JP5010841B2 - Ni3Si-Ni3Ti-Ni3Nb multiphase intermetallic compound, method for producing the same, high-temperature structural material - Google Patents
Ni3Si-Ni3Ti-Ni3Nb multiphase intermetallic compound, method for producing the same, high-temperature structural material Download PDFInfo
- Publication number
- JP5010841B2 JP5010841B2 JP2006079279A JP2006079279A JP5010841B2 JP 5010841 B2 JP5010841 B2 JP 5010841B2 JP 2006079279 A JP2006079279 A JP 2006079279A JP 2006079279 A JP2006079279 A JP 2006079279A JP 5010841 B2 JP5010841 B2 JP 5010841B2
- Authority
- JP
- Japan
- Prior art keywords
- phase
- heat treatment
- temperature
- samples
- intermetallic compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Conductive Materials (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Description
本発明は,Ni3Si-Ni3Ti-Ni3Nb系複相金属間化合物及びその製造方法,並びにNi3Si-Ni3Ti-Ni3Nb系複相金属間化合物からなる高温構造材料に関する。 The present invention relates to a Ni 3 Si—Ni 3 Ti—Ni 3 Nb-based multiphase intermetallic compound, a method for producing the same, and a high-temperature structural material comprising a Ni 3 Si—Ni 3 Ti—Ni 3 Nb-based multiphase intermetallic compound. .
近年,エネルギー問題や資源の有効利用などから,熱効率の向上が求められている。熱効率を向上させるために,より高温で使用可能な高温構造材料が求められている。
現在の高温構造材料の主流はNi基超合金である。Ni基超合金は,その構成相の35vol%以上が金属相(γ相)である。Ni基超合金のような金属相を含んだ材料では,融点や高温クリープ強度を高めることは,難しいと考えられている。
現在の高温構造材料よりも高い融点や高温クリープ強度を有する高温構造材料を創製するために,金属間化合物を利用することが考えられる。なぜなら,金属間化合物の中には,強度の逆温度依存性を示すものがあり,逆温度依存性を示す金属間化合物を用いると融点や高温クリープ強度が高い高温構造材料を創製することができることが期待されるからである。
In recent years, there has been a demand for improved thermal efficiency due to energy problems and effective use of resources. In order to improve thermal efficiency, there is a need for high-temperature structural materials that can be used at higher temperatures.
The mainstream of current high temperature structural materials is Ni-base superalloys. In the Ni-base superalloy, 35 vol% or more of the constituent phases is a metal phase (γ phase). It is considered difficult to increase the melting point and high-temperature creep strength of a material containing a metal phase such as a Ni-base superalloy.
In order to create a high-temperature structural material having a higher melting point and high-temperature creep strength than current high-temperature structural materials, it is conceivable to use intermetallic compounds. This is because some intermetallic compounds exhibit inverse temperature dependence of strength, and using intermetallic compounds exhibiting inverse temperature dependence can create high-temperature structural materials with high melting points and high-temperature creep strength. This is because it is expected.
しかし,金属間化合物は,一般に,変形能が悪いので加工が困難であるという欠点を有している。また,室温から高温にかけての広範囲な温度域での強度をさらに高めることも望まれている。
本発明は係る事情に鑑みてなされたものであり,室温から高温にかけての広範囲な温度域で高い強度と変形能を有する複相金属間化合物(マルチインターメタリックス)を提供するものである。
However, intermetallic compounds generally have the disadvantage that they are difficult to process due to their poor deformability. It is also desired to further increase the strength in a wide temperature range from room temperature to high temperature.
This invention is made | formed in view of the situation which concerns, and provides the multiphase intermetallic compound (multiintermetallics) which has high intensity | strength and a deformability in the wide temperature range from room temperature to high temperature.
すなわち,本発明によれば,Si:1〜10.5at%,Ti:5〜16at%,Nb:0〜10at%,B:0〜1000重量ppm,残部は不純物を除きNiからなり,かつL12相とD024相からなる2相共存の複相組織か,L12相,D024相及びD0a相からなる3相共存の複相組織を有する複相金属間化合物(以下,「金属間化合物」とも称する。)が提供される。 That is, according to the present invention, Si: 1 to 10.5 at%, Ti: 5 to 16 at%, Nb: 0 to 10 at%, B: 0 to 1000 ppm by weight, the balance is made of Ni except for impurities, and L1 A multiphase intermetallic compound having a two-phase coexistence structure consisting of two phases and a D0 24 phase or a three-phase coexistence structure consisting of an L1 two phase, a D0 24 phase and a D0 a phase (hereinafter referred to as “intermetallic Also referred to as "compound").
本発明者らは,上記構成の金属間化合物は,室温から高温にかけての強度と変形能が高くなることを見出し,本発明の完成に到った。 The inventors of the present invention have found that the intermetallic compound having the above structure has high strength and deformability from room temperature to high temperature, and has completed the present invention.
強度と変形能が高くなる理由は,必ずしも明らかではないが,(1)上記構成の金属間化合物に含まれるL12相(Ni3Si相)とD024相(Ni3Ti相)が,どちらも,高温(L12相(Ni3Si相)では約673K〜873Kまでの温度範囲、D024相(Ni3Ti相)では約1073K付近までの温度範囲)での強度が,室温での強度よりも高いという性質、すなわち強度の逆温度依存性を有していること,(2)L12相とD024相が,図3及び図4に示すような整合性のよい界面構造を形成することの2点がその要因であると考えられる。
本発明の金属間化合物は,室温から高温にかけての強度と変形能が優れているので,高温構造材料としても利用することができる。
なお,本明細書において,「〜」は,端の点を含む。
Why strength and deformability increases is not necessarily clear, it (1) L1 2 phase contained in the intermetallic compound of structure (Ni 3 Si phase) and D0 24 phase (Ni 3 Ti phase), either However, the strength at high temperature (temperature range from about 673 K to 873 K for the L1 2 phase (Ni 3 Si phase) and temperature range up to about 1073 K for the D0 24 phase (Ni 3 Ti phase)) (2) L1 2 phase and D0 24 phase form an interface structure with good consistency as shown in FIGS. 3 and 4. Two points are considered to be the factors.
Since the intermetallic compound of the present invention is excellent in strength and deformability from room temperature to high temperature, it can also be used as a high-temperature structural material.
In the present specification, “to” includes end points.
1.本発明の金属間化合物
本発明の一実施形態の金属間化合物は,Si:1〜10.5at%,Ti:5〜16at%,Nb:0〜10at%,B:0〜1000重量ppm,残部は不純物を除きNiからなり,かつL12相とD024相からなる2相共存の複相組織か,L12相,D024相及びD0a相からなる3相共存の複相組織を有する。
1. Intermetallic compound of the present invention The intermetallic compound of one embodiment of the present invention is composed of Si: 1 to 10.5 at%, Ti: 5 to 16 at%, Nb: 0 to 10 at%, B: 0 to 1000 ppm by weight, and the balance Is made of Ni, excluding impurities, and has a two-phase coexistence structure consisting of L1 2 phase and D0 24 phase, or a three-phase coexistence structure consisting of L1 2 phase, D0 24 phase and D0 a phase.
以下,この金属間化合物の各構成要素について説明する。
1−1.複相組織
まず,本実施形態の金属間化合物が有する複相組織について説明する。本明細書において,「複相」という用語は,複数の相,すなわち,2つ以上の相を意味している。
本実施形態の金属間化合物は,L12相とD024相からなる2相共存の複相組織か,L12相,D024相及びD0a相からなる3相共存の複相組織を有している。L12相は,Ni3Si相であり,その格子定数aは,0.3497nmである。D024相は,Ni3Ti相であり,その格子定数a及びcは,それぞれ,5.101nm及び0.8307nmである。D0a相は,Ni3Nb相であり,その格子定数a,b及びcは,それぞれ,0.5106nm,0.4251nm及び0.4553nmである。
Hereinafter, each component of the intermetallic compound will be described.
1-1. Multiphase structure First, the multiphase structure of the intermetallic compound of this embodiment will be described. In this specification, the term “double phase” means a plurality of phases, ie, two or more phases.
The intermetallic compound of the present embodiment has a two-phase coexisting multiphase structure consisting of L1 2 phase and D0 24 phase, or a three-phase coexisting multiphase structure consisting of L1 2 phase, D0 24 phase and D0 a phase. ing. The L1 2 phase is a Ni 3 Si phase, and its lattice constant a is 0.3497 nm. The D0 24 phase is a Ni 3 Ti phase, and the lattice constants a and c thereof are 5.101 nm and 0.8307 nm, respectively. The D0 a phase is a Ni 3 Nb phase, and the lattice constants a, b, and c thereof are 0.5106 nm, 0.4251 nm, and 0.4553 nm, respectively.
2相共存の複相組織も3相共存の複相組織も,L12相とD024相を含んでいる。L12相とD024相は,図3及び図4に示すような整合性のよい界面構造を形成する。このように,L12相とD024相が整合性のよい界面構造を形成することが,本発明の金属間化合物の優れた強度及び変形能の要因になっていると考えられる。また,D0a相は,粒状になってL12相又はD024相からなるマトリックス中に分散していると考えられる。 Both the two-phase coexisting multiphase structure and the three-phase coexisting multiphase structure include the L1 2 phase and the D0 24 phase. The L1 2 phase and the D0 24 phase form an interface structure with good matching as shown in FIGS. Thus, it is considered that the formation of an interface structure with good consistency between the L1 2 phase and the D0 24 phase is a factor of the excellent strength and deformability of the intermetallic compound of the present invention. Also, D0 a phase is believed to be dispersed in a matrix consisting become granular L1 2 phase or D0 24 phase.
1−2.Siの含有量,Tiの含有量,Nbの含有量
次に,本実施形態の金属間化合物に含まれるSiの含有量,Tiの含有量及びNbの含有量について説明する。
1-2. Next, the Si content, the Ti content, and the Nb content contained in the intermetallic compound of the present embodiment will be described.
Siの含有量,Tiの含有量及びNbの含有量は,本実施形態の金属間化合物が2相共存の複相組織か3相共存の複相組織を有する範囲に設定すればよい。 The Si content, Ti content, and Nb content may be set within a range in which the intermetallic compound of the present embodiment has a two-phase coexisting multiphase structure or a three-phase coexisting multiphase structure.
本実施形態の金属間化合物が,後述する具体例でのNo.1〜No.5試料のような3相共存の複相組織を有するには,Si:3.1〜9.2at%,Ti:5.1〜11.2at%,Nb:3.1〜9.2at%にすることが好ましく,Si:3.6〜8.7at%,Ti:5.6〜10.7at%,Nb:3.6〜8.7at%にすることがさらに好ましく,Si:4.1〜8.2at%,Ti:6.1〜10.3at%,Nb:4.1〜8.2at%にすることがさらに好ましい。 The intermetallic compound of this embodiment is No. in a specific example described later. 1-No. In order to have a three-phase coexisting multiphase structure such as 5 samples, Si: 3.1 to 9.2 at%, Ti: 5.1 to 11.2 at%, Nb: 3.1 to 9.2 at% Si: 3.6 to 8.7 at%, Ti: 5.6 to 10.7 at%, Nb: 3.6 to 8.7 at% are more preferable, Si: 4.1 to It is more preferable to use 8.2 at%, Ti: 6.1 to 10.3 at%, and Nb: 4.1 to 8.2 at%.
