WO2019116711A1 - Group management system, power control device, and power storage system - Google Patents
Group management system, power control device, and power storage system Download PDFInfo
- Publication number
- WO2019116711A1 WO2019116711A1 PCT/JP2018/038200 JP2018038200W WO2019116711A1 WO 2019116711 A1 WO2019116711 A1 WO 2019116711A1 JP 2018038200 W JP2018038200 W JP 2018038200W WO 2019116711 A1 WO2019116711 A1 WO 2019116711A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power
- time
- management system
- group
- storage system
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/28—Arrangements for balancing of the load in a network by storage of energy
- H02J3/32—Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J13/00—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
Definitions
- the present disclosure relates to a group management system that manages power, a power control apparatus, and a storage system.
- the apparatus includes, for example, a solar battery, a storage battery, a distributed power supply such as a fuel cell, and a home appliance.
- a control device is connected to the upper level smart server.
- the smart server centrally manages a plurality of consumers (see, for example, Patent Document 1).
- the group management system controls the power management according to the increase or decrease of the power demand. Charge and discharge each storage system via the system.
- first electric storage system group the electric storage system of the plurality of electric storage systems is promptly responded.
- second power storage system group another power storage system instead of the first power storage system group.
- the present disclosure has been made in view of such circumstances, and an object thereof is to provide a technique for appropriately performing handover of responses to fluctuations in power demand.
- a group management system is a storage system installed in each of a plurality of customers, and includes a storage system group including a storage system connected to a power system.
- a group management system for controlling, the maximum value of electric power charged / discharged by an electric power source different from the electric storage system group, the first time when the electric power charged / discharged in the electric power source is reduced from the maximum value, Based on the acquisition unit that acquires the first change ratio of power charged / discharged by the power source from one time, the maximum value of the power acquired by the acquisition unit, the first time, and the first change ratio
- a determination unit configured to determine a second time at which the system group is to start charging and discharging, and a second change ratio of power to be charged and discharged to the storage system group from the second time.
- FIGS. 3 (a)-(b) are diagrams showing an operation for fluctuation of the power demand in the power system of FIG.
- FIGS. 4 (a)-(b) are diagrams showing another operation with respect to fluctuation of the power demand in the power system of FIG.
- FIG. 6 (a)-(d) are diagrams showing the format of a message used in the VPP system of FIG.
- FIG. 7 (a) to 7 (d) are diagrams showing processing in the determination unit of FIG. It is a flowchart which shows the control procedure by the 2nd group management system server of FIG. It is a flowchart which shows another control procedure by the 2nd group management system server of FIG. It is a flowchart which shows another control procedure by the 2nd group management system server of FIG. It is a figure which shows another structure of the 2nd group management system server of FIG.
- the embodiment relates to devices such as scattered small-scale solar power generation systems, power storage systems, fuel cell systems, and a VPP (Virtual Power Plant) that integrates and controls demand suppression of electric power.
- the VPP controls devices such as a photovoltaic power generation system, a storage system, and a fuel cell system via a network to make them function as a single power plant.
- devices such as a solar power generation system, a storage system, and a fuel cell system are installed at each customer.
- the customer is a facility receiving power supply from a power company or the like, and is, for example, a house, an office, a store, a factory, a park, or the like.
- the devices in such customers are controlled by the power management system.
- the power management system discharges the storage system in a time zone in which the consumer consumes a large amount of power, or charges the storage system at night when the electricity bill of the power system is inexpensive.
- the plurality of power management systems are connected to the group management system.
- the group management system is connected to a host system which is an aggregator that integrates a plurality of group management systems.
- a VPP is equivalent to the upper system and the group management system plus equipment such as a storage system installed in the customer.
- the higher-level system trades power in the market or in a relative contract with the business operator.
- the higher-level system provides integrated coordination power to the power exchange market, the power transmission and distribution department of the power company, the retail power company, and the like. Therefore, the higher-level system determines the coordination power to be provided to the market or each business operator, and distributes the coordination power to each group management system.
- Each group management system further distributes coordination to each customer.
- the group management system instructs each of the plurality of power management systems to control to sell or buy power in response to a request from the upper system. For example, the group management system requests the power management system to control the storage system to be discharged or to reduce the power consumption of the customer when the power generated by the power plant becomes tight.
- a plurality of power management systems are connected to the group management system, and one or more power storage systems are connected to each power management system, which are arranged hierarchically. Therefore, it can be said that the group management system controls fluctuations in power due to a plurality of power storage systems (hereinafter also referred to as "power storage system group"). If a plurality of storage system groups are charged and discharged simultaneously in response to fluctuations in power demand in the power system, fluctuations in power increase and the power system becomes unstable.
- the aforementioned first storage system group responds quickly, and subsequently, the second storage system group responds so as to replace the first storage system group. That is, charge / discharge for responding quickly to fluctuations is provided by the first storage system group, and stable charge / discharge is provided by the second storage system group.
- charge / discharge in response by the first storage system group may be called "primary adjustment power”
- charge / discharge in response by the second storage system group may be called "secondary adjustment power”.
- a secondary adjustment force may be followed by a tertiary adjustment force, but the tertiary adjustment force is omitted here. Further, it is assumed that the first storage system group is connected to the first group management system, and the second storage system group is connected to the second group management system.
- the second group management system in the second group management system, the maximum value of the power charged / discharged by the first storage system group, and the first time when the power charged / discharged from the first storage system group is to be reduced from the maximum value.
- the first change ratio of the power charged / discharged by the first storage system group after the first time is acquired.
- the second group management system is configured to use the second power storage system group to start charging / discharging based on the maximum value of the power, the first time, and the first change ratio, and the second time or later after the second time. 2. Determine a second change rate of the power charged / discharged to the storage system group.
- the second group management system causes the second storage system group to start charging / discharging at the second time and to execute charging / discharging at the second change ratio.
- FIG. 1 shows the configuration of the VPP system 100.
- the VPP system 100 includes a host system server 10, a first group management system server 12a collectively referred to as a group management system server 12, a first power management system server generically referred to as a power management system server 14 and a second group management system server 12b. 14a, a second power management system server 14b, an Nth power management system server 14n, an (N + 1) th power management system server 14n + 1, an (N + 2) th power management system server 14n + 2, and an (N + M) th power management system server 14n + m.
- the first power management system server 14a is installed in the first customer 16a
- the N + M power management system server 14n + m is installed in the N + M customer 16n + m
- the 1st customer 16a to the N + M customer 16n + m are in demand.
- the number of group management system servers 12 is not limited to “2”
- the number of power management system servers 14 and customers 16 is not limited to “N + M”.
- the customer 16 is, for example, a single-family house, an apartment house such as an apartment, a store such as a convenience store or a supermarket, a commercial facility such as a building, a factory. It is an existing facility.
- the customer 16 is provided with equipment such as an air conditioner (air conditioner), a television receiver (television), a lighting device, a storage system, and a heat pump water heater. These devices receive the supply of commercial power and consume power by being connected to a power system such as a power company.
- a power system such as a power company.
- the device may include a renewable energy generator such as a solar cell system or a fuel cell system.
- the power management system server 14 is a computer for executing the processing of the power management system, and is installed, for example, in the customer 16.
- the power management system server 14 has, for example, a function as a home energy management system (HEMS) controller. Therefore, the power management system server 14 can communicate with various devices in the customer 16 by HAN (Home Area Network), and controls these devices.
- the power management system server 14 controls the operation of the storage system, for example, discharge and charge.
- the power management system server 14 may control the interconnection between the devices installed in the customer 16 and the power system.
- the power management system server 14 disconnects between the device and the power system at the time of power failure, and interconnects between the device and the power system at the time of power recovery.
- the group management system server 12 is a computer for executing the processing of the group management system.
- the group management system server 12 manages a plurality of power management system servers 14 by connecting a plurality of power management system servers 14.
- the group management system server 12 centrally manages a plurality of devices connected to each of the plurality of power management system servers 14.
- a group of storage systems connected to each of the first power management system server 14a to the Nth power management system server 14n corresponds to the first storage system group described above, and the first storage system group is the first group management It is managed by the system server 12a.
- a group of storage systems connected to each of the (N + 1) th power management system server 14n + 1 to the (N + M) th power management system server 14n + m corresponds to the second storage system group described above, and the second storage system group is a second group management system It is managed by the server 12b.
- the plurality of group management system servers 12 are connected to the upper system server 10.
- the upper system server 10 is a computer for executing the processing of the upper system which is an aggregator.
- the VPP including the upper system and the group management system trades power in the market or in a relative contract with the business operator, and the upper system server 10 sends the group management system server 12 a request according to the contract. Output.
- One group management system server 12 may be connected to a plurality of upper system servers 10.
- the group management system server 12 consumes the power discharged from the storage system in the customer 16 or within the customer 16. Control the power management system server 14 so as to reduce power consumption at In addition, if the power generation of the entire group of customers managed by the upper system increases and the supply exceeds the demand, the group management system server 12 increases the charge to the storage system or increases the demand in the customer 16 Control the power management system server 14 to At that time, when fluctuation of the power demand occurs, the first group management system server 12a starts charging / discharging of the first power storage system group.
- the first group management system server 12a reduces the charge / discharge of the first storage system group, and the second group management system server 12b Start charging and discharging of the second storage system group.
- FIG. 2 shows the configuration of the customer 16.
- the customer 16 is provided with a power system 30, a smart meter 32, a distribution board 34, a load 36, a storage system 40, and a power management system server 14, for example, an (N + 1) th power management system server 14n + 1.
- the storage system 40 includes a storage battery (SB) 210, a DC / DC 212 for SB, a bi-directional DC / AC inverter 214, and a control device 216.
- a group management system server 12 for example, a second group management system server 12b is connected to the (N + 1) th power management system server 14n + 1 via the network 18.
- a solar cell system a heat pump water heater, etc.
- the customer 16 of FIG. 2 includes the (N + 1) th power management system server 14n + 1, this corresponds to the (N + 1) th customer 16n + 1 of FIG. 1, but the other customers 16 are similarly configured.
- the power demand in the power system 30 fluctuates with the passage of time.
- the smart meter 32 is connected to the power system 30 and is a digital power meter.
- the smart meter 32 can measure the amount of power of the current flowing from the power system 30 and the amount of power of the reverse current flowing out of the power system 30.
- the smart meter 32 has a communication function and can communicate with the power management system server 14.
- the distribution line 42 connects the smart meter 32 and the distribution board 34.
- the distribution board 34 is connected to the distribution line 42 and also connects the load 36.
- the distribution board 34 supplies power to the load 36.
- the load 36 is a device that consumes the power supplied via the distribution line 42.
- the load 36 includes equipment such as a refrigerator, an air conditioner, and lighting.
- one load 36 is connected to the distribution board 34, a plurality of loads 36 may be connected to the distribution board 34.
- the SB 210 is a storage battery capable of charging and discharging electric power, and includes a lithium ion storage battery, a nickel hydrogen storage battery, a lead storage battery, an electric double layer capacitor, a lithium ion capacitor, and the like.
- the SB 210 is connected to the DC / DC 212 for SB.
- the SB DC / DC 212 is a DC-DC converter, and performs conversion between the DC power on the SB 210 side and the DC power on the bidirectional DC / AC inverter 214 side.
- the bi-directional DC / AC inverter 214 is connected between the DC / DC 212 for SB and the distribution board 34.
- the bidirectional DC / AC inverter 214 converts AC power from the distribution board 34 into DC power, and outputs the converted DC power to the SB DC / DC 212.
- the bidirectional DC / AC inverter 214 converts the DC power from the SB DC / DC 212 into AC power, and outputs the converted AC power to the distribution board 34. That is, the SB 210 is charged and discharged by the bi-directional DC / AC inverter 214.
- the control of the bi-directional DC / AC inverter 214 is performed by the controller 216.
- the SB 210, the SB DC / DC 212, the bidirectional DC / AC inverter 214, and the control device 216 may be stored in one case, and even in that case, this is referred to as a storage system 40.
- the (N + 1) th power management system server 14n + 1 is connected to the smart meter 32 and the storage system 40 via a network such as HAN, and can communicate therewith. In the following, the communication between the (N + 1) th power management system server 14n + 1 and the smart meter 32 will not be described.
- the (N + 1) th power management system server 14 n + 1 is also connected to the second group management system server 12 b via the network 18.
- FIGS. 3 (a)-(b) show the operation for fluctuations in the power demand in the power system 30.
- FIG. FIG. 3A shows temporal changes in the power demand 700, the primary adjustment force 702, and the secondary adjustment force 704 when the primary adjustment force 702 is properly handed over to the secondary adjustment force 704.
- the horizontal axis shows time, and the vertical axis shows power.
- power demand 700 increases at time “t0”.
- the power from the primary coordination 702 also increases. This corresponds to an increase in the power discharged from the first storage system group.
- time “t1" after time "t0” the power demand 700 becomes constant.
- the power by the primary adjustment power 702 continues to increase.
- the power by the primary adjustment force 702 becomes constant.
- the power by the primary adjustment power 702 is smaller than the power demand 700.
- the power by the secondary adjustment force 704 increases. This corresponds to an increase in the power discharged from the second storage system group.
- the power by the primary adjustment force 702 decreases.
- the power by the secondary adjustment power 704 increases.
- the power by the primary adjustment power 702 is 0, and the power by the secondary adjustment power 704 is the same as the power demand 700.
- FIG. 3 (b) shows the change of the frequency (ideal time) 710 in the case of FIG. 3 (a).
- the commercial power supply frequency which is a reference frequency is set to “50 Hz”. From time “t0” to time “t1”, although the power by the power demand 700 and the primary adjustment power 702 increases, the change rate of the increase is larger in the former, so the power shortage in the power system 30 is over time growing.
- the frequency in the power system 30 decreases, so the decrease in the frequency (ideal time) 710 from “50 Hz” increases from time “t0” to time “t1”. .
- the frequency (ideal time) 710 is from time “t1” to time “t3” After increasing, it becomes constant although lower than "50 Hz”. That is, the power reduction by the primary adjustment force 702 is suppressed.
- the power by the secondary adjustment force 704 increases from time “t3”, and the power by the primary adjustment force 702 decreases from time “t4”, so the frequency (ideal time) 710 at times “t3” to “t5”. Increases and recovers to "50 Hz”.
- FIGS. 4 (a)-(b) illustrate another operation for fluctuations in power demand in the power system 30.
- FIG. FIG. 4A shows temporal changes in the power demand 700, the primary adjustment force 702, and the secondary adjustment force 704 when the primary adjustment force 702 is not properly taken over from the secondary adjustment force 704.
- the change from time “t0" to time “t3" is the same as in FIG. 3 (a).
- the power by the primary adjustment force 702 decreases. That is, in FIG. 4A, the timing at which the power by the primary adjustment force 702 is reduced is delayed as compared with FIG. 3A.
- time “t4 ′” the power of the primary adjustment force 702 decreases while the power of the secondary adjustment force 704 increases.
- FIG. 4B shows the change of the frequency (before control) 712 in the case of FIG. 4A.
- the frequency (ideal time) 710 of FIG. 3 (b) is also shown for comparison. From time “t0” to time “t4”, changes in the frequency (ideal time) 710 and the frequency (before control) 712 are the same. On the other hand, from time “t4" to time “t4 '”, the frequency (before control) 712 rises above "50 Hz”. Also, from time “t4 ′” to time “t4 ′ ′”, the frequency (before control) 712 decreases so as to fall below “50 Hz”. Furthermore, the frequency (before control) 712 rises again from time “t4 ′”.
- the frequency (before control) 712 goes up and down across "50 Hz". This makes it difficult for the frequency (before control) 712 to converge to the commercial power supply frequency.
