JP7252621B2 - High strength Ir alloy - Google Patents

High strength Ir alloy Download PDF

Info

Publication number
JP7252621B2
JP7252621B2 JP2019161962A JP2019161962A JP7252621B2 JP 7252621 B2 JP7252621 B2 JP 7252621B2 JP 2019161962 A JP2019161962 A JP 2019161962A JP 2019161962 A JP2019161962 A JP 2019161962A JP 7252621 B2 JP7252621 B2 JP 7252621B2
Authority
JP
Japan
Prior art keywords
mass
alloy
oxidation
temperature
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019161962A
Other languages
Japanese (ja)
Other versions
JP2021038448A (en
Inventor
恭徳 江川
陽介 山▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishifuku Metal Industry Co Ltd
Original Assignee
Ishifuku Metal Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishifuku Metal Industry Co Ltd filed Critical Ishifuku Metal Industry Co Ltd
Priority to JP2019161962A priority Critical patent/JP7252621B2/en
Publication of JP2021038448A publication Critical patent/JP2021038448A/en
Application granted granted Critical
Publication of JP7252621B2 publication Critical patent/JP7252621B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、高温強度に優れるIr合金に関する。 TECHNICAL FIELD The present invention relates to an Ir alloy having excellent high-temperature strength.

白金族元素であるIrは、融点が高く、酸化による消耗も少ないことから、優れた高温材料として、単結晶育成用るつぼ、耐熱器具、ガスタービンなどの広い分野で用いられている。一方で、Irの高温での耐酸化性は、WやMoなどの他の高融点金属に比べて優れるものの十分でなく、1000℃以上の高温域では揮発性の酸化物を生じて徐々に消耗することが知られている。したがって、これまでの合金開発においては、主にその耐酸化性の改善に主眼が置かれてきた。 Ir, which is a platinum group element, has a high melting point and is less consumed by oxidation. Therefore, it is used as an excellent high temperature material in a wide range of fields such as crucibles for growing single crystals, heat-resistant equipment, and gas turbines. On the other hand, the oxidation resistance of Ir at high temperatures is superior to other high-melting-point metals such as W and Mo, but it is not sufficient. known to do. Therefore, alloy development so far has focused mainly on improving its oxidation resistance.

特許文献1には、耐熱材料であって、イリジウムをベースとし、第二元素としてロジウムを0.1~30wt%の範囲内で添加し、更に第三元素として白金、ルテニウム、レニウム、クロム、バナジウム、モリブデンこれらいずれか一種を0.1~20wt%の固溶範囲内で添加し、この第三元素と前記第二元素との添加総量が0.2~50wt%の固溶範囲内であることを特徴とするイリジウム基合金が開示されている。大気中1050℃における耐酸化性に優れていることが記載されている。 Patent Document 1 describes a heat-resistant material based on iridium, with rhodium added as a second element in the range of 0.1 to 30 wt%, and further as a third element platinum, ruthenium, rhenium, chromium, and vanadium. , Molybdenum is added within a solid solubility range of 0.1 to 20 wt%, and the total amount of the third element and the second element added is within a solid solubility range of 0.2 to 50 wt%. An iridium-based alloy is disclosed that is characterized by: It is described that it has excellent oxidation resistance at 1050° C. in the air.

特許第3135224号Patent No. 3135224

IrRh合金は、高融点であり良好な耐酸化性を示すものの、機械的強度が十分ではない。例えば、るつぼやガスタービンなどに使用する場合、るつぼの内容物の膨張に耐えられなければならず、また、高速回転するタービンの遠心力に耐えられる機械的強度が必要である。よって、これらの分野では常に高い高温強度を有するIr合金が求められている。 Although the IrRh alloy has a high melting point and good oxidation resistance, it does not have sufficient mechanical strength. For example, when used in crucibles, gas turbines, etc., it must be able to withstand the expansion of the contents of the crucible and must have mechanical strength to withstand the centrifugal force of a turbine rotating at high speed. Therefore, Ir alloys with high high-temperature strength are always required in these fields.

そこで、本発明の目的は、高温強度に優れるIr合金を提供することである。 SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide an Ir alloy having excellent high-temperature strength.

IrRh合金の高温強度を向上させるための研究を鋭意重ねた結果、Ruと少量のNbを同時に添加することで、高温強度に優れたIr合金を開発するに至った。また、Irの一部に代えてNiを4mass%以下含有させてもよい。 As a result of diligent research to improve the high-temperature strength of IrRh alloys, the inventors have developed an Ir alloy with excellent high-temperature strength by simultaneously adding Ru and a small amount of Nb. In addition, 4 mass % or less of Ni may be contained instead of part of Ir.

