JP7252933B2 - Vapor deposition apparatus, film forming apparatus, film forming method, and electronic device manufacturing method - Google Patents

Vapor deposition apparatus, film forming apparatus, film forming method, and electronic device manufacturing method Download PDF

Info

Publication number
JP7252933B2
JP7252933B2 JP2020198687A JP2020198687A JP7252933B2 JP 7252933 B2 JP7252933 B2 JP 7252933B2 JP 2020198687 A JP2020198687 A JP 2020198687A JP 2020198687 A JP2020198687 A JP 2020198687A JP 7252933 B2 JP7252933 B2 JP 7252933B2
Authority
JP
Japan
Prior art keywords
vapor deposition
deposition source
substrate
film forming
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020198687A
Other languages
Japanese (ja)
Other versions
JP2022086589A (en
Inventor
貴宏 砂川
功康 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Tokki Corp
Original Assignee
Canon Tokki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Tokki Corp filed Critical Canon Tokki Corp
Priority to JP2020198687A priority Critical patent/JP7252933B2/en
Priority to KR1020210152769A priority patent/KR20220076311A/en
Priority to CN202111365775.5A priority patent/CN114574811B/en
Publication of JP2022086589A publication Critical patent/JP2022086589A/en
Application granted granted Critical
Publication of JP7252933B2 publication Critical patent/JP7252933B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • C23C14/543Controlling the film thickness or evaporation rate using measurement on the vapor source
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/52Means for observation of the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/541Heating or cooling of the substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • C23C14/545Controlling the film thickness or evaporation rate using measurement on deposited material
    • C23C14/546Controlling the film thickness or evaporation rate using measurement on deposited material using crystal oscillators
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/568Transferring the substrates through a series of coating stations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Electroluminescent Light Sources (AREA)

Description

本発明は、蒸着装置、成膜装置、成膜方法及び電子デバイスの製造方法に関する。 The present invention relates to a vapor deposition apparatus, a film forming apparatus, a film forming method, and an electronic device manufacturing method.

有機ELディスプレイ等の製造においては、マスクを用いて基板上に有機材料や金属材料等の蒸着物質が蒸着される。基板に蒸着された蒸着物質の膜厚管理等を目的として、蒸着源からの蒸着物質の放出状態を監視する監視装置を設けた蒸着装置が提案されている(特許文献1及び2)。 2. Description of the Related Art In manufacturing an organic EL display or the like, a vapor deposition substance such as an organic material or a metal material is vapor-deposited on a substrate using a mask. For the purpose of controlling the film thickness of the vapor deposition material deposited on the substrate, there has been proposed a vapor deposition apparatus provided with a monitoring device for monitoring the discharge state of the vapor deposition material from the vapor deposition source (Patent Documents 1 and 2).

特開2019-137877号公報JP 2019-137877 A 特開2019-99870号公報JP 2019-99870 A

監視装置は蒸着源の熱の影響を受け、監視精度が低下する場合がある。例えば、水晶振動子を備える監視装置では、水晶振動子に付着した蒸着物質の量によって振動数が変化することを利用して放出状態を監視している。水晶振動子はその温度変化により振動特性が変化し、振動数の変化と放出状態との相関関係が変動する。このため、蒸着源の熱により水晶振動子の温度が上昇すると、監視精度が低下する。 The monitoring device is affected by the heat of the vapor deposition source, and the monitoring accuracy may deteriorate. For example, in a monitoring device equipped with a crystal oscillator, the emission state is monitored by utilizing the fact that the frequency changes depending on the amount of deposition material adhering to the crystal oscillator. A crystal oscillator changes its vibration characteristics due to its temperature change, and the correlation between the change in the frequency and the emission state fluctuates. Therefore, when the temperature of the crystal oscillator rises due to the heat of the vapor deposition source, the monitoring accuracy decreases.

本発明は、蒸着源の監視装置を冷却可能な技術を提供するものである。 The present invention provides a technology capable of cooling a deposition source monitoring device.

本発明によれば、
基板に蒸着物質を放出する蒸着源と、
前記蒸着源からの蒸着物質の放出状態を監視する監視手段と、
を備えた蒸着装置であって、
前記監視手段が搭載される台座部材と、
前記監視手段と前記蒸着源との間に介在するように前記台座部材に設けられ、前記監視手段を前記蒸着源に露出させる窓部を有する壁部材と、を備え、
前記台座部材及び前記壁部材のそれぞれは、冷却媒体が流れる流路を有する、
ことを特徴とする蒸着装置が提供される。
According to the invention,
a deposition source that releases a deposition material onto a substrate;
monitoring means for monitoring the release state of the vapor deposition material from the vapor deposition source;
A vapor deposition apparatus comprising
a base member on which the monitoring means is mounted;
a wall member provided on the pedestal member so as to be interposed between the monitoring means and the deposition source, and having a window portion that exposes the monitoring means to the deposition source;
Each of the pedestal member and the wall member has a flow path through which a cooling medium flows,
A vapor deposition apparatus characterized by the following is provided.

本発明によれば、蒸着源の監視装置を冷却可能な技術を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the technique which can cool the monitoring apparatus of a vapor deposition source can be provided.

本発明の一実施形態に係る成膜装置の概略図。1 is a schematic diagram of a film forming apparatus according to one embodiment of the present invention; FIG. (A)及び(B)は図1の成膜装置の動作説明図。(A) and (B) are operation|movement explanatory drawing of the film-forming apparatus of FIG. 蒸着装置の概略図。The schematic of a vapor deposition apparatus. 駆動ユニットの断面図。Sectional drawing of a drive unit. (A)は流路の説明図、(B)は可撓性チューブの変形態様を示す図。(A) is an explanatory diagram of a flow path, and (B) is a diagram showing a deformation mode of a flexible tube. 監視装置及びその周辺の構造の斜視図。1 is a perspective view of a monitoring device and its peripheral structure; FIG. 図6の周辺の構造を反対側から見た斜視図。The perspective view which looked at the structure of the periphery of FIG. 6 from the other side. (A)は有機EL表示装置の全体図、(B)は1画素の断面構造を示す図。1A is an overall view of an organic EL display device, and FIG. 1B is a view showing a cross-sectional structure of one pixel; FIG.

以下、添付図面を参照して実施形態を詳しく説明する。尚、以下の実施形態は特許請求の範囲に係る発明を限定するものではない。実施形態には複数の特徴が記載されているが、これらの複数の特徴の全てが発明に必須のものとは限らず、また、複数の特徴は任意に組み合わせられてもよい。さらに、添付図面においては、同一若しくは同様の構成に同一の参照番号を付し、重複した説明は省略する。 Hereinafter, embodiments will be described in detail with reference to the accompanying drawings. In addition, the following embodiments do not limit the invention according to the scope of claims. Although multiple features are described in the embodiments, not all of these multiple features are essential to the invention, and multiple features may be combined arbitrarily. Furthermore, in the accompanying drawings, the same or similar configurations are denoted by the same reference numerals, and redundant description is omitted.

<成膜装置の概要>
図1は本発明の一実施形態に係る成膜装置1の概略図である。なお、各図において矢印X及びYは互いに直交する水平方向を示し、矢印Zは垂直方向(鉛直方向)を示す。成膜装置1は、搬送装置2と、複数の蒸着装置3A及び3B(以下、両者を総称する場合、又は、区別しない場合は蒸着装置3と表す)と、を備える。複数の蒸着装置3A及び3BはX方向に並べて配置されており、搬送装置2はこれら蒸着装置3A及び3Bの上方に配置されている。
<Overview of deposition equipment>
FIG. 1 is a schematic diagram of a film forming apparatus 1 according to one embodiment of the present invention. In each figure, arrows X and Y indicate horizontal directions perpendicular to each other, and arrow Z indicates a vertical direction. The film forming apparatus 1 includes a transport apparatus 2 and a plurality of vapor deposition apparatuses 3A and 3B (hereinafter referred to as vapor deposition apparatuses 3 when both are collectively referred to or not distinguished). A plurality of vapor deposition apparatuses 3A and 3B are arranged side by side in the X direction, and the transport apparatus 2 is arranged above these vapor deposition apparatuses 3A and 3B.

搬送装置2は、使用時に真空に維持される搬送室20cを内部に形成する搬送チャンバ20を備える。搬送チャンバ20のX方向の一端部には搬入口20aが、他端部には搬出口20bが設けられており、処理対象物は、搬入口20aから搬送室20c内に搬入され、処理後に搬出口20bから外部へ搬出される。搬送室20cには、X方向に配列された複数の搬送ローラ21が設けられている。この搬送ローラ21の列は、Y方向に離間して二列配置されている。各搬送ローラ21はY方向の回転軸周りに回転する。搬送対象物は、二列の搬送ローラ21の列に、そのY方向の両端部が載置され、搬送ローラ21の回転によってX方向に水平姿勢で搬送される。本実施形態では処理対象物の搬送機構としてローラ機構を用いたが、磁気浮上搬送等、他の種類の搬送機構であってもよい。 The transfer device 2 comprises a transfer chamber 20 internally forming a transfer chamber 20c which is maintained under vacuum during use. A carry-in port 20a is provided at one end of the transfer chamber 20 in the X direction, and a carry-out port 20b is provided at the other end. It is carried out to the outside from the exit 20b. A plurality of transport rollers 21 arranged in the X direction are provided in the transport chamber 20c. The rows of the conveying rollers 21 are arranged in two rows spaced apart in the Y direction. Each conveying roller 21 rotates around a rotation axis in the Y direction. An object to be conveyed is placed on two rows of conveying rollers 21 at both ends in the Y direction, and is conveyed horizontally in the X direction by the rotation of the conveying rollers 21 . In this embodiment, a roller mechanism is used as a transport mechanism for the object to be processed, but other types of transport mechanisms such as magnetic levitation transport may be used.