- FIG. 5 shows the configuration of the first group management system server 12a, the second group management system server 12b, the (N + 1) th power management system server 14n + 1, and the (N + 2) th power management system server 14n + 2.
- the first group management system server 12 a is the storage system 40 installed in each of the plurality of customers 16 and includes the first storage system group including the storage system 40 connected to the power system 30. Control.
- the second group management system server 12 b controls the second storage system group including the storage system 40 connected to the power system 30, which is the storage system 40 installed in each of the plurality of customers 16. .
- the first power storage system group and the second power storage system group are separately configured, and the first power storage system group responds to fluctuations in the power of the power system 30 earlier than the second power storage system group.
- the second group management system server 12 b includes a first communication unit 430, a second communication unit 434, an acquisition unit 440, and a determination unit 442.
- the second communication unit 434 includes a reception unit 420 and a transmission unit 422.
- the first communication unit 430 and the second communication unit 434 may be integrally configured.
- the (N + 1) th power management system server 14 n + 1 includes a service cooperation unit 300 and a control unit 302, and the service cooperation unit 300 includes a reception unit 510 and a transmission unit 512.
- the (N + 2) th power management system server 14n + 2 has the same configuration as the (N + 1) th power management system server 14n + 1.
- the service cooperation unit 300 and the control unit 302 of the (N + 1) th power management system server 14 n + 1 may be simply referred to as “service cooperation unit 300” and “control unit 302” for the sake of clarity.
- the upper system server 10 of FIG. 1 monitors the frequency of AC power in the power system 30.
- the frequency of the AC power is lower than the commercial power frequency when the power demand increases and the power is insufficient, and is higher than the commercial power frequency when the power demand decreases and the power becomes excessive. Therefore, when the frequency of the AC power in power system 30 becomes lower than the commercial power supply frequency, upper system server 10 determines to discharge to a storage system group including a plurality of storage systems 40 included in VPP system 100. On the other hand, when the frequency of the AC power in power system 30 becomes higher than the commercial power supply frequency, upper system server 10 determines to charge the storage system group. According to such determination of the upper system server 10, the first group management system server 12a controls the first power storage system group. As a result, operations such as the primary adjustment force 702 in FIGS. 3A and 4A are performed.
- the first group management system server 12a determines the maximum value of the power charged / discharged by the first storage system group.
- the maximum value of the power is the maximum value when charging and discharging in response to the power demand 700, and is set to be equal to or less than the maximum value of power that the first storage system group can charge and discharge. This corresponds to the maximum value of the power by the primary adjustment force 702 in FIGS. 3 (a) and 4 (a).
- the first group management system server 12a determines the first time when the power charged / discharged in the first power storage system group is scheduled to decrease from the maximum value, and the first power storage system group charges / discharges from the first time. And the first change rate of the power to be generated. Since known techniques may be used for these determinations, the description is omitted here.
- the first group management system server 12a transmits the determined information to the second group management system server 12b as a first adjustment parameter.
- FIG. 6 (a)-(d) show the format of the message used in VPP system 100.
- FIG. 6A in the message, fields of data are arranged following fields of message type.
- the message type field indicates the type of message, and the data field indicates data to be notified.
- FIG. 6 (b) shows the format of the message of the first adjustment force parameter.
- the message type field indicates a first adjustment force parameter, and the data field indicates a discharge or charge instruction, maximum value of power, a first time, and a first change rate. 6 (b)-(d) will be described later, and the process returns to FIG.
- the first communication unit 430 of the second group management system server 12 b receives the message of the first adjustment power parameter from the first group management system server 12 a.
- the first communication unit 430 outputs a message of the first adjustment force parameter to the acquisition unit 440.
- the acquisition unit 440 acquires a discharge or charge instruction, the maximum value of power, the first time, and the first change ratio from the message of the first adjustment force parameter.
- the acquisition unit 440 outputs a discharge or charge instruction, the maximum value of power, the first time, and the first change ratio to the determination unit 442.
- the determination unit 442 is configured to cause the second storage system group to start charging / discharging based on the maximum value of the power acquired by the acquiring unit 440, the first time, and the first change ratio, and A second change ratio of power charged / discharged to the second power storage system group from the second time is determined.
- the determination processing in the determination unit 442 (1) processing of fixing the second change rate and determining the second time, (2) processing of fixing the second time and determining the second change rate, (3) The process of determining the second time and the second change rate will be described in order.
- FIGS. 7A to 7D show the process in the determination unit 442.
- FIG. 7A shows changes in the power demand 700, the primary adjustment power 702, and the secondary adjustment power 704 in the case of (1).
- the determination unit 442 receives the maximum value 750, the first time 752, and the first change ratio 754 for the primary adjustment power 702. From the maximum value 750, the first time 752, and the first change rate 754, the determination unit 442 calculates a third time 756 at which the power by the primary adjustment force 702 is zero.
- the determination unit 442 acquires a second change ratio 762 with respect to the secondary adjustment force 704.
- the second change ratio 762 is preset and stored in the determination unit 442.
- the determination unit 442 determines the output value 758 of the secondary adjustment force 704 at the third time 756.
- the determination unit 442 calculates the time at which the point specified by the third time 756 and the output value 758 and the straight line specified by the second change ratio 762 have no power.
- the calculated time is the second time 760. That is, the determination unit 442 determines the second time 760 based on the maximum value 750 of the power, the first time 752, and the first change rate 754 while fixing the second change rate 762.
- FIG. 7B shows the change of the frequency (after control) 714 in the case of FIG. 7A.
- the frequency (ideal time) 710 and the frequency (before control) 712 described above are also shown.
- the frequency (after control) 714 converges to the commercial power supply frequency without rising and falling with “50 Hz” in comparison with the frequency (before control) 712.
- FIG. 7C shows changes in the power demand 700, the primary adjustment force 702, and the secondary adjustment force 704 in the case of (2).
- the determination unit 442 receives the maximum value 750, the first time 752, and the first change ratio 754 for the primary adjustment power 702. From the maximum value 750, the first time 752, and the first change rate 754, the determination unit 442 calculates a third time 756 at which the power by the primary adjustment force 702 is zero. In addition, the determination unit 442 acquires a second time 760 for the secondary adjustment force 704. The second time 760 is determined to be, for example, a predetermined time before the first time 752.
- the determination unit 442 calculates a second change ratio 762 from the second time 760 to the third time 756 by solving the next minimization problem.
- the objective function is shown as follows. This indicates that v 1 ,..., V n are calculated such that the total value of change rates at each time is minimized.
- the constraint is shown as follows. This indicates that when raising the frequency, the frequency f t at time t is set to v t such that the frequency f t does not fall below the frequency f t-1 at time t-1. Also, it is indicated that f t is made equal to or lower than the commercial power supply frequency f b so as not to overshoot.
- n indicates the third time 756 to the second time 760
- t indicates each time
- p t indicates the time t obtained from the maximum value 750 of the primary adjustment power 702, the first time 752, and the first change ratio 754
- FIG. 7D shows the change of the frequency (after control) 714 in the case of FIG. 7C.
- the frequency (ideal time) 710 and the frequency (before control) 712 described above are also shown.
- the frequency (after control) 714 converges to the commercial power supply frequency without rising and falling with “50 Hz” in comparison with the frequency (before control) 712.
- the determination unit 442 derives a plurality of second time 760 candidates for the second time 760 based on the first time 752. For example, a plurality of second time 760 candidates are derived so as to be included in a predetermined period before the first time 752. In addition, the determination unit 442 derives the candidate of the second change ratio 762 for each of the plurality of second time 760 candidates. In the derivation of the second change ratio 762 candidate, it suffices to solve the above-described minimization problem, and thus the description thereof is omitted here. Furthermore, the determination unit 442 selects one of the plurality of second change rates 762 by selecting the second change rate 762 for which the objective function is the smallest at each second time 760 candidate. select. The selected one candidate for the second change rate 762 is determined as the second change rate 762 and the candidate for the second time 760 corresponding to the selected one second change rate 762 candidate is determined as the second time 760 Be done.
- the determination unit 442 outputs the second time 760 and the second change ratio 762 to the transmission unit 422.
- the transmitting unit 422 transmits a message of the second adjustment power parameter including the discharge or charge instruction, the second time 760, and the second change ratio 762 to the (N + 1) th power management system server 14n + 1 and the (N + 2) th power management system server 14n + 2 Do.
- FIG. 6C shows the format of the message of the second adjustment parameter, the second adjustment parameter is shown in the message type field, and the discharge or charge instruction in the data field, the second time 760, A second rate of change 762 is shown.
- the second change ratio 762 may be a value obtained by dividing the original second change ratio 762 by the number of power storage systems 40 included in the second power storage system group.
- FIG. 6D will be described later and returns to FIG. 5.
- the receiver 510 of the (N + 1) -th power management system server 14n + 1 receives the message of the second adjustment power parameter from the second group management system server 12b.
- the receiving unit 510 outputs a message of the second adjustment force parameter to the control unit 302.
- the control unit 302 extracts a second time 760 and a second change ratio 762 from the message of the second adjustment force parameter.
- the control unit 302 causes the storage system 40 to start charging and discharging from the extracted second time 760. Further, the control unit 302 charges and discharges the storage system 40 from the second time 760 according to the extracted second change ratio 762.
- control unit 302 causes the control device 216 of the storage system 40 to start charging / discharging from the second time 760, and charging / discharging from the bidirectional DC / AC inverter 214 according to charging / discharging at the second change rate 762.
- the control unit 302 causes the control device 216 of the storage system 40 to start charging / discharging from the second time 760, and charging / discharging from the bidirectional DC / AC inverter 214 according to charging / discharging at the second change rate 762.
- Control device 216 changes charge / discharge from bidirectional DC / AC inverter 214 in accordance with an instruction from control unit 302. As a result, the SB 210 starts charging and discharging from the second time 760, and also charges and discharges from the second time 760 at the second change ratio 762.
- the control unit 302 and the control device 216 determine discharge or charge according to the discharge or charge instruction.
- the control device 216 When the control device 216 executes the process according to the instruction, the control device 216 reports the completion of the process to the control unit 302 of the (N + 1) th power management system server 14n + 1.
- the transmission unit 512 When the control unit 302 receives a report on the completion of the process, the transmission unit 512 outputs a response message including the report on the completion to the second group management system server 12b.
- FIG. 6D shows the format of the response message, the response is shown in the message type field, and the completion is shown in the data field. If there is a power storage system 40 whose processing according to the instruction is not complete, the data field may indicate that it is not complete. Return to FIG.
- the receiving unit 420 of the second group management system server 12b receives a response message from the (N + 1) th power management system server 14n + 1, and receives a response message from the (N + 2) th power management system server 14n + 2.
- the subject matter of the apparatus, system or method in the present disclosure comprises a computer.
- the computer executes the program to implement the functions of the apparatus, system, or method in the present disclosure.
- the computer includes, as a main hardware configuration, a processor that operates according to a program.
- the processor may be of any type as long as the function can be realized by executing a program.
- the processor is configured of one or more electronic circuits including a semiconductor integrated circuit (IC) or an LSI (Large Scale Integration).
- the plurality of electronic circuits may be integrated on one chip or may be provided on a plurality of chips.
- the plurality of chips may be integrated into one device or may be provided to a plurality of devices.
- the program is recorded in a non-transitory recording medium such as a computer readable ROM, an optical disc, a hard disk drive and the like.
- the program may be stored in advance in a recording medium, or may be supplied to the recording medium via a wide area communication network including the Internet and the like.
- FIG. 8 is a flowchart showing a control procedure by the second group management system server 12b.
- the acquisition unit 440 acquires a parameter of the primary adjustment power (S10).
- the determination unit 442 calculates a third time 756 at which the output of the primary adjustment force 702 is 0 from the parameter (S12).
- the determination unit 442 acquires the second change ratio 762 (S14).
- the determination unit 442 determines the output value 758 at the third time 756 (S16).
- the determination unit 442 calculates the second time 760 from the third time 756, the second change rate 762, and the output value 758 (S18).
- the determination unit 442 outputs the parameter of the secondary adjustment force (S20).
- FIG. 9 is a flowchart showing another control procedure by the second group management system server 12b.
- the acquisition unit 440 acquires a parameter of the primary adjustment power (S50).
- the determination unit 442 calculates the third time 756 at which the output of the primary adjustment force 702 is 0 from the parameter (S52).
- the determination unit 442 acquires the second time 760 (S54).
- the determination unit 442 calculates a second change ratio 762 from the second time 760 to the third time 756 (S56).
- the determination unit 442 outputs the parameter of the secondary adjustment force (S58).
- FIG. 10 is a flowchart showing still another control procedure by the second group management system server 12b.
- the acquisition unit 440 acquires a parameter of the primary adjustment power (S100).
- the determination unit 442 extracts a candidate for the second time 760 (S102).
- the determination unit 442 calculates the candidate of the second change ratio 762 with respect to the candidate of the second time 760 (S104). If all the candidates for the second time 760 have not been processed (N in S106), the process returns to step S104. If all candidates for the second time 760 have been processed (Y in S106), the determination unit 442 determines the second time 760 and the second change ratio 762 (S108).
- the determination unit 442 outputs the parameter of the secondary adjustment force (S110).
- FIG. 11 shows another configuration of the second group management system server 12b.
- the second group management system server 12 b includes a first communication unit 430, a second communication unit 434, an acquisition unit 440, a determination unit 442, and a frequency detection unit 444.
- the first communication unit 430 receives a message of the first adjustment parameter from the first group management system server 12a.
- the first communication unit 430 outputs a message of the first adjustment force parameter to the acquisition unit 440.
- the first adjustment force parameter includes the discharge or charge instruction, the first time 752, and the first change ratio 754 as before, but does not include the maximum value 750 of the power.
- the acquisition unit 440 acquires a discharge or charge instruction, a first time 752, and a first change ratio 754 from the parameter of the first adjustment force.
- the frequency detection unit 444 detects the frequency of the power system 30 or the difference in the frequency of the power system 30 with respect to the commercial power supply frequency. A known technique may be used for this detection, so the description is omitted here.
- the acquisition unit 440 stores in advance the correspondence between the frequency or difference detected by the frequency detection unit 444 and the maximum value 750 of the power.
- the acquisition unit 440 acquires the maximum value 750 of the power based on the frequency or the difference detected by the frequency detection unit 444 while referring to the correspondence relationship.
- the acquisition unit 440 outputs a discharge or charge instruction, the maximum value 750 of power, the first time 752, and the first change ratio 754 to the determination unit 442.
- the subsequent processing is the same as that described above, so the description is omitted here.
- the maximum value 750 of the power by the first storage system group, the first time 752, and the first change rate 754 are acquired, and the second time 760 and the second change rate 762 in the second storage system group are obtained. And so that it is possible to properly take over the response to fluctuations in the power demand. Further, since the handover of the response to the fluctuation of the power demand is properly performed, the period until the frequency of the power system 30 becomes stable can be shortened by the handover. In addition, the difference in the frequency of the power system 30 with respect to the frequency of the power system 30 or the reference frequency is detected, and the maximum value 750 of the power is acquired from this.
- the first group management system server 12a to the second group management system server 12b It may be unnecessary to transmit a maximum of 750 of power to Further, since the maximum value 750 of the power is acquired from the first group management system server 12a, the process can be simplified. Further, since the first time 752 and the first change rate 754 are acquired from the first group management system server 12a, the process can be simplified.
- the first storage system group responds to fluctuations in the power of the electric power system 30 earlier than the second storage system group
- the first storage system group is used as the primary adjustment power 702
- the second storage system group is used. It can be used as a secondary adjustment force 704.
- the second time 760 is determined based on the maximum value 750 of the power, the first time 752, and the first change rate 754 while fixing the second change rate 762
- the second time 760 is determined. It can be easily determined.