また,本実施形態の金属間化合物が,後述する具体例でのNo.1〜No.3試料のような優れた強度及び伸びを有するには,Si:5.1〜9.2at%,Ti:5.1〜9.2at%,Nb:3.1〜9.2at%にすることが好ましく,Si:5.6〜8.7at%,Ti:5.6〜8.7at%,Nb:3.6〜8.7at%にすることがさらに好ましく,Si:6.1〜8.2at%,Ti:6.1〜8.2at%,Nb:4.1〜8.2at%にすることがさらに好ましい。 Moreover, the intermetallic compound of this embodiment is No. in the specific example mentioned later. 1-No. In order to have excellent strength and elongation as in the three samples, Si: 5.1 to 9.2 at%, Ti: 5.1 to 9.2 at%, Nb: 3.1 to 9.2 at% Si: 5.6 to 8.7 at%, Ti: 5.6 to 8.7 at%, Nb: 3.6 to 8.7 at%, and Si: 6.1 to 8. 2 at%, Ti: 6.1-8.2 at%, Nb: 4.1-8.2 at% are more preferable.
また,本実施形態の金属間化合物が,後述する具体例でのNo.2試料のような優れた強度,伸び及び酸化耐性を有するには,Si:7.2〜9.2at%,Ti:7.2〜9.2at%,Nb:3.1〜5.1at%にすることがさらに好ましく,Si:7.7〜8.7at%,Ti:7.7〜8.7at%,Nb:3.6〜4.6at%にすることがさらに好ましい。 Moreover, the intermetallic compound of this embodiment is No. in the specific example mentioned later. In order to have excellent strength, elongation and oxidation resistance like two samples, Si: 7.2 to 9.2 at%, Ti: 7.2 to 9.2 at%, Nb: 3.1 to 5.1 at% More preferably, Si: 7.7 to 8.7 at%, Ti: 7.7 to 8.7 at%, and Nb: 3.6 to 4.6 at% are more preferable.
次に,Siの含有量,Tiの含有量及びNbの含有量のそれぞれについて説明する。 Next, each of the Si content, the Ti content, and the Nb content will be described.
Siの含有量は,1〜10.5at%であり,好ましくは,3.1〜9.2at%であり,さらに好ましくは,5.1〜9.2at%であり,さらに好ましくは,7.2〜9.2at%である。Siの具体的な含有量は,例えば,1.0,1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,2.0,2.1,2.2,2.3,2.4,2.5,2.6,2.7,2.8,2.9,3.0,3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9,4.0,4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9,5.0,5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9,6.0,6.1,6.2,6.3,6.4,6.5,6.6,6.7,6.8,6.9,7.0,7.1,7.2,7.3,7.4,7.5,7.6,7.7,7.8,7.9,8.0,8.1,8.2,8.3,8.4,8.5,8.6,8.7,8.8,8.9,9.0,9.1,9.2,9.3,9.4,9.5,9.6,9.7,9.8,9.9,10.0,10.1,10.2,10.3,10.4又は10.5at%である。Siの含有量の範囲は,上記具体的な含有量として例示した数値の何れか2つの間であってもよい。 The Si content is 1 to 10.5 at%, preferably 3.1 to 9.2 at%, more preferably 5.1 to 9.2 at%, and still more preferably 7. 2 to 9.2 at%. The specific content of Si is, for example, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9. 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3 2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4.0, 4.1, 4.2, 4.3, 4.4 , 4.5, 4.6, 4.7, 4.8, 4.9, 5.0, 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5 7, 5.8, 5.9, 6.0, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9 , 7.0, 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9, 8.0, 8.1, 8 2, 8.3, 8.4, 8.5, 8.6, 8.7, 8.8, 8 9, 9.0, 9.1, 9.2, 9.3, 9.4, 9.5, 9.6, 9.7, 9.8, 9.9, 10.0, 10.1, It is 10.2, 10.3, 10.4 or 10.5 at%. The range of the Si content may be between any two of the numerical values exemplified as the specific content.
Tiの含有量は,5〜16at%であり,好ましくは,5.1〜11.2at%であり,さらに好ましくは,5.1〜9.2at%,さらに好ましくは,7.2〜9.2at%である。Tiの具体的な含有量は,5.0,5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9,6.0,6.1,6.2,6.3,6.4,6.5,6.6,6.7,6.8,6.9,7.0,7.1,7.2,7.3,7.4,7.5,7.6,7.7,7.8,7.9,8.0,8.1,8.2,8.3,8.4,8.5,8.6,8.7,8.8,8.9,9.0,9.1,9.2,9.3,9.4,9.5,9.6,9.7,9.8,9.9,10.0,10.1,10.2,10.3,10.4,10.5,10.6,10.7,10.8,10.9,11.0,11.1,11.2,11.3,11.4,11.5,11.6,11.7,11.8,11.9,12.0,12.1,12.2,12.3,12.4,12.5,12.6,12.7,12.8,12.9,13.0,13.1,13.2,13.3,13.4,13.5,13.6,13.7,13.8,13.9,14.0,14.1,14.2,14.3,14.4,14.5,14.6,14.7,14.8,14.9,15.0,15.1,15.2,15.3,15.1,15.5,15.6,15.7,15.2,15.9又は16.0at%である。Tiの含有量の範囲は,上記具体的な含有量として例示した数値の何れか2つの間であってもよい。 The Ti content is 5 to 16 at%, preferably 5.1 to 11.2 at%, more preferably 5.1 to 9.2 at%, and still more preferably 7.2 to 9. 2 at%. The specific content of Ti is 5.0, 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 6 0.0, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 7.0, 7.1, 7.2 , 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9, 8.0, 8.1, 8.2, 8.3, 8.4, 8 5, 8.6, 8.7, 8.8, 8.9, 9.0, 9.1, 9.2, 9.3, 9.4, 9.5, 9.6, 9.7 , 9.8, 9.9, 10.0, 10.1, 10.2, 10.3, 10.4, 10.5, 10.6, 10.7, 10.8, 10.9, 11 0.0, 11.1, 11.2, 11.3, 11.4, 11.5, 11.6, 11.7, 11.8, 11.9, 12.0, 12.1, 12.2. , 12.3,1 4, 12.5, 12.6, 12.7, 12.8, 12.9, 13.0, 13.1, 13.2, 13.3, 13.4, 13.5, 13.6 , 13.7, 13.8, 13.9, 14.0, 14.1, 14.2, 14.3, 14.4, 14.5, 14.6, 14.7, 14.8, 14 .9, 15.0, 15.1, 15.2, 15.3, 15.1, 15.5, 15.6, 15.7, 15.2, 15.9 or 16.0 at%. The range of the Ti content may be between any two of the numerical values exemplified as the specific content.
Nbの含有量は,0〜10at%であり,好ましくは,0.5〜10at%であり,さらに好ましくは,3.1〜9.2at%であり,さらに好ましくは,3.1〜5.1at%である。本発明の金属間化合物は,Nbを含んでいることが好ましいが,含んでいなくてもよい。Nbの具体的な含有量は,0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0,1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,2.0,2.1,2.2,2.3,2.4,2.5,2.6,2.7,2.8,2.9,3.0,3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9,4.0,4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9,5.0,5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9,6.0,6.1,6.2,6.3,6.4,6.5,6.6,6.7,6.8,6.9,7.0,7.1,7.2,7.3,7.4,7.5,7.6,7.7,7.8,7.9,8.0,8.1,8.2,8.3,8.4,8.5,8.6,8.7,8.8,8.9,9.0,9.1,9.2,9.3,9.4,9.5,9.6,9.7,9.8,9.9又は10.0at%である。Nbの含有量の範囲は,上記具体的な含有量として例示した数値の何れか2つの間であってもよい。 The content of Nb is 0 to 10 at%, preferably 0.5 to 10 at%, more preferably 3.1 to 9.2 at%, and further preferably 3.1 to 5. 1 at%. The intermetallic compound of the present invention preferably contains Nb, but may not contain Nb. Specific contents of Nb are 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 0.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2 , 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3 5, 3.6, 3.7, 3.8, 3.9, 4.0, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7 , 4.8, 4.9, 5.0, 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 6 0.0, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 7.0, 7.1, 7.2 , 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9, 8 0, 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, 8.8, 8.9, 9.0, 9.1, 9.2 9.3, 9.4, 9.5, 9.6, 9.7, 9.8, 9.9 or 10.0 at%. The range of the Nb content may be between any two of the numerical values exemplified as the specific content.
1−3.Niの含有量
Niの含有量は,好ましくは77.5〜81.5at%であり,さらに好ましくは78〜82at%であり,さらに好ましくは78.5〜80.5at%である。Ni3Si相は結晶構造が立方晶系で,他の2つの相(Ni3Ti相とNi3Nb相)に比べて結晶構造が単純である。そのため,本発明の金属間化合物は,そのマトリックス(基本となる相)がNi3Si相であるとき強度と変形能(延性)に優れる。Ni3SiにTiが含まれるときは,NiとSiの比がちょうど3:1ではなく,79.5:20.5程度のときに金属間化合物相(L12相)になることが分かっている。従って,本発明の金属間化合物においても,Niの含有量は,79.5at%に近いことが好ましい。
1-3. Content of Ni Content of Ni becomes like this. Preferably it is 77.5-81.5at%, More preferably, it is 78-82at%, More preferably, it is 78.5-80.5at%. The crystal structure of the Ni 3 Si phase is cubic, and the crystal structure is simpler than the other two phases (Ni 3 Ti phase and Ni 3 Nb phase). Therefore, the intermetallic compound of the present invention is excellent in strength and deformability (ductility) when the matrix (basic phase) is a Ni 3 Si phase. It can be seen that when Ti is contained in Ni 3 Si, the ratio of Ni and Si is not exactly 3: 1 but becomes an intermetallic compound phase (L1 2 phase) when it is about 79.5: 20.5. Yes. Therefore, also in the intermetallic compound of the present invention, the Ni content is preferably close to 79.5 at%.