蒸着装置3は、使用時に真空に維持される内部空間3aを形成するソースチャンバ5を備える。ソースチャンバ5は、上部に開口部3bが形成された箱型を有しており、開口部3bを介して、搬送室20cと内部空間3aとが連通している。蒸着装置3は上方に蒸着物質を放出する蒸着源6を備える。本実施形態の蒸着源6はいわゆるラインソースであり、搬送装置2での処理対象物の搬送方向(X方向)と、交差する方向(本実施形態では搬送方向と直交するY方向)に延設されている。蒸着源6は、蒸着物質の原材料を収容する坩堝や、坩堝を加熱するヒータ等を備え、原材料を加熱してその蒸気である蒸着物質を搬送室20cへ放出する。 The vapor deposition apparatus 3 comprises a source chamber 5 forming an interior space 3a which is maintained under vacuum during use. The source chamber 5 has a box shape with an opening 3b formed at the top, and the transfer chamber 20c communicates with the internal space 3a through the opening 3b. The vapor deposition device 3 includes a vapor deposition source 6 that emits a vapor deposition material upward. The vapor deposition source 6 of this embodiment is a so-called line source, and extends in a direction (Y direction orthogonal to the transport direction in this embodiment) that intersects the transport direction (X direction) of the object to be processed by the transport device 2. It is The vapor deposition source 6 includes a crucible containing the raw material of the vapor deposition substance, a heater for heating the crucible, and the like, and heats the raw material and discharges the vapor of the raw material to the transfer chamber 20c.

蒸着装置3は、シャッタ7と、シャッタ7を回動する回動ユニット8とを備える。回動ユニット8は、蒸着源6と搬送室20c内を搬送される処理対象物との間の位置を含む移動軌道上でシャッタ7を回動する。移動軌道は、シャッタ7の移動する経路であり、典型的には円軌道であるが、回動ユニット8に他の可動部(リンク機構等)が追加されることで、楕円軌道や直線軌道となることもある。本実施形態の場合、シャッタ7は、蒸着源6の延設方向(本実施形態ではY方向)に沿って延設されており、回動ユニット8は、蒸着源6の延設方向に沿う回動中心(本実施形態ではY方向の回動中心)周りにシャッタ7を回動する。本実施形態の場合、一つの蒸着源6に対して二組のシャッタ7及び回動ユニット8が設けられている。二組のシャッタ7及び回動ユニット8は、蒸着源6の延設方向と交差する方向(本実施形態では延設方向と直交するX方向)に離間して配置されている。そして、搬送室20cに対して蒸着源6の放出口を二つのシャッタ7で開閉し、蒸着物質の搬送室20cへの放出の規制や、入射角の規制を行うことができる。 The vapor deposition device 3 includes a shutter 7 and a rotating unit 8 that rotates the shutter 7 . The rotating unit 8 rotates the shutter 7 on a moving track including a position between the vapor deposition source 6 and the object to be processed transported in the transport chamber 20c. The movement trajectory is the path along which the shutter 7 moves, and is typically a circular trajectory. Sometimes it becomes In the case of this embodiment, the shutter 7 extends along the extension direction of the vapor deposition source 6 (the Y direction in this embodiment), and the rotation unit 8 rotates along the extension direction of the vapor deposition source 6. The shutter 7 is rotated around the center of movement (in this embodiment, the center of rotation in the Y direction). In the case of this embodiment, two sets of shutters 7 and rotating units 8 are provided for one vapor deposition source 6 . The two sets of shutters 7 and rotating units 8 are spaced apart in a direction intersecting the extension direction of the vapor deposition source 6 (in this embodiment, the X direction perpendicular to the extension direction). By opening and closing the discharge port of the vapor deposition source 6 with respect to the transfer chamber 20c with the two shutters 7, it is possible to regulate the discharge of the vapor deposition material to the transfer chamber 20c and the incident angle.

蒸着装置3には、また、蒸着源6からの蒸着物質の放出状態を監視する監視装置9が設けられている。蒸着源6の上部やシャッタ7の周囲には防着板4が設けられており、蒸着物質が周囲に付着することを抑制する。防着板4は上下が開放した角筒形状を有しており、内部空間3aから搬送室20cに渡って配置されている。 The vapor deposition device 3 is also provided with a monitoring device 9 for monitoring the discharge state of the vapor deposition material from the vapor deposition source 6 . An anti-adhesion plate 4 is provided above the vapor deposition source 6 and around the shutter 7 to prevent the vapor deposition material from adhering to the surroundings. The anti-adhesion plate 4 has a square tube shape with an open top and bottom, and is arranged from the internal space 3a to the transfer chamber 20c.

図2(A)及び図2(B)は成膜装置1の動作の一例を示す説明図である。成膜装置1は、搬送装置2により処理対象物を搬送しながら(搬送工程)、蒸着装置3により処理対象物に蒸着物質を蒸着する(蒸着工程)成膜方法を実行可能な、インライン型の成膜装置である。成膜装置1は、例えば、表示装置(フラットパネルディスプレイなど)や薄膜太陽電池、有機光電変換素子(有機薄膜撮像素子)等の電子デバイスや、光学部材等を製造する、電子デバイスの製造方法を実行する製造装置に適用可能である。図2(A)及び図2(B)では、処理対象物として基板10が例示されている。基板10はマスク11と共に搬送され、基板10の下側に位置するマスク11を通して蒸着物質を基板10に蒸着することにより、所定のパターンの蒸着物質の薄膜を基板100に形成することができる。基板10は例えばガラス、樹脂、金属等の材料からなる板材であり、蒸着物質としては、有機材料、無機材料(金属、金属酸化物など)などの物質である。 2A and 2B are explanatory diagrams showing an example of the operation of the film forming apparatus 1. FIG. The film forming apparatus 1 is an in-line type capable of executing a film forming method in which a vapor deposition apparatus 3 vapor-deposits a vapor deposition material onto a process object (a vapor deposition process) while transporting the object to be processed by a transport apparatus 2 (transport process). It is a film forming apparatus. The film forming apparatus 1 is a method for manufacturing electronic devices such as display devices (flat panel displays, etc.), thin-film solar cells, organic photoelectric conversion elements (organic thin-film imaging elements), and optical members. It is applicable to manufacturing equipment that performs. 2A and 2B illustrate a substrate 10 as an object to be processed. The substrate 10 is transported together with the mask 11, and the deposition material is deposited on the substrate 10 through the mask 11 positioned below the substrate 10, thereby forming a thin film of the deposition material in a predetermined pattern on the substrate 100. The substrate 10 is, for example, a plate material made of a material such as glass, resin, or metal, and the deposition material is a material such as an organic material or an inorganic material (metal, metal oxide, etc.).

本実施形態では、複数の蒸着装置3A、3Bが基板10の搬送方向に配置されている。蒸着装置3A、3Bにより異なる種類の蒸着物質を放出する場合、基板10に異なる蒸着物質を連続的に蒸着することができる。なお、蒸着装置3の数は2つに限られず、1つでもよいし、3以上であってもよい。 In this embodiment, a plurality of vapor deposition apparatuses 3A and 3B are arranged in the transport direction of the substrate 10 . When different types of deposition materials are emitted from the deposition apparatuses 3A and 3B, different deposition materials can be deposited on the substrate 10 successively. In addition, the number of vapor deposition apparatuses 3 is not limited to two, and may be one or three or more.

図2(A)は、蒸着装置3Aのシャッタ7が開放されており、蒸着装置3Aの上方に位置する基板10に蒸着材料12が放出されている態様を模式的に示している。図2(A)において蒸着装置3Bのシャッタ7は閉鎖されており、シャッタ7は蒸着源6と搬送室20c内を搬送される基板10との間となる位置に位置している(但し、図2(A)の態様では蒸着装置3Bの上方に基板10は存在していない。)。蒸着装置3Bの蒸着源6から搬送室20cへ蒸着物質が到達することが規制される。 FIG. 2A schematically shows a state in which the shutter 7 of the vapor deposition device 3A is open and the vapor deposition material 12 is discharged onto the substrate 10 positioned above the vapor deposition device 3A. In FIG. 2A, the shutter 7 of the vapor deposition apparatus 3B is closed, and the shutter 7 is positioned between the vapor deposition source 6 and the substrate 10 being transported in the transport chamber 20c (however, in FIG. 2(A), the substrate 10 does not exist above the vapor deposition device 3B). The vapor deposition material is restricted from reaching the transfer chamber 20c from the vapor deposition source 6 of the vapor deposition apparatus 3B.

図2(B)は、蒸着装置3Aにより蒸着物質が蒸着された基板10が蒸着装置3Bの上方に到達した態様を模式的に示している。蒸着装置3Bのシャッタ7が開放されており、蒸着装置3Bの上方に位置する基板10に蒸着材料12が放出されている。図2(B)において蒸着装置3Aのシャッタ7は閉鎖されており、シャッタ7は蒸着源6と搬送室20c内を搬送される基板10との間となる位置に位置している(但し、図2(B)の態様では蒸着装置3Aの上方に基板10は存在していない。)。蒸着装置3Aの蒸着源6から搬送室20cへ蒸着物質が到達することが規制される。 FIG. 2B schematically shows a state in which the substrate 10 deposited with the vapor deposition material by the vapor deposition device 3A reaches above the vapor deposition device 3B. The shutter 7 of the vapor deposition device 3B is open, and the vapor deposition material 12 is discharged onto the substrate 10 positioned above the vapor deposition device 3B. In FIG. 2B, the shutter 7 of the vapor deposition apparatus 3A is closed, and the shutter 7 is positioned between the vapor deposition source 6 and the substrate 10 being transported in the transport chamber 20c (however, in FIG. 2(B), the substrate 10 does not exist above the vapor deposition apparatus 3A). The vapor deposition material is restricted from reaching the transfer chamber 20c from the vapor deposition source 6 of the vapor deposition apparatus 3A.