- the second change rate 762 is determined based on the maximum value 750 of the power, the first time 752, and the first change rate 754 while fixing the second time 760
- the second change rate 762 Can easily be determined.
- the second change rate 762 candidate is derived for each of the plurality of second time 760 candidates, one of the plurality of second change rate 762 candidates is selected. 760 and the second change rate 762 can be determined with high accuracy.
- the second group management system server 12b is a storage system 40 installed in each of a plurality of customers 16 and including a storage system 40 connected to the power system 30. It is the second group management system server 12b to control, and the maximum value 750 of the power with which the power source other than the storage system group is charged and discharged, and the power charged and discharged in the power source is scheduled to decrease from the maximum value 750
- An acquisition unit 440 that acquires a first time 752 and a first change ratio 754 of power that the power source charges and discharges from the first time 752, a maximum value 750 of the power acquired in the acquisition unit 440, and a first time 752
- the first change rate 754 the second time 760 scheduled to cause the storage system group to start charging / discharging, and the power to be charged / discharged to the storage system group from the second time 760
- the acquisition unit 440 acquires the maximum value 750 of the power based on the frequency or the difference detected by the frequency detection unit 444.
- the power source is another storage system group different from the storage system group
- the acquisition unit 440 is another first group management system server 12a that controls another storage system group, or a plurality of group management system servers 12
- the maximum power value 750 is acquired from the upper system server 10 that manages the
- the power source is another storage system group different from the storage system group
- the acquisition unit 440 is another first group management system server 12a that controls another storage system group, or a plurality of group management system servers 12
- the first time 752 and the first change rate 754 are acquired from the upper system server 10 that manages the
- the power source responds to the power fluctuation of the power system 30 prior to the storage system group.
- the determination unit 442 determines the second time 760 based on the maximum value 750 of the power, the first time 752, and the first change rate 754 while fixing the second change rate 762.
- the determination unit 442 determines the second change ratio 762 based on the maximum value 750 of the power, the first time 752, and the first change ratio 754 while fixing the second time 760.
- the determination unit 442 derives the candidate for the second change ratio 762 for each of the plurality of second time 760 candidates, and then selects one of the plurality of second change ratio 762 candidates.
- the candidate of one selected second change rate 762 is determined as the second change rate 762 and the candidate of the second time 760 corresponding to the selected candidate of the second change rate 762 is determined as the second time 760 Do.
- the power management system server 14 connected to the second group management system server 12 b and controlling the power storage system 40 installed in the customer 16, comprising the second group management system server 12 b to the second time 760 and the second change ratio 762 and from the second time 760 received by the receiving unit 510, and causes the storage system 40 to start charging and discharging, and from the second time 760 according to the second change ratio 762 received by the receiving unit 510.
- the controller 302 may charge and discharge the storage system 40.
- the storage system 40 controlled by the power management system server 14 may include the SB 210 that starts charging and discharging from the second time 760 and that charges and discharges at the second change ratio 762 from the second time 760.
- the primary adjustment power 702 is provided by the control of the first storage system group by the first group management system server 12a.
- the primary adjustment force 702 may be provided by another power source.
- another power source is thermal power. According to this modification, the degree of freedom of the configuration can be improved.
- the acquisition unit 440 of the second group management system server 12b acquires information included in the first adjustment power parameter from the first group management system server 12a.
- the invention is not limited to this.
- the acquisition unit 440 of the second group management system server 12 b may acquire information included in the first adjustment power parameter from the higher system server 10. According to this modification, the degree of freedom of the configuration can be improved.
- the power management system server 14 is disposed at the customer 16.
- the arrangement of the power management system server 14 is not limited to this.
- the power management system server 14 may be disposed outside the customer 16, only the control unit 302 may be disposed in the customer 16, and the service linkage unit 300 may be disposed outside the customer 16.
- the service cooperation unit 300 and the control unit 302 may be called a power control device. According to this modification, the degree of freedom of the configuration can be improved.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Supply And Distribution Of Alternating Current (AREA)
- Remote Monitoring And Control Of Power-Distribution Networks (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
A second group management system server 12b controls a power storage system group including power storage systems that are respectively installed at a plurality of consumers and that are connected to a power grid. An acquisition unit 440 acquires the maximum value of power charged/discharged by a power source different from the power storage system group, a first time at which the power charged/discharged in the power source is scheduled to decrease from the maximum value, and a first rate of change of power charged/discharged by the power source from the first time. On the basis of the maximum value of power, the first time, and the first rate of change acquired in the acquisition unit 440, a determination unit 442 determines a second time at which the power storage system group is scheduled to start charging/discharging power, and a second rate of change of power charged/discharged by the power storage system group from the second time.
Description
本開示は、電力を管理する群管理システム、電力制御装置、蓄電システムに関する。
The present disclosure relates to a group management system that manages power, a power control apparatus, and a storage system.
需要家に設置された機器を制御する制御装置を備える電力管理システムが提案されている。機器は、例えば、太陽電池、蓄電池、燃料電池等の分散電源、家電機器を含む。このような制御装置は、上位のスマートサーバに接続される。スマートサーバは、複数の需要家を統括的に管理する(例えば、特許文献1参照)。
There has been proposed a power management system provided with a control device that controls equipment installed at a customer. The apparatus includes, for example, a solar battery, a storage battery, a distributed power supply such as a fuel cell, and a home appliance. Such a control device is connected to the upper level smart server. The smart server centrally manages a plurality of consumers (see, for example, Patent Document 1).
需要家において電力系統に接続された蓄電システムを電力管理システムが制御しているが、さらに複数の電力管理システムを群管理システムが制御する場合、電力需要の増減に応じて群管理システムは電力管理システム経由で各蓄電システムを充放電させる。電力系統における電力需要が変動した場合、複数の蓄電システムのうちの一部の蓄電システム(以下、「第1蓄電システム群」という)に迅速に応答させることがある。また、第1蓄電システム群による応答から一定期間経過した後、第1蓄電システム群に代わって別の蓄電システム(以下、「第2蓄電システム群」という)に応答させることもある。このような状況において、第1蓄電システム群から第2蓄電システム群への引き継ぎが適切になされない場合、電力系統の周波数が安定するまでの期間が長くなる。
When the power management system controls the storage system connected to the power grid in the customer, but the group management system controls more than one power management system, the group management system controls the power management according to the increase or decrease of the power demand. Charge and discharge each storage system via the system. When the electric power demand in the electric power system fluctuates, there is a case in which the electric storage system (hereinafter, referred to as “first electric storage system group”) of the plurality of electric storage systems is promptly responded. In addition, after a certain period of time has elapsed since the response by the first power storage system group, a response may be made to another power storage system (hereinafter referred to as "second power storage system group") instead of the first power storage system group. In such a situation, when handover from the first storage battery group to the second storage battery group is not properly performed, the period until the frequency of the power system is stabilized becomes long.
本開示はこうした状況に鑑みなされたものであり、その目的は、電力需要の変動への応答の引き継ぎを適切に実行する技術を提供することにある。
The present disclosure has been made in view of such circumstances, and an object thereof is to provide a technique for appropriately performing handover of responses to fluctuations in power demand.
上記課題を解決するために、本開示のある態様の群管理システムは、複数の需要家のそれぞれに設置された蓄電システムであって、かつ電力系統に接続された蓄電システムを含む蓄電システム群を制御する群管理システムであって、蓄電システム群とは別の電力源が充放電する電力の最大値と、電力源において充放電される電力が最大値から減少する予定の第1時刻と、第1時刻から電力源が充放電する電力の第1変化割合とを取得する取得部と、取得部において取得した電力の最大値と、第1時刻と、第1変化割合とをもとに、蓄電システム群に充放電を開始させる予定の第2時刻と、第2時刻から蓄電システム群に充放電させる電力の第2変化割合とを決定する決定部と、を備える。
In order to solve the above problems, a group management system according to an aspect of the present disclosure is a storage system installed in each of a plurality of customers, and includes a storage system group including a storage system connected to a power system. A group management system for controlling, the maximum value of electric power charged / discharged by an electric power source different from the electric storage system group, the first time when the electric power charged / discharged in the electric power source is reduced from the maximum value, Based on the acquisition unit that acquires the first change ratio of power charged / discharged by the power source from one time, the maximum value of the power acquired by the acquisition unit, the first time, and the first change ratio A determination unit configured to determine a second time at which the system group is to start charging and discharging, and a second change ratio of power to be charged and discharged to the storage system group from the second time.
なお、以上の構成要素の任意の組合せ、本開示の表現を方法、装置、システム、コンピュータプログラム、またはコンピュータプログラムを記録した記録媒体などの間で変換したものもまた、本開示の態様として有効である。
It is to be noted that any combination of the above-described components, and the expression of the present disclosure converted between a method, an apparatus, a system, a computer program, or a recording medium having a computer program recorded thereon is also effective as an aspect of the present disclosure. is there.
本開示によれば、電力需要の変動への応答の引き継ぎを適切に実行できる。
According to the present disclosure, it is possible to appropriately take over the response to fluctuations in power demand.
本開示の実施例を具体的に説明する前に、本実施例の概要を説明する。実施例は、点在する小規模な太陽光発電システム、蓄電システム、燃料電池システム等の機器と、電力の需要抑制を統合して制御するVPP(Virtual Power Plant)に関する。VPPは、太陽光発電システム、蓄電システム、燃料電池システム等の機器をネットワークを介して制御することによって、これらを1つの発電所のようにまとめて機能させる。ここで、太陽光発電システム、蓄電システム、燃料電池システム等の機器は各需要家に設置される。需要家は、電力会社等からの電力の供給を受けている施設であり、例えば、住宅、事務所、店舗、工場、公園などである。このような需要家における機器は電力管理システムによって制御される。電力管理システムは、需要家における電力の消費量が大きい時間帯において蓄電システムを放電させたり、電力系統の電気料金が安価である夜間において蓄電システムを充電させたりする。
Before specifically describing the embodiments of the present disclosure, an outline of the present embodiment will be described. The embodiment relates to devices such as scattered small-scale solar power generation systems, power storage systems, fuel cell systems, and a VPP (Virtual Power Plant) that integrates and controls demand suppression of electric power. The VPP controls devices such as a photovoltaic power generation system, a storage system, and a fuel cell system via a network to make them function as a single power plant. Here, devices such as a solar power generation system, a storage system, and a fuel cell system are installed at each customer. The customer is a facility receiving power supply from a power company or the like, and is, for example, a house, an office, a store, a factory, a park, or the like. The devices in such customers are controlled by the power management system. The power management system discharges the storage system in a time zone in which the consumer consumes a large amount of power, or charges the storage system at night when the electricity bill of the power system is inexpensive.
複数の電力管理システムは、群管理システムに接続される。また、群管理システムは、複数の群管理システムを統合するアグリゲータである上位システムに接続される。上位システムと群管理システムに、需要家に設置された蓄電システム等の機器を加えたものがVPPに相当する。上位システムは、市場で、あるいは事業者と相対契約で電力を取引する。また、上位システムは、電力取引市場や電力会社の送配電部門、小売電気事業者等に集約した調整力を提供する。そのため、上位システムは、市場あるいは各事業者に提供する調整力を決定し、調整力を各群管理システムに配分する。各群管理システムは、さらに調整力を各需要家に配分する。これより、群管理システムは、上位システムからの要求に応じて売電あるいは買電するように、複数の電力管理システムのそれぞれに対して制御を指示する。例えば、群管理システムは、発電所において発電される電力が逼迫する場合、蓄電システムを放電させたり、需要家における電力消費を抑制させたりするように制御することを電力管理システムに要求する。
The plurality of power management systems are connected to the group management system. In addition, the group management system is connected to a host system which is an aggregator that integrates a plurality of group management systems. A VPP is equivalent to the upper system and the group management system plus equipment such as a storage system installed in the customer. The higher-level system trades power in the market or in a relative contract with the business operator. In addition, the higher-level system provides integrated coordination power to the power exchange market, the power transmission and distribution department of the power company, the retail power company, and the like. Therefore, the higher-level system determines the coordination power to be provided to the market or each business operator, and distributes the coordination power to each group management system. Each group management system further distributes coordination to each customer. Thus, the group management system instructs each of the plurality of power management systems to control to sell or buy power in response to a request from the upper system. For example, the group management system requests the power management system to control the storage system to be discharged or to reduce the power consumption of the customer when the power generated by the power plant becomes tight.
群管理システムに複数の電力管理システムが接続され、各電力管理システムに1つ以上の蓄電システムが接続されることによって、これらは階層的に配置されている。そのため、複数の蓄電システム(以下、「蓄電システム群」ともいう)による電力の変動を群管理システムが制御するといえる。電力系統における電力需要の変動に応じて、複数の蓄電システム群を一斉に充放電させると、電力の変動が大きくなり電力系統が不安定となる。
A plurality of power management systems are connected to the group management system, and one or more power storage systems are connected to each power management system, which are arranged hierarchically. Therefore, it can be said that the group management system controls fluctuations in power due to a plurality of power storage systems (hereinafter also referred to as "power storage system group"). If a plurality of storage system groups are charged and discharged simultaneously in response to fluctuations in power demand in the power system, fluctuations in power increase and the power system becomes unstable.
これに対応するために、電力需要が変動した場合、前述の第1蓄電システム群が迅速に応答し、それに続いて第1蓄電システム群に代わるように第2蓄電システム群が応答する。つまり、第1蓄電システム群によって変動に対して迅速に応答するための充放電が提供され、第2蓄電システム群によって安定的な充放電が提供される。ここで、第1蓄電システム群による応答での充放電は「1次調整力」と呼ばれ、第2蓄電システム群による応答での充放電は「2次調整力」と呼ばれることがある。2次調整力に続く3次調整力が含まれてもよいが、ここでは3次調整力を省略する。また、第1蓄電システム群は第1群管理システムに接続され、第2蓄電システム群は第2群管理システムに接続されるとする。
In order to cope with this, when the power demand fluctuates, the aforementioned first storage system group responds quickly, and subsequently, the second storage system group responds so as to replace the first storage system group. That is, charge / discharge for responding quickly to fluctuations is provided by the first storage system group, and stable charge / discharge is provided by the second storage system group. Here, charge / discharge in response by the first storage system group may be called "primary adjustment power", and charge / discharge in response by the second storage system group may be called "secondary adjustment power". A secondary adjustment force may be followed by a tertiary adjustment force, but the tertiary adjustment force is omitted here. Further, it is assumed that the first storage system group is connected to the first group management system, and the second storage system group is connected to the second group management system.
このような状況において、第1蓄電システム群から第2蓄電システム群への引き継ぎが適切になされない場合、電力系統の周波数が安定するまでの期間が長くなる。そのため、本実施例では、第2群管理システムは、第1蓄電システム群が充放電する電力の最大値、第1蓄電システム群から充放電される電力が最大値から減少する予定の第1時刻、第1時刻以降に第1蓄電システム群が充放電する電力の第1変化割合を取得する。また、第2群管理システムは、電力の最大値、第1時刻、第1変化割合をもとに、第2蓄電システム群に充放電を開始させる予定の第2時刻、第2時刻以降に第2蓄電システム群に充放電させる電力の第2変化割合を決定する。さらに、第2群管理システムは、第2蓄電システム群に対して、第2時刻に充放電を開始させるとともに、第2変化割合で充放電を実行させる。
In such a situation, when handover from the first storage battery group to the second storage battery group is not properly performed, the period until the frequency of the power system is stabilized becomes long. Therefore, in the present embodiment, in the second group management system, the maximum value of the power charged / discharged by the first storage system group, and the first time when the power charged / discharged from the first storage system group is to be reduced from the maximum value. The first change ratio of the power charged / discharged by the first storage system group after the first time is acquired. In addition, the second group management system is configured to use the second power storage system group to start charging / discharging based on the maximum value of the power, the first time, and the first change ratio, and the second time or later after the second time. 2. Determine a second change rate of the power charged / discharged to the storage system group. Furthermore, the second group management system causes the second storage system group to start charging / discharging at the second time and to execute charging / discharging at the second change ratio.