Niの具体的な含有量は,77.5,77.6,77.7,77.8,77.9,78.0,78.1,78.2,78.3,78.4,78.5,78.6,78.7,78.8,78.9,79.0,79.1,79.2,79.3,79.4,79.5,79.6,79.7,79.8,79.9,80.0,80.1,80.2,80.3,80.4,80.5,80.6,80.7,80.8,80.9,81.0,81.1,81.2,81.3,81.4又は81.5at%である。Niの含有量の範囲は,上記具体的な含有量として例示した数値の何れか2つの間であってもよい。 The specific contents of Ni are 77.5, 77.6, 77.7, 77.8, 77.9, 78.0, 78.1, 78.2, 78.3, 78.4, 78. 5,78.6,78.7,78.8,78.9,79.0,79.1,79.2,79.3,79.4,79.5,79.6,79.7 79.8, 79.9, 80.0, 80.1, 80.2, 80.3, 80.4, 80.5, 80.6, 80.7, 80.8, 80.9, 81 0.0, 81.1, 81.2, 81.3, 81.4 or 81.5 at%. The range of the Ni content may be between any two of the numerical values exemplified as the specific content.
1−4.Bの含有量
Bの含有量は,0〜1000重量ppmであり,好ましくは10〜1000重量ppmであり,さらに好ましくは10〜800重量ppm,さらに好ましくは25〜600重量ppm,さらに好ましくは50〜500重量ppmである。この程度の量のBを含有する場合に,本発明の金属間化合物の機械的及び化学的特性が向上するからである。本発明の金属間化合物は,Bを含んでいることが好ましいが,含んでいなくてもよい。
Bの具体的な含有量は,例えば0,10,20,25,30,40,50,75,100,125,150,175,200,225,250,275,300,325,350,375,400,425,450,475,500,525,550,575,600,625,650,675,700,725,750,775,800,825,850,875,900,925,950,975又は1000重量ppmである。Bの含有量の範囲は,上記具体的な含有量として例示した数値の何れか2つの間であってもよい。
1-4. Content of B Content of B is 0-1000 weight ppm, Preferably it is 10-1000 weight ppm, More preferably, it is 10-800 weight ppm, More preferably, it is 25-600 weight ppm, More preferably, it is 50 ~ 500 ppm by weight. This is because when this amount of B is contained, the mechanical and chemical properties of the intermetallic compound of the present invention are improved. The intermetallic compound of the present invention preferably contains B, but may not contain B.
The specific content of B is, for example, 0, 10, 20, 25, 30, 40, 50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375. 400,425,450,475,500,525,550,575,600,625,650,675,700,725,750,775,800,825,850,875,900,925,950,975 or 1000 weight ppm. The range of the B content may be between any two of the numerical values exemplified as the specific content.
1−5.金属間化合物の具体的組成
本発明の金属間化合物の具体的な組成は,例えば,
77.5Ni−10.5Si−12Ti,
(元素の前の数字は,at%を意味する。以下,同じ。)
77.5Ni−6.5Si−16Ti,
77.5Ni−10.5Si−7Ti−5Nb,
77.5Ni−6Si−11.5Ti−5Nb,
77.5Ni−1.5Si−16Ti−5Nb,
77.5Ni−7.5Si−5Ti−10Nb,
77.5Ni−4Si−8.5Ti−10Nb,
1-5. Specific composition of intermetallic compound The specific composition of the intermetallic compound of the present invention is, for example,
77.5Ni-10.5Si-12Ti,
(The number before the element means at%. The same shall apply hereinafter.)
77.5Ni-6.5Si-16Ti,
77.5Ni-10.5Si-7Ti-5Nb,
77.5Ni-6Si-11.5Ti-5Nb,
77.5Ni-1.5Si-16Ti-5Nb,
77.5Ni-7.5Si-5Ti-10Nb,
77.5Ni-4Si-8.5Ti-10Nb,
79.5Ni−10.5Si−10Ti,
79.5Ni−7Si−13.5Ti,
79.5Ni−4.5Si−16Ti,
79.5Ni−10.5Si−5Ti−5Nb,
79.5Ni−5Si−10.5Ti−5Nb,
79.5Ni−1Si−14.5Ti−5Nb,
79.5Ni−5.5Si−5Ti−10Nb,
79.5Ni-10.5Si-10Ti,
79.5Ni-7Si-13.5Ti,
79.5Ni-4.5Si-16Ti,
79.5Ni-10.5Si-5Ti-5Nb,
79.5Ni-5Si-10.5Ti-5Nb,
79.5Ni-1Si-14.5Ti-5Nb,
79.5Ni-5.5Si-5Ti-10Nb,
81.5Ni−10.5Si−8Ti,
81.5Ni−6Si−12.5Ti,
81.5Ni−2.5Si−16Ti,
81.5Ni−8.5Si−5Ti−5Nb,
81.5Ni−4Si−9.5Ti−5Nb,又は
81.5Ni−1Si−12.5Ti−5Nbである。
81.5Ni-10.5Si-8Ti,
81.5Ni-6Si-12.5Ti,
81.5Ni-2.5Si-16Ti,
81.5Ni-8.5Si-5Ti-5Nb,
81.5Ni-4Si-9.5Ti-5Nb, or 81.5Ni-1Si-12.5Ti-5Nb.
また,本発明の金属間化合物の具体的な組成は,Bを含有する場合は,例えば,上記Ni,Si,Ti及びNbの具体的な組成に,「1−4.Bの含有量」で具体的に示した量のBを含有しているものである。 In addition, when the specific composition of the intermetallic compound of the present invention contains B, for example, in the specific composition of Ni, Si, Ti and Nb, “1-4. Content of B” It contains a specific amount of B.
2.本発明の金属間化合物の製造方法
次に,本発明の金属間化合物の製造方法について説明する。ここでは,本発明の金属間化合物の製造方法の3つの実施形態を示す。本発明の金属間化合物は,以下の方法で製造したものに限定されない。
2. Next, the manufacturing method of the intermetallic compound of this invention is demonstrated. Here, three embodiments of the method for producing an intermetallic compound of the present invention are shown. The intermetallic compound of this invention is not limited to what was manufactured with the following method.
2−1.第1実施形態
本発明の第1実施形態の金属間化合物の製造方法は,Si:1〜10.5at%,Ti:5〜16at%,Nb:0〜10at%,B:0〜1000重量ppm,残部は不純物を除きNiからなる鋳塊を作製し,L12相とD024相からなる2相共存状態又はL12相,D024相及びD0a相からなる3相共存状態となる温度で均質化熱処理を行う工程を備える。
2-1. 1st Embodiment The manufacturing method of the intermetallic compound of 1st Embodiment of this invention is Si: 1-10.5at%, Ti: 5-16at%, Nb: 0-10at%, B: 0-1000 weight ppm. The balance is made of an ingot made of Ni, excluding impurities, at a temperature at which a two-phase coexisting state consisting of L1 2 phase and D0 24 phase or a three-phase coexisting state consisting of L1 2 phase, D0 24 phase and D0 a phase is obtained. A step of performing a homogenization heat treatment.
以下,この実施形態に含まれる各工程について詳述する。
2−1−1.鋳塊作製工程
本発明の対象である鋳塊は,Si:1〜10.5at%,Ti:5〜16at%,Nb:0〜10at%,B:0〜1000重量ppm,残部は不純物を除きNiからなる。
Hereinafter, each process included in this embodiment will be described in detail.
2-1-1. Ingot making process The ingot which is the object of the present invention is composed of Si: 1 to 10.5 at%, Ti: 5 to 16 at%, Nb: 0 to 10 at%, B: 0 to 1000 ppm by weight, and the remainder excluding impurities. Made of Ni.
最終的に得られる,本発明の金属間化合物の組成は,鋳塊の組成と実質的に同じなので,上記「1.本発明の金属間化合物」での各元素の含有量についての説明は,鋳塊にも当てはまる。 Since the composition of the intermetallic compound of the present invention finally obtained is substantially the same as that of the ingot, the explanation of the content of each element in the above "1. intermetallic compound of the present invention" The same applies to ingots.
鋳塊の作製方法は,限定されないが,例えば,原料(Si,Ti,Nb,Ni及びB)をアーク溶解炉で溶解し,これを鋳造することによって作製することができる。アーク溶解炉で使用する電極には,例えば,非消耗タングステン電極を用いることができ,鋳型には,例えば,水冷式銅ハースを用いることができる。鋳塊は,上記以外の方法で作製してもよく,例えば,高周波熔解といった方法が挙げられる。 The method for producing the ingot is not limited. For example, the ingot can be produced by melting raw materials (Si, Ti, Nb, Ni, and B) in an arc melting furnace and casting them. For example, a non-consumable tungsten electrode can be used as the electrode used in the arc melting furnace, and a water-cooled copper hearth can be used as the mold, for example. The ingot may be produced by a method other than the above, for example, a method such as high frequency melting.
2−1−2.均質化熱処理工程
次に,作製した鋳塊に対して,均質化熱処理を施す。
均質化熱処理は,合金元素の偏析を無くすとともに,凝固時の非平衡相を消失させるために,安定相であるL12相とD024相からなる2相共存状態又はL12相,D024相及びD0a相からなる3相共存状態となる温度で行う。2相共存状態になるか,3相共存状態になるのかは,鋳塊の組成によって決まる。鋳塊の組成が図1に示す1323Kの状態図の領域Aのような2相共存領域に位置する場合は,2相共存状態になり,鋳塊の組成が図1に示す1323Kの状態図の領域Bのような3相共存領域に位置する場合は,3相共存状態になる。
2-1-2. Homogenization heat treatment step Next, the produced ingot is subjected to a homogenization heat treatment.
Homogenization heat treatment eliminates segregation of alloy elements and eliminates the non-equilibrium phase during solidification, so that a two-phase coexisting state consisting of a stable L1 2 phase and a D0 24 phase, or an L1 2 phase and a D0 24 phase. and carried out at a temperature at which the three-phase coexistence consisting D0 a phase. Whether the two-phase coexistence state or the three-phase coexistence state is determined by the composition of the ingot. When the ingot composition is located in a two-phase coexistence region such as region A in the state diagram 1323K shown in FIG. 1, the two-phase coexistence state occurs, and the ingot composition is in the state diagram of 1323K shown in FIG. When located in a three-phase coexistence region such as region B, a three-phase coexistence state is established.
均質化熱処理の温度は,特に限定されないが,2相共存又は3相共存状態にするためには,1348K以下が好ましい。これよりも高い温度(例えば,1373K以上の温度)にすると,D024相がL12相に固溶してL12相からなる単相状態又はL12相及びD0a相からなる2相共存状態となるからである。
均質化熱処理の温度の下限は,特にないが,均質化熱処理の温度は,1073K以上が好ましい。これよりも低い温度では,均質化に長時間かかるからである。
均質化熱処理の具体的な温度は,例えば,1073,1098,1123,1148,1173,1198,1223,1248,1273,1298,1323又は1348Kである。均質化熱処理の温度の範囲は,上記具体的な温度として例示した数値の何れか2つの間であってもよい。
The temperature of the homogenization heat treatment is not particularly limited, but is preferably 1348K or less in order to achieve a two-phase coexistence state or a three-phase coexistence state. Higher even temperatures (e.g., temperatures above 1373K) If you, D0 2-phase coexisting state 24 phase consisting of single-phase state or L1 2 phase and D0 a phase consisting of L1 2 phase as a solid solution in the L1 2 phase Because it becomes.