このように本実施形態では、基板10に対して複数の蒸着装置3A、3Bによって連続的に蒸着物質を蒸着することができる。図2(A)及び図2(B)の例では、シャッタ7の動作として、その開閉によって蒸着源6から搬送室20cへの蒸着物質の放出と遮断を行う例を例示した。しかし、シャッタ7の動作はこれに限られず、二つのシャッタ7の開度を中間の開度としたり、二つのシャッタ7の一方を開放位置、他方を閉鎖位置に位置させることで、蒸着物質の放出範囲を規制し、基板10への単位時間当たりの蒸着物質の蒸着量や基板10への蒸着物質の入射角を制御することもできる。 As described above, in this embodiment, the vapor deposition material can be continuously vapor-deposited on the substrate 10 by the plurality of vapor deposition apparatuses 3A and 3B. In the examples of FIGS. 2(A) and 2(B), as the operation of the shutter 7, the opening and closing of the shutter 7 release and block the vapor deposition material from the vapor deposition source 6 to the transfer chamber 20c. However, the operation of the shutters 7 is not limited to this, and by setting the opening degree of the two shutters 7 to an intermediate opening degree, or by positioning one of the two shutters 7 in the open position and the other in the closed position, it is possible to It is also possible to regulate the emission range and control the amount of deposition material deposited on the substrate 10 per unit time and the angle of incidence of the deposition material on the substrate 10 .

<シャッタと回動ユニット>
図1~図2(B)に加えて、図3~図5(B)を参照してシャッタ7と回動ユニット8の構造について説明する。主に、図3を参照する。図3は蒸着装置3の内部構造を示す概略図であり、図2(A)のA-A線断面図に相当する。回動ユニット8は、一対の駆動ユニットDU1及びDU2(以下、両者を総称する場合、又は、区別しない場合は駆動ユニットDUと表す)と、駆動ユニットDU1及びDU2に支持された支持部材30とを備え、蒸着源6の延設方向(本実施形態ではY方向)の回動中心線AL周りにシャッタ7を回動する。シャッタ7を回動することで、平行移動させる構成に比べて、防着板4に囲まれた狭い空間で蒸着源6の開閉動作を行うことができる。
<Shutter and rotating unit>
The structures of the shutter 7 and the rotating unit 8 will be described with reference to FIGS. 3 to 5B in addition to FIGS. 1 to 2B. Refer mainly to FIG. FIG. 3 is a schematic diagram showing the internal structure of the vapor deposition apparatus 3, and corresponds to a cross-sectional view taken along the line AA of FIG. 2(A). The rotating unit 8 includes a pair of drive units DU1 and DU2 (hereinafter collectively referred to as drive unit DU, or when not distinguished) and a support member 30 supported by the drive units DU1 and DU2. In addition, the shutter 7 is rotated around the rotation center line AL in the direction in which the vapor deposition source 6 extends (the Y direction in this embodiment). By rotating the shutter 7, the opening and closing operation of the vapor deposition source 6 can be performed in a narrow space surrounded by the anti-adhesion plate 4 as compared with the configuration in which the shutter 7 is moved in parallel.

支持部材30はシャッタ7を支持する部材であり、蒸着源6の延設方向(本実施形態ではY方向)に沿って延設された取付部31と、取付部31の延設方向の各端部に固定された一対のアーム部32とを備える。取付部31は、屋根型の断面形状を有する板状の部材によって構成されており、その長手方向に離間した一対のアーム部32に架設されている。取付部31には、ボルト締結構造等の固定構造(不図示)によってシャッタ7が交換可能に取り付けられる。蒸着装置3の使用により、シャッタ7には蒸着物質が付着したり、熱の影響により劣化が生じ、回動ユニット8よりも寿命が短い場合がある。シャッタ7が交換可能であることにより、回動ユニット8とシャッタ7が不可分の構成に比べて、回動ユニット8をより長期に渡って使用することができる。 The support member 30 is a member for supporting the shutter 7, and includes a mounting portion 31 extending along the extending direction of the vapor deposition source 6 (the Y direction in this embodiment) and each end of the mounting portion 31 in the extending direction. and a pair of arm portions 32 fixed to the portion. The mounting portion 31 is configured by a plate-like member having a roof-shaped cross section, and is mounted on a pair of arm portions 32 spaced apart in the longitudinal direction thereof. The shutter 7 is replaceably attached to the attachment portion 31 by a fixing structure (not shown) such as a bolt fastening structure. When the vapor deposition device 3 is used, the shutter 7 may be deteriorated due to adhesion of vapor deposition material or the influence of heat, and may have a shorter life than the rotating unit 8 . Since the shutter 7 is replaceable, the rotation unit 8 can be used for a longer period of time than when the rotation unit 8 and the shutter 7 are inseparable.

図5(A)等に示すように、シャッタ7は回動中心線ALの径方向Rで取付部31の内側に取り付けられている。取付部31と蒸着源6との間にシャッタ7が介在することから、取付部31に対する蒸着物質の付着や熱の影響を低減でき、取付部31の寿命を長くすることができる。また、本実施形態の場合、回動中心線ALと直交する平面におけるシャッタ7の断面形状(X-Z面切断面形状)が、図5(A)等に示すように回動中心線ALの径方向Rで外側に凸の弧状断面形状を有している。換言するとシャッタ7は、蒸着源6から遠ざかる方向に凸形状となる、表面が曲面の殻形状を有している。シャッタ7が平板形状の構成と比べて、本実施形態のシャッタ7は、防着板4に囲まれた狭い空間で防着板4と干渉することなく、その回動範囲(移動軌跡長)を大きくとることができる。本実施形態の場合、シャッタ7の断面形状は、回動中心線ALと同心円弧形状を有しているが、これに限られず、異心円弧形状でもよいし、また、楕円弧形状等、円弧形状以外の弧形状であってもよい。 As shown in FIG. 5A and the like, the shutter 7 is mounted inside the mounting portion 31 in the radial direction R of the rotation center line AL. Since the shutter 7 is interposed between the mounting portion 31 and the vapor deposition source 6, it is possible to reduce the adhesion of the vapor deposition material to the mounting portion 31 and the effects of heat, thereby extending the life of the mounting portion 31. FIG. Further, in the case of the present embodiment, the cross-sectional shape of the shutter 7 in the plane perpendicular to the rotation center line AL (XZ plane cross-sectional shape) is the same as that of the rotation center line AL, as shown in FIG. It has an arcuate cross-sectional shape that is convex outward in the radial direction R. In other words, the shutter 7 has a shell shape with a curved surface that is convex in the direction away from the vapor deposition source 6 . Compared to the configuration in which the shutter 7 has a flat plate shape, the shutter 7 of the present embodiment does not interfere with the attachment-preventing plate 4 in a narrow space surrounded by the attachment-preventing plate 4, and the rotation range (movement locus length) thereof can be adjusted. can be taken large. In the case of this embodiment, the cross-sectional shape of the shutter 7 has an arc shape concentric with the rotation center line AL. may be arc-shaped.

各アーム部32は、回転軸方向(Y方向)に交差する方向に延び、かつ、X-Z面に沿った方向、すなわち、回動中心線ALの径方向Rに延びる板状の部材によって構成されている。アーム部32の一方端部には取付部31が接続され、他方端部には駆動ユニットDUの回転軸33が接続される。アーム部32の長さは、シャッタ7の移動軌道が、蒸着源6と搬送室20c内を搬送される処理対象物との間の位置を含むように設定される。 Each arm portion 32 is configured by a plate-shaped member extending in a direction intersecting the rotation axis direction (Y direction) and extending in a direction along the XZ plane, that is, in a radial direction R of the rotation center line AL. It is The mounting portion 31 is connected to one end of the arm portion 32, and the rotating shaft 33 of the drive unit DU is connected to the other end. The length of the arm part 32 is set so that the moving track of the shutter 7 includes the position between the vapor deposition source 6 and the object to be processed transported in the transport chamber 20c.

シャッタ7は蒸着源6の熱にさらされる。特に蒸着物質が金属材料の場合、蒸着源6の温度が高く、シャッタ7が高温になり易い。シャッタ7が高温になるとシャッタ7に付着した蒸着物質がシャッタ7から放出される場合がある。よってシャッタ7の冷却が望まれる。本実施形態の場合、支持部材30に冷却媒体を流通させることで支持部材30を冷却し、これによりシャッタ7を間接的に冷却する。冷却媒体は例えば冷却水である。図3、図5(A)を参照して冷却媒体の流路について説明する。図5(A)は駆動ユニットDU1に接続されているアーム部32を示しているが、駆動ユニットDU2に接続されているアーム部32も同様である。 The shutter 7 is exposed to heat from the vapor deposition source 6 . In particular, when the vapor deposition material is a metal material, the temperature of the vapor deposition source 6 is high and the temperature of the shutter 7 tends to be high. When the temperature of the shutter 7 becomes high, the vapor deposition material adhering to the shutter 7 may be released from the shutter 7 . Cooling of the shutter 7 is therefore desired. In the case of this embodiment, the support member 30 is cooled by circulating the cooling medium through the support member 30, thereby indirectly cooling the shutter 7. FIG. The cooling medium is, for example, cooling water. The flow path of the cooling medium will be described with reference to FIGS. 3 and 5A. Although FIG. 5A shows the arm portion 32 connected to the drive unit DU1, the same applies to the arm portion 32 connected to the drive unit DU2.