本発明は、Rhを5~35mass%、Ruを0.1~25mass%、Nbを0.1~3mass%、Niを0~4mass%含有し、残部がIrであることを特徴とするIr合金である。 The present invention is an Ir alloy containing 5 to 35 mass% of Rh, 0.1 to 25 mass% of Ru, 0.1 to 3 mass% of Nb, 0 to 4 mass% of Ni, and the balance being Ir. is.

本発明によれば、高温強度に優れたIr合金を提供することができる。 According to the present invention, an Ir alloy having excellent high-temperature strength can be provided.

は実施例7の組織写真である。is a structural photograph of Example 7. は比較例1の組織写真である。is a photograph of the structure of Comparative Example 1.

本発明は、Rhを5~35mass%、Ruを0.1~25mass%、Nbを0.1~3mass%、Niを0~4mass%含有し、残部がIrであることを特徴とするIr合金である。ここで、Niを0~4mass%含むとは、Niを含まないか、または4mass%以下含むことを意味する。 The present invention is an Ir alloy containing 5 to 35 mass% of Rh, 0.1 to 25 mass% of Ru, 0.1 to 3 mass% of Nb, 0 to 4 mass% of Ni, and the balance being Ir. is. Here, "containing 0 to 4 mass% of Ni" means that Ni is not contained or that Ni is contained in an amount of 4 mass% or less.

本発明のIr合金は、合金を構成する全成分の中、Irを40mass%以上、好ましくは45mass%以上、より好ましくは50mass%以上、さらに好ましくは55mass%以上含有する。 The Ir alloy of the present invention contains Ir in an amount of 40 mass% or more, preferably 45 mass% or more, more preferably 50 mass% or more, and still more preferably 55 mass% or more of all components constituting the alloy.

RhとRuとの含有量の合計は55mass%以下が好ましい。RhとRuとの含有量の合計は50mass%以下がより好ましい。RhとRuとの含有量の合計は45mass%以下がさらに好ましい。 The total content of Rh and Ru is preferably 55 mass% or less. The total content of Rh and Ru is more preferably 50 mass% or less. The total content of Rh and Ru is more preferably 45 mass% or less.

Rhの含有量が5mass%を下回る場合には、Ir合金の耐酸化消耗性が不十分である。一方、Rhの含有量が35mass%を超えると、Ir合金の耐酸化消耗性は良いが、融点及び再結晶温度が低下する。 If the Rh content is less than 5 mass%, the oxidation wear resistance of the Ir alloy is insufficient. On the other hand, when the content of Rh exceeds 35 mass %, the melting point and recrystallization temperature of the Ir alloy are lowered although the resistance to oxidation consumption of the Ir alloy is good.

IrRh合金にRuを加えると、耐酸化消耗性が改善されるが、高温強度が不十分であった。 The addition of Ru to the IrRh alloy improved the oxidation resistance, but the high temperature strength was insufficient.

Ruに加えNbを上記含有量で添加することで、耐酸化消耗性を確保しつつRuとNbとの相乗的な固溶硬化を発現させ、高温強度が著しく向上した合金が得られる。Nbの添加は合金の再結晶温度を上昇させ、高温での使用時の結晶成長を抑制する効果も発揮する。これにより加工組織を高温まで維持でき、耐熱材料として好適な高温強度の高い合金となる。 By adding Nb in addition to Ru in the above content, synergistic solid-solution hardening of Ru and Nb is exhibited while oxidation wear resistance is secured, and an alloy with significantly improved high-temperature strength can be obtained. Addition of Nb raises the recrystallization temperature of the alloy, and exhibits the effect of suppressing crystal growth during use at high temperatures. As a result, the processed structure can be maintained up to high temperatures, and the alloy has high high-temperature strength suitable as a heat-resistant material.

Ruの含有量が0.1mass%を下回ると、耐酸化消耗性が低下する。また、Ruの含有量が25mass%を超えると、塑性変形能が低下し、加工が困難になるだけでなく、耐酸化消耗性も低下する。Ruの含有量は0.5mass%以上が好ましい。Ruの含有量は1mass%以上がより好ましい。 If the Ru content is less than 0.1 mass %, the oxidation wear resistance is lowered. On the other hand, when the Ru content exceeds 25 mass %, the plastic deformability is lowered, which not only makes processing difficult, but also lowers oxidation wear resistance. The content of Ru is preferably 0.5 mass % or more. The content of Ru is more preferably 1 mass % or more.