There is no particular lower limit to the temperature of the homogenization heat treatment, but the temperature of the homogenization heat treatment is preferably 1073K or more. This is because homogenization takes a long time at a temperature lower than this.
The specific temperature of the homogenization heat treatment is, for example, 1073, 1098, 1123, 1148, 1173, 1198, 1223, 1248, 1273, 1298, 1323 or 1348K. The temperature range of the homogenization heat treatment may be between any two of the numerical values exemplified as the specific temperature.
均質化熱処理を行う時間は,特に限定されず,鋳塊全体の組成を均質化するのに必要な時間だけ行えばよい。均質化熱処理を行う具体的な時間は,例えば,12,24,36,48,60,72,84,96,108,120,132,144,156,168,180,192,204,216,228又は240時間である。均質化熱処理の時間の範囲は,上記具体的な時間として例示した数値の何れか2つの間であってもよい。 The time for performing the homogenization heat treatment is not particularly limited, and may be performed only for the time necessary for homogenizing the composition of the entire ingot. The specific time for performing the homogenization heat treatment is, for example, 12, 24, 36, 48, 60, 72, 84, 96, 108, 120, 132, 144, 156, 168, 180, 192, 204, 216, 228. Or 240 hours. The time range of the homogenization heat treatment may be between any two of the numerical values exemplified as the specific time.
均質化熱処理の後は,自然冷却又は強制冷却によって,室温にまで鋳塊を冷却してもよい。冷却は,自然冷却であってもよく,水焼入れ等による強制冷却であってもよい。自然冷却は,例えば,均質化熱処理後に熱処理炉から鋳塊を取り出して室温に放置することによって行ってもよいし,均質化熱処理後に熱処理炉のヒーター電源を落として,そのまま熱処理炉内に鋳塊を放置することによって行ってもよい。
以上の工程により,本発明の金属間化合物が得られる。
After the homogenization heat treatment, the ingot may be cooled to room temperature by natural cooling or forced cooling. The cooling may be natural cooling or forced cooling by water quenching or the like. Natural cooling may be performed, for example, by removing the ingot from the heat treatment furnace after the homogenization heat treatment and leaving it at room temperature, or after turning off the heater power of the heat treatment furnace after the homogenization heat treatment, May be performed by leaving
Through the above steps, the intermetallic compound of the present invention is obtained.
2−2.第2実施形態
本発明の第2実施形態の金属間化合物の製造方法は,Si:1〜10.5at%,Ti:5〜16at%,Nb:0〜10at%,B:0〜1000重量ppm,残部は不純物を除きNiからなる鋳塊を作製し,L12相からなる単相状態又はL12相及びD0a相からなる2相共存状態となる温度で,均質化熱処理を兼ねた第1熱処理を行い,L12相とD024相からなる2相共存状態又はL12相,D024相及びD0a相からなる3相共存状態となる温度で第2熱処理を行う工程を備える。
2-2. Second Embodiment A method for producing an intermetallic compound according to a second embodiment of the present invention includes Si: 1 to 10.5 at%, Ti: 5 to 16 at%, Nb: 0 to 10 at%, and B: 0 to 1000 ppm by weight. the balance being prepared an ingot made of Ni remove impurities, at a temperature which is a two-phase coexisting state of single-phase state or L1 2 phase and D0 a phase consisting of L1 2 phase, the doubling of the homogenization heat treatment 1 subjected to heat treatment, comprises an L1 2 phase and 2-phase coexisting state or L1 2 phase composed of D0 24 phase, the step of performing a second heat treatment at a temperature at which the three-phase coexistence consisting D0 24 phase and D0 a phase.
以下,この実施形態に含まれる各工程について詳述する。
2−2−1.鋳塊作製工程,第1熱処理工程
鋳塊は,第1実施形態で説明した方法で作製することができる。作製した鋳塊に対して,L12相からなる単相状態又はL12相及びD0a相からなる2相共存状態となる温度で,均質化熱処理を兼ねた第1熱処理を行う。
Hereinafter, each process included in this embodiment will be described in detail.
2-2-1. Ingot production process and first heat treatment process The ingot can be produced by the method described in the first embodiment. Against the prepared ingot, at a temperature which is a two-phase coexisting state of single-phase state or L1 2 phase and D0 a phase consisting of L1 2 phase, a first heat treatment which also serves as a homogenizing heat treatment.
単相状態となるか,2相共存状態となるかは,鋳塊の組成や第1熱処理の温度によって決まる。D024相がL12相に固溶する温度は,D0a相がL12相に固溶する温度よりも低い。従って,第1熱処理の温度が,D0a相がL12相に固溶する温度よりも高いとき,鋳塊は,L12相からなる単相状態になる。一方,第1熱処理の温度が,D024相はL12相に固溶するがD0a相はL12相に固溶しないような温度である場合,単相状態となるか,2相共存状態となるかは,鋳塊の組成による。鋳塊の組成が,図1に示す1323Kの状態図の領域Aのような2相共存領域に位置する場合は,L12相からなる単相状態になり,鋳塊の組成が図1に示す1323Kの状態図の領域Bのような3相共存領域に位置する場合は,L12相及びD0a相からなる2相共存状態となる。 Whether the single phase state or the two-phase coexistence state is determined by the composition of the ingot and the temperature of the first heat treatment. Temperature D0 24 phase forms a solid solution in the L1 2 phase is lower than the temperature at which the D0 a phase forms a solid solution in the L1 2 phase. Therefore, the temperature of the first heat treatment, is higher than the temperature at which the D0 a phase forms a solid solution in the L1 2 phase, ingot becomes single-phase state consisting of L1 2 phase. On the other hand, when the temperature of the first heat treatment is such that the D0 24 phase is dissolved in the L1 2 phase but the D0 a phase is not dissolved in the L1 2 phase, it becomes a single phase state or a two-phase coexistence state. It depends on the composition of the ingot. The composition of the ingot, when located two-phase coexistence region such as region A state diagram of 1323K shown in Figure 1, becomes a single phase state consisting of L1 2 phase, the composition of the ingot is shown in FIG. 1 when located 3-phase coexisting region, such as region B in the state diagram of 1323K is a two-phase coexisting state consisting of L1 2 phase and D0 a phase.
上記観点から,第1熱処理は,D024相がL12相に固溶する温度より高い温度で行い,D0a相がL12相に固溶する温度よりも高い温度で行うことが好ましい。 From the above viewpoint, the first heat treatment is preferably performed at a temperature higher than the temperature at which the D0 24 phase is dissolved in the L1 2 phase and at a temperature higher than the temperature at which the D0 a phase is dissolved in the L1 2 phase.
後に示す実施例によれば,1373Kでの熱処理によってD024相がL12相に固溶することが分かっている。従って,第1熱処理は,1373K以上の温度で行うことが好ましい。但し,D024相がL12相に固溶する温度であれば,1373Kよりも低い温度であってもよい。このように,第1熱処理では,D024相をL12相に固溶させるので,第1熱処理は,溶体化熱処理とも呼ぶことができる。
第1熱処理の温度の上限は,特にないが,鋳塊の固相線温度以下の温度で行うことが好ましい。鋳塊の固相線温度は,組成によって変化し,具体的な値は,実験によって適宜決定されるが,1523Kよりも高いと考えられる。従って,均質化熱処理は,1523K以下の温度で行うことが好ましい。
以上より,第1熱処理は,1373〜1523Kで行うことが好ましい。第1熱処理の具体的な温度は,例えば,1373,1398,1423,1448,1473,1498又は1523Kである。第1熱処理の温度の範囲は,上記具体的な温度として例示した数値の何れか2つの間であってもよい。
According to the embodiment shown later, D0 24 phase is found to be dissolved in the L1 2 phase by heat treatment at 1373K. Accordingly, the first heat treatment is preferably performed at a temperature of 1373K or higher. However, if the temperature of D0 24 phase forms a solid solution in the L1 2 phase may be a temperature lower than 1373K. Thus, in the first heat treatment, since the solid solution of D0 24 phase L1 2 phase, a first heat treatment may also be referred to as solution heat treatment.
The upper limit of the temperature of the first heat treatment is not particularly limited, but it is preferable to perform the first heat treatment at a temperature lower than the solidus temperature of the ingot. The solidus temperature of the ingot varies depending on the composition, and a specific value is appropriately determined by experiment, but is considered to be higher than 1523K. Therefore, the homogenization heat treatment is preferably performed at a temperature of 1523K or less.
As described above, the first heat treatment is preferably performed at 1373 to 1523K. The specific temperature of the first heat treatment is, for example, 1373, 1398, 1423, 1448, 1473, 1498, or 1523K. The temperature range of the first heat treatment may be between any two of the numerical values exemplified as the specific temperature.
第1熱処理の時間は,特に限定されないが,第1熱処理は,均質化熱処理を兼ねているので,第1熱処理は,鋳塊の組成が均質化され,かつD024相をL12相に固溶させるのに必要な時間行う必要がある。第1熱処理の具体的な時間は,例えば,12,24,36,48,60,72,84,96,108,120,132,144,156,168,180,192,204,216,228又は240時間である。第1熱処理の時間の範囲は,上記具体的な時間として例示した数値の何れか2つの間であってもよい。 The time of the first heat treatment is not particularly limited, the first heat treatment, so also serves as a homogenization heat treatment, the first heat treatment, the composition of the ingot is homogenized, and solid and D0 24 phase L1 2 phase It is necessary to carry out the time required for melting. The specific time of the first heat treatment is, for example, 12, 24, 36, 48, 60, 72, 84, 96, 108, 120, 132, 144, 156, 168, 180, 192, 204, 216, 228 or 240 hours. The range of the time of the first heat treatment may be between any two of the numerical values exemplified as the specific time.
2−2−2.第2熱処理工程
次に,L12相とD024相からなる2相共存状態又はL12相,D024相及びD0a相からなる3相共存状態となる温度で第2熱処理を行う。
2相共存状態又は3相共存状態となる温度とは,第1熱処理の際にL12相に固溶したD024相が析出する温度である。2相共存状態になるか,3相共存状態になるのかについては,「2−1−2.均質化熱処理工程」の項で説明した通りである。
2-2-2. Second Heat Treatment Step Next, the second heat treatment is performed at a temperature at which a two-phase coexistence state composed of the L1 2 phase and the D0 24 phase or a three-phase coexistence state composed of the L1 2 phase, the D0 24 phase, and the D0 a phase.
The temperature at which a two-phase coexisting state or 3-phase coexisting state, is the temperature at which the D0 24 phase solid solution in L1 2 phase in the first heat treatment is deposited. Whether it becomes a two-phase coexistence state or a three-phase coexistence state is as described in the section “2-1-2. Homogenization heat treatment step”.