支持部材30のうち、取付部31には流路31aが内部に形成されている。大型のシャッタ7の場合、その長手方向(本実施形態ではY方向)の長さが長く、その結果、取付部31の長手方向(本実施形態ではY方向)の長さも長くなって数mに及ぶ場合がある。冷却媒体の流路は、取付部31を長手方向に貫通した流路でもよいが、そうすると取付部31の長手方向に大きな温度差が生じる場合がある。本実施形態では、取付部31に独立した二つの流路31aが形成されている。各流路31aは、取付部31の長手方向の一方端部から取付部31の長手方向の途中部(本実施形態では中央部CL付近)へ延び、折り返し部31bで折り返されて一方端部に戻るU字形状を有している。取付部31の長手方向に二分して、流路31aを形成することで、取付部31をその長手方向に、より均一に冷却することができる。 A flow path 31 a is formed inside the attachment portion 31 of the support member 30 . In the case of a large-sized shutter 7, its length in the longitudinal direction (the Y direction in this embodiment) is long, and as a result, the length in the longitudinal direction (the Y direction in this embodiment) of the mounting portion 31 is also long, reaching several meters. may reach. The flow path of the cooling medium may be a flow path that penetrates the mounting portion 31 in the longitudinal direction, but this may cause a large temperature difference in the longitudinal direction of the mounting portion 31 . In this embodiment, two independent flow paths 31a are formed in the attachment portion 31 . Each flow path 31a extends from one end in the longitudinal direction of the mounting portion 31 to an intermediate portion in the longitudinal direction of the mounting portion 31 (near the central portion CL in this embodiment), and is folded back at the folded portion 31b to reach one end. It has a back U shape. By dividing the attachment portion 31 in the longitudinal direction to form the flow path 31a, the attachment portion 31 can be cooled more uniformly in the longitudinal direction.

図5(A)に示すように、アーム部32には流路31aと連通した流路32a、32bが内部に形成されている。流路32a、32bのうちの一方の流路は冷却媒体の供給用の流路であり、他方の流路は冷却媒体の排出用の流路である。 As shown in FIG. 5A, the arm portion 32 is internally formed with channels 32a and 32b communicating with the channel 31a. One of the flow paths 32a and 32b is a flow path for supplying the cooling medium, and the other flow path is a flow path for discharging the cooling medium.

主に図3、図4を参照して駆動ユニットDUの構成について説明する。図4は駆動ユニットDU1周辺の断面図であり、主に駆動ユニットDU1の構造を示している。なお、駆動ユニットDU2は駆動ユニットDU1と同様の構造を有している。 The configuration of the drive unit DU will be described mainly with reference to FIGS. 3 and 4. FIG. FIG. 4 is a sectional view around the drive unit DU1, and mainly shows the structure of the drive unit DU1. The drive unit DU2 has the same structure as the drive unit DU1.

駆動ユニットDUは、回転軸33、軸受け34、駆動源36及び軸受け37を含む。回転軸33は、回動中心線AL上の軸であり、シャッタ7の回動中心を形成する。駆動ユニットDU1及びDU2の各回転軸33は同軸上(共通の回動中心線AL上)に配置されている。駆動ユニットDU1及びDU2は、蒸着源6に対して、蒸着源6の延設方向(本実施形態ではY方向)の側方に配置されている。換言すると、Y方向で駆動ユニットDU1とDU2との間に蒸着源6が位置している。したがって、駆動ユニットDU1及びDU2の各回転軸33は、蒸着源6の延設方向(本実施形態ではY方向)に離間し、蒸着源6に対してその延設方向の側方において同軸上に配置されている。 The drive unit DU includes a rotary shaft 33 , bearings 34 , drive source 36 and bearings 37 . The rotation shaft 33 is on the rotation center line AL and forms the rotation center of the shutter 7 . The rotation shafts 33 of the drive units DU1 and DU2 are arranged coaxially (on the common rotation center line AL). The drive units DU<b>1 and DU<b>2 are arranged on the side of the deposition source 6 in the direction in which the deposition source 6 extends (the Y direction in this embodiment). In other words, the deposition source 6 is located between the drive units DU1 and DU2 in the Y direction. Therefore, the rotation shafts 33 of the drive units DU1 and DU2 are spaced apart in the extending direction of the deposition source 6 (the Y direction in this embodiment) and coaxially with respect to the deposition source 6 on the side of the extending direction. are placed.

回転軸33はその軸方向(本実施形態の場合Y方向)に延びる内部空間33a(本実施形態の場合、回転軸33を貫通している)を有する中空の回転軸であり、その軸方向の両端部が開口している。本実施形態の回転軸33は、複数の部材を連結して構成されており、軸受け34に支持された軸部材331と、駆動源36を通過した軸部材332とを含む。軸受け34はステム35を介してソースチャンバ5の壁部に支持されている。軸受け34は中空のケース34aと、回転軸33の軸方向でケース34aの両端部にそれぞれ支持されたボールベアリング34bとを備える。軸部材331はボールベアリング34bの内輪に嵌合している。 The rotating shaft 33 is a hollow rotating shaft having an internal space 33a (passing through the rotating shaft 33 in this embodiment) extending in its axial direction (Y direction in this embodiment). Both ends are open. The rotating shaft 33 of this embodiment is configured by connecting a plurality of members, and includes a shaft member 331 supported by the bearing 34 and a shaft member 332 passing through the drive source 36 . A bearing 34 is supported on the wall of the source chamber 5 via a stem 35 . The bearing 34 includes a hollow case 34 a and ball bearings 34 b supported on both ends of the case 34 a in the axial direction of the rotating shaft 33 . The shaft member 331 is fitted to the inner ring of the ball bearing 34b.

駆動源36は、回転軸33に回転力を付勢する。本実施形態の場合、駆動源36は中空モータであり、軸部材332はそのロータと一体的に設けられている。駆動源36はソースチャンバ5の外部に配置されており、そのフランジ部36aがソースチャンバ5の壁部に固定されている。なお、本実施形態では駆動源36として中空モータを利用したが、これに限られない。例えば、駆動源は、回転軸33から離間した通常のモータとし、歯車装置やベルト伝動機構等の伝達機構によりモータの駆動力を回転軸33に伝達してもよい。 The drive source 36 applies rotational force to the rotating shaft 33 . In this embodiment, the drive source 36 is a hollow motor, and the shaft member 332 is provided integrally with its rotor. The drive source 36 is arranged outside the source chamber 5 , and its flange portion 36 a is fixed to the wall portion of the source chamber 5 . Although a hollow motor is used as the driving source 36 in this embodiment, the present invention is not limited to this. For example, the drive source may be a normal motor separated from the rotating shaft 33, and the driving force of the motor may be transmitted to the rotating shaft 33 by a transmission mechanism such as a gear device or a belt transmission mechanism.

軸受け37は、回転軸33の端部を支持する軸受けである。軸受け37は、回転軸33の内部空間33aと連通し、回転軸33の軸方向に延びる内部空間37cを有する中空の本体37aと、回動中心線AL周りに回転自在に本体37aに支持された円盤37bとを有する。回転軸33の端部は円盤37bに連結されている。軸受け37は、複数の連結部材38を介して駆動源36のフランジ部36aに支持されている。 The bearing 37 is a bearing that supports the end of the rotating shaft 33 . The bearing 37 communicates with the internal space 33a of the rotary shaft 33 and is supported by the hollow main body 37a having an internal space 37c extending in the axial direction of the rotary shaft 33 and the main body 37a so as to be rotatable about the rotation center line AL. disk 37b. The end of the rotating shaft 33 is connected to the disk 37b. The bearing 37 is supported by a flange portion 36 a of the drive source 36 via a plurality of connecting members 38 .

支持部材30のアーム部32は、回転軸33の端部の開口を塞ぐように回転軸33に接続されている。以上の構成によって、駆動ユニットDU1及びDU2の各駆動源36を同期的に駆動することで、支持部材30が回動中心線ALの周りに回動し、シャッタ7が回動することになる。支持部材30の長手方向の両側に駆動ユニットDUを設けたことで、支持部材30を一つの駆動ユニットDUで片持ち状態で回動する構成に比べて、安定した動作を行うことができる。 The arm portion 32 of the support member 30 is connected to the rotating shaft 33 so as to close the opening at the end of the rotating shaft 33 . By synchronously driving the drive sources 36 of the drive units DU1 and DU2, the support member 30 rotates around the rotation center line AL and the shutter 7 rotates. By providing the drive units DU on both sides of the support member 30 in the longitudinal direction, the support member 30 can be operated more stably than in a configuration in which the support member 30 is rotated in a cantilever state by one drive unit DU.

支持部材30に冷却媒体を循環させる構成について図4を参照して説明する。成膜装置1は、冷却媒体を循環させる循環装置50を備える。循環装置50は、例えば、冷却媒体を収容するタンク、冷却媒体を圧送するポンプ、冷却媒体を冷却する熱交換器等を備える。循環装置50と、アーム部32の流路32a及び32bとは、配管40を介して接続されている。配管40は、冷却媒体の供給側の配管として、金属製配管42aと、可撓性チューブ41aと、これらを接続する接続部43aとを含む。また、配管40は、冷却媒体の排出側(戻り側)の配管として、金属製配管42bと、可撓性チューブ41bと、これらを接続する接続部43bとを含む。金属製配管42a、42b及び接続部43a、43bは、駆動ユニットDUの外部に位置し、接続部43a、43bは不図示のステイに固定されている。 A configuration for circulating the cooling medium in the support member 30 will be described with reference to FIG. The film forming apparatus 1 includes a circulation device 50 that circulates a cooling medium. The circulation device 50 includes, for example, a tank containing a cooling medium, a pump for pumping the cooling medium, a heat exchanger for cooling the cooling medium, and the like. The circulation device 50 and the flow paths 32 a and 32 b of the arm portion 32 are connected via a pipe 40 . The pipe 40 includes a metal pipe 42a, a flexible tube 41a, and a connection portion 43a connecting these as pipes on the cooling medium supply side. Further, the pipe 40 includes a metal pipe 42b, a flexible tube 41b, and a connection portion 43b connecting these as pipes on the cooling medium discharge side (return side). The metal pipes 42a, 42b and the connecting portions 43a, 43b are located outside the drive unit DU, and the connecting portions 43a, 43b are fixed to stays (not shown).