図1は、VPPシステム100の構成を示す。VPPシステム100は、上位システムサーバ10、群管理システムサーバ12と総称される第1群管理システムサーバ12a、第2群管理システムサーバ12b、電力管理システムサーバ14と総称される第1電力管理システムサーバ14a、第2電力管理システムサーバ14b、第N電力管理システムサーバ14n、第N+1電力管理システムサーバ14n+1、第N+2電力管理システムサーバ14n+2、第N+M電力管理システムサーバ14n+mを含む。ここで、第1電力管理システムサーバ14aは第1需要家16aに設置され、第N+M電力管理システムサーバ14n+mは第N+M需要家16n+mに設置され、第1需要家16aから第N+M需要家16n+mは需要家16と総称される。群管理システムサーバ12の数は「2」に限定されず、電力管理システムサーバ14と需要家16の数は「N+M」に限定されない。
FIG. 1 shows the configuration of the VPP system 100. The VPP system 100 includes a host system server 10, a first group management system server 12a collectively referred to as a group management system server 12, a first power management system server generically referred to as a power management system server 14 and a second group management system server 12b. 14a, a second power management system server 14b, an Nth power management system server 14n, an (N + 1) th power management system server 14n + 1, an (N + 2) th power management system server 14n + 2, and an (N + M) th power management system server 14n + m. Here, the first power management system server 14a is installed in the first customer 16a, the N + M power management system server 14n + m is installed in the N + M customer 16n + m, and the 1st customer 16a to the N + M customer 16n + m are in demand. Collectively referred to as House 16. The number of group management system servers 12 is not limited to “2”, and the number of power management system servers 14 and customers 16 is not limited to “N + M”.
需要家16は、例えば、一戸建ての住宅、マンションなどの集合住宅、コンビニエンスストアまたはスーパーマーケットなどの店舗、ビルなどの商用施設、工場であり、前述のごとく、電力会社等からの電力の供給を受けている施設である。需要家16には、空調機器(エアコン)、テレビジョン受信装置(テレビ)、照明装置、蓄電システム、ヒートポンプ給湯機等の機器が設置される。これらの機器は、電力事業者等の電力系統に接続されることによって、商用電力の供給を受けて、電力を消費する。機器として、電力使用の削減量が比較的大きいと想定されるものが有用であるが、削減量があまり大きくないと想定されてもよい。機器に、太陽電池システム、燃料電池システム等の再生可能エネルギー発電装置が含まれてもよい。
The customer 16 is, for example, a single-family house, an apartment house such as an apartment, a store such as a convenience store or a supermarket, a commercial facility such as a building, a factory. It is an existing facility. The customer 16 is provided with equipment such as an air conditioner (air conditioner), a television receiver (television), a lighting device, a storage system, and a heat pump water heater. These devices receive the supply of commercial power and consume power by being connected to a power system such as a power company. As an apparatus, although what is assumed that the reduction amount of electric power consumption is comparatively large is useful, it may be assumed that the reduction amount is not so large. The device may include a renewable energy generator such as a solar cell system or a fuel cell system.
電力管理システムサーバ14は、電力管理システムの処理を実行するためのコンピュータであり、例えば、需要家16内に設置される。電力管理システムサーバ14は、例えば、HEMS(Home Energy Management System)コントローラとしての機能を有する。そのため、電力管理システムサーバ14は、HAN(Home Area Network)により需要家16内の各種機器と通信可能であり、これらの機器を制御する。電力管理システムサーバ14は、蓄電システムの動作、例えば、放電、充電を制御する。また、電力管理システムサーバ14は、需要家16に設置された機器と電力系統との間の連系を制御してもよい。電力管理システムサーバ14は、停電時に機器と電力系統との間を解列し、復電時に機器と電力系統との間を連系する。
The power management system server 14 is a computer for executing the processing of the power management system, and is installed, for example, in the customer 16. The power management system server 14 has, for example, a function as a home energy management system (HEMS) controller. Therefore, the power management system server 14 can communicate with various devices in the customer 16 by HAN (Home Area Network), and controls these devices. The power management system server 14 controls the operation of the storage system, for example, discharge and charge. In addition, the power management system server 14 may control the interconnection between the devices installed in the customer 16 and the power system. The power management system server 14 disconnects between the device and the power system at the time of power failure, and interconnects between the device and the power system at the time of power recovery.
群管理システムサーバ12は、群管理システムの処理を実行するためのコンピュータである。群管理システムサーバ12は、複数の電力管理システムサーバ14を接続することによって、複数の電力管理システムサーバ14を管理する。その結果、群管理システムサーバ12は、複数の電力管理システムサーバ14のそれぞれに接続される複数の機器を統括的に管理する。ここでは、第1電力管理システムサーバ14aから第N電力管理システムサーバ14nのそれぞれに接続された蓄電システムのまとまりが前述の第1蓄電システム群に相当し、第1蓄電システム群は第1群管理システムサーバ12aによって管理される。また、第N+1電力管理システムサーバ14n+1から第N+M電力管理システムサーバ14n+mのそれぞれに接続された蓄電システムのまとまりが前述の第2蓄電システム群に相当し、第2蓄電システム群は第2群管理システムサーバ12bによって管理される。
The group management system server 12 is a computer for executing the processing of the group management system. The group management system server 12 manages a plurality of power management system servers 14 by connecting a plurality of power management system servers 14. As a result, the group management system server 12 centrally manages a plurality of devices connected to each of the plurality of power management system servers 14. Here, a group of storage systems connected to each of the first power management system server 14a to the Nth power management system server 14n corresponds to the first storage system group described above, and the first storage system group is the first group management It is managed by the system server 12a. A group of storage systems connected to each of the (N + 1) th power management system server 14n + 1 to the (N + M) th power management system server 14n + m corresponds to the second storage system group described above, and the second storage system group is a second group management system It is managed by the server 12b.
複数の群管理システムサーバ12は、上位システムサーバ10に接続される。上位システムサーバ10は、アグリゲータである上位システムの処理を実行するためのコンピュータである。前述のごとく、上位システムと群管理システムを含むVPPは、市場で、あるいは事業者と相対契約で電力を取引しており、上位システムサーバ10は、契約に応じた要求を群管理システムサーバ12に出力する。1つの群管理システムサーバ12が複数の上位システムサーバ10に接続されてもよい。
The plurality of group management system servers 12 are connected to the upper system server 10. The upper system server 10 is a computer for executing the processing of the upper system which is an aggregator. As described above, the VPP including the upper system and the group management system trades power in the market or in a relative contract with the business operator, and the upper system server 10 sends the group management system server 12 a request according to the contract. Output. One group management system server 12 may be connected to a plurality of upper system servers 10.
このような構成によって、上位システムが管理する需要家群全体の電力需要が逼迫する場合、群管理システムサーバ12は、蓄電システムから放電した電力を需要家16内で消費させたり、需要家16内での電力消費を抑制させたりするように電力管理システムサーバ14を制御する。また、上位システムが管理する需要家群全体の発電が増加し、供給が需要を上まわる場合、群管理システムサーバ12は、蓄電システムへの充電を増やしたり、需要家16内での需要を増大させたりするように電力管理システムサーバ14を制御する。その際、電力需要の変動が発生すると、第1群管理システムサーバ12aは第1蓄電システム群の充放電を開始する。また、第1蓄電システム群における充放電が開始されてから一定期間が経過すると、第1群管理システムサーバ12aは第1蓄電システム群の充放電を減少させるとともに、第2群管理システムサーバ12bは第2蓄電システム群の充放電を開始する。
With such a configuration, when the power demand of the entire group of customers managed by the upper system becomes tight, the group management system server 12 consumes the power discharged from the storage system in the customer 16 or within the customer 16. Control the power management system server 14 so as to reduce power consumption at In addition, if the power generation of the entire group of customers managed by the upper system increases and the supply exceeds the demand, the group management system server 12 increases the charge to the storage system or increases the demand in the customer 16 Control the power management system server 14 to At that time, when fluctuation of the power demand occurs, the first group management system server 12a starts charging / discharging of the first power storage system group. In addition, when a certain period of time has elapsed since the start of charge / discharge in the first storage system group, the first group management system server 12a reduces the charge / discharge of the first storage system group, and the second group management system server 12b Start charging and discharging of the second storage system group.
図2は、需要家16の構成を示す。需要家16には、電力系統30、スマートメータ32、分電盤34、負荷36、蓄電システム40、電力管理システムサーバ14、例えば第N+1電力管理システムサーバ14n+1が設置される。また、蓄電システム40は、SB(Storage Battery)210、SB用DC/DC212、双方向DC/ACインバータ214、制御装置216を含む。さらに、第N+1電力管理システムサーバ14n+1には、ネットワーク18を介して群管理システムサーバ12、例えば第2群管理システムサーバ12bが接続される。需要家16には、太陽電池システム、ヒートポンプ給湯機等が設置されてもよいが、ここではこれらを省略する。図2の需要家16は、第N+1電力管理システムサーバ14n+1を含むので、これは図1の第N+1需要家16n+1に相当するが、他の需要家16も同様に構成される。
FIG. 2 shows the configuration of the customer 16. The customer 16 is provided with a power system 30, a smart meter 32, a distribution board 34, a load 36, a storage system 40, and a power management system server 14, for example, an (N + 1) th power management system server 14n + 1. Further, the storage system 40 includes a storage battery (SB) 210, a DC / DC 212 for SB, a bi-directional DC / AC inverter 214, and a control device 216. Furthermore, a group management system server 12, for example, a second group management system server 12b is connected to the (N + 1) th power management system server 14n + 1 via the network 18. Although a solar cell system, a heat pump water heater, etc. may be installed in the customer 16, these are omitted here. Since the customer 16 of FIG. 2 includes the (N + 1) th power management system server 14n + 1, this corresponds to the (N + 1) th customer 16n + 1 of FIG. 1, but the other customers 16 are similarly configured.
電力系統30における電力需要は時間の経過とともに変動する。スマートメータ32は、電力系統30に接続され、デジタル式の電力量計である。スマートメータ32は、電力系統30から入ってくる潮流の電力量と、電力系統30へ出て行く逆潮流の電力量とを計測可能である。スマートメータ32は、通信機能を有し、電力管理システムサーバ14と通信可能である。
The power demand in the power system 30 fluctuates with the passage of time. The smart meter 32 is connected to the power system 30 and is a digital power meter. The smart meter 32 can measure the amount of power of the current flowing from the power system 30 and the amount of power of the reverse current flowing out of the power system 30. The smart meter 32 has a communication function and can communicate with the power management system server 14.
配電線42は、スマートメータ32と分電盤34とを結ぶ。分電盤34は、配電線42に接続されるとともに、負荷36を接続する。分電盤34は、負荷36に電力を供給する。負荷36は、配電線42を介して供給される電力を消費する機器である。負荷36は、冷蔵庫、エアコン、照明等の機器を含む。ここでは、分電盤34に1つの負荷36が接続されているが、分電盤34に複数の負荷36が接続されてもよい。
The distribution line 42 connects the smart meter 32 and the distribution board 34. The distribution board 34 is connected to the distribution line 42 and also connects the load 36. The distribution board 34 supplies power to the load 36. The load 36 is a device that consumes the power supplied via the distribution line 42. The load 36 includes equipment such as a refrigerator, an air conditioner, and lighting. Here, although one load 36 is connected to the distribution board 34, a plurality of loads 36 may be connected to the distribution board 34.
SB210は、電力を充放電可能な蓄電池であり、リチウムイオン蓄電池、ニッケル水素蓄電池、鉛蓄電池、電気二重層キャパシタ、リチウムイオンキャパシタ等を含む。SB210はSB用DC/DC212に接続される。SB用DC/DC212は、DC-DCコンバータであり、SB210側の直流電力と、双方向DC/ACインバータ214側の直流電力との間の変換を実行する。
The SB 210 is a storage battery capable of charging and discharging electric power, and includes a lithium ion storage battery, a nickel hydrogen storage battery, a lead storage battery, an electric double layer capacitor, a lithium ion capacitor, and the like. The SB 210 is connected to the DC / DC 212 for SB. The SB DC / DC 212 is a DC-DC converter, and performs conversion between the DC power on the SB 210 side and the DC power on the bidirectional DC / AC inverter 214 side.
双方向DC/ACインバータ214は、SB用DC/DC212と分電盤34との間に接続される。双方向DC/ACインバータ214は、分電盤34からの交流電力を直流電力に変換し、変換した直流電力をSB用DC/DC212に出力する。また、双方向DC/ACインバータ214は、SB用DC/DC212からの直流電力を交流電力に変換し、変換した交流電力を分電盤34に出力する。つまり、双方向DC/ACインバータ214によってSB210は充放電される。このような双方向DC/ACインバータ214の制御は制御装置216によってなされる。ここで、SB210、SB用DC/DC212、双方向DC/ACインバータ214、制御装置216は1つの筐体に格納されてもよく、その場合であっても、これを蓄電システム40と呼ぶ。
The bi-directional DC / AC inverter 214 is connected between the DC / DC 212 for SB and the distribution board 34. The bidirectional DC / AC inverter 214 converts AC power from the distribution board 34 into DC power, and outputs the converted DC power to the SB DC / DC 212. The bidirectional DC / AC inverter 214 converts the DC power from the SB DC / DC 212 into AC power, and outputs the converted AC power to the distribution board 34. That is, the SB 210 is charged and discharged by the bi-directional DC / AC inverter 214. The control of the bi-directional DC / AC inverter 214 is performed by the controller 216. Here, the SB 210, the SB DC / DC 212, the bidirectional DC / AC inverter 214, and the control device 216 may be stored in one case, and even in that case, this is referred to as a storage system 40.
第N+1電力管理システムサーバ14n+1は、HAN等のネットワークを介して、スマートメータ32、蓄電システム40に接続され、それぞれと通信可能である。以下では、第N+1電力管理システムサーバ14n+1とスマートメータ32との間の通信は説明を省略する。また、第N+1電力管理システムサーバ14n+1は、ネットワーク18を介して第2群管理システムサーバ12bにも接続される。
The (N + 1) th power management system server 14n + 1 is connected to the smart meter 32 and the storage system 40 via a network such as HAN, and can communicate therewith. In the following, the communication between the (N + 1) th power management system server 14n + 1 and the smart meter 32 will not be described. The (N + 1) th power management system server 14 n + 1 is also connected to the second group management system server 12 b via the network 18.
図3(a)-(b)は、電力系統30における電力需要の変動に対する動作を示す。図3(a)は、1次調整力702から2次調整力704への引き継ぎが適切になされている場合における電力需要700、1次調整力702、2次調整力704の時間変化を示す。横軸は時間を示し、縦軸は電力を示す。ここでは、時刻「t0」において電力需要700が増加する場合を想定する。電力需要700の増加に応答して、1次調整力702による電力も増加する。これは、第1蓄電システム群から放電される電力が増加することに相当する。時刻「t0」よりも後の時刻「t1」において、電力需要700は一定になる。一方、1次調整力702による電力は継続して増加する。
FIGS. 3 (a)-(b) show the operation for fluctuations in the power demand in the power system 30. FIG. FIG. 3A shows temporal changes in the power demand 700, the primary adjustment force 702, and the secondary adjustment force 704 when the primary adjustment force 702 is properly handed over to the secondary adjustment force 704. The horizontal axis shows time, and the vertical axis shows power. Here, it is assumed that power demand 700 increases at time “t0”. In response to the increase in power demand 700, the power from the primary coordination 702 also increases. This corresponds to an increase in the power discharged from the first storage system group. At time "t1" after time "t0", the power demand 700 becomes constant. On the other hand, the power by the primary adjustment power 702 continues to increase.