第2熱処理は,第1熱処理の際にL12相に固溶したD024相を析出させることを目的に行う熱処理であり,時効熱処理と呼ぶことができる。 The second heat treatment is a heat treatment conducted for the purpose of precipitating the first heat treatment D0 24 phase solid solution in L1 2 phase upon, it may be referred to as aging heat treatment.
第2熱処理の温度は,特に限定されないが,2相共存又は3相共存状態にするためには,1348K以下が好ましい。これよりも高い温度(例えば,1373K以上の温度)にすると,D024相がL12相に固溶してL12相からなる単相状態又はL12相及びD0a相からなる2相共存状態となるからである。
第2熱処理の温度の下限は,特にないが,第2熱処理の温度は,1073K以上が好ましい。これよりも低い温度では,D024相の析出に長時間かかるからである。
第2熱処理の具体的な温度は,例えば,1073,1098,1123,1148,1173,1198,1223,1248,1273,1298,1323又は1348Kである。第2熱処理の温度の範囲は,上記具体的な温度として例示した数値の何れか2つの間であってもよい。
The temperature of the second heat treatment is not particularly limited, but is preferably 1348K or less in order to obtain a two-phase coexistence state or a three-phase coexistence state. Higher even temperatures (e.g., temperatures above 1373K) If you, D0 2-phase coexisting state 24 phase consisting of single-phase state or L1 2 phase and D0 a phase consisting of L1 2 phase as a solid solution in the L1 2 phase Because it becomes.
There is no particular lower limit to the temperature of the second heat treatment, but the temperature of the second heat treatment is preferably 1073K or higher. This is because it takes a long time to precipitate the D0 24 phase at a temperature lower than this.
The specific temperature of the second heat treatment is, for example, 1073, 1098, 1123, 1148, 1173, 1198, 1223, 1248, 1273, 1298, 1323 or 1348K. The temperature range of the second heat treatment may be between any two of the numerical values exemplified as the specific temperature.
第2熱処理を行う時間は,特に限定されず,D024相を析出させるのに必要な時間だけ行えばよい。第2熱処理を行う具体的な時間は,例えば,6,12,18,24,30,36,42,48,54,60,66,72,78,84,90又は96時間である。第2熱処理の時間の範囲は,上記具体的な時間として例示した数値の何れか2つの間であってもよい。 The time for performing the second heat treatment is not particularly limited, and may be performed only for the time necessary for precipitating the D0 24 phase. The specific time for performing the second heat treatment is, for example, 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, or 96 hours. The range of the second heat treatment time may be between any two of the numerical values exemplified as the specific time.
第2熱処理の温度と時間の組み合わせは,例えば1073K−6時間,1073K−12時間,1073K−24時間,1073K−48時間,1073K−72時間,1073K−96時間,1123K−6時間,1123K−12時間,1123K−24時間,1123K−48時間,1123K−72時間,1123K−96時間,1173K−6時間,1173K−12時間,1173K−24時間,1173K−48時間,1173K−72時間,1173K−96時間,1223K−6時間,1223K−12時間,1223K−24時間,1223K−48時間,1223K−72時間,1223K−96時間,1273K−6時間,1273K−12時間,1273K−24時間,1273K−48時間,1273K−72時間,1273K−96時間,1348K−6時間,1348K−12時間,1348K−24時間,1348K−48時間,1348K−72時間又は1348K−96時間である。 The combination of the temperature and time of the second heat treatment is, for example, 1073K-6 hours, 1073K-12 hours, 1073K-24 hours, 1073K-48 hours, 1073K-72 hours, 1073K-96 hours, 1123K-6 hours, 1123K-12. Time, 1123K-24 hours, 1123K-48 hours, 1123K-72 hours, 1123K-96 hours, 1173K-6 hours, 1173K-12 hours, 1173K-24 hours, 1173K-48 hours, 1173K-72 hours, 1173K-96 Hours, 1223K-6 hours, 1223K-12 hours, 1223K-24 hours, 1223K-48 hours, 1223K-72 hours, 1223K-96 hours, 1273K-6 hours, 1273K-12 hours, 1273K-24 hours, 1273K-48 Time, 1273K-72 During, 1273K-96 hours, 1348K-6 hours, 1348K-12 hours, 1348K-24 hours, 1348K-48 hours, 1348K-72 hours or 1348K-96 hours.
鋳塊の強度を向上させるという目的からは,第2熱処理の温度は,好ましくは1123〜1323K,さらに好ましくは1173K〜1273K,さらに好ましくは1198〜1248Kであり,第2熱処理の温度は,好ましくは6〜60時間,さらに好ましくは12〜48時間である。 For the purpose of improving the strength of the ingot, the temperature of the second heat treatment is preferably 1123 to 1323K, more preferably 1173K to 1273K, more preferably 1198 to 1248K, and the temperature of the second heat treatment is preferably It is 6 to 60 hours, more preferably 12 to 48 hours.
第2熱処理の後は,自然冷却又は強制冷却によって,室温にまで鋳塊を冷却してもよい。冷却は,自然冷却であってもよく,水焼入れ等による強制冷却であってもよい。自然冷却は,例えば,第2熱処理に熱処理炉から鋳塊を取り出して室温に放置することによって行ってもよいし,第2熱処理に熱処理炉のヒーター電源を落として,そのまま熱処理炉内に鋳塊を放置することによって行ってもよい。
以上の工程により,本発明の金属間化合物が得られる。
After the second heat treatment, the ingot may be cooled to room temperature by natural cooling or forced cooling. The cooling may be natural cooling or forced cooling by water quenching or the like. The natural cooling may be performed, for example, by removing the ingot from the heat treatment furnace for the second heat treatment and leaving it at room temperature, or by turning off the heater power supply of the heat treatment furnace for the second heat treatment and leaving the ingot in the heat treatment furnace as it is. May be performed by leaving
Through the above steps, the intermetallic compound of the present invention is obtained.
3−2.第3実施形態
本発明の第3実施形態の金属間化合物の製造方法は,Si:1〜10.5at%,Ti:5〜16at%,Nb:0〜10at%,B:0〜1000重量ppm,残部は不純物を除きNiからなる鋳塊を作製し,L12相とD024相からなる2相共存状態又はL12相,D024相及びD0a相からなる3相共存状態となる温度で均質化熱処理を行い,L12相からなる単相状態又はL12相及びD0a相からなる2相共存状態となる温度で第1熱処理を行い,L12相とD024相からなる2相共存状態又はL12相,D024相及びD0a相からなる3相共存状態となる温度で第2熱処理を行う工程を備える。
3-2. Third Embodiment A method for producing an intermetallic compound according to a third embodiment of the present invention includes Si: 1 to 10.5 at%, Ti: 5 to 16 at%, Nb: 0 to 10 at%, and B: 0 to 1000 ppm by weight. The balance is made of an ingot made of Ni, excluding impurities, at a temperature at which a two-phase coexisting state consisting of L1 2 phase and D0 24 phase or a three-phase coexisting state consisting of L1 2 phase, D0 24 phase and D0 a phase is obtained. perform homogenization heat treatment, performing a first heat treatment at a temperature at which a two-phase coexisting state of single-phase state or L1 2 phase and D0 a phase consisting of L1 2 phase, two-phase coexisting consisting L1 2 phase and D0 24 phase And a step of performing the second heat treatment at a temperature at which the three-phase coexistence state consisting of the L1 2 phase, the D0 24 phase, and the D0 a phase exists.
この実施形態は,第2実施形態に類似しているが,第2実施形態とは違って,第1熱処理の前に予め均質化熱処理を行っている点において第2実施形態とは相違している。この実施形態に含まれる,均質化熱処理,第1熱処理及び第2熱処理工程は,それぞれ,第1実施形態又は第2実施形態の項で説明した通りである。 This embodiment is similar to the second embodiment, but unlike the second embodiment, it differs from the second embodiment in that a homogenization heat treatment is performed in advance before the first heat treatment. Yes. The homogenization heat treatment, the first heat treatment, and the second heat treatment step included in this embodiment are as described in the section of the first embodiment or the second embodiment, respectively.
この実施形態では,第1熱処理は均質化熱処理を兼ねる必要が無いので,第1熱処理の時間を比較的短くすることができ,第1熱処理は,D024相をL12相に固溶させるのに必要な時間行えばよい。第1熱処理の具体的な時間は,例えば,6,12,18,24,30,36,42,48,54,60,66,72,78,84,90又は96時間である。第1熱処理の時間の範囲は,上記具体的な時間として例示した数値の何れか2つの間であってもよい。 In this embodiment, since the first heat treatment is not required to serve as the homogenizing heat treatment, it is possible to relatively shorten the time of the first heat treatment, the first heat treatment, cause solid solution of D0 24 phase L1 2 phase You can do as long as you need. The specific time of the first heat treatment is, for example, 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, or 96 hours. The range of the time of the first heat treatment may be between any two of the numerical values exemplified as the specific time.
以下,本発明の金属間化合物の具体例について説明する。
1.鋳塊作製工程
まず,表1に示す11種類の組成になるようにNi,Si,Ti,Nbの地金(それぞれ純度99.9重量ppm)を秤量し,アーク溶解炉で溶解し,溶湯を鋳型に流し込んで鋳塊からなる試料を作製した。また,No.2〜No.4の組成に,B(ボロン)を50重量ppm添加した組成の鋳塊からなる試料(それぞれ,No.2B試料,No.3B試料,No.4B試料と呼ぶ。)も,上記方法で作製した。また,No.2の組成に,Bを100重量ppm又は500重量ppmを添加した組成の鋳塊からなる試料(それぞれ,No.2B(100)試料,No.2B(500)試料と呼ぶ。)も,上記方法で作製した。
Hereinafter, specific examples of the intermetallic compound of the present invention will be described.
1. Ingot preparation process First, Ni, Si, Ti, Nb ingots (each purity 99.9 ppm by weight) were weighed so as to have 11 compositions shown in Table 1, and melted in an arc melting furnace. A sample made of an ingot was prepared by pouring into a mold. No. 2-No. Samples made of ingots with a composition in which B (boron) was added at 50 ppm by weight to the composition of No. 4 (referred to as No. 2B sample, No. 3B sample, and No. 4B sample, respectively) were also produced by the above method. . No. Samples composed of ingots having a composition in which B is added at 100 ppm by weight or 500 ppm by weight (hereinafter referred to as No. 2B (100) sample and No. 2B (500) sample, respectively). It was produced with.