可撓性チューブ41a及び41bは、例えば、ナイロンチューブやポリウレタンチューブである。可撓性チューブ41a及び41bと、流路32a及び32bとの接続部39a、39bは内部空間33a内においてアーム部32に設けられている。可撓性チューブ41aは接続部39aに接続されており、可撓性チューブ41bは接続部39bに接続されている。可撓性チューブ41a、41bは、接続部39a、39bから回転軸33の軸方向に延設されており、本実施形態の場合、回転軸33の軸受け37側の端部の開口よりも外部に延設され、更に軸受け37の外部へ延設されて接続部43a、43bに接続されている。 Flexible tubes 41a and 41b are, for example, nylon tubes or polyurethane tubes. Connecting portions 39a and 39b between the flexible tubes 41a and 41b and the flow paths 32a and 32b are provided in the arm portion 32 within the internal space 33a. The flexible tube 41a is connected to the connecting portion 39a, and the flexible tube 41b is connected to the connecting portion 39b. The flexible tubes 41a and 41b extend from the connection portions 39a and 39b in the axial direction of the rotating shaft 33, and in the case of the present embodiment, extend outside the opening of the end of the rotating shaft 33 on the bearing 37 side. It is extended and further extended to the outside of the bearing 37 and connected to the connecting portions 43a and 43b.

回転軸33の回動する範囲は、360度以下の範囲で設定される。本実施形態の場合、シャッタ7の回動の際、回転軸33は約60度回動する。配管40のうち、回転軸33の内部を通る可撓性チューブ41a及び41bは、接続部43a、43b側の端部は不動である一方、アーム部32側の端部は変位する。しかし、可撓性チューブ41a及び41bは可撓性を有しているため、弾性的に変形して、端部間の位置のずれを吸収する。図5(B)はその説明図である。図示のように、可撓性チューブ41a及び41bは、回転軸33の回動によってアーム部側32の端部が変位することにより捻りが生じるが、その可撓性によって破断することはなく、また、回転軸33が元の位置に戻ることによって、当初の状態に復元する。本実施形態では、このように回転軸33内の配管を可撓性チューブ41a、41bで構成し、回転軸33の回転に伴うチューブの端部間の位置ずれをチューブの変形で吸収することができる。回転部分に冷却媒体を通過させる構造としては、ロータリジョイントが知られているが高価であるところ、本実施形態では可撓性チューブを用いることで比較的安価に冷却媒体の流路構造を提供できる。しかも、ロータリジョイントのように互いにシールされる摺動部材が存在せず、可撓性チューブ41a、41bの捻りを利用しているので、構造的に冷却媒体が漏れる部位がなく、冷却媒体の漏れをより確実に防止できる。 The range in which the rotating shaft 33 rotates is set within a range of 360 degrees or less. In the case of this embodiment, when the shutter 7 rotates, the rotating shaft 33 rotates about 60 degrees. Among the pipes 40, the flexible tubes 41a and 41b passing through the inside of the rotating shaft 33 are immobile at the ends on the side of the connecting portions 43a and 43b, while the ends on the side of the arm portion 32 are displaced. However, since the flexible tubes 41a and 41b are flexible, they are elastically deformed to absorb the misalignment between the ends. FIG. 5B is an explanatory diagram thereof. As shown in the figure, the flexible tubes 41a and 41b are twisted when the end of the arm section side 32 is displaced by the rotation of the rotating shaft 33, but they are not broken due to the flexibility. , the rotating shaft 33 returns to its original position, thereby restoring the initial state. In the present embodiment, the piping inside the rotating shaft 33 is configured by the flexible tubes 41a and 41b in this manner, and displacement between the ends of the tubes due to the rotation of the rotating shaft 33 can be absorbed by the deformation of the tubes. can. A rotary joint is known as a structure for passing a cooling medium through a rotating part, but it is expensive. However, in this embodiment, a flexible tube is used to provide a flow path structure for a cooling medium at a relatively low cost. . In addition, unlike rotary joints, there is no sliding member that seals each other, and the twisting of the flexible tubes 41a and 41b is used. can be prevented more reliably.

本実施形態のように、回転軸33の回転に伴うチューブの端部間の位置ずれを可撓性チューブ41a及び41bの変形で吸収する場合、可撓性チューブ41a、41bが長い程、より大きな回転量に対応することができる。本実施形態の軸受け34は、Y方向に離間したボールベアリング34bを有しており、比較的長い全長を有している。この軸受け34の構造は回転軸33の回転安定性を高めるだけでなく、回転軸33の長尺化による可撓性チューブ41a、41bの長尺化の点でも有利である。また、接続部43a、43bは回転軸33の内部に位置していてもよいが、本実施形態のように、外部に位置していることで、配管作業の作業性を向上すると共に、可撓性チューブ41a、41bの長尺化の点でも有利である。また、可撓性チューブ41a、41bが、軸受け37を通過して外部に延設されていることもこれらの長尺化の点で有利である。 When the displacement between the ends of the tubes due to the rotation of the rotating shaft 33 is absorbed by the deformation of the flexible tubes 41a and 41b as in this embodiment, the longer the flexible tubes 41a and 41b, the greater the displacement. It can correspond to the amount of rotation. The bearing 34 of this embodiment has ball bearings 34b spaced apart in the Y direction and has a relatively long overall length. This structure of the bearing 34 not only enhances the rotational stability of the rotating shaft 33, but is also advantageous in terms of lengthening the flexible tubes 41a and 41b by lengthening the rotating shaft 33. FIG. Further, the connecting portions 43a and 43b may be positioned inside the rotary shaft 33, but by positioning them outside as in the present embodiment, the workability of the piping work is improved and the flexibility is increased. It is also advantageous in that the sex tubes 41a and 41b can be elongated. In addition, the fact that the flexible tubes 41a and 41b pass through the bearing 37 and extend to the outside is also advantageous in terms of lengthening them.

<監視装置>
監視装置9について図3、図4を参照して説明する。監視装置9は台座部材13に搭載されており、台座部材13はソースチャンバ5の底部に立設された支柱15に支持されている。本実施形態の場合、一つの台座部材13に二つの監視装置9が搭載されている。監視装置9は取り付け部材9cを介して交換可能に台座部材13に固定される。
<Monitoring device>
The monitoring device 9 will be described with reference to FIGS. 3 and 4. FIG. The monitoring device 9 is mounted on a pedestal member 13 , and the pedestal member 13 is supported by a column 15 erected on the bottom of the source chamber 5 . In the case of this embodiment, two monitoring devices 9 are mounted on one pedestal member 13 . The monitoring device 9 is exchangeably fixed to the base member 13 via the mounting member 9c.

台座部材13の蒸着源6側の端部には壁部材14が設けられており、監視装置9は壁部材14の背後に位置している。台座部材13、壁部材14及び監視装置9は、蒸着源6に対して、蒸着源6の延設方向(本実施形態ではY方向)の側方に配置されており、本実施形態では蒸着源6の両側方にそれぞれ配置されている。このような配置によって、蒸着源6から基板10への蒸着物質の放出に影響を与えずに、監視装置9によって放出状態を監視することができる。 A wall member 14 is provided at the end of the pedestal member 13 on the deposition source 6 side, and the monitoring device 9 is positioned behind the wall member 14 . The pedestal member 13, the wall member 14, and the monitoring device 9 are arranged on the side of the deposition source 6 in the direction in which the deposition source 6 extends (the Y direction in this embodiment). 6 are arranged on both sides. Such an arrangement allows the monitoring device 9 to monitor the discharge state without affecting the discharge of the vapor deposition material from the vapor deposition source 6 to the substrate 10 .

監視装置9は、また、回転軸33に対して、その径方向Rの側方に回転軸33から離間して配置されており、特に、軸受け34の側方に位置している。回転軸33の周囲の空のスペースを監視装置9の配置スペースとして有効に活用することができる。 The monitoring device 9 is also spaced apart from the rotary shaft 33 laterally in the radial direction R with respect to the rotary shaft 33 , particularly lateral to the bearing 34 . Empty space around the rotating shaft 33 can be effectively utilized as a space for arranging the monitoring device 9 .

本実施形態の監視装置9は、ケース9aの内部に膜厚センサとして水晶振動子9cを備えている。水晶振動子9cには、ケース9aに形成された導入部9bを介して蒸着源6から放出された蒸着物質が導入されて付着する。水晶振動子9cの振動数は蒸着物質の付着量により変動する。水晶振動子9cの振動数を監視することで、基板10に蒸着した蒸着物質の膜厚を監視することができる。 The monitoring device 9 of this embodiment includes a crystal oscillator 9c as a film thickness sensor inside a case 9a. The vapor deposition material discharged from the vapor deposition source 6 is introduced into the crystal oscillator 9c through the introduction portion 9b formed in the case 9a and adheres thereto. The frequency of the crystal oscillator 9c fluctuates depending on the deposition amount of the deposition material. By monitoring the frequency of the crystal oscillator 9c, the film thickness of the deposition material deposited on the substrate 10 can be monitored.

図6及び図7を参照して台座部材13及び壁部材14の構成を更に説明する。図6は監視装置9及びその周辺の台座部材13及び壁部材14の斜視図であり、図7は台座部材13及び壁部材14を反対側から見た斜視図である。 The configurations of the base member 13 and the wall member 14 will be further described with reference to FIGS. 6 and 7. FIG. FIG. 6 is a perspective view of the monitor 9 and its peripheral base member 13 and wall member 14, and FIG. 7 is a perspective view of the base member 13 and wall member 14 viewed from the opposite side.