時刻「t1」よりも後の時刻「t2」において、1次調整力702による電力は一定になる。ここで、1次調整力702による電力は電力需要700よりも小さい。時刻「t2」よりも後の時刻「t3」から、2次調整力704による電力が増加する。これは、第2蓄電システム群から放電される電力が増加することに相当する。時刻「t3」よりも後の時刻「t4」から、1次調整力702による電力は減少する。その結果、1次調整力702による電力は減少しながら、2次調整力704による電力は増加する。時刻「t5」において、1次調整力702による電力は0になり、2次調整力704による電力は電力需要700と同一になる。
At time "t2" after time "t1", the power by the primary adjustment force 702 becomes constant. Here, the power by the primary adjustment power 702 is smaller than the power demand 700. From time “t3” after time “t2”, the power by the secondary adjustment force 704 increases. This corresponds to an increase in the power discharged from the second storage system group. From time “t4” after time “t3”, the power by the primary adjustment force 702 decreases. As a result, while the power by the primary adjustment power 702 decreases, the power by the secondary adjustment power 704 increases. At time “t5”, the power by the primary adjustment power 702 is 0, and the power by the secondary adjustment power 704 is the same as the power demand 700.
図3(b)は、図3(a)の場合における周波数(理想時)710の変化を示す。ここでは、基準周波数である商用電源周波数を「50Hz」とする。時刻「t0」から時刻「t1」において、電力需要700および1次調整力702による電力は増加するが、前者の方が増加の変化割合が大きいので、電力系統30における電力不足が時間の経過とともに大きくなる。電力系統30における電力が不足すると、電力系統30における周波数が低下するので、時刻「t0」から時刻「t1」において、「50Hz」からの周波数(理想時)710の低下が時間の経過とともに大きくなる。
FIG. 3 (b) shows the change of the frequency (ideal time) 710 in the case of FIG. 3 (a). Here, the commercial power supply frequency which is a reference frequency is set to “50 Hz”. From time “t0” to time “t1”, although the power by the power demand 700 and the primary adjustment power 702 increases, the change rate of the increase is larger in the former, so the power shortage in the power system 30 is over time growing. When the power in the power system 30 runs short, the frequency in the power system 30 decreases, so the decrease in the frequency (ideal time) 710 from “50 Hz” increases from time “t0” to time “t1”. .
時刻「t1」において電力需要700は一定になり、時刻「t2」において1次調整力702による電力も一定になるので、時刻「t1」から時刻「t3」において、周波数(理想時)710は、増加してから、「50Hz」よりも低いながらも一定になる。つまり、1次調整力702による電力によって、周波数低下が抑制される。時刻「t3」から2次調整力704による電力が増加し、時刻「t4」から1次調整力702による電力が減少するので、時刻「t3」から時刻「t5」において、周波数(理想時)710は、増加して、「50Hz」に回復する。
Since the power demand 700 becomes constant at time “t1” and the power by the primary adjustment power 702 also becomes constant at time “t2”, the frequency (ideal time) 710 is from time “t1” to time “t3” After increasing, it becomes constant although lower than "50 Hz". That is, the power reduction by the primary adjustment force 702 is suppressed. The power by the secondary adjustment force 704 increases from time “t3”, and the power by the primary adjustment force 702 decreases from time “t4”, so the frequency (ideal time) 710 at times “t3” to “t5”. Increases and recovers to "50 Hz".
図4(a)-(b)は、電力系統30における電力需要の変動に対する別の動作を示す。図4(a)は、1次調整力702から2次調整力704への引き継ぎが適切になされていない場合における電力需要700、1次調整力702、2次調整力704の時間変化を示す。時刻「t0」から時刻「t3」までの変化は図3(a)と同一である。図3(a)の時刻「t4」よりも後の時刻「t4’」から、1次調整力702による電力は減少する。つまり、図4(a)では、図3(a)と比較して、1次調整力702による電力を減少させるタイミングが遅くなっている。時刻「t4’」以降、1次調整力702による電力は減少しながら、2次調整力704による電力は増加する。
FIGS. 4 (a)-(b) illustrate another operation for fluctuations in power demand in the power system 30. FIG. FIG. 4A shows temporal changes in the power demand 700, the primary adjustment force 702, and the secondary adjustment force 704 when the primary adjustment force 702 is not properly taken over from the secondary adjustment force 704. The change from time "t0" to time "t3" is the same as in FIG. 3 (a). From time “t4 ′” after time “t4” in FIG. 3A, the power by the primary adjustment force 702 decreases. That is, in FIG. 4A, the timing at which the power by the primary adjustment force 702 is reduced is delayed as compared with FIG. 3A. After time “t4 ′”, the power of the primary adjustment force 702 decreases while the power of the secondary adjustment force 704 increases.
図4(b)は、図4(a)の場合における周波数(制御前)712の変化を示す。比較のために、図3(b)の周波数(理想時)710も合わせて示される。時刻「t0」から時刻「t4」において、周波数(理想時)710と周波数(制御前)712の変化は同一である。一方、時刻「t4」から時刻「t4’」において、周波数(制御前)712は、「50Hz」を超えて上昇する。また、時刻「t4’」から時刻「t4’’」において、周波数(制御前)712は、「50Hz」を下回るように減少する。さらに、時刻「t4’」から周波数(制御前)712は再び上昇する。つまり、1次調整力702から2次調整力704への引き継ぎが適切になされなければ、周波数(制御前)712は「50Hz」を挟んで上下する。これにより、周波数(制御前)712は商用電源周波数に収束しにくくなる。
FIG. 4B shows the change of the frequency (before control) 712 in the case of FIG. 4A. The frequency (ideal time) 710 of FIG. 3 (b) is also shown for comparison. From time “t0” to time “t4”, changes in the frequency (ideal time) 710 and the frequency (before control) 712 are the same. On the other hand, from time "t4" to time "t4 '", the frequency (before control) 712 rises above "50 Hz". Also, from time “t4 ′” to time “t4 ′ ′”, the frequency (before control) 712 decreases so as to fall below “50 Hz”. Furthermore, the frequency (before control) 712 rises again from time “t4 ′”. That is, if the primary adjustment force 702 is not properly taken over from the secondary adjustment force 704, the frequency (before control) 712 goes up and down across "50 Hz". This makes it difficult for the frequency (before control) 712 to converge to the commercial power supply frequency.
図5は、第1群管理システムサーバ12a、第2群管理システムサーバ12b、第N+1電力管理システムサーバ14n+1、第N+2電力管理システムサーバ14n+2の構成を示す。前述のごとく、第1群管理システムサーバ12aは、複数の需要家16のそれぞれに設置された蓄電システム40であって、かつ電力系統30に接続された蓄電システム40を含む第1蓄電システム群を制御する。一方、第2群管理システムサーバ12bは、複数の需要家16のそれぞれに設置された蓄電システム40であって、かつ電力系統30に接続された蓄電システム40を含む第2蓄電システム群を制御する。第1蓄電システム群と第2蓄電システム群は別に構成され、第1蓄電システム群は、第2蓄電システム群よりも先に電力系統30の電力の変動に応答する。
FIG. 5 shows the configuration of the first group management system server 12a, the second group management system server 12b, the (N + 1) th power management system server 14n + 1, and the (N + 2) th power management system server 14n + 2. As described above, the first group management system server 12 a is the storage system 40 installed in each of the plurality of customers 16 and includes the first storage system group including the storage system 40 connected to the power system 30. Control. On the other hand, the second group management system server 12 b controls the second storage system group including the storage system 40 connected to the power system 30, which is the storage system 40 installed in each of the plurality of customers 16. . The first power storage system group and the second power storage system group are separately configured, and the first power storage system group responds to fluctuations in the power of the power system 30 earlier than the second power storage system group.
ここでは、一例として、図5のごとく、第2群管理システムサーバ12bに第N+1電力管理システムサーバ14n+1と第N+2電力管理システムサーバ14n+2が接続されている場合を示す。第2群管理システムサーバ12bは、第1通信部430、第2通信部434、取得部440、決定部442を含み、第2通信部434は、受信部420、送信部422を含む。第1通信部430と第2通信部434は一体的に構成されてもよい。第N+1電力管理システムサーバ14n+1は、サービス連携部300、制御部302を含み、サービス連携部300は、受信部510、送信部512を含む。第N+2電力管理システムサーバ14n+2は第N+1電力管理システムサーバ14n+1と同一の構成を有する。以下では、説明を明瞭にするために、第N+1電力管理システムサーバ14n+1のサービス連携部300、制御部302を単に「サービス連携部300」、「制御部302」ということもある。
Here, as an example, as shown in FIG. 5, the case where the (N + 1) th power management system server 14n + 1 and the (N + 2) th power management system server 14n + 2 are connected to the second group management system server 12b is shown. The second group management system server 12 b includes a first communication unit 430, a second communication unit 434, an acquisition unit 440, and a determination unit 442. The second communication unit 434 includes a reception unit 420 and a transmission unit 422. The first communication unit 430 and the second communication unit 434 may be integrally configured. The (N + 1) th power management system server 14 n + 1 includes a service cooperation unit 300 and a control unit 302, and the service cooperation unit 300 includes a reception unit 510 and a transmission unit 512. The (N + 2) th power management system server 14n + 2 has the same configuration as the (N + 1) th power management system server 14n + 1. In the following, the service cooperation unit 300 and the control unit 302 of the (N + 1) th power management system server 14 n + 1 may be simply referred to as “service cooperation unit 300” and “control unit 302” for the sake of clarity.
図1の上位システムサーバ10は、電力系統30における交流電力の周波数を監視する。交流電力の周波数は、電力需要が増加して電力が不足すると商用電源周波数より低くなり、電力需要が減少して電力が過剰になると商用電源周波数より高くなる。そのため、上位システムサーバ10は、電力系統30における交流電力の周波数が商用電源周波数よりも低くなると、VPPシステム100に含まれた複数の蓄電システム40を含む蓄電システム群に放電させることを決定する。一方、上位システムサーバ10は、電力系統30における交流電力の周波数が商用電源周波数よりも高くなると、蓄電システム群に充電させることを決定する。このような上位システムサーバ10の決定にしたがって、第1群管理システムサーバ12aは第1蓄電システム群を制御する。その結果、図3(a)、図4(a)における1次調整力702のような動作がなされる。
The upper system server 10 of FIG. 1 monitors the frequency of AC power in the power system 30. The frequency of the AC power is lower than the commercial power frequency when the power demand increases and the power is insufficient, and is higher than the commercial power frequency when the power demand decreases and the power becomes excessive. Therefore, when the frequency of the AC power in power system 30 becomes lower than the commercial power supply frequency, upper system server 10 determines to discharge to a storage system group including a plurality of storage systems 40 included in VPP system 100. On the other hand, when the frequency of the AC power in power system 30 becomes higher than the commercial power supply frequency, upper system server 10 determines to charge the storage system group. According to such determination of the upper system server 10, the first group management system server 12a controls the first power storage system group. As a result, operations such as the primary adjustment force 702 in FIGS. 3A and 4A are performed.
第1群管理システムサーバ12aは、第1蓄電システム群を制御する際に、第1蓄電システム群が充放電する電力の最大値を決定する。電力の最大値は、電力需要700に応答して充放電する際の最大値であり、第1蓄電システム群が充放電可能な電力の最大値以下に設定される。これは、図3(a)、図4(a)の1次調整力702による電力の最大値に相当する。また、第1群管理システムサーバ12aは、第1蓄電システム群において充放電される電力が最大値から減少する予定の第1時刻を決定するとともに、第1時刻から第1蓄電システム群が充放電する電力の第1変化割合とを決定する。これらの決定には公知の技術が使用されればよいので、ここでは説明を省略する。第1群管理システムサーバ12aは、決定したこれらの情報を第1調整力パラメータとして第2群管理システムサーバ12bに送信する。
When controlling the first storage system group, the first group management system server 12a determines the maximum value of the power charged / discharged by the first storage system group. The maximum value of the power is the maximum value when charging and discharging in response to the power demand 700, and is set to be equal to or less than the maximum value of power that the first storage system group can charge and discharge. This corresponds to the maximum value of the power by the primary adjustment force 702 in FIGS. 3 (a) and 4 (a). Further, the first group management system server 12a determines the first time when the power charged / discharged in the first power storage system group is scheduled to decrease from the maximum value, and the first power storage system group charges / discharges from the first time. And the first change rate of the power to be generated. Since known techniques may be used for these determinations, the description is omitted here. The first group management system server 12a transmits the determined information to the second group management system server 12b as a first adjustment parameter.
図6(a)-(d)は、VPPシステム100において使用されるメッセージのフォーマットを示す。図6(a)のごとく、メッセージでは、メッセージ種別のフィールドに続いてデータのフィールドが配置される。メッセージ種別のフィールドは、メッセージの種別を示し、データのフィールドは、通知したいデータを示す。図6(b)は、第1調整力パラメータのメッセージのフォーマットを示す。メッセージ種別のフィールドには第1調整力パラメータが示され、データのフィールドには、放電あるいは充電の指示、電力の最大値、第1時刻、第1変化割合が示される。図6(b)-(d)については後述し、図5に戻る。
6 (a)-(d) show the format of the message used in VPP system 100. FIG. As shown in FIG. 6A, in the message, fields of data are arranged following fields of message type. The message type field indicates the type of message, and the data field indicates data to be notified. FIG. 6 (b) shows the format of the message of the first adjustment force parameter. The message type field indicates a first adjustment force parameter, and the data field indicates a discharge or charge instruction, maximum value of power, a first time, and a first change rate. 6 (b)-(d) will be described later, and the process returns to FIG.
第2群管理システムサーバ12bの第1通信部430は、第1群管理システムサーバ12aから、第1調整力パラメータのメッセージを受信する。第1通信部430は、第1調整力パラメータのメッセージを取得部440に出力する。取得部440は、第1調整力パラメータのメッセージから、放電あるいは充電の指示、電力の最大値、第1時刻、第1変化割合を取得する。取得部440は、放電あるいは充電の指示、電力の最大値、第1時刻、第1変化割合を決定部442に出力する。
The first communication unit 430 of the second group management system server 12 b receives the message of the first adjustment power parameter from the first group management system server 12 a. The first communication unit 430 outputs a message of the first adjustment force parameter to the acquisition unit 440. The acquisition unit 440 acquires a discharge or charge instruction, the maximum value of power, the first time, and the first change ratio from the message of the first adjustment force parameter. The acquisition unit 440 outputs a discharge or charge instruction, the maximum value of power, the first time, and the first change ratio to the determination unit 442.
決定部442は、取得部440において取得した電力の最大値と、第1時刻と、第1変化割合とをもとに、第2蓄電システム群に充放電を開始させる予定の第2時刻と、第2時刻から第2蓄電システム群に充放電させる電力の第2変化割合とを決定する。以下では、決定部442での決定処理として、(1)第2変化割合を固定して第2時刻を決定する処理、(2)第2時刻を固定して第2変化割合を決定する処理、(3)第2時刻と第2変化割合を決定する処理の順に説明する。
The determination unit 442 is configured to cause the second storage system group to start charging / discharging based on the maximum value of the power acquired by the acquiring unit 440, the first time, and the first change ratio, and A second change ratio of power charged / discharged to the second power storage system group from the second time is determined. Hereinafter, as the determination processing in the determination unit 442, (1) processing of fixing the second change rate and determining the second time, (2) processing of fixing the second time and determining the second change rate, (3) The process of determining the second time and the second change rate will be described in order.