アーク溶解炉の雰囲気は,まず,溶解室内を真空排気し,その後不活性ガス(アルゴンガス)に置換した。電極は,非消耗タングステン電極を用い,鋳型には水冷式銅ハースを使用した。
2.均質化熱処理工程
次に,上記工程で得られた試料に対して均質化熱処理を行った。均質化熱処理は,真空中で1323K−48時間の条件で行った。均質化熱処理の後は,ヒーター電源を切った熱処理炉中に試料を放置し,室温程度まで試料が冷えたところで試料を熱処理炉から取り出した。
2. Homogenization heat treatment step Next, the sample obtained in the above step was subjected to a homogenization heat treatment. The homogenization heat treatment was performed in a vacuum at 1323 K-48 hours. After the homogenization heat treatment, the sample was left in the heat treatment furnace with the heater turned off, and the sample was taken out from the heat treatment furnace when the sample cooled to about room temperature.
2−1.状態図作成
次に,SEMによる組成像の観察とX線測定によって,No.1〜No.11試料の構成相を調べた。その結果を表1に示す。表1によると,No.1〜No.5試料は,L12相,D024相及びD0a相からなる3相共存の複相組織を有しており,No.6〜No.8試料は,L12相及びD024相からなる2相共存の複相組織を有していたことが分かる。また,No.9試料は,D024相からなる単相組織を有し,No.10及びNo.11試料は,D024相及びD0a相からなる2相共存の複相組織を有していたことが分かる。
2-1. Phase diagram creation Next, by observing the composition image by SEM and measuring the X-ray, 1-No. The constituent phases of 11 samples were examined. The results are shown in Table 1. According to Table 1, no. 1-No. Sample No. 5 has a three-phase coexisting multiphase structure consisting of L1 2 phase, D0 24 phase and D0 a phase. 6-No. 8 samples, it can be seen that had duplex structure of two-phase coexisting consisting L1 2 phase and D0 24 phase. No. Nine samples have a single-phase structure composed of D0 24 phase. 10 and no. It can be seen that 11 samples had a two-phase coexisting multiphase structure consisting of D0 24 phase and D0 a phase.
次に,SEM−EPMA(Scanning Electron Microscope - Electron Probe Micro Analyzer)により,各構成相の分析を行った。
以上の観察及び分析の結果に基づいて,1323KでのNi3Si−Ni3Ti−Ni3Nb擬三元系状態図を作成した。この状態図を図1に示す。図1において,L12相及びD024相からなる2相共存領域には,「領域A」と表示し,L12相,D024相及びD0a相からなる3相共存領域には,「領域B」と表示した。図1の三角形の各辺には,大小2種類の目盛りを付したが,大目盛り1つは,2.05at%の含有量を示し,小目盛り1つは,大目盛り1つの半分の含有量を示す。
Next, each component phase was analyzed by SEM-EPMA (Scanning Electron Microscope-Electron Probe Micro Analyzer).
Based on the results of the above observation and analysis, a Ni 3 Si—Ni 3 Ti—Ni 3 Nb pseudo ternary phase diagram at 1323K was prepared. This state diagram is shown in FIG. In FIG. 1, the two-phase coexistence region composed of the L1 2 phase and the D0 24 phase is indicated as “region A”, and the three-phase coexistence region composed of the L1 2 phase, the D0 24 phase and the D0 a phase is represented by “region”. B ". Each side of the triangle in Fig. 1 is marked with two types of large and small scales. One large scale shows a content of 2.05 at%, and one small scale has half the content of one large scale. Indicates.
2−2.組織観察
(1)SEM(scanning electron microscope)による組織観察
次に,均質化熱処理後のNo.1〜No.5試料についてSEMによる組織観察を行った。その結果を図2(a)〜(e)に示す。図2(a)〜(e)は,それぞれ,(a)No.1試料,(b)No.2試料,(c)No.3試料,(d)No.4試料,(e)No.5試料のSEM組成像を示す。図2(a),(b)の組成像において,黒色の部分がL12相(Ni3Si相),灰色の部分がD024相(Ni3Ti相),白色の部分がD0a相(Ni3Nb相)である。マトリックスであるL12相中に,針状もしくは板状のD024相と粒状D0a相が分散した組織であった。
次に,均質化熱処理後のNo.2B〜No.4B試料についてSEMによる組織観察を行った。しかし,B添加による組織変化は見られなかった。
2-2. Microstructure observation (1) Microstructure observation with SEM (scanning electron microscope) 1-No. Five samples were observed for structure by SEM. The results are shown in FIGS. 2 (a) to 2 (e) show (a) No. 2 and FIG. 1 sample, (b) no. 2 samples, (c) No. 3 samples, (d) No. 4 samples, (e) No. The SEM composition image of 5 samples is shown. In the composition image of FIG. 2 (a), (b), portions of the black L1 2 phase (Ni 3 Si phase), the gray portions D0 24 phase (Ni 3 Ti phase), the white portions D0 a phase ( Ni 3 Nb phase). It was a structure in which needle-like or plate-like D0 24 phase and granular D0 a phase were dispersed in the L1 2 phase as a matrix.
Next, no. 2B-No. The structure of the 4B sample was observed by SEM. However, no structural change was observed with B addition.
(2)TEM(transmission electron microscope)による組織観察
次に,均質化熱処理後のNo.2試料についてTEMによる組織観察を行った。その結果を図3(a),(b)及び図4に示す。図3(a),(b)は,それぞれ,均質化熱処理後のNo.2試料についての,(a)TEM−明視野画像,(b)制限視野回折パターン(SADP, Selected Area Diffraction Pattern)である。TEMによる組織観察で使用されたビーム方向は,[011]L12である。また,図4は,図3(a)のTEM−明視野画像内のL12相とD024相との界面付近を拡大した高分解能写真である。
(2) Structure observation by TEM (transmission electron microscope) Two samples were observed for structure by TEM. The results are shown in FIGS. 3 (a), (b) and FIG. 3 (a) and 3 (b) show No. 1 after the homogenization heat treatment, respectively. (A) TEM-bright field image, (b) Restricted field diffraction pattern (SADP, Selected Area Diffraction Pattern) for two samples. Beam direction used in structure observation by TEM is a [011] L1 2. FIG. 4 is a high-resolution photograph in which the vicinity of the interface between the L1 2 phase and the D0 24 phase in the TEM-bright field image of FIG.
図3(a)及び図4を参照すると,マトリックスであるL12相と針状のD024相は,下記に示す方位関係を持つことが分かった。
[011]L12//[112-0]D024 (111)L12//(0001)D024
(2-は,「2」の上に「−」がある状態を示す。以下,同じ。)
これはTiAlにおけるラメラ界面での方位関係と同様で,お互いに最稠密方向を平行に最稠密面同士が接している界面構造である。
図3(a)及び図4から明らかなように,L12相とD024相は,整合性のよい界面構造を形成することが分かる。
Referring to FIGS. 3A and 4, it was found that the L1 2 phase as a matrix and the needle-like D0 24 phase have the following orientation relationship.
[011] L1 2 // [112 - 0] D0 24 (111) L1 2 // (0001) D0 24
(2 - is on the "2" and "-". Shows a state where there is less, the same.)
This is the same as the orientation relationship at the lamella interface in TiAl, and is an interface structure in which the densest surfaces are in contact with each other in parallel with the densest directions.
3 (a) and it is apparent from FIG. 4, L1 2 phase and D0 24 phase is found to form a good interface structure consistent.
2−3.圧縮試験
次に,均質化熱処理後のNo.1〜No.5試料について,圧縮試験を行った。圧縮試験は,常温〜1273Kの範囲で,2×2×5mm3の角状の試験片を用いて,真空中,ひずみ速度3.3×10-4s-1の条件で行った。
その結果を図5に示す。図5は,均質化熱処理後のNo.1〜No.5試料についての圧縮試験から得られた温度と降伏応力との関係を示すグラフである。
図5のグラフによると,873Kまでは全ての試料が高い0.2%降伏応力(0.2%耐力)を示し,1073K以上の温度ではNo.2の試料が高い0.2%降伏応力を示したことが分かる。
図5のグラフで注目すべきなのは,均質化熱処理後のNo.1〜No.5試料の全てが,室温から高温にかけての全温度範囲で圧縮試験を問題なく行うことができたことである。一般に,金属間化合物は変形能が乏しく,圧縮変形能すら示さないものが多いので,図5のグラフは,本発明の金属間化合物が高い変形能を有していることを示している。
2-3. Compression test Next, no. 1-No. A compression test was performed on five samples. The compression test was performed in a vacuum at a strain rate of 3.3 × 10 −4 s −1 using 2 × 2 × 5 mm 3 square test pieces in the range of room temperature to 1273K.
The result is shown in FIG. FIG. 5 shows the No. after the homogenization heat treatment. 1-No. It is a graph which shows the relationship between the temperature obtained from the compression test about 5 samples, and the yield stress.
According to the graph of FIG. 5, all samples showed high 0.2% yield stress (0.2% proof stress) up to 873K, and No. at temperatures above 1073K. It can be seen that the sample 2 showed a high 0.2% yield stress.
It should be noted in the graph of FIG. 1-No. All five samples were able to perform the compression test without any problems in the whole temperature range from room temperature to high temperature. In general, since intermetallic compounds have poor deformability and many do not even exhibit compressive deformability, the graph of FIG. 5 shows that the intermetallic compound of the present invention has high deformability.
2−4.引張試験
(1)No.1〜No.5試料の引張試験
次に,均質化熱処理後のNo.1〜No.5試料について,引張試験を行った。引張試験は,常温〜1173Kの範囲で,ゲージ部が10×2×1mm3の試験片を用いて,真空中,ひずみ速度1.67×10-4s-1の条件で行った。
その結果を図6及び図7に示す。図6は,均質化熱処理後のNo.1〜No.5試料についての,温度と最大引張強度との関係を示すグラフである。図7は,均質化熱処理後のNo.1〜No.5試料についての,温度と伸びとの関係を示すグラフである。
図6によると,全ての試料が,高い引張強度を示し,No.1〜No.3試料が特に高い引張強度を示したことが分かる。全ての試料が高い引張強度を示したのは,L12相とD024相が共に室温より高温で高いという強度の逆温度依存性を有しているため,さらには,整合性のよい界面構造を形成することに起因していると考えられる。また,No.1〜No.3試料が特に高い引張強度を示したのは,これらの試料ではSiの含有量が比較的多かったことに起因すると考えられる。1173Kでは,No.2試料が最も高い引張強度を示した。
伸びに関しては,図7によると,No.1〜No.3試料が高い伸びを示したことが分かる。No.1〜No.3試料が高い伸びを示したのは,これらの試料ではSiの含有量が比較的多かったことに起因すると考えられる。
一般に,金属間化合物は延性が乏しく,引張試験を行うことすらできないものがほとんどなので,No.1〜No.3試料が高い伸びを示したのは,驚くべき結果である。
2-4. Tensile test (1) No. 1-No. Tensile test of 5 samples Next, No. 5 after the homogenization heat treatment. 1-No. Ten samples were subjected to a tensile test. The tensile test was performed in a vacuum at a strain rate of 1.67 × 10 −4 s −1 using a test piece having a gauge portion of 10 × 2 × 1 mm 3 in the range of room temperature to 1173K.