Nbの含有量が0.1mass%を下回るとRuとの相乗的な固溶硬化が少なく高温強度が不十分である。一方、Nbの含有量が3mass%を超えると塑性変形能が低下して加工が困難になるとともに、Nbの酸化が顕著になり耐酸化消耗性が低下する。Nbの含有量は2.5mass%以下が好ましい。一方、Nbの含有量は0.2mass%以上が好ましい。さらに、Nbの含有量は0.3mass%以上がより好ましい。 If the Nb content is less than 0.1 mass%, synergistic solid-solution hardening with Ru is small, resulting in insufficient high-temperature strength. On the other hand, if the Nb content exceeds 3 mass %, the plastic deformability is reduced, making working difficult, and the oxidation of Nb is significant, resulting in reduced oxidation wear resistance. The content of Nb is preferably 2.5 mass% or less. On the other hand, the content of Nb is preferably 0.2 mass% or more. Furthermore, the content of Nb is more preferably 0.3 mass % or more.

合金の強度を向上させる元素として、Niを4mass%以下の範囲で添加してもよい。Niの含有量が4mass%を超えると、Niの酸化消耗が顕著となり、耐酸化消耗性が低下する。Niの含有量は3.5mass%以下が好ましい。一方、Niの含有量は0.1mass%以上が好ましく、0.3mass%以上がより好ましい。また、Niの含有量は0.5mass%以上がさらに好ましい。 As an element for improving the strength of the alloy, Ni may be added in a range of 4 mass% or less. When the Ni content exceeds 4 mass %, the oxidation consumption of Ni becomes significant, and the resistance to oxidation consumption deteriorates. The Ni content is preferably 3.5 mass% or less. On the other hand, the Ni content is preferably 0.1 mass% or more, more preferably 0.3 mass% or more. Further, the content of Ni is more preferably 0.5 mass % or more.

上記の組成範囲の合金とすることで、単相の固溶体合金を得ることができる。そのため、本発明による合金は展延性を有し、圧延加工や伸線加工など、既知の加工法を用いて様々な形状を得ることができる。また、機械加工及び溶接などの加工方法も適用できる。 A single-phase solid solution alloy can be obtained by using the alloy within the above composition range. Therefore, the alloy according to the invention is ductile and can be formed into various shapes using known processing methods such as rolling and wire drawing. Processing methods such as machining and welding are also applicable.

本発明の実施例について説明する。実施例及び比較例の合金の組成を表1に、試験結果を表2に示す。
まず、各原料粉末(Ir粉末、Rh粉末、Ru粉末、Nb粉末、Ni粉末)を所定の割合で混合し、混合粉末を作製した。次いで、得られた混合粉末を、一軸加圧成形機を用いて成形し圧粉体を得た。得られた圧粉体をアーク溶解法により溶解し、インゴットを作製した。
An embodiment of the present invention will be described. The compositions of the alloys of Examples and Comparative Examples are shown in Table 1, and the test results are shown in Table 2.
First, each raw material powder (Ir powder, Rh powder, Ru powder, Nb powder, and Ni powder) was mixed at a predetermined ratio to prepare a mixed powder. Next, the obtained mixed powder was molded using a uniaxial pressure molding machine to obtain a green compact. The compact thus obtained was melted by an arc melting method to prepare an ingot.

次いで、作製したインゴットを熱間鍛造し、厚さ4mmの板材とした。この板材を熱間圧延して厚さ1mmの板材とした。高温強度測定の試験片作成に対しては、さらに厚さ0.6mmになるよう熱間圧延した。 Then, the produced ingot was hot forged into a plate material having a thickness of 4 mm. This plate material was hot-rolled into a plate material having a thickness of 1 mm. To prepare a test piece for high-temperature strength measurement, it was further hot-rolled to a thickness of 0.6 mm.

加工性は、インゴットから圧延までの上記加工工程にて評価した。厚さ0.6mmの板材が得られたものを○、途中で割れが発生して厚さ0.6mmの板材が得られなかったものを×として表2に示した。 The workability was evaluated in the above working steps from ingot to rolling. In Table 2, ◯ indicates that a plate material with a thickness of 0.6 mm was obtained, and x indicates that a plate material with a thickness of 0.6 mm was not obtained due to cracking occurring in the middle.