(1)第2変化割合を固定して第2時刻を決定する処理
ここでは、当該処理を説明するために図7(a)-(d)を使用する。図7(a)-(d)は、決定部442における処理を示す。図7(a)は、(1)の場合における電力需要700、1次調整力702、2次調整力704の変化を示す。決定部442は、1次調整力702に対する最大値750、第1時刻752、第1変化割合754を受けつける。決定部442は、最大値750、第1時刻752、第1変化割合754から、1次調整力702による電力が0になる第3時刻756を算出する。また、決定部442は、2次調整力704に対する第2変化割合762を取得する。第2変化割合762は予め設定されており、かつ決定部442に記憶されている。決定部442は、第3時刻756における2次調整力704の出力値758を決定する。 (1) Processing of fixing the second change ratio and determining the second time Here, FIGS. 7A to 7D are used to explain the processing. FIGS. 7A to 7D show the process in thedetermination unit 442. FIG. FIG. 7A shows changes in the power demand 700, the primary adjustment power 702, and the secondary adjustment power 704 in the case of (1). The determination unit 442 receives the maximum value 750, the first time 752, and the first change ratio 754 for the primary adjustment power 702. From the maximum value 750, the first time 752, and the first change rate 754, the determination unit 442 calculates a third time 756 at which the power by the primary adjustment force 702 is zero. In addition, the determination unit 442 acquires a second change ratio 762 with respect to the secondary adjustment force 704. The second change ratio 762 is preset and stored in the determination unit 442. The determination unit 442 determines the output value 758 of the secondary adjustment force 704 at the third time 756.
ここでは、当該処理を説明するために図7(a)-(d)を使用する。図7(a)-(d)は、決定部442における処理を示す。図7(a)は、(1)の場合における電力需要700、1次調整力702、2次調整力704の変化を示す。決定部442は、1次調整力702に対する最大値750、第1時刻752、第1変化割合754を受けつける。決定部442は、最大値750、第1時刻752、第1変化割合754から、1次調整力702による電力が0になる第3時刻756を算出する。また、決定部442は、2次調整力704に対する第2変化割合762を取得する。第2変化割合762は予め設定されており、かつ決定部442に記憶されている。決定部442は、第3時刻756における2次調整力704の出力値758を決定する。 (1) Processing of fixing the second change ratio and determining the second time Here, FIGS. 7A to 7D are used to explain the processing. FIGS. 7A to 7D show the process in the
さらに、決定部442は、第3時刻756、出力値758で示される点と、第2変化割合762で特定される直線が電力ゼロとなる時刻を算出する。算出した時刻が第2時刻760である。つまり、決定部442は、第2変化割合762を固定しながら、電力の最大値750と、第1時刻752と、第1変化割合754とをもとに、第2時刻760を決定する。図7(b)は、図7(a)の場合における周波数(制御後)714の変化を示す。比較のために、これまで説明した周波数(理想時)710、周波数(制御前)712も合わせて示される。周波数(制御後)714は、周波数(制御前)712と比較して、「50Hz」を挟んで上下することなく、商用電源周波数に収束する。
Furthermore, the determination unit 442 calculates the time at which the point specified by the third time 756 and the output value 758 and the straight line specified by the second change ratio 762 have no power. The calculated time is the second time 760. That is, the determination unit 442 determines the second time 760 based on the maximum value 750 of the power, the first time 752, and the first change rate 754 while fixing the second change rate 762. FIG. 7B shows the change of the frequency (after control) 714 in the case of FIG. 7A. For comparison, the frequency (ideal time) 710 and the frequency (before control) 712 described above are also shown. The frequency (after control) 714 converges to the commercial power supply frequency without rising and falling with “50 Hz” in comparison with the frequency (before control) 712.
(2)第2時刻を固定して第2変化割合を決定する処理
図7(c)は、(2)の場合における電力需要700、1次調整力702、2次調整力704の変化を示す。決定部442は、1次調整力702に対する最大値750、第1時刻752、第1変化割合754を受けつける。決定部442は、最大値750、第1時刻752、第1変化割合754から、1次調整力702による電力が0になる第3時刻756を算出する。また、決定部442は、2次調整力704に対する第2時刻760を取得する。第2時刻760は、例えば、第1時刻752から所定時間前になるように定められる。 (2) A process of fixing the second time and determining the second change rate FIG. 7C shows changes in thepower demand 700, the primary adjustment force 702, and the secondary adjustment force 704 in the case of (2). . The determination unit 442 receives the maximum value 750, the first time 752, and the first change ratio 754 for the primary adjustment power 702. From the maximum value 750, the first time 752, and the first change rate 754, the determination unit 442 calculates a third time 756 at which the power by the primary adjustment force 702 is zero. In addition, the determination unit 442 acquires a second time 760 for the secondary adjustment force 704. The second time 760 is determined to be, for example, a predetermined time before the first time 752.
図7(c)は、(2)の場合における電力需要700、1次調整力702、2次調整力704の変化を示す。決定部442は、1次調整力702に対する最大値750、第1時刻752、第1変化割合754を受けつける。決定部442は、最大値750、第1時刻752、第1変化割合754から、1次調整力702による電力が0になる第3時刻756を算出する。また、決定部442は、2次調整力704に対する第2時刻760を取得する。第2時刻760は、例えば、第1時刻752から所定時間前になるように定められる。 (2) A process of fixing the second time and determining the second change rate FIG. 7C shows changes in the
決定部442は、次の最小化問題を解くことによって、第2時刻760から第3時刻756までの第2変化割合762を算出する。目的関数は、次のように示される。
これは、各時刻の変化割合の合計値が最小となるようにv1,・・・,vnを算出することを示す。また、制約条件は次のように示される。
これは、周波数を上昇させる場合、時刻tの周波数ftが時刻t-1の周波数ft-1を下回らないようなvtとすることを示す。また、オーバシュートしないようftは商用電源周波数fb以下とされることを示す。
The determination unit 442 calculates a second change ratio 762 from the second time 760 to the third time 756 by solving the next minimization problem. The objective function is shown as follows.
This indicates that v 1 ,..., V n are calculated such that the total value of change rates at each time is minimized. Also, the constraint is shown as follows.
This indicates that when raising the frequency, the frequency f t at time t is set to v t such that the frequency f t does not fall below the frequency f t-1 at time t-1. Also, it is indicated that f t is made equal to or lower than the commercial power supply frequency f b so as not to overshoot.
nは第3時刻756-第2時刻760を示し、tは各時刻を示し、ptは、1次調整力702の最大値750、第1時刻752、第1変化割合754から求まる時刻t時点での1次調整力702の出力値を示す。また、vtは第2変化割合762を示し、fbは商用電源周波数を示し、fは周波数を示し、Fは周波数を算出する関数を示し、rは2次調整力704のランプレート最大値を示す。つまり、決定部442は、第2時刻760を固定しながら、電力の最大値750と、第1時刻752と、第1変化割合754とをもとに、第2変化割合762を決定する。図7(d)は、図7(c)の場合における周波数(制御後)714の変化を示す。比較のために、これまで説明した周波数(理想時)710、周波数(制御前)712も合わせて示される。周波数(制御後)714は、周波数(制御前)712と比較して、「50Hz」を挟んで上下することなく、商用電源周波数に収束する。
n indicates the third time 756 to the second time 760, t indicates each time, and p t indicates the time t obtained from the maximum value 750 of the primary adjustment power 702, the first time 752, and the first change ratio 754 The output value of the primary adjustment force 702 at Further, v t indicates a second change rate 762, f b indicates a commercial power supply frequency, f indicates a frequency, F indicates a function for calculating the frequency, and r indicates a maximum ramp rate of the secondary adjustment force 704 Indicates That is, the determination unit 442 determines the second change ratio 762 based on the maximum value 750 of the power, the first time 752, and the first change ratio 754 while fixing the second time 760. FIG. 7D shows the change of the frequency (after control) 714 in the case of FIG. 7C. For comparison, the frequency (ideal time) 710 and the frequency (before control) 712 described above are also shown. The frequency (after control) 714 converges to the commercial power supply frequency without rising and falling with “50 Hz” in comparison with the frequency (before control) 712.
(3)第2時刻と第2変化割合を決定する処理
決定部442は、第1時刻752をもとに、第2時刻760に対する複数の第2時刻760の候補を導出する。例えば、第1時刻752よりも前の所定期間に含まれるように、複数の第2時刻760の候補が導出される。また、決定部442は、複数の第2時刻760の候補のそれぞれに対して第2変化割合762の候補を導出する。第2変化割合762の候補の導出には、前述の最小化問題を解くことが実行されればよいので、ここでは説明を省略する。さらに、決定部442は、各第2時刻760の候補において目的関数が一番小さくなる第2変化割合762の候補を選択することによって、複数の第2変化割合762の候補のうちの1つを選択する。選択した1つの第2変化割合762の候補は第2変化割合762として決定されるとともに、選択した1つの第2変化割合762の候補に対応した第2時刻760の候補が第2時刻760として決定される。 (3) Process of Determining Second Time and Second Change Rate Thedetermination unit 442 derives a plurality of second time 760 candidates for the second time 760 based on the first time 752. For example, a plurality of second time 760 candidates are derived so as to be included in a predetermined period before the first time 752. In addition, the determination unit 442 derives the candidate of the second change ratio 762 for each of the plurality of second time 760 candidates. In the derivation of the second change ratio 762 candidate, it suffices to solve the above-described minimization problem, and thus the description thereof is omitted here. Furthermore, the determination unit 442 selects one of the plurality of second change rates 762 by selecting the second change rate 762 for which the objective function is the smallest at each second time 760 candidate. select. The selected one candidate for the second change rate 762 is determined as the second change rate 762 and the candidate for the second time 760 corresponding to the selected one second change rate 762 candidate is determined as the second time 760 Be done.
決定部442は、第1時刻752をもとに、第2時刻760に対する複数の第2時刻760の候補を導出する。例えば、第1時刻752よりも前の所定期間に含まれるように、複数の第2時刻760の候補が導出される。また、決定部442は、複数の第2時刻760の候補のそれぞれに対して第2変化割合762の候補を導出する。第2変化割合762の候補の導出には、前述の最小化問題を解くことが実行されればよいので、ここでは説明を省略する。さらに、決定部442は、各第2時刻760の候補において目的関数が一番小さくなる第2変化割合762の候補を選択することによって、複数の第2変化割合762の候補のうちの1つを選択する。選択した1つの第2変化割合762の候補は第2変化割合762として決定されるとともに、選択した1つの第2変化割合762の候補に対応した第2時刻760の候補が第2時刻760として決定される。 (3) Process of Determining Second Time and Second Change Rate The
決定部442は、第2時刻760、第2変化割合762を送信部422に出力する。送信部422は、放電あるいは充電の指示、第2時刻760、第2変化割合762が含まれた第2調整力パラメータのメッセージを第N+1電力管理システムサーバ14n+1と第N+2電力管理システムサーバ14n+2に送信する。図6(c)は、第2調整力パラメータのメッセージのフォーマットを示し、メッセージ種別のフィールドには第2調整力パラメータが示され、データのフィールドには放電あるいは充電の指示、第2時刻760、第2変化割合762が示される。第2変化割合762は、第2蓄電システム群に含まれた蓄電システム40の台数によって、もとの第2変化割合762を除算した値であってもよい。図6(d)については後述し、図5に戻る。
The determination unit 442 outputs the second time 760 and the second change ratio 762 to the transmission unit 422. The transmitting unit 422 transmits a message of the second adjustment power parameter including the discharge or charge instruction, the second time 760, and the second change ratio 762 to the (N + 1) th power management system server 14n + 1 and the (N + 2) th power management system server 14n + 2 Do. FIG. 6C shows the format of the message of the second adjustment parameter, the second adjustment parameter is shown in the message type field, and the discharge or charge instruction in the data field, the second time 760, A second rate of change 762 is shown. The second change ratio 762 may be a value obtained by dividing the original second change ratio 762 by the number of power storage systems 40 included in the second power storage system group. FIG. 6D will be described later and returns to FIG. 5.
第N+1電力管理システムサーバ14n+1の受信部510は、第2群管理システムサーバ12bから、第2調整力パラメータのメッセージを受信する。受信部510は、第2調整力パラメータのメッセージを制御部302に出力する。制御部302は、第2調整力パラメータのメッセージから、第2時刻760、第2変化割合762を抽出する。制御部302は、抽出した第2時刻760から蓄電システム40に充放電を開始させる。また、制御部302は、抽出した第2変化割合762によって、第2時刻760から蓄電システム40を充放電させる。例えば、制御部302は、蓄電システム40の制御装置216に対して、第2時刻760からの充放電開始、第2変化割合762による充放電に応じて双方向DC/ACインバータ214からの充放電を変化させるように指示する。
The receiver 510 of the (N + 1) -th power management system server 14n + 1 receives the message of the second adjustment power parameter from the second group management system server 12b. The receiving unit 510 outputs a message of the second adjustment force parameter to the control unit 302. The control unit 302 extracts a second time 760 and a second change ratio 762 from the message of the second adjustment force parameter. The control unit 302 causes the storage system 40 to start charging and discharging from the extracted second time 760. Further, the control unit 302 charges and discharges the storage system 40 from the second time 760 according to the extracted second change ratio 762. For example, the control unit 302 causes the control device 216 of the storage system 40 to start charging / discharging from the second time 760, and charging / discharging from the bidirectional DC / AC inverter 214 according to charging / discharging at the second change rate 762. To change the
制御装置216は、制御部302からの指示に応じて、双方向DC/ACインバータ214からの充放電を変化させる。その結果、SB210は、第2時刻760から充放電を開始するとともに、第2時刻760から第2変化割合762によって充放電する。ここで、制御部302と制御装置216は、放電あるいは充電の指示に応じて放電あるいは充電を決定する。
Control device 216 changes charge / discharge from bidirectional DC / AC inverter 214 in accordance with an instruction from control unit 302. As a result, the SB 210 starts charging and discharging from the second time 760, and also charges and discharges from the second time 760 at the second change ratio 762. Here, the control unit 302 and the control device 216 determine discharge or charge according to the discharge or charge instruction.
制御装置216は、指示に応じた処理を実行した場合、処理の完了を第N+1電力管理システムサーバ14n+1の制御部302に報告する。制御部302が処理の完了の報告を受信した場合、送信部512は、完了の報告が含まれた応答のメッセージを第2群管理システムサーバ12bに出力する。図6(d)は、応答のメッセージのフォーマットを示し、メッセージ種別のフィールドには応答が示され、データのフィールドには完了が示される。指示に応じた処理が未完了の蓄電システム40が存在する場合、データのフィールドには未完了であることが示されてもよい。図5に戻る。
When the control device 216 executes the process according to the instruction, the control device 216 reports the completion of the process to the control unit 302 of the (N + 1) th power management system server 14n + 1. When the control unit 302 receives a report on the completion of the process, the transmission unit 512 outputs a response message including the report on the completion to the second group management system server 12b. FIG. 6D shows the format of the response message, the response is shown in the message type field, and the completion is shown in the data field. If there is a power storage system 40 whose processing according to the instruction is not complete, the data field may indicate that it is not complete. Return to FIG.
第N+2電力管理システムサーバ14n+2も、第N+1電力管理システムサーバ14n+1と同様の処理を実行するので、ここでは説明を省略する。第2群管理システムサーバ12bの受信部420は、第N+1電力管理システムサーバ14n+1から応答のメッセージを受信するとともに、第N+2電力管理システムサーバ14n+2から応答のメッセージを受信する。
Since the (N + 2) th power management system server 14n + 2 also executes the same processing as the (N + 1) th power management system server 14n + 1, the description is omitted here. The receiving unit 420 of the second group management system server 12b receives a response message from the (N + 1) th power management system server 14n + 1, and receives a response message from the (N + 2) th power management system server 14n + 2.