The results are shown in FIGS. FIG. 6 shows No. 1 after the homogenization heat treatment. 1-No. It is a graph which shows the relationship between temperature and the maximum tensile strength about 5 samples. FIG. 7 shows No. 1 after the homogenization heat treatment. 1-No. It is a graph which shows the relationship between temperature and elongation about 5 samples.
According to FIG. 6, all samples showed high tensile strength. 1-No. It can be seen that three samples showed particularly high tensile strength. All samples showed high tensile strength because the L1 2 phase and the D0 24 phase both have an inverse temperature dependence of strength higher than room temperature. It is thought that it originates in forming. No. 1-No. The reason why the three samples showed particularly high tensile strength is considered to be due to the relatively high Si content in these samples. In 1173K, no. Two samples showed the highest tensile strength.
Regarding elongation, according to FIG. 1-No. It can be seen that the three samples showed high elongation. No. 1-No. The reason why the three samples showed high elongation is considered to be due to the relatively high Si content in these samples.
In general, intermetallic compounds have poor ductility, and most of them cannot even be subjected to a tensile test. 1-No. It is a surprising result that the three samples showed high elongation.
(2)No.2B〜No.4B試料の引張試験
次に,均質化熱処理後のNo.2B〜No.4B試料について,引張試験を行った。引張試験は,常温〜1173Kの範囲で,ゲージ部が10×2×1mm3の試験片を用いて,真空中,ひずみ速度1.67×10-4s-1の条件で行った。
(2) No. 2B-No. Tensile test of 4B sample Next, No. 4 after the homogenization heat treatment. 2B-No. A tensile test was performed on the 4B sample. The tensile test was performed in a vacuum at a strain rate of 1.67 × 10 −4 s −1 using a test piece having a gauge portion of 10 × 2 × 1 mm 3 in the range of room temperature to 1173K.
B添加の効果を調べるために,No.2B〜No.4B試料について引張試験の結果と,No.2〜No.4試料について引張試験の結果を比較した。比較のためのグラフを図8及び図9に示す。図8は,均質化熱処理後の,No.2試料〜No.4試料,及びそれぞれの試料にBを添加したNo.2B〜No.4B試料についての,温度と最大引張強度との関係を示すグラフである。図9は,均質化熱処理後の,No.2試料〜No.4試料,及びBを含有するNo.2B〜No.4B試料についての,温度と伸びとの関係を示すグラフである。 In order to investigate the effect of B addition, 2B-No. Results of the tensile test on the 4B sample and 2-No. The tensile test results were compared for four samples. Graphs for comparison are shown in FIGS. FIG. 8 shows No. 1 after the homogenization heat treatment. 2 samples-No. 4 samples, and No. 1 in which B was added to each sample. 2B-No. It is a graph which shows the relationship between temperature and the maximum tensile strength about a 4B sample. FIG. 9 shows No. 1 after the homogenization heat treatment. 2 samples-No. 4 samples and No. 1 containing B 2B-No. It is a graph which shows the relationship between temperature and elongation about 4B sample.
図8及び図9を参照すると,No.2試料については,Bを添加することによって,引張強度と伸びの両方が大きく向上したことが分かる。No.2試料は,伸びに関しては,全温度域で約15%という優れた結果を示した。No.3試料については,Bを添加することによって,一部の温度範囲において,引張強度と伸びの両方が向上したことが分かる。No.4試料については,Bを添加しても,引張強度と伸びの何れも実質的に向上しなかったことが分かる。
このような結果が得られたのは,No.4試料,No.3試料,No.2試料の順でSi含有量が増えていることに起因していると考えられる。
Referring to FIG. 8 and FIG. For the two samples, it can be seen that the addition of B greatly improved both the tensile strength and the elongation. No. Two samples showed excellent results of about 15% in the whole temperature range in terms of elongation. No. For the three samples, it can be seen that the addition of B improved both the tensile strength and the elongation in some temperature ranges. No. For the four samples, it can be seen that even when B was added, neither the tensile strength nor the elongation was substantially improved.
Such a result was obtained in No. 4 samples, no. 3 samples, no. It is thought that it originates in the Si content increasing in order of 2 samples.
次に,No.2B試料の引張試験の結果と,汎用Ni合金であるINCONEL 600及びINCONEL X750についての引張試験の結果との比較を行った。その結果を図10に示す。図10は,均質化熱処理後のNo.2B試料と,汎用Ni合金であるINCONEL600及びINCONELX750についての,温度と最大引張強度との関係を示すグラフである。図10において,汎用Ni合金についてのデータは,「Metals Handbook Ninth Edition Vol. 3, ASM, pp. 187-333, (1980)」に掲載されているものを用いた。
図10によると,No.2B試料は,現在実用化されている汎用Ni合金よりも高い引張強度を示したことが分かる。特に,1173Kといった高温域においても,No.2B試料は,高い引張強度を維持していることから,高温構造材料としての応用が期待できる。
Next, no. The result of the tensile test of the 2B sample was compared with the result of the tensile test on the INCONEL 600 and INCONEL X750, which are general-purpose Ni alloys. The result is shown in FIG. FIG. 10 shows No. 1 after the homogenization heat treatment. It is a graph which shows the relationship between temperature and maximum tensile strength about 2B sample and INCONEL600 and INCONELX750 which are general purpose Ni alloys. In FIG. 10, the data on the general-purpose Ni alloy used in “Metals Handbook Ninth Edition Vol. 3, ASM, pp. 187-333, (1980)” was used.
According to FIG. It can be seen that the 2B sample exhibited higher tensile strength than the general-purpose Ni alloy currently in practical use. In particular, no. Since the 2B sample maintains high tensile strength, application as a high temperature structural material can be expected.
(3)No.2B(100)試料及びNo.2B(500)試料の引張試験
次に,均質化熱処理後のNo.2B(100)試料及びNo.2B(500)試料について,引張試験を行った。引張試験は,引張試験は,常温〜1173Kの範囲で,ゲージ部が10×2×1mm3の試験片を用いて,真空中,ひずみ速度1.67×10-4s-1の条件で行った。
(3) No. 2B (100) sample and no. Tensile test of 2B (500) sample 2B (100) sample and no. A tensile test was performed on the 2B (500) sample. The tensile test is performed in a vacuum at a strain rate of 1.67 × 10 −4 s −1 using a test piece having a gauge portion of 10 × 2 × 1 mm 3 in the range of room temperature to 1173K. It was.
Bの添加量による効果の違いを調べるために,B添加なしの試料(No.2試料),Bを50重量ppm添加した試料(No.2B試料),Bを100重量ppm添加した試料(No.2B(100)試料),Bを500重量ppm添加した試料(No.2B(500)試料)についての結果を互いに比較した。比較のためのグラフを図11及び図12に示す。図11は,均質化熱処理後の,No.2試料と,50重量ppm,100重量ppm及び500重量ppmのBをそれぞれ含有するNo.2試料についての,温度と最大引張強度との関係を示すグラフである。図12は,均質化熱処理後の,No.2試料と,50重量ppm,100重量ppm及び500重量ppmのBをそれぞれ含有するNo.2試料についての,温度と伸びとの関係を示すグラフである。 In order to investigate the difference in effect due to the amount of B added, a sample without addition of B (No. 2 sample), a sample added with 50 wt ppm of B (No. 2B sample), and a sample added with 100 wt ppm of B (No. .2B (100) sample) and the sample (No. 2B (500) sample) added with 500 ppm by weight of B were compared with each other. Graphs for comparison are shown in FIGS. FIG. 11 shows No. 1 after the homogenization heat treatment. No. 2 containing 50 wt ppm, 100 wt ppm and 500 wt ppm B, respectively. It is a graph which shows the relationship between temperature and the maximum tensile strength about 2 samples. FIG. 12 shows No. 1 after the homogenization heat treatment. No. 2 containing 50 wt ppm, 100 wt ppm and 500 wt ppm B, respectively. It is a graph which shows the relationship between temperature and elongation about 2 samples.
図11及び図12を参照すると,Bを添加した3種類の試料の何れもが,Bを添加していない試料よりも,引張強度及び伸びの両方において優れていたことが分かる。また,100重量ppm又は500重量ppmのBを添加した試料は,引張強度に関しては,50重量ppmのBを添加した試料と同等の結果を示し,伸びに関しては,50重量ppmのBを添加した試料と同等か若干劣る結果を示した。従って,Bは,50重量ppm程度添加すれば十分であることが分かった。 Referring to FIGS. 11 and 12, it can be seen that all of the three types of samples to which B was added were superior in both tensile strength and elongation to the samples to which B was not added. In addition, the sample added with 100 ppm by weight or 500 ppm by weight showed the same results as the sample added with 50 ppm by weight for tensile strength, and added 50 ppm by weight for the elongation. The result was the same as or slightly inferior to the sample. Therefore, it was found that it was sufficient to add about 50 ppm by weight of B.
2−5.酸化試験
(1)No.1〜No.5試料の酸化試験
次に,均質化熱処理後のNo.1〜No.5試料について,酸化試験を行った。酸化試験は,TG−DTA(Thermogravimetry - Differential Thermal Analysis)により行った。具体的には,酸化試験は,2×2×2mm3の試験片を1273Kで大気暴露したときの,試料の単位表面積当たりの質量増加を測定することによって行った。
その結果を図13に示す。図13は,均質化熱処理後のNo.1〜No.5試料についての,1273Kでの大気暴露時間と質量増加との関係を示すグラフである。
図13によると,No.2試料では,その他の試料と比べて,質量増加が小さかったことが分かる。これは,No.2試料の耐酸化性が優れていたことを示している。
2-5. Oxidation test (1) No. 1-No. 5 Oxidation test of sample Next, No. 5 after homogenization heat treatment. 1-No. Five samples were subjected to an oxidation test. The oxidation test was performed by TG-DTA (Thermogravimetry-Differential Thermal Analysis). Specifically, the oxidation test was performed by measuring a mass increase per unit surface area of a sample when a 2 × 2 × 2 mm 3 test piece was exposed to air at 1273K.
The result is shown in FIG. FIG. 13 shows No. 1 after the homogenization heat treatment. 1-No. It is a graph which shows the relationship between the atmospheric exposure time in 1273K, and mass increase about 5 samples.
According to FIG. It can be seen that the increase in mass was smaller in the two samples than in the other samples. This is no. It shows that the oxidation resistance of the two samples was excellent.