台座部材13は板状の部材であり、水平姿勢で支柱15に支持されており、その上面13aが監視装置9の設置面である。壁部材14は板状の部材であり、垂直姿勢で台座部材13に支持されている。台座部材13と壁部材14とは全体としてL字型をなしている。壁部材14は、監視装置9と蒸着源6との間に介在するように台座部材13に設けられており、かつ、監視装置9を蒸着源6に露出させる窓部14aを有する。窓部14aは、二つの監視装置9に対応して二つ形成されており、本実施形態の場合、上側が開放した切り欠き状の窓部である。監視装置9の導入部9bは窓部14aから蒸着源6に対して露出している。 The pedestal member 13 is a plate-like member and is supported by a support 15 in a horizontal posture. The wall member 14 is a plate-like member and is supported by the base member 13 in a vertical posture. The base member 13 and the wall member 14 are L-shaped as a whole. The wall member 14 is provided on the pedestal member 13 so as to be interposed between the monitoring device 9 and the deposition source 6 , and has a window portion 14 a through which the monitoring device 9 is exposed to the deposition source 6 . Two windows 14a are formed corresponding to the two monitoring devices 9, and in the case of this embodiment, they are notch-shaped windows with an open upper side. The introduction portion 9b of the monitoring device 9 is exposed to the vapor deposition source 6 through the window portion 14a.

水晶振動子9cはその温度変化により振動特性が変化し、振動数の変化と蒸着源6の蒸着物質の放出状態との相関関係が変動する。このため、蒸着源6の熱により水晶振動子9cの温度が上昇すると、監視精度が低下する。壁部材14は、蒸着物質の周囲への飛散を抑制する他、監視装置9と蒸着源6との間に介在して、蒸着源6から監視装置9へ熱の輻射を低減する冷却板としての機能も有している。 The vibration characteristics of the crystal oscillator 9c change due to changes in its temperature, and the correlation between the change in frequency and the discharge state of the vapor deposition material from the vapor deposition source 6 fluctuates. Therefore, when the temperature of the crystal oscillator 9c rises due to the heat of the vapor deposition source 6, the monitoring accuracy decreases. The wall member 14 serves as a cooling plate interposed between the monitoring device 9 and the deposition source 6 to reduce heat radiation from the deposition source 6 to the monitoring device 9 in addition to suppressing scattering of the deposition material to the surroundings. It also has functions.

本実施形態では、更に台座部材13及び壁部材14に冷却媒体を循環させることで、監視装置9を間接的に冷却する。監視装置9の冷却性能を向上できる。 In this embodiment, the monitoring device 9 is indirectly cooled by circulating the cooling medium through the base member 13 and the wall member 14 . The cooling performance of the monitoring device 9 can be improved.

台座部材13は、配管44、45が接続される接続部13b、13cを有している。接続部13b、13cはX方向で台座部材13の一方端部、他方端部に形成されている。配管44、45は例えば、循環装置50に接続されており、配管44が冷却媒体の供給側の配管であり、配管45が冷却媒体の排出側(戻り側)の配管である。台座部材13には、冷却媒体が流れる流路13dが内部に形成されており、冷却媒体は接続部13bから接続部13cへ向けて流路13dを流れる。これにより台座部材13が冷却される。 The base member 13 has connecting portions 13b and 13c to which the pipes 44 and 45 are connected. The connecting portions 13b and 13c are formed at one end and the other end of the base member 13 in the X direction. The pipes 44 and 45 are connected to, for example, the circulation device 50. The pipe 44 is the pipe on the supply side of the cooling medium, and the pipe 45 is the pipe on the discharge side (return side) of the cooling medium. A flow path 13d through which a cooling medium flows is formed inside the base member 13, and the cooling medium flows through the flow path 13d from the connection portion 13b toward the connection portion 13c. The base member 13 is thereby cooled.

また、壁部材14にも冷却媒体の流路14bが内部に形成されている。流路14bは、台座部材13の流路13dから分岐した流路であり、これらの流路13d、14bは連通点14cで連通している。連通点14cは壁部材14と台座部材13との接続部分に位置している。流路13dと流路14bとが連通していることで、共通の配管44、45により冷却媒体を台座部材13及び壁部材14に流通させることができる。 Further, the wall member 14 also has a cooling medium flow path 14b formed therein. The flow path 14b is a flow path branched from the flow path 13d of the base member 13, and these flow paths 13d and 14b communicate at a communication point 14c. The communication point 14c is located at the connecting portion between the wall member 14 and the base member 13. As shown in FIG. Since the flow path 13d and the flow path 14b are in communication with each other, the common pipes 44 and 45 allow the cooling medium to flow through the base member 13 and the wall member .

<電子デバイス>
次に、電子デバイスの一例を説明する。以下、電子デバイスの例として有機EL表示装置の構成を例示する。
<Electronic device>
Next, an example of an electronic device will be described. The configuration of an organic EL display device will be exemplified below as an example of the electronic device.

まず、製造する有機EL表示装置について説明する。図8(A)は有機EL表示装置500の全体図、図8(B)は1画素の断面構造を示す図である。 First, the organic EL display device to be manufactured will be described. FIG. 8A is an overall view of an organic EL display device 500, and FIG. 8B is a view showing a cross-sectional structure of one pixel.

図8(A)に示すように、有機EL表示装置500の表示領域51には、発光素子を複数備える画素52がマトリクス状に複数配置されている。詳細は後で説明するが、発光素子のそれぞれは、一対の電極に挟まれた有機層を備えた構造を有している。 As shown in FIG. 8A, in a display region 51 of an organic EL display device 500, a plurality of pixels 52 each having a plurality of light emitting elements are arranged in a matrix. Although details will be described later, each of the light emitting elements has a structure including an organic layer sandwiched between a pair of electrodes.

なお、ここでいう画素とは、表示領域51において所望の色の表示を可能とする最小単位を指している。カラー有機EL表示装置の場合、互いに異なる発光を示す第1発光素子52R、第2発光素子52G、第3発光素子52Bの複数の副画素の組み合わせにより画素52が構成されている。画素52は、赤色(R)発光素子と緑色(G)発光素子と青色(B)発光素子の3種類の副画素の組み合わせで構成されることが多いが、これに限定はされない。画素52は少なくとも1種類の副画素を含めばよく、2種類以上の副画素を含むことが好ましく、3種類以上の副画素を含むことがより好ましい。画素52を構成する副画素としては、例えば、赤色(R)発光素子と緑色(G)発光素子と青色(B)発光素子と黄色(Y)発光素子の4種類の副画素の組み合わせでもよい。 The term "pixel" as used herein refers to a minimum unit capable of displaying a desired color in the display area 51. FIG. In the case of a color organic EL display device, a pixel 52 is configured by combining a plurality of sub-pixels of a first light-emitting element 52R, a second light-emitting element 52G, and a third light-emitting element 52B that emit light different from each other. The pixel 52 is often composed of a combination of three types of sub-pixels, a red (R) light-emitting element, a green (G) light-emitting element, and a blue (B) light-emitting element, but is not limited to this. The pixel 52 may include at least one type of sub-pixel, preferably two or more types of sub-pixels, and more preferably three or more types of sub-pixels. Sub-pixels constituting the pixel 52 may be a combination of four types of sub-pixels, for example, a red (R) light-emitting element, a green (G) light-emitting element, a blue (B) light-emitting element, and a yellow (Y) light-emitting element.

図8(B)は、図8(A)のA-B線における部分断面模式図である。画素52は、基板53上に、第1の電極(陽極)54と、正孔輸送層55と、赤色層56R・緑色層56G・青色層56Bのいずれかと、電子輸送層57と、第2の電極(陰極)58と、を備える有機EL素子で構成される複数の副画素を有している。これらのうち、正孔輸送層55、赤色層56R、緑色層56G、青色層56B、電子輸送層57が有機層に当たる。赤色層56R、緑色層56G、青色層56Bは、それぞれ赤色、緑色、青色を発する発光素子(有機EL素子と記述する場合もある)に対応するパターンに形成されている。 FIG. 8B is a schematic partial cross-sectional view taken along the line AB of FIG. 8A. The pixel 52 includes, on a substrate 53, a first electrode (anode) 54, a hole transport layer 55, one of a red layer 56R, a green layer 56G, and a blue layer 56B, an electron transport layer 57, and a second layer. It has a plurality of sub-pixels composed of organic EL elements each having an electrode (cathode) 58 . Among these layers, the hole transport layer 55, the red layer 56R, the green layer 56G, the blue layer 56B, and the electron transport layer 57 correspond to organic layers. The red layer 56R, the green layer 56G, and the blue layer 56B are formed in patterns corresponding to light-emitting elements (also referred to as organic EL elements) that emit red, green, and blue, respectively.

また、第1の電極54は、発光素子ごとに分離して形成されている。正孔輸送層55と電子輸送層57と第2の電極58は、複数の発光素子52R、52G、52Bにわたって共通で形成されていてもよいし、発光素子ごとに形成されていてもよい。すなわち、図8(B)に示すように正孔輸送層55が複数の副画素領域にわたって共通の層として形成された上に赤色層56R、緑色層56G、青色層56Bが副画素領域ごとに分離して形成され、さらにその上に電子輸送層57と第2の電極58が複数の副画素領域にわたって共通の層として形成されていてもよい。 Also, the first electrode 54 is formed separately for each light emitting element. The hole transport layer 55, the electron transport layer 57, and the second electrode 58 may be formed in common over the plurality of light emitting elements 52R, 52G, and 52B, or may be formed for each light emitting element. That is, as shown in FIG. 8B, the hole transport layer 55 is formed as a common layer over a plurality of sub-pixel regions, and the red layer 56R, the green layer 56G, and the blue layer 56B are separated for each sub-pixel region. The electron transport layer 57 and the second electrode 58 may be formed thereon as a common layer over a plurality of sub-pixel regions.

なお、近接した第1の電極54の間でのショートを防ぐために、第1の電極54間に絶縁層59が設けられている。さらに、有機EL層は水分や酸素によって劣化するため、水分や酸素から有機EL素子を保護するための保護層60が設けられている。 In addition, an insulating layer 59 is provided between the first electrodes 54 in order to prevent short-circuiting between the adjacent first electrodes 54 . Furthermore, since the organic EL layer is deteriorated by moisture and oxygen, a protective layer 60 is provided to protect the organic EL element from moisture and oxygen.