本開示における装置、システム、または方法の主体は、コンピュータを備えている。このコンピュータがプログラムを実行することによって、本開示における装置、システム、または方法の主体の機能が実現される。コンピュータは、プログラムにしたがって動作するプロセッサを主なハードウェア構成として備える。プロセッサは、プログラムを実行することによって機能を実現することができれば、その種類は問わない。プロセッサは、半導体集積回路(IC)、またはLSI(Large Scale Integration)を含む1つまたは複数の電子回路で構成される。複数の電子回路は、1つのチップに集積されてもよいし、複数のチップに設けられてもよい。複数のチップは1つの装置に集約されていてもよいし、複数の装置に備えられていてもよい。プログラムは、コンピュータが読み取り可能なROM、光ディスク、ハードディスクドライブなどの非一時的記録媒体に記録される。プログラムは、記録媒体に予め格納されていてもよいし、インターネット等を含む広域通信網を介して記録媒体に供給されてもよい。
The subject matter of the apparatus, system or method in the present disclosure comprises a computer. The computer executes the program to implement the functions of the apparatus, system, or method in the present disclosure. The computer includes, as a main hardware configuration, a processor that operates according to a program. The processor may be of any type as long as the function can be realized by executing a program. The processor is configured of one or more electronic circuits including a semiconductor integrated circuit (IC) or an LSI (Large Scale Integration). The plurality of electronic circuits may be integrated on one chip or may be provided on a plurality of chips. The plurality of chips may be integrated into one device or may be provided to a plurality of devices. The program is recorded in a non-transitory recording medium such as a computer readable ROM, an optical disc, a hard disk drive and the like. The program may be stored in advance in a recording medium, or may be supplied to the recording medium via a wide area communication network including the Internet and the like.
以上の構成によるVPPシステム100の動作を説明する。図8は、第2群管理システムサーバ12bによる制御手順を示すフローチャートである。取得部440は、1次調整力のパラメータを取得する(S10)。決定部442は、パラメータから1次調整力702の出力が0となる第3時刻756を算出する(S12)。決定部442は、第2変化割合762を取得する(S14)。決定部442は、第3時刻756における出力値758を決定する(S16)。決定部442は、第3時刻756、第2変化割合762、出力値758から第2時刻760を算出する(S18)。決定部442は、2次調整力のパラメータを出力する(S20)。
The operation of the VPP system 100 having the above configuration will be described. FIG. 8 is a flowchart showing a control procedure by the second group management system server 12b. The acquisition unit 440 acquires a parameter of the primary adjustment power (S10). The determination unit 442 calculates a third time 756 at which the output of the primary adjustment force 702 is 0 from the parameter (S12). The determination unit 442 acquires the second change ratio 762 (S14). The determination unit 442 determines the output value 758 at the third time 756 (S16). The determination unit 442 calculates the second time 760 from the third time 756, the second change rate 762, and the output value 758 (S18). The determination unit 442 outputs the parameter of the secondary adjustment force (S20).
図9は、第2群管理システムサーバ12bによる別の制御手順を示すフローチャートである。取得部440は、1次調整力のパラメータを取得する(S50)。決定部442は、パラメータから1次調整力702の出力が0となる第3時刻756を算出する(S52)。決定部442は、第2時刻760を取得する(S54)。決定部442は、第2時刻760から第3時刻756までの第2変化割合762を算出する(S56)。決定部442は、2次調整力のパラメータを出力する(S58)。
FIG. 9 is a flowchart showing another control procedure by the second group management system server 12b. The acquisition unit 440 acquires a parameter of the primary adjustment power (S50). The determination unit 442 calculates the third time 756 at which the output of the primary adjustment force 702 is 0 from the parameter (S52). The determination unit 442 acquires the second time 760 (S54). The determination unit 442 calculates a second change ratio 762 from the second time 760 to the third time 756 (S56). The determination unit 442 outputs the parameter of the secondary adjustment force (S58).
図10は、第2群管理システムサーバ12bによるさらに別の制御手順を示すフローチャートである。取得部440は、1次調整力のパラメータを取得する(S100)。決定部442は、第2時刻760の候補を抽出する(S102)。決定部442は、第2時刻760の候補に対する第2変化割合762の候補を算出する(S104)。第2時刻760の候補のすべてに対して処理がなされていなければ(S106のN)、ステップ104に戻る。第2時刻760の候補のすべてに対して処理がなされていれば(S106のY)、決定部442は、第2時刻760、第2変化割合762を決定する(S108)。決定部442は、2次調整力のパラメータを出力する(S110)。
FIG. 10 is a flowchart showing still another control procedure by the second group management system server 12b. The acquisition unit 440 acquires a parameter of the primary adjustment power (S100). The determination unit 442 extracts a candidate for the second time 760 (S102). The determination unit 442 calculates the candidate of the second change ratio 762 with respect to the candidate of the second time 760 (S104). If all the candidates for the second time 760 have not been processed (N in S106), the process returns to step S104. If all candidates for the second time 760 have been processed (Y in S106), the determination unit 442 determines the second time 760 and the second change ratio 762 (S108). The determination unit 442 outputs the parameter of the secondary adjustment force (S110).
これまで第2群管理システムサーバ12bは、第1群管理システムサーバ12aから電力の最大値750を受けつけている。一方、第2群管理システムサーバ12bは電力の最大値750を自ら取得してもよい。以下では、そのための構成を説明する。図11は、第2群管理システムサーバ12bの別の構成を示す。第2群管理システムサーバ12bは、第1通信部430、第2通信部434、取得部440、決定部442、周波数検出部444を含む。
So far, the second group management system server 12b has received the maximum value 750 of the power from the first group management system server 12a. On the other hand, the second group management system server 12b may obtain the maximum value 750 of the power itself. Below, the structure for that is demonstrated. FIG. 11 shows another configuration of the second group management system server 12b. The second group management system server 12 b includes a first communication unit 430, a second communication unit 434, an acquisition unit 440, a determination unit 442, and a frequency detection unit 444.
第1通信部430は、第1群管理システムサーバ12aから、第1調整力パラメータのメッセージを受信する。第1通信部430は、第1調整力パラメータのメッセージを取得部440に出力する。第1調整力パラメータには、これまでと同様に、放電あるいは充電の指示、第1時刻752、第1変化割合754が含まれているが、電力の最大値750が含まれていない。取得部440は、第1調整力のパラメータから、放電あるいは充電の指示、第1時刻752、第1変化割合754を取得する。
The first communication unit 430 receives a message of the first adjustment parameter from the first group management system server 12a. The first communication unit 430 outputs a message of the first adjustment force parameter to the acquisition unit 440. The first adjustment force parameter includes the discharge or charge instruction, the first time 752, and the first change ratio 754 as before, but does not include the maximum value 750 of the power. The acquisition unit 440 acquires a discharge or charge instruction, a first time 752, and a first change ratio 754 from the parameter of the first adjustment force.
周波数検出部444は、電力系統30の周波数、あるいは商用電源周波数に対する電力系統30の周波数の差異を検出する。この検出には公知の技術が使用されればよいので、ここでは説明を省略する。取得部440は、周波数検出部444において検出される周波数あるいは差異と、電力の最大値750との対応関係を予め記憶する。取得部440は、対応関係を参照しながら、周波数検出部444において検出した周波数あるいは差異をもとに、電力の最大値750を取得する。取得部440は、放電あるいは充電の指示、電力の最大値750、第1時刻752、第1変化割合754を決定部442に出力する。これに続く処理はこれまでと同一であるので、ここでは説明を省略する。
The frequency detection unit 444 detects the frequency of the power system 30 or the difference in the frequency of the power system 30 with respect to the commercial power supply frequency. A known technique may be used for this detection, so the description is omitted here. The acquisition unit 440 stores in advance the correspondence between the frequency or difference detected by the frequency detection unit 444 and the maximum value 750 of the power. The acquisition unit 440 acquires the maximum value 750 of the power based on the frequency or the difference detected by the frequency detection unit 444 while referring to the correspondence relationship. The acquisition unit 440 outputs a discharge or charge instruction, the maximum value 750 of power, the first time 752, and the first change ratio 754 to the determination unit 442. The subsequent processing is the same as that described above, so the description is omitted here.
本実施例によれば、第1蓄電システム群による電力の最大値750、第1時刻752、第1変化割合754を取得して、第2蓄電システム群における第2時刻760、第2変化割合762とを決定するので、電力需要の変動への応答の引き継ぎを適切に実行できる。また、電力需要の変動への応答の引き継ぎが適切に実行されるので、引き継ぎによって電力系統30の周波数が安定するまでの期間を短くできる。また、電力系統30の周波数、あるいは基準周波数に対する電力系統30の周波数の差異を検出して、これから電力の最大値750を取得するので、第1群管理システムサーバ12aから第2群管理システムサーバ12bへの電力の最大値750の送信を不要にできる。また、第1群管理システムサーバ12aから、電力の最大値750を取得するので、処理を簡易にできる。また、第1群管理システムサーバ12aから、第1時刻752と第1変化割合754とを取得するので、処理を簡易にできる。
According to this embodiment, the maximum value 750 of the power by the first storage system group, the first time 752, and the first change rate 754 are acquired, and the second time 760 and the second change rate 762 in the second storage system group are obtained. And so that it is possible to properly take over the response to fluctuations in the power demand. Further, since the handover of the response to the fluctuation of the power demand is properly performed, the period until the frequency of the power system 30 becomes stable can be shortened by the handover. In addition, the difference in the frequency of the power system 30 with respect to the frequency of the power system 30 or the reference frequency is detected, and the maximum value 750 of the power is acquired from this. Thus, the first group management system server 12a to the second group management system server 12b It may be unnecessary to transmit a maximum of 750 of power to Further, since the maximum value 750 of the power is acquired from the first group management system server 12a, the process can be simplified. Further, since the first time 752 and the first change rate 754 are acquired from the first group management system server 12a, the process can be simplified.
また、第1蓄電システム群は第2蓄電システム群よりも先に電力系統30の電力の変動に応答するので、第1蓄電システム群を1次調整力702として使用し、第2蓄電システム群を2次調整力704として使用できる。また、第2変化割合762を固定しながら、電力の最大値750と、第1時刻752と、第1変化割合754とをもとに、第2時刻760を決定するので、第2時刻760を簡易に決定できる。また、第2時刻760を固定しながら、電力の最大値750と、第1時刻752と、第1変化割合754とをもとに、第2変化割合762を決定するので、第2変化割合762を簡易に決定できる。また、複数の第2時刻760の候補のそれぞれに対して第2変化割合762の候補を導出してから、複数の第2変化割合762の候補のうちの1つを選択するので、第2時刻760と第2変化割合762とを高精度に決定できる。
In addition, since the first storage system group responds to fluctuations in the power of the electric power system 30 earlier than the second storage system group, the first storage system group is used as the primary adjustment power 702, and the second storage system group is used. It can be used as a secondary adjustment force 704. In addition, since the second time 760 is determined based on the maximum value 750 of the power, the first time 752, and the first change rate 754 while fixing the second change rate 762, the second time 760 is determined. It can be easily determined. In addition, since the second change rate 762 is determined based on the maximum value 750 of the power, the first time 752, and the first change rate 754 while fixing the second time 760, the second change rate 762 Can easily be determined. In addition, since the second change rate 762 candidate is derived for each of the plurality of second time 760 candidates, one of the plurality of second change rate 762 candidates is selected. 760 and the second change rate 762 can be determined with high accuracy.
また、第2群管理システムサーバ12bから受信した第2時刻760と第2変化割合762をもとに蓄電システム40の充放電を制御するので、電力系統30の変動への応答の引き継ぎを適切に実行できる。また、SB210において、第2時刻760から充放電を開始するとともに、第2時刻760から第2変化割合762によって充放電するので、電力系統30の変動への応答の引き継ぎを適切に実行できる。
In addition, since charge and discharge of power storage system 40 are controlled based on second time 760 and second change rate 762 received from second group management system server 12 b, handover of response to fluctuation of power system 30 is properly performed. It can be done. Further, in SB 210, charging and discharging are started from the second time 760, and charging and discharging are performed from the second time 760 at the second change ratio 762. Therefore, it is possible to appropriately take over the response to the fluctuation of the power system 30.
本開示の一態様の概要は、次の通りである。本開示のある態様の第2群管理システムサーバ12bは、複数の需要家16のそれぞれに設置された蓄電システム40であって、かつ電力系統30に接続された蓄電システム40を含む蓄電システム群を制御する第2群管理システムサーバ12bであって、蓄電システム群とは別の電力源が充放電する電力の最大値750と、電力源において充放電される電力が最大値750から減少する予定の第1時刻752と、第1時刻752から電力源が充放電する電力の第1変化割合754とを取得する取得部440と、取得部440において取得した電力の最大値750と、第1時刻752と、第1変化割合754とをもとに、蓄電システム群に充放電を開始させる予定の第2時刻760と、第2時刻760から蓄電システム群に充放電させる電力の第2変化割合762とを決定する決定部442と、を備える。
The outline of one aspect of the present disclosure is as follows. The second group management system server 12b according to an aspect of the present disclosure is a storage system 40 installed in each of a plurality of customers 16 and including a storage system 40 connected to the power system 30. It is the second group management system server 12b to control, and the maximum value 750 of the power with which the power source other than the storage system group is charged and discharged, and the power charged and discharged in the power source is scheduled to decrease from the maximum value 750 An acquisition unit 440 that acquires a first time 752 and a first change ratio 754 of power that the power source charges and discharges from the first time 752, a maximum value 750 of the power acquired in the acquisition unit 440, and a first time 752 And the first change rate 754, the second time 760 scheduled to cause the storage system group to start charging / discharging, and the power to be charged / discharged to the storage system group from the second time 760 Comprising a determining unit 442 for determining a second change ratio 762, a.
電力系統30の周波数、あるいは基準周波数に対する電力系統30の周波数の差異を検出する周波数検出部444をさらに備えてもよい。取得部440は、周波数検出部444において検出した周波数あるいは差異をもとに、電力の最大値750を取得する。
It may further include a frequency detection unit 444 that detects the frequency of the power system 30 or the difference in frequency of the power system 30 with respect to the reference frequency. The acquisition unit 440 acquires the maximum value 750 of the power based on the frequency or the difference detected by the frequency detection unit 444.
電力源は、蓄電システム群とは異なった別の蓄電システム群であり、取得部440は、別の蓄電システム群を制御する別の第1群管理システムサーバ12a、あるいは複数の群管理システムサーバ12を管理する上位システムサーバ10から、電力の最大値750を取得する。
The power source is another storage system group different from the storage system group, and the acquisition unit 440 is another first group management system server 12a that controls another storage system group, or a plurality of group management system servers 12 The maximum power value 750 is acquired from the upper system server 10 that manages the
電力源は、蓄電システム群とは異なった別の蓄電システム群であり、取得部440は、別の蓄電システム群を制御する別の第1群管理システムサーバ12a、あるいは複数の群管理システムサーバ12を管理する上位システムサーバ10から、第1時刻752と第1変化割合754とを取得する。
The power source is another storage system group different from the storage system group, and the acquisition unit 440 is another first group management system server 12a that controls another storage system group, or a plurality of group management system servers 12 The first time 752 and the first change rate 754 are acquired from the upper system server 10 that manages the
電力源は、蓄電システム群よりも先に電力系統30の電力の変動に応答する。
The power source responds to the power fluctuation of the power system 30 prior to the storage system group.
決定部442は、第2変化割合762を固定しながら、電力の最大値750と、第1時刻752と、第1変化割合754とをもとに、第2時刻760を決定する。
The determination unit 442 determines the second time 760 based on the maximum value 750 of the power, the first time 752, and the first change rate 754 while fixing the second change rate 762.