耐酸化消耗性の評価は、厚さ1mmの板材から円柱状に切り出した各試験片を用いて高温酸化試験により行った。高温酸化試験は、電気炉内に試験片をセットし、大気中、1200℃の条件で20時間保持した。耐酸化消耗性は、前記高温酸化試験における質量変化と定義した。質量変化ΔM(mg/mm2)は、試験片の試験前の質量をM0(mg)、試験後の質量をM1(mg)、試験片の試験前の表面積をS(mm2)とし、ΔM=(M1-M0)/Sの式から求めた。また、試験片の表面積S(mm2)は、試験片の寸法から算出した。 Evaluation of oxidation wear resistance was carried out by a high-temperature oxidation test using each cylindrical test piece cut from a plate material having a thickness of 1 mm. In the high-temperature oxidation test, a test piece was placed in an electric furnace and held in the atmosphere at 1200°C for 20 hours. Oxidative wear resistance was defined as mass change in the high temperature oxidation test. The mass change ΔM (mg/mm 2 ) is calculated by taking the mass of the test piece before the test as M0 (mg), the mass after the test as M1 (mg), the surface area of the test piece before the test as S (mm 2 ), and ΔM =(M1-M0)/S. Also, the surface area S (mm 2 ) of the test piece was calculated from the dimensions of the test piece.

1200℃での耐酸化消耗性の評価は、質量変化ΔMが-0.05までの合金は耐酸化消耗性が特に良好(酸化消耗量が少ない)とし、表2に記号Aで示した。質量変化ΔMが-0.05未満、-0.20以上の合金は耐酸化消耗性が良好とし、表2に記号Bで示した。質量変化ΔMが-0.20未満の合金は耐酸化消耗性が悪い(酸化消耗量が多い)とし、表2に記号Cで示した。 In the evaluation of resistance to oxidation at 1200° C., alloys with a mass change ΔM up to −0.05 were judged to have particularly good resistance to oxidation (the amount of oxidation was small). Alloys with a mass change ΔM of less than −0.05 and −0.20 or more are considered to have good oxidation wear resistance, and are indicated by symbol B in Table 2. Alloys with a mass change ΔM of less than −0.20 are considered to have poor resistance to oxidation wear (the amount of oxidation wear is large), and are indicated by symbol C in Table 2.

再結晶温度は、試験片をAr雰囲気の電気炉中で950℃、1000℃、1050℃、1100℃、1150℃、1200℃にて30min処理し、その試験片の断面を研磨し、研磨面をエッチングして金属顕微鏡(倍率200倍)で組織観察して決定した。一つの試験片について一つの温度で熱処理した。 As for the recrystallization temperature, the test piece was treated in an electric furnace in an Ar atmosphere at 950°C, 1000°C, 1050°C, 1100°C, 1150°C, and 1200°C for 30 minutes, the cross section of the test piece was polished, and the polished surface was It was determined by etching and observing the structure with a metallurgical microscope (200x magnification). One specimen was heat treated at one temperature.

組織観察の結果、再結晶粒が認められた試験片の熱処理温度をその合金の再結晶温度と定義した。例えば,1050℃で再結晶粒が認められず、1100℃で再結晶粒が認められた場合、再結晶温度を1100℃とした。再結晶温度の評価は、1100℃以上の合金を表2に記号A、1000℃以上1100℃未満を表2に記号B、1000℃未満を表2に記号Cで示した。 As a result of structural observation, the heat treatment temperature of the test piece in which recrystallized grains were observed was defined as the recrystallization temperature of the alloy. For example, when recrystallized grains were not observed at 1050°C and recrystallized grains were observed at 1100°C, the recrystallization temperature was set to 1100°C. The evaluation of the recrystallization temperature is indicated by symbol A in Table 2 for alloys with a temperature of 1100°C or higher, symbol B in Table 2 for alloys at 1000°C or higher and lower than 1100°C, and symbol C in Table 2 for alloys with a temperature lower than 1000°C.

図1は、実施例7の合金を、1100℃にて30min熱処理した場合の組織写真、図2は、比較例1の合金を、図1と同一の条件で熱処理した場合の組織写真である。図に示すように、比較例1では再結晶化が起きているが、実施例7の合金は加工組織を維持していることが分かる。 FIG. 1 is a photograph of the structure of the alloy of Example 7 heat-treated at 1100° C. for 30 minutes, and FIG. 2 is a photograph of the structure of the alloy of Comparative Example 1 heat-treated under the same conditions as in FIG. As shown in the figure, recrystallization occurs in Comparative Example 1, but the alloy of Example 7 maintains the worked structure.