図8(B)では正孔輸送層55や電子輸送層57が一つの層で示されているが、有機EL表示素子の構造によって、正孔ブロック層や電子ブロック層を有する複数の層で形成されてもよい。また、第1の電極54と正孔輸送層55との間には第1の電極54から正孔輸送層55への正孔の注入が円滑に行われるようにすることのできるエネルギーバンド構造を有する正孔注入層を形成してもよい。同様に、第2の電極58と電子輸送層57の間にも電子注入層を形成してもよい。 Although the hole-transporting layer 55 and the electron-transporting layer 57 are shown as one layer in FIG. 8B, they may be formed of multiple layers having a hole-blocking layer and an electron-blocking layer depending on the structure of the organic EL display element. may be In addition, an energy band structure capable of smoothly injecting holes from the first electrode 54 to the hole transport layer 55 is formed between the first electrode 54 and the hole transport layer 55 . A hole injection layer having a Similarly, an electron injection layer may be formed between the second electrode 58 and the electron transport layer 57 as well.

赤色層56R、緑色層56G、青色層56Bのそれぞれは、単一の発光層で形成されていてもよいし、複数の層を積層することで形成されていてもよい。例えば、赤色層56Rを2層で構成し、上側の層を赤色の発光層で形成し、下側の層を正孔輸送層又は電子ブロック層で形成してもよい。あるいは、下側の層を赤色の発光層で形成し、上側の層を電子輸送層又は正孔ブロック層で形成してもよい。このように発光層の下側又は上側に層を設けることで、発光層における発光位置を調整し、光路長を調整することによって、発光素子の色純度を向上させる効果がある。 Each of the red layer 56R, the green layer 56G, and the blue layer 56B may be formed of a single light-emitting layer, or may be formed by laminating a plurality of layers. For example, the red layer 56R may be composed of two layers, the upper layer being a red light emitting layer, and the lower layer being a hole transport layer or an electron blocking layer. Alternatively, the lower layer may be formed of a red light-emitting layer and the upper layer may be formed of an electron-transporting layer or a hole-blocking layer. By providing a layer below or above the light-emitting layer in this way, the light-emitting position in the light-emitting layer is adjusted, and the optical path length is adjusted, thereby improving the color purity of the light-emitting element.

なお、ここでは赤色層56Rの例を示したが、緑色層56Gや青色層56Bでも同様の構造を採用してもよい。また、積層数は2層以上としてもよい。さらに、発光層と電子ブロック層のように異なる材料の層が積層されてもよいし、例えば発光層を2層以上積層するなど、同じ材料の層が積層されてもよい。 Although an example of the red layer 56R is shown here, a similar structure may be adopted for the green layer 56G and the blue layer 56B. Also, the number of layers to be laminated may be two or more. Furthermore, layers of different materials may be laminated such as the light emitting layer and the electron blocking layer, or layers of the same material may be laminated such as laminating two or more light emitting layers.

こうした電子デバイスの製造において、上述した成膜装置1が適用可能であり、当該製造方法は、搬送装置2により基板53を搬送する搬送工程と、搬送されている基板53に蒸着装置3によって各層の少なくともいずれか一つの層を蒸着する蒸着工程と、を含むことができる。 In the manufacture of such an electronic device, the film forming apparatus 1 described above can be applied. and C. depositing the at least one layer.

<他の実施形態>
上記実施形態では、一つの蒸着源6に対して二つのシャッタ7を設けたが、一つの蒸着源6に対して一つのシャッタ7を設けた構成でもよい。また、一つの支持部材30に対して二つの駆動ユニットDU1、DU2を設けたが、一つの支持部材30に対して一つの駆動ユニットDUを設けてもよい。
<Other embodiments>
Although two shutters 7 are provided for one vapor deposition source 6 in the above embodiment, one shutter 7 may be provided for one vapor deposition source 6 . Also, although two drive units DU1 and DU2 are provided for one support member 30, one drive unit DU may be provided for one support member 30. FIG.

蒸着源6はラインソース以外にスポットソースであってもよい。上記実施形態では、シャッタ7の回動中心線ALは水平方向(Y方向)であるが、垂直方向(Z方向)であってもよい。この場合、シャッタ7は水平姿勢に支持される板状のシャッタであってもよく、支持部材30はアーム部32が無い取付部31が回転軸33に接続される構成であってもよい。蒸着源6がスポットソースである場合に有利な構成である。 The deposition source 6 may be a spot source other than a line source. In the above embodiment, the rotation center line AL of the shutter 7 is in the horizontal direction (Y direction), but it may be in the vertical direction (Z direction). In this case, the shutter 7 may be a plate-shaped shutter that is supported in a horizontal position, and the support member 30 may be configured such that the mounting portion 31 without the arm portion 32 is connected to the rotating shaft 33 . This configuration is advantageous when the deposition source 6 is a spot source.

冷却媒体は循環されなくてもよく、排出された冷却媒体は再度支持部材30等に供給されることなく廃棄されてもよい。 The cooling medium may not be circulated, and the discharged cooling medium may be discarded without being supplied to the support member 30 or the like again.

取付部31の流路31aは途中部で折り返さずに取付部31の長手方向の一方端部から他方端部へ貫通していてもよい。この場合、アーム部32内の流路も一つとなり、駆動ユニットDU1→アーム部32→取付部31→アーム部32→駆動ユニットDU2の順に一方向に冷却媒体が流通するようにすることができる。そして、駆動ユニットDU1の回転軸33内には供給側の可撓性チューブ41aのみが配置され、駆動ユニットDU2の回転軸33内には排出側の可撓性チューブ41bのみが配置される。 The flow path 31a of the mounting portion 31 may penetrate from one longitudinal end to the other end of the mounting portion 31 without being folded in the middle. In this case, the flow path in the arm portion 32 becomes one, and the cooling medium can be circulated in one direction in the order of the drive unit DU1→arm portion 32→mounting portion 31→arm portion 32→drive unit DU2. . Only the flexible tube 41a on the supply side is arranged in the rotary shaft 33 of the drive unit DU1, and only the flexible tube 41b on the discharge side is arranged in the rotary shaft 33 of the drive unit DU2.

台座部材13及び壁部材14の冷却構造は、上記実施形態の蒸着装置3に限られず、多様な蒸着装置に適用可能である。 The cooling structure of the pedestal member 13 and the wall member 14 is not limited to the vapor deposition apparatus 3 of the above embodiment, and can be applied to various vapor deposition apparatuses.

発明は上記実施形態に制限されるものではなく、発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、発明の範囲を公にするために請求項を添付する。 The invention is not limited to the embodiments described above, and various modifications and variations are possible without departing from the spirit and scope of the invention. Accordingly, the claims are appended to make public the scope of the invention.

1 成膜装置、2 搬送装置、3 蒸着装置、9 監視装置 DESCRIPTION OF SYMBOLS 1 film-forming apparatus, 2 conveying apparatus, 3 vapor deposition apparatus, 9 monitoring apparatus

Claims (8)