決定部442は、第2時刻760を固定しながら、電力の最大値750と、第1時刻752と、第1変化割合754とをもとに、第2変化割合762を決定する。
The determination unit 442 determines the second change ratio 762 based on the maximum value 750 of the power, the first time 752, and the first change ratio 754 while fixing the second time 760.
決定部442は、複数の第2時刻760の候補のそれぞれに対して第2変化割合762の候補を導出してから、複数の第2変化割合762の候補のうちの1つを選択することによって、選択した1つの第2変化割合762の候補を第2変化割合762として決定するとともに、選択した1つの第2変化割合762の候補に対応した第2時刻760の候補を第2時刻760として決定する。
The determination unit 442 derives the candidate for the second change ratio 762 for each of the plurality of second time 760 candidates, and then selects one of the plurality of second change ratio 762 candidates. The candidate of one selected second change rate 762 is determined as the second change rate 762 and the candidate of the second time 760 corresponding to the selected candidate of the second change rate 762 is determined as the second time 760 Do.
第2群管理システムサーバ12bに接続され、需要家16に設置された蓄電システム40を制御する電力管理システムサーバ14であって、第2群管理システムサーバ12bから第2時刻760と第2変化割合762とを受信する受信部510と、受信部510において受信した第2時刻760から蓄電システム40に充放電を開始させるとともに、受信部510において受信した第2変化割合762によって、第2時刻760から蓄電システム40を充放電させる制御部302と、を備えてもよい。
The power management system server 14 connected to the second group management system server 12 b and controlling the power storage system 40 installed in the customer 16, comprising the second group management system server 12 b to the second time 760 and the second change ratio 762 and from the second time 760 received by the receiving unit 510, and causes the storage system 40 to start charging and discharging, and from the second time 760 according to the second change ratio 762 received by the receiving unit 510. The controller 302 may charge and discharge the storage system 40.
電力管理システムサーバ14に制御される蓄電システム40であって、第2時刻760から充放電を開始するとともに、第2時刻760から第2変化割合762によって充放電するSB210を備えてもよい。
The storage system 40 controlled by the power management system server 14 may include the SB 210 that starts charging and discharging from the second time 760 and that charges and discharges at the second change ratio 762 from the second time 760.
以上、本開示を実施例をもとに説明した。この実施例は例示であり、それらの各構成要素あるいは各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本開示の範囲にあることは当業者に理解されるところである。
The present disclosure has been described above based on the examples. It is understood by those skilled in the art that this embodiment is an exemplification, and that various modifications can be made to their respective components or combinations of processing processes, and such modifications are also within the scope of the present disclosure. .
本実施例において、第1群管理システムサーバ12aによる第1蓄電システム群の制御によって1次調整力702が提供される。しかしながらこれに限らず例えば、1次調整力702は別の電力源によって提供されてもよい。別の電力源の一例は火力発電である。本変形例によれば、構成の自由度を向上できる。
In the present embodiment, the primary adjustment power 702 is provided by the control of the first storage system group by the first group management system server 12a. However, not limited to this, for example, the primary adjustment force 702 may be provided by another power source. One example of another power source is thermal power. According to this modification, the degree of freedom of the configuration can be improved.
本実施例において、第2群管理システムサーバ12bの取得部440は、第1調整力パラメータに含まれる情報を第1群管理システムサーバ12aから取得している。しかしながらこれに限らず例えば、第2群管理システムサーバ12bの取得部440は、第1調整力パラメータに含まれる情報を上位システムサーバ10から取得してもよい。本変形例によれば、構成の自由度を向上できる。
In the present embodiment, the acquisition unit 440 of the second group management system server 12b acquires information included in the first adjustment power parameter from the first group management system server 12a. However, the invention is not limited to this. For example, the acquisition unit 440 of the second group management system server 12 b may acquire information included in the first adjustment power parameter from the higher system server 10. According to this modification, the degree of freedom of the configuration can be improved.
本実施例において、電力管理システムサーバ14が需要家16に配置されているとしている。しかしながら、電力管理システムサーバ14の配置はこれに限定されない。電力管理システムサーバ14は需要家16の外に配置されてもよく、制御部302だけが需要家16に配置され、サービス連携部300は需要家16外に配置されてもよい。サービス連携部300、制御部302は、電力制御装置と呼んでもよい。本変形例によれば、構成の自由度を向上できる。
In the present embodiment, it is assumed that the power management system server 14 is disposed at the customer 16. However, the arrangement of the power management system server 14 is not limited to this. The power management system server 14 may be disposed outside the customer 16, only the control unit 302 may be disposed in the customer 16, and the service linkage unit 300 may be disposed outside the customer 16. The service cooperation unit 300 and the control unit 302 may be called a power control device. According to this modification, the degree of freedom of the configuration can be improved.
10 上位システムサーバ(上位システム)、 12 群管理システムサーバ(群管理システム)、 14 電力管理システムサーバ(電力制御装置)、 16 需要家、 18 ネットワーク、 30 電力系統、 32 スマートメータ、 34 分電盤、 36 負荷、 40 蓄電システム、 42 配電線、 100 VPPシステム、 210 SB(蓄電池)、 212 SB用DC/DC、 214 双方向DC/ACインバータ、 216 制御装置、 300 サービス連携部、 302 制御部(電力制御装置)、 420 受信部、 422 送信部、 430 第1通信部、 434 第2通信部、 440 取得部、 442 決定部、 510 受信部、 512 送信部。
10 upper system server (upper system), 12 group management system server (group management system), 14 power management system server (power control device), 16 customers, 18 networks, 30 power grids, 32 smart meters, 34 distribution board , 36 loads, 40 storage systems, 42 distribution lines, 100 VPP systems, 210 SB (storage batteries), 212 SB DC / DC, 214 bidirectional DC / AC inverters, 216 control devices, 300 service cooperation units, 302 control units ( Power control device), 420 reception unit, 422 transmission unit, 430 first communication unit, 434 second communication unit, 440 acquisition unit, 442 determination unit, 510 reception unit, 512 transmission unit.
本開示によれば、電力需要の変動への応答の引き継ぎを適切に実行できる。
According to the present disclosure, it is possible to appropriately take over the response to fluctuations in power demand.
Claims (10)
- 複数の需要家のそれぞれに設置された蓄電システムであって、かつ電力系統に接続された蓄電システムを含む蓄電システム群を制御する群管理システムであって、
前記蓄電システム群とは別の電力源が充放電する電力の最大値と、前記電力源において充放電される電力が最大値から減少する予定の第1時刻と、前記第1時刻から前記電力源が充放電する電力の第1変化割合とを取得する取得部と、
前記取得部において取得した前記電力の最大値と、前記第1時刻と、前記第1変化割合とをもとに、前記蓄電システム群に充放電を開始させる予定の第2時刻と、前記第2時刻から前記蓄電システム群に充放電させる電力の第2変化割合とを決定する決定部と、
を備える、群管理システム。 A storage system installed in each of a plurality of consumers, and a group management system for controlling a storage system group including a storage system connected to an electric power system,
The maximum value of the power charged / discharged by a power source different from the storage system group, the first time when the power charged / discharged in the power source is scheduled to decrease from the maximum, and the power source from the first time An acquisition unit that acquires a first change rate of power that the battery charges and discharges;
The second time at which the storage system group is scheduled to start charging / discharging based on the maximum value of the power acquired by the acquisition unit, the first time, and the first change ratio, and the second time A determination unit that determines a second change ratio of power charged / discharged to the storage system group from time of day;
, A group management system. - 前記電力系統の周波数、あるいは基準周波数に対する前記電力系統の周波数の差異を検出する周波数検出部をさらに備え、
前記取得部は、前記周波数検出部において検出した前記周波数あるいは前記差異をもとに、前記電力の最大値を取得する、
請求項1に記載の群管理システム。 The power system further includes a frequency detection unit that detects the frequency of the power system or the difference in frequency of the power system with respect to a reference frequency,
The acquisition unit acquires the maximum value of the power based on the frequency or the difference detected by the frequency detection unit.
The group management system according to claim 1. - 前記電力源は、前記蓄電システム群とは異なった別の蓄電システム群であり、
前記取得部は、前記別の蓄電システム群を制御する別の群管理システム、あるいは複数の群管理システムを管理する上位システムから、前記電力の最大値を取得する、
請求項1に記載の群管理システム。 The power source is another power storage system group different from the power storage system group,
The acquisition unit acquires the maximum value of the power from another group management system that controls the other storage system group or a higher system that manages a plurality of group management systems.
The group management system according to claim 1. - 前記電力源は、前記蓄電システム群とは異なった別の蓄電システム群であり、
前記取得部は、前記別の蓄電システム群を制御する別の群管理システム、あるいは複数の群管理システムを管理する上位システムから、前記第1時刻と前記第1変化割合とを取得する、
請求項1または2に記載の群管理システム。 The power source is another power storage system group different from the power storage system group,
The acquisition unit acquires the first time and the first change ratio from another group management system that controls the other power storage system group or a higher system that manages a plurality of group management systems.
The group management system according to claim 1. - 前記電力源は、前記蓄電システム群よりも先に前記電力系統の電力の変動に応答する、
請求項1から4のいずれか1項に記載の群管理システム。 The power source responds to fluctuations in power of the power system prior to the storage system group.
The group management system according to any one of claims 1 to 4. - 前記決定部は、前記第2変化割合を固定しながら、前記電力の最大値と、前記第1時刻と、前記第1変化割合とをもとに、前記第2時刻を決定する、
請求項1から5のいずれか1項に記載の群管理システム。 The determination unit determines the second time based on the maximum value of the power, the first time, and the first change rate while fixing the second change rate.
The group management system according to any one of claims 1 to 5. - 前記決定部は、前記第2時刻を固定しながら、前記電力の最大値と、前記第1時刻と、前記第1変化割合とをもとに、前記第2変化割合を決定する、
請求項1から5のいずれか1項に記載の群管理システム。 The determination unit determines the second change ratio based on the maximum value of the power, the first time, and the first change ratio while fixing the second time.
The group management system according to any one of claims 1 to 5. - 前記決定部は、複数の第2時刻の候補のそれぞれに対して第2変化割合の候補を導出してから、複数の第2変化割合の候補のうちの1つを選択することによって、選択した1つの第2変化割合の候補を前記第2変化割合として決定するとともに、選択した1つの第2変化割合の候補に対応した第2時刻の候補を前記第2時刻として決定する、
請求項1から5のいずれか1項に記載の群管理システム。 The determination unit is selected by deriving one of the plurality of second change ratio candidates after deriving the second change ratio candidate for each of the plurality of second time candidates. While determining one second change rate candidate as the second change rate, a second time candidate corresponding to the selected one second change rate candidate is determined as the second time.
The group management system according to any one of claims 1 to 5. - 請求項1から8のいずれか1項に記載の群管理システムに接続され、需要家に設置された蓄電システムを制御する電力制御装置であって、
前記群管理システムから前記第2時刻と前記第2変化割合とを受信する受信部と、
前記受信部において受信した前記第2時刻から前記蓄電システムに充放電を開始させるとともに、前記受信部において受信した前記第2変化割合によって、前記第2時刻から前記蓄電システムを充放電させる制御部と、
を備える電力制御装置。 A power control apparatus connected to the group management system according to any one of claims 1 to 8 for controlling a power storage system installed in a consumer, comprising:
A receiving unit that receives the second time and the second change rate from the group management system;
A control unit that causes the storage system to start charging and discharging from the second time received by the receiving unit, and to charge and discharge the storage system from the second time according to the second change ratio received by the receiving unit; ,
Power control device comprising: - 請求項9に記載の電力制御装置に制御される蓄電システムであって、
第2時刻から充放電を開始するとともに、前記第2時刻から第2変化割合によって充放電する蓄電池を備える、
蓄電システム。 A power storage system controlled by the power control apparatus according to claim 9,
While starting charging / discharging from 2nd time, the storage battery charged / discharged by the 2nd change rate from said 2nd time is provided,
Power storage system.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019558938A JP6876939B2 (en) | 2017-12-15 | 2018-10-12 | Group management system, power control device, power storage system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017240938 | 2017-12-15 | ||
JP2017-240938 | 2017-12-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019116711A1 true WO2019116711A1 (en) | 2019-06-20 |
Family
ID=66818993
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/038200 WO2019116711A1 (en) | 2017-12-15 | 2018-10-12 | Group management system, power control device, and power storage system |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6876939B2 (en) |
WO (1) | WO2019116711A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011016092A1 (en) * | 2009-08-07 | 2011-02-10 | 清水建設株式会社 | Island operating system for distributed power source |
JP2011103746A (en) * | 2009-11-11 | 2011-05-26 | Sanyo Electric Co Ltd | Charging method of battery |
JP2014033591A (en) * | 2012-08-06 | 2014-02-20 | Kyocera Corp | Management system, management method, controller and power storage device |
JP2014056811A (en) * | 2012-08-13 | 2014-03-27 | Sumitomo Electric Ind Ltd | Molten salt battery system and method for charging and discharging the same |
-
2018
- 2018-10-12 JP JP2019558938A patent/JP6876939B2/en active Active
- 2018-10-12 WO PCT/JP2018/038200 patent/WO2019116711A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011016092A1 (en) * | 2009-08-07 | 2011-02-10 | 清水建設株式会社 | Island operating system for distributed power source |
JP2011103746A (en) * | 2009-11-11 | 2011-05-26 | Sanyo Electric Co Ltd | Charging method of battery |
JP2014033591A (en) * | 2012-08-06 | 2014-02-20 | Kyocera Corp | Management system, management method, controller and power storage device |
JP2014056811A (en) * | 2012-08-13 | 2014-03-27 | Sumitomo Electric Ind Ltd | Molten salt battery system and method for charging and discharging the same |
Also Published As
Publication number | Publication date |
---|---|
JPWO2019116711A1 (en) | 2020-07-09 |
JP6876939B2 (en) | 2021-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101945501B1 (en) | Control system and method for providing electric power using solar energy generation and energy storage system | |
JP6564264B2 (en) | Power management system and power management method | |
US10678198B2 (en) | Power distribution control system | |
RU2338311C2 (en) | Reacting substation of electric power system | |
JP7033965B2 (en) | Power control device and power control method | |
TW201716786A (en) | Distributed energy system edge unit | |
AU2018204727B2 (en) | Power distribution control system | |
US20180013289A1 (en) | Electric power control system, electric power control method, and program | |
US10461535B2 (en) | Power management system, power management method, and computer program | |
WO2016017424A1 (en) | Control device, apparatus control device, reporting method, and recording medium | |
JP2020120581A (en) | Control device, and supply and demand adjustment control device | |
JP5917292B2 (en) | Power management apparatus, power management system, and power management method | |
WO2019117071A1 (en) | Group management system, power control device, transmission method, and program | |
WO2018225456A1 (en) | Power management system, apparatus, reception method, and program | |
WO2019116711A1 (en) | Group management system, power control device, and power storage system | |
WO2018225458A1 (en) | Group management system, power management system, receiving method and program | |
WO2019116710A1 (en) | Group management system, power control device, and power storage system | |
US20200373760A1 (en) | Power controller, power control method, and program for controlling power | |
WO2019131229A1 (en) | Power control device, power control method, and program | |
WO2019117070A1 (en) | Group management system, power control device, transmission method, and program | |
WO2018225455A1 (en) | Power management system, power storage system, transmission method, and program | |
WO2018225457A1 (en) | Group management system, power management system, power storage system, transmission method and program | |
WO2019131228A1 (en) | Power control device, power control method, program | |
JP2018207629A (en) | Power management system, fuel cell system, reception method and program | |
WO2016043243A1 (en) | Power management system and power management method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18887286 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019558938 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18887286 Country of ref document: EP Kind code of ref document: A1 |