;
    Transmitting the generated information to the power storage system,
    The information related to the operating state of the power storage system is a first state in which discharging from the power storage system is prohibited when selling power from the consumer to the power system, or selling power from the consumer to the power system. A transmission method comprising: a second state in which discharge from the power storage system is permitted when the power storage system is performing.
  13.  電力系統に接続され、需要家に設置された蓄電システムの動作を制御する電力管理システムにおけるプログラムであって、
     前記蓄電システムの動作状態に関する情報を生成するステップと、
     生成した情報を前記蓄電システムに送信するステップとを備え、
     前記蓄電システムの動作状態に関する情報は、前記需要家から前記電力系統に売電を行っている場合に前記蓄電システムからの放電を禁止する第1状態、あるいは前記需要家から前記電力系統に売電を行っている場合に前記蓄電システムからの放電を許可する第2状態を含むことをコンピュータに実行させるためのプログラム。
    A program in a power management system that is connected to a power system and controls the operation of a power storage system installed in a consumer.
    Generating information on the operating state of the power storage system;
    Transmitting the generated information to the power storage system,
    The information related to the operating state of the power storage system is a first state in which discharging from the power storage system is prohibited when selling power from the consumer to the power system, or selling power from the consumer to the power system. The program for making a computer perform including the 2nd state which permits discharge from the said electrical storage system when performing.
PCT/JP2018/018573 2017-06-07 2018-05-14 Power management system, power storage system, transmission method, and program WO2018225455A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-112329 2017-06-07
JP2017112329A JP2018207707A (en) 2017-06-07 2017-06-07 Power management system, power storage system, transmission method, program

Publications (1)

Publication Number Publication Date
WO2018225455A1 true WO2018225455A1 (en) 2018-12-13

Family

ID=64567426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/018573 WO2018225455A1 (en) 2017-06-07 2018-05-14 Power management system, power storage system, transmission method, and program

Country Status (2)

Country Link
JP (1) JP2018207707A (en)
WO (1) WO2018225455A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112367410A (en) * 2021-01-14 2021-02-12 广州技象科技有限公司 Operation parameter management method and device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010200539A (en) * 2009-02-26 2010-09-09 Sanyo Electric Co Ltd Grid interconnection device and power control system
JP2014072976A (en) * 2012-09-28 2014-04-21 Kyocera Corp Control system, control apparatus and control method
JP2014168315A (en) * 2013-01-30 2014-09-11 Sekisui Chem Co Ltd Local power demand control system
JP2016123238A (en) * 2014-12-25 2016-07-07 京セラ株式会社 Power storage device and control method for power storage device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010200539A (en) * 2009-02-26 2010-09-09 Sanyo Electric Co Ltd Grid interconnection device and power control system
JP2014072976A (en) * 2012-09-28 2014-04-21 Kyocera Corp Control system, control apparatus and control method
JP2014168315A (en) * 2013-01-30 2014-09-11 Sekisui Chem Co Ltd Local power demand control system
JP2016123238A (en) * 2014-12-25 2016-07-07 京セラ株式会社 Power storage device and control method for power storage device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112367410A (en) * 2021-01-14 2021-02-12 广州技象科技有限公司 Operation parameter management method and device

Also Published As

Publication number Publication date
JP2018207707A (en) 2018-12-27

Similar Documents

Publication Publication Date Title
KR102423806B1 (en) Intelligent grid operating system for managing distributed energy resources in the grid
JP6824600B2 (en) Power supply system
JP2017521034A (en) Power grid network gateway aggregation
US10461535B2 (en) Power management system, power management method, and computer program
JP2019118238A (en) Control device, power storage system, and program
JP2016129486A (en) Management system, control device, and control method
WO2020012834A1 (en) Control system and control method
WO2020162461A1 (en) Power control system and power control method
WO2018225455A1 (en) Power management system, power storage system, transmission method, and program
WO2018225458A1 (en) Group management system, power management system, receiving method and program
WO2018225456A1 (en) Power management system, apparatus, reception method, and program
JP7016060B2 (en) Control system, control method, program
WO2019131227A1 (en) Power control device, power control method, and program
WO2019117071A1 (en) Group management system, power control device, transmission method, and program
WO2019117070A1 (en) Group management system, power control device, transmission method, and program
WO2018225457A1 (en) Group management system, power management system, power storage system, transmission method and program
WO2019131229A1 (en) Power control device, power control method, and program
WO2020012835A1 (en) Control system and control method
JP2018207629A (en) Power management system, fuel cell system, reception method and program
WO2019131228A1 (en) Power control device, power control method, program
JP7253725B2 (en) power generation system
JP6827205B2 (en) Group management system, power control device, power storage system
WO2021053871A1 (en) Control system and control method
WO2019116711A1 (en) Group management system, power control device, and power storage system
JP6807550B2 (en) Power management system, power conversion system, program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18813880

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18813880

Country of ref document: EP

Kind code of ref document: A1