高温強度は、添加元素の効果を明確にするため、Nbを添加していないIrRhRu合金の代表として比較例1を基準とし、以下の手順で評価した。0.6mm厚みの板材からワイヤ放電加工により平行部が□0.5×0.6、長さ3mmとなるよう試験片を切り出し、温度1200℃、大気中、クロスヘッドスピード5mm/minで引張強さを算出した。得られた比較例1の引張強さをT0、実施例の引張強さをTx(xは実施例の番号)
とし、高温強度比T(%)を、T=Tx/T0×100の式から求め、表2に示した。ここで、高温強度に優れるとは、具体的には、上述する式に従って算出される高温強度比T(%)が、130以上、好ましくは140以上であることを意味する。
In order to clarify the effects of the additive elements, the high-temperature strength was evaluated according to the following procedure, using Comparative Example 1 as a reference as a representative IrRhRu alloy to which Nb was not added. A test piece with a parallel part of 0.5 × 0.6 and a length of 3 mm was cut out from a plate material with a thickness of 0.6 mm by wire electric discharge machining. calculated. The obtained tensile strength of Comparative Example 1 is T0, and the tensile strength of the example is Tx (x is the number of the example)
, and the high-temperature strength ratio T (%) was obtained from the equation T=Tx/T0×100 and shown in Table 2. Here, excellent high-temperature strength specifically means that the high-temperature strength ratio T (%) calculated according to the above formula is 130 or more, preferably 140 or more.

表2に示す結果から、比較例であるIrRhRu合金に比べ、RuとNbを同時に添加した実施例は、高温強度が顕著に高くなることがわかる。具体的には、Rh、Ru濃度が同じである比較例1と実施例6及び実施例7とを比較すると、実施例6及び実施例7の高温強度比T(%)は、それぞれ195と221であり、高温強度比が比較例1の1.95倍及び2.21倍と大きく向上している。また、Rh、Ru、Nb濃度が同じである実施例1と実施例2、実施例6と実施例10を比較すると、高温強度比T(%)は、実施例1が197に対し実施例2が239、実施例6が195であるのに対し実施例10が229であり、Niを添加することでNbのみを添加した場合よりも、更に高温強度が向上している。高温強度が向上している一方で、実施例の合金は再結晶温度及び耐酸化性は比較例1に劣らない特性を示している。このように、実施例の合金は耐熱材料として好ましい特性を有することが確認された。 From the results shown in Table 2, it can be seen that the high-temperature strength of the example in which Ru and Nb are added at the same time is significantly higher than that of the IrRhRu alloy of the comparative example. Specifically, when comparing Comparative Example 1 with the same Rh and Ru concentrations and Example 6 and Example 7, the high temperature strength ratio T (%) of Example 6 and Example 7 was 195 and 221, respectively. , and the high-temperature strength ratio is greatly improved to 1.95 times and 2.21 times that of Comparative Example 1. In addition, when comparing Example 1 and Example 2, and Example 6 and Example 10, which have the same Rh, Ru, and Nb concentrations, the high temperature strength ratio T (%) is 197 in Example 1, and 197 in Example 2. is 239, Example 6 is 195, while Example 10 is 229, and the high-temperature strength is further improved by adding Ni as compared to the case where only Nb is added. While the high-temperature strength is improved, the alloys of Examples show properties comparable to those of Comparative Example 1 in terms of recrystallization temperature and oxidation resistance. Thus, it was confirmed that the alloys of the examples have favorable properties as heat-resistant materials.

また、実施例の合金は厚さ0.6mmの板材にまで塑性加工ができたことから、比較例1と変わらない加工性を有することが示された。 In addition, the alloy of the example was able to be plastically worked to a plate material with a thickness of 0.6 mm, indicating that it has the same workability as that of the comparative example 1.