基板に蒸着物質を放出する蒸着源と、
前記蒸着源からの蒸着物質の放出状態を監視する監視手段と、
を備えた蒸着装置であって、
前記監視手段が搭載される台座部材と、
前記監視手段と前記蒸着源との間に介在するように前記台座部材に設けられ、前記監視手段を前記蒸着源に露出させる窓部を有する壁部材と、を備え、
前記台座部材及び前記壁部材のそれぞれは、冷却媒体が流れる流路を有する、
ことを特徴とする蒸着装置。
a deposition source that releases a deposition material onto a substrate;
monitoring means for monitoring the release state of the vapor deposition material from the vapor deposition source;
A vapor deposition apparatus comprising
a base member on which the monitoring means is mounted;
a wall member provided on the pedestal member so as to be interposed between the monitoring means and the deposition source, and having a window portion that exposes the monitoring means to the deposition source;
Each of the pedestal member and the wall member has a flow path through which a cooling medium flows,
A vapor deposition apparatus characterized by:
請求項に記載の蒸着装置であって、
前記台座部材の前記流路と、前記壁部材の前記流路とは、前記台座部材と前記壁部材との接続部分において連通している、
ことを特徴とする蒸着装置。
The vapor deposition apparatus according to claim 1 ,
The flow path of the base member and the flow path of the wall member are in communication at a connecting portion between the base member and the wall member.
A vapor deposition apparatus characterized by:
請求項1又は請求項2に記載の蒸着装置であって、
前記監視手段は、前記蒸着源から放出される蒸着物質が付着するように配置された水晶振動子を備える、
ことを特徴とする蒸着装置。
The vapor deposition apparatus according to claim 1 or claim 2 ,
The monitoring means comprises a crystal oscillator arranged so that the vapor deposition material emitted from the vapor deposition source adheres to it,
A vapor deposition apparatus characterized by:
基板を搬送する搬送装置と、
前記基板に蒸着物質を蒸着する蒸着装置と、を備え、
前記基板を搬送しながら蒸着を行うインライン型の成膜装置であって、
前記蒸着装置は、
前記基板の搬送方向と交差する方向に延設され、前記基板に蒸着物質を放出する蒸着源と、
前記蒸着源からの蒸着物質の放出状態を監視する監視手段と、
前記監視手段が搭載される台座部材と、
前記監視手段と前記蒸着源との間に介在するように前記台座部材に設けられ、前記監視手段を前記蒸着源に露出させる窓部を有する壁部材と、を備え、
前記台座部材及び前記壁部材のそれぞれは、冷却媒体が流れる流路を有する、
ことを特徴とする成膜装置。
a transport device for transporting the substrate;
a vapor deposition device for vapor-depositing a vapor deposition material on the substrate;
An in-line film deposition apparatus that performs vapor deposition while transporting the substrate,
The vapor deposition device is
a vapor deposition source extending in a direction intersecting the transport direction of the substrate and emitting a vapor deposition material onto the substrate;
monitoring means for monitoring the release state of the vapor deposition material from the vapor deposition source;
a base member on which the monitoring means is mounted;
a wall member provided on the pedestal member so as to be interposed between the monitoring means and the deposition source, and having a window portion that exposes the monitoring means to the deposition source;
Each of the pedestal member and the wall member has a flow path through which a cooling medium flows,
A film forming apparatus characterized by:
請求項に記載の成膜装置であって、
前記台座部材及び前記監視手段は、前記蒸着源に対して、前記蒸着源の延設方向の側方に配置されている、
ことを特徴とする成膜装置。
The film forming apparatus according to claim 4 ,
The pedestal member and the monitoring means are arranged on the side of the deposition source in the direction in which the deposition source extends,
A film forming apparatus characterized by:
請求項4又は請求項5に記載の成膜装置であって、
前記蒸着装置は、
シャッタと、
前記蒸着源と前記基板との間の位置を含む移動軌道上で前記シャッタを回動する回動手段と、を備え、
前記蒸着源の延設方向に沿う前記シャッタの回動中心を形成する回転軸と、
前記回転軸に接続され、前記シャッタを支持する支持部材と、
を含み、
前記回転軸は、前記蒸着源に対して、前記蒸着源の延設方向の側方に配置され、
前記台座部材及び前記監視手段は、前記回転軸に対して、前記回転軸の径方向の側方に配置されている、
ことを特徴とする成膜装置。
The film forming apparatus according to claim 4 or 5 ,
The vapor deposition device is
a shutter;
rotating means for rotating the shutter on a movement track including a position between the deposition source and the substrate;
a rotating shaft forming a rotation center of the shutter along the extending direction of the deposition source;
a support member connected to the rotating shaft and supporting the shutter;
including
The rotating shaft is arranged on the side of the deposition source in the extending direction of the deposition source,
The pedestal member and the monitoring means are arranged radially laterally of the rotating shaft with respect to the rotating shaft,
A film forming apparatus characterized by:
請求項乃至請求項のいずれか一項に記載の成膜装置を用いた成膜方法であって、
前記搬送装置によって前記基板を搬送する搬送工程と、
搬送されている前記基板に、前記蒸着装置によって蒸着を行う蒸着工程と、を有する
ことを特徴とする成膜方法。
A film forming method using the film forming apparatus according to any one of claims 4 to 6 ,
a transporting step of transporting the substrate by the transporting device;
and a vapor deposition step of vapor-depositing the substrate being conveyed by the vapor deposition apparatus.
請求項乃至請求項のいずれか一項に記載の成膜装置を用いた電子デバイスの製造方法であって、
前記搬送装置によって前記基板を搬送する搬送工程と、
搬送されている前記基板に、前記蒸着装置によって蒸着を行う蒸着工程と、を有する
ことを特徴とする電子デバイスの製造方法。
A method for manufacturing an electronic device using the film forming apparatus according to any one of claims 4 to 6 ,
a transporting step of transporting the substrate by the transporting device;
and a vapor deposition step of vapor-depositing the transported substrate with the vapor deposition apparatus.
JP2020198687A 2020-11-30 2020-11-30 Vapor deposition apparatus, film forming apparatus, film forming method, and electronic device manufacturing method Active JP7252933B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020198687A JP7252933B2 (en) 2020-11-30 2020-11-30 Vapor deposition apparatus, film forming apparatus, film forming method, and electronic device manufacturing method
KR1020210152769A KR20220076311A (en) 2020-11-30 2021-11-09 Vapor deposition apparatus, film forming apparatus, film forming method, and manufacturing method of electronic device
CN202111365775.5A CN114574811B (en) 2020-11-30 2021-11-18 Vapor deposition apparatus, film forming method, and method for manufacturing electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020198687A JP7252933B2 (en) 2020-11-30 2020-11-30 Vapor deposition apparatus, film forming apparatus, film forming method, and electronic device manufacturing method

Publications (2)

Publication Number Publication Date
JP2022086589A JP2022086589A (en) 2022-06-09
JP7252933B2 true JP7252933B2 (en) 2023-04-05

Family

ID=81770602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020198687A Active JP7252933B2 (en) 2020-11-30 2020-11-30 Vapor deposition apparatus, film forming apparatus, film forming method, and electronic device manufacturing method

Country Status (3)

Country Link
JP (1) JP7252933B2 (en)
KR (1) KR20220076311A (en)
CN (1) CN114574811B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118064843B (en) * 2024-04-24 2024-06-25 成都顿威新型金属材料有限公司 Double-mirror surface dissimilar material evaporation device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008276998A (en) 2007-04-26 2008-11-13 Sony Corp Film thickness sensor, thin film forming device, and manufacturing device and method of organic el display device
JP2015140458A (en) 2014-01-29 2015-08-03 シャープ株式会社 Vapor deposition apparatus, vapor deposition method and method for manufacturing organic electroluminescence element

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5025664A (en) * 1989-11-02 1991-06-25 Leybold Inficon, Inc. Multiple crystal head for deposition thickness monitor
JPH0693428A (en) * 1991-12-20 1994-04-05 Ulvac Japan Ltd Shutter mechanism of evaporating source for vacuum vapor deposition device
JPH0734248A (en) * 1993-07-23 1995-02-03 Toyota Motor Corp Quartz crystal type film thickness gage
JP3953505B2 (en) * 2006-09-28 2007-08-08 株式会社アルバック A film thickness monitoring method using a crystal oscillation type film thickness monitoring sensor head.
JP2009001885A (en) * 2007-06-25 2009-01-08 Canon Inc Film thickness detection device and vapor deposition method
JP5854731B2 (en) * 2010-11-04 2016-02-09 キヤノン株式会社 Film forming apparatus and film forming method using the same
JP2014070243A (en) * 2012-09-28 2014-04-21 Hitachi High-Technologies Corp Sensor head for quartz oscillation type film thickness monitor
KR101840976B1 (en) * 2017-07-26 2018-03-21 캐논 톡키 가부시키가이샤 Moving body support apparatus, vacuum evaporation apparatus including the same and evaporation method
CN207331044U (en) * 2017-10-26 2018-05-08 京东方科技集团股份有限公司 A kind of evaporation angle restricting mechanism and evaporated device
JP7102130B2 (en) 2017-12-01 2022-07-19 株式会社アルバック Thin-film deposition equipment and thin-film deposition method
JP7051471B2 (en) 2018-02-07 2022-04-11 株式会社アルバック Thin-film deposition equipment and thin-film deposition method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008276998A (en) 2007-04-26 2008-11-13 Sony Corp Film thickness sensor, thin film forming device, and manufacturing device and method of organic el display device
JP2015140458A (en) 2014-01-29 2015-08-03 シャープ株式会社 Vapor deposition apparatus, vapor deposition method and method for manufacturing organic electroluminescence element

Also Published As

Publication number Publication date
KR20220076311A (en) 2022-06-08
CN114574811B (en) 2023-08-18
CN114574811A (en) 2022-06-03
JP2022086589A (en) 2022-06-09

Similar Documents

Publication Publication Date Title
KR101801351B1 (en) Apparatus for thin layer deposition and method for manufacturing of organic light emitting display apparatus using the same and organic light emitting display apparatus using the same
JP5677785B2 (en) Thin film deposition apparatus and organic light emitting display device manufacturing method using the same
KR101678056B1 (en) Apparatus for thin layer deposition, method for manufacturing of organic light emitting display apparatus using the same, and organic light emitting display apparatus manufactured by the method
JP4942985B2 (en) Thin film manufacturing equipment
TWI427681B (en) Thin film deposition apparatus and method of manufacturing organic light-emitting display apparatus using the same
US20150217319A1 (en) Organic Layer Deposition Apparatus, Frame Sheet Assembly For The Organic Layer Deposition Apparatus, And Method Of Manufacturing Organic Light Emitting Display Device Using The Frame Sheet Assembly
JP5269256B2 (en) Vapor deposition method and vapor deposition apparatus
JP7262212B2 (en) Film forming apparatus, film forming method, and method for manufacturing electronic device
US20120009332A1 (en) Method of manufacturing organic light-emitting display device
WO2012124563A1 (en) Vapor deposition particle emitting device, vapor deposition apparatus, vapor deposition method
US20120028390A1 (en) Thin film deposition apparatus and method of manufacturing organic light-emitting display device with the same
WO2012124629A1 (en) Vapor deposition device, vapor deposition method, and method for producing organic el display device
JP6429491B2 (en) Vapor deposition apparatus mask, vapor deposition apparatus, vapor deposition method, and organic electroluminescence element manufacturing method
JP6404615B2 (en) Organic electroluminescent element manufacturing mask, organic electroluminescent element manufacturing apparatus, and organic electroluminescent element manufacturing method
JP7252933B2 (en) Vapor deposition apparatus, film forming apparatus, film forming method, and electronic device manufacturing method
TW201715063A (en) Evaporation source for metals or metal alloys, evaporation source array having evaporation sources for metals or metal alloys, and method for operating an evaporation source array for metals or metal alloys
KR102527121B1 (en) Film forming apparatus, manufacturing apparatus of organic device, and manufacturing method of organic device
JP7354086B2 (en) Vapor deposition equipment, film-forming equipment, film-forming methods, and electronic device manufacturing methods
JP7498216B2 (en) Film forming apparatus and film forming method
JP7216064B2 (en) Film forming apparatus, film forming method, and electronic device manufacturing method
JP2023103008A (en) Film deposition apparatus, film deposition method and manufacturing method of electronic device
KR100709199B1 (en) Organic matter sputtering apparatus and sputtering method using the same

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210308

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230324

R150 Certificate of patent or registration of utility model

Ref document number: 7252933

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150