Figure 0007252621000001
Figure 0007252621000001

Figure 0007252621000002
Figure 0007252621000002

Claims (1)

Rhを5~35mass%、
Ruを0.1~25mass%、
Nbを0.1~3mass%、
Niを0~4mass%含有し、
残部がIrである、
ことを特徴とするIr合金。
5 to 35 mass% of Rh,
0.1 to 25 mass% of Ru,
0.1 to 3 mass% of Nb,
Contains 0 to 4 mass% of Ni,
balance is Ir,
An Ir alloy characterized by:
JP2019161962A 2019-09-05 2019-09-05 High strength Ir alloy Active JP7252621B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019161962A JP7252621B2 (en) 2019-09-05 2019-09-05 High strength Ir alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019161962A JP7252621B2 (en) 2019-09-05 2019-09-05 High strength Ir alloy

Publications (2)

Publication Number Publication Date
JP2021038448A JP2021038448A (en) 2021-03-11
JP7252621B2 true JP7252621B2 (en) 2023-04-05

Family

ID=74846802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019161962A Active JP7252621B2 (en) 2019-09-05 2019-09-05 High strength Ir alloy

Country Status (1)

Country Link
JP (1) JP7252621B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010517248A (en) 2007-01-31 2010-05-20 ユラ・テック・カンパニー・リミテッド Spark plug
JP2015159000A (en) 2014-02-24 2015-09-03 日本特殊陶業株式会社 spark plug
WO2016189826A1 (en) 2015-05-28 2016-12-01 日本特殊陶業株式会社 Sparkplug
WO2018021028A1 (en) 2016-07-25 2018-02-01 田中貴金属工業株式会社 Spark plug electrode material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021039911A (en) * 2019-09-05 2021-03-11 日本特殊陶業株式会社 Spark plug

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010517248A (en) 2007-01-31 2010-05-20 ユラ・テック・カンパニー・リミテッド Spark plug
JP2015159000A (en) 2014-02-24 2015-09-03 日本特殊陶業株式会社 spark plug
WO2016189826A1 (en) 2015-05-28 2016-12-01 日本特殊陶業株式会社 Sparkplug
WO2018021028A1 (en) 2016-07-25 2018-02-01 田中貴金属工業株式会社 Spark plug electrode material

Also Published As

Publication number Publication date
JP2021038448A (en) 2021-03-11

Similar Documents

Publication Publication Date Title
JP6793689B2 (en) Manufacturing method of Ni-based alloy member
JP5201334B2 (en) Co-based alloy
KR101668383B1 (en) Nickel-chromium-aluminum alloy having good processability, creep resistance and corrosion resistance
JP7057935B2 (en) Heat resistant Ir alloy
JP6965364B2 (en) Precipitation hardening cobalt-nickel superalloys and articles manufactured from them
JPWO2010126046A1 (en) Cu-Ni-Si-Mg alloy with improved conductivity and bendability
JP5224246B2 (en) Ni-based compound superalloy excellent in oxidation resistance, manufacturing method thereof and heat-resistant structural material
JP2022120142A (en) Ni-BASE ALLOY, HEAT-RESISTANT AND CORROSION-RESISTANT COMPONENT, AND COMPONENT FOR HEAT-TREATMENT FURNACE
JP5010841B2 (en) Ni3Si-Ni3Ti-Ni3Nb multiphase intermetallic compound, method for producing the same, high-temperature structural material
JP6202556B2 (en) Hot forging type TiAl based alloy
KR20180043361A (en) Low thermal expansion super heat resistant alloys and method for manufacturing the same
JP2019094530A (en) Mold material for casting, and copper alloy material
JP7252621B2 (en) High strength Ir alloy
WO2018117135A1 (en) Heat-resistant ir alloy
WO2015182454A1 (en) TiAl-BASED CASTING ALLOY AND METHOD FOR PRODUCING SAME
JP5952726B2 (en) Copper alloy
JP2009299083A (en) Resistance alloy
JP2009215649A (en) Ni-BASED INTERMETALLIC COMPOUND ALLOY HAVING HIGH HARDNESS
JP2010053419A (en) Titanium alloy for heat resistant member having excellent creep resistance and high temperature fatigue strength
JP7387139B2 (en) Titanium alloy, its manufacturing method, and engine parts using it
JP2003138334A (en) Ni-BASED ALLOY HAVING EXCELLENT HIGH TEMPERATURE OXIDATION RESISTANCE AND HIGH TEMPERATURE DUCTILITY
JP2022085972A (en) HEAT-RESISTANT Ir ALLOY WIRE
KR101715149B1 (en) Ni3(si,ti) intermetallic compound to which ta is added
JP5521490B2 (en) Spark plug electrode material
Liu et al. Preparation of ductile nickel aluminides for high temperature use

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230316

R150 Certificate of patent or registration of utility model

Ref document number: 7252621

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150