次に,No.2試料の耐酸化性が優れていた理由を調べるために,酸化試験で形成された酸化膜の断面をSEM−EPMAにより観察した。さらに,X線を用いて,酸化試験で形成された酸化膜の組成の分析を行った。その結果,No.2試料においては,試料の酸化されていない部分と,酸化膜との界面に,連続したSiO2の保護性酸化膜が形成されていたことが分かった。
No.2試料においてSiO2の保護性酸化膜が形成されたのは,No.2試料が,8.2at%という比較的多量のSiを含有していたことに起因していると考えられる。
Next, no. In order to investigate the reason why the oxidation resistance of the two samples was excellent, the cross section of the oxide film formed in the oxidation test was observed by SEM-EPMA. Furthermore, the composition of the oxide film formed in the oxidation test was analyzed using X-rays. As a result, no. In the two samples, it was found that a continuous protective oxide film of SiO 2 was formed at the interface between the non-oxidized portion of the sample and the oxide film.
No. The protective oxide film of SiO 2 was formed in No. 2 samples. It is considered that the two samples contained a relatively large amount of Si of 8.2 at%.
(2)No.2B〜No.4B試料の酸化試験
次に,均質化熱処理後のNo.2B〜No.4B試料について,酸化試験を行った。酸化試験は,TG−DTAにより行った。具体的には,酸化試験は,2×2×2mm3の試験片を1273Kで大気暴露したときの,試料の単位表面積当たりの質量増加を測定することによって行った。
(2) No. 2B-No. Oxidation test of 4B sample Next, No. 4 after the homogenization heat treatment. 2B-No. An oxidation test was performed on the 4B sample. The oxidation test was performed by TG-DTA. Specifically, the oxidation test was performed by measuring a mass increase per unit surface area of a sample when a 2 × 2 × 2 mm 3 test piece was exposed to air at 1273K.
B添加の効果を調べるために,No.2B〜No.4B試料について酸化試験の結果と,No.2〜No.4試料について酸化試験の結果を比較した。比較のためのグラフを図14に示す。図14は,均質化熱処理後の,No.2試料〜No.4試料,及びBを含有するNo.2B〜No.4B試料についての,1273Kでの大気暴露時間と質量増加との関係を示すグラフである。 In order to investigate the effect of B addition, 2B-No. The results of the oxidation test on the 4B sample, 2-No. The results of the oxidation test were compared for four samples. A graph for comparison is shown in FIG. FIG. 14 shows No. 1 after the homogenization heat treatment. 2 samples-No. 4 samples and No. 1 containing B 2B-No. It is a graph which shows the relationship between the atmospheric exposure time in 1273K, and a mass increase about 4B sample.
図14によると,No.2試料では,Bの添加により耐酸化性が改善したが,No.3試料及びNo.4試料では,Bを添加しても耐酸化性が改善しなかったことが分かる。また,図14のような両対数のグラフにおいて,定常的な酸化が起こっている時間域での曲線の傾きを求めると,No.2試料で0.44,No.3試料で0.49,No.4試料で0.48となっていた。曲線の傾きが0.5のときに体拡散により酸化が律速されていると考えられるので,No.3試料とNo.4試料は体拡散により酸化が律速されていると考えられ,No.2試料は表面拡散や粒界拡散により酸化が律速されていると考えられる。従って,B添加によるNo.2試料の耐酸化性の改善は,Bの粒界偏析により,粒界拡散が抑制されることに起因していると考えられる。 According to FIG. In the two samples, the addition of B improved the oxidation resistance. 3 samples and no. It can be seen that the oxidation resistance of the four samples did not improve even when B was added. Further, in the log-log graph as shown in FIG. Two samples with 0.44, no. 3 samples were 0.49, No. It was 0.48 for 4 samples. Since it is considered that oxidation is controlled by body diffusion when the slope of the curve is 0.5, no. 3 samples and no. No. 4 samples are considered to be limited in oxidation by body diffusion. It is considered that the oxidation of the two samples is controlled by surface diffusion or grain boundary diffusion. Therefore, no. The improvement in the oxidation resistance of the two samples is thought to be due to the suppression of grain boundary diffusion due to B grain boundary segregation.
(3)No.2B(100)試料及びNo.2B(500)試料の酸化試験
次に,均質化熱処理後のNo.2B(100)試料及びNo.2B(500)試料について,酸化試験を行った。酸化試験は,TG−DTAにより行った。具体的には,酸化試験は,2×2×2mm3の試験片を1273Kで大気暴露したときの,試料の単位表面積当たりの質量増加を測定することによって行った。
(3) No. 2B (100) sample and no. Oxidation test of sample 2B (500) 2B (100) sample and no. An oxidation test was performed on the 2B (500) sample. The oxidation test was performed by TG-DTA. Specifically, the oxidation test was performed by measuring a mass increase per unit surface area of a sample when a 2 × 2 × 2 mm 3 test piece was exposed to air at 1273K.
Bの添加量による効果の違いを調べるために,B添加なしの試料(No.2試料),Bを50重量ppm添加した試料(No.2B試料),Bを100重量ppm添加した試料(No.2B(100)試料),Bを500重量ppm添加した試料(No.2B(500)試料)についての結果を互いに比較した。比較のためのグラフを図15に示す。図15は,均質化熱処理後の,No.2試料と,50重量ppm,100重量ppm,500重量ppmのBをそれぞれ含有するNo.2試料についての,1273Kでの大気暴露時間と質量増加との関係を示すグラフである。 In order to investigate the difference in effect due to the amount of B added, a sample without addition of B (No. 2 sample), a sample added with 50 wt ppm of B (No. 2B sample), and a sample added with 100 wt ppm of B (No. .2B (100) sample) and the sample (No. 2B (500) sample) added with 500 ppm by weight of B were compared with each other. A graph for comparison is shown in FIG. FIG. 15 shows No. 1 after the homogenization heat treatment. No. 2 containing 50 wt ppm, 100 wt ppm and 500 wt ppm B, respectively. It is a graph which shows the relationship between the atmospheric exposure time in 1273K, and mass increase about 2 samples.
図15によると,Bを添加した3種類の試料の何れもが,Bを添加していない試料よりも,耐酸化性が優れていたことが分かる。また,100重量ppm又は500重量ppmのBを添加した試料は,50重量ppmのBを添加した試料と同等の耐酸化性を示した。従って,Bは,50重量ppm程度添加すれば十分であることが分かった。 According to FIG. 15, it can be seen that all of the three types of samples to which B was added had better oxidation resistance than the samples to which B was not added. Moreover, the sample added with 100 ppm by weight or 500 ppm by weight showed the same oxidation resistance as the sample added with 50 ppm by weight of B. Therefore, it was found that it was sufficient to add about 50 ppm by weight of B.
3.第1熱処理(溶体化熱処理)工程,第2熱処理(時効熱処理)工程
均質化熱処理後のNo.2試料に対して,1373K−2日間の第1熱処理を行った。
3. First heat treatment (solution heat treatment) step, second heat treatment (aging heat treatment) step No. after homogenization heat treatment Two samples were subjected to a first heat treatment for 1373K-2 days.
次に,1223Kで第2熱処理を行った。第2熱処理時間が試料の組織又はビッカース硬さに及ぼす影響を調べるために,第2熱処理の時間は,12時間,24時間,48時間,72時間又は96時間と変化させた。第2熱処理は,試料を石英管に真空封入し,所定の時間熱処理炉中に保持し,その後,石英管を水中で破壊することによって試料を水冷した。 Next, the second heat treatment was performed at 1223K. In order to examine the influence of the second heat treatment time on the structure or Vickers hardness of the sample, the time of the second heat treatment was changed to 12 hours, 24 hours, 48 hours, 72 hours, or 96 hours. In the second heat treatment, the sample was vacuum sealed in a quartz tube, held in a heat treatment furnace for a predetermined time, and then the sample was cooled in water by breaking the quartz tube in water.
(1)SEMによる組織観察
第1熱処理後(第2熱処理なし)のNo.2試料,及び,12時間,24時間,48時間の第2熱処理後のNo.2試料について,SEMによる組織観察を行った。その結果を図16(a)〜(d)に示す。図16(a)〜(d)は,それぞれ,(a)第1熱処理後(第2熱処理なし)のNo.2試料,(b)1223K−12時間の第2熱処理後のNo.2試料,(c)1223K−24時間の第2熱処理後のNo.2試料,(d)1223K−48時間の第2熱処理後のNo.2試料についてのSEM像を示す。
(1) Microstructure observation by SEM No. 1 after the first heat treatment (without the second heat treatment) 2 samples and No. 2 after the second heat treatment for 12 hours, 24 hours and 48 hours. Two samples were observed for structure by SEM. The results are shown in FIGS. 16 (a) to 16 (d) respectively show (a) No. 1 after the first heat treatment (without the second heat treatment). 2 samples, (b) No. 2 after 1223K-12 second heat treatment. 2 samples, (c) No. 1 after the second heat treatment for 1223K-24 hours. 2 samples, (d) No. 2 after the second heat treatment for 1223K-48 hours. The SEM image about 2 samples is shown.
図16(a)では,試料は,実質的にL12相のみからなる。これは,第1熱処理によって,D024相及びD0a相がL12相に固溶したためであると考えられる。なお,D0a相については,図16(a)中にその痕跡らしきものが観察されるが,ほぼ全量がL12相に固溶していると言える。第1熱処理によって,少なくともD024相がL12相に固溶するので,第1熱処理は,溶体化熱処理と呼ぶことができる。 In FIG. 16 (a), the sample consists substantially only the L1 2 phase. This is because the first heat treatment is considered to D0 24 phase and D0 a phase is due to a solid solution in the L1 2 phase. Note that the D0 a phase and what appears its mark in FIG. 16 (a) is observed, it can be said that almost all are dissolved in the L1 2 phase. The first heat treatment, since at least D0 24 phase forms a solid solution in the L1 2 phase, a first heat treatment can be referred to as solution heat treatment.
図16(b)によると,L12相からなるマトリックス中にD0a相が析出したことが分かる。さらに,図16(c),(d)によると,D024相とD0a相の両方が,L12相からなるマトリックス中に析出したことが分かる。このように第2熱処理によって,マトリック中に他の構成相が析出するので,第2熱処理は,時効熱処理とも呼ぶことができる。 According to FIG. 16 (b), the it can be seen that D0 a phase is precipitated in a matrix consisting of L1 2 phase. Further, FIG. 16 (c), the said (d), the both D0 24 phase and D0 a phase, it can be seen that precipitated in the matrix consisting of L1 2 phase. As described above, the second heat treatment causes other constituent phases to precipitate in the matrix. Therefore, the second heat treatment can also be called an aging heat treatment.
(2)ビッカース硬さ試験
次に,第2熱処理の時間と,ビッカース硬さとの関係を調べるために,第1熱処理後(第2熱処理なし)のNo.2試料,及び,12時間,24時間,48時間,72時間,96時間の第2熱処理後のNo.2試料について,ビッカース硬さを測定した。
その結果を図17に示す。図17は,第2熱処理後のNo.2試料についての,第2熱処理時間とビッカース硬さとの関係を示すグラフである。
(2) Vickers hardness test Next, in order to investigate the relationship between the time of the second heat treatment and the Vickers hardness, No. 1 after the first heat treatment (without the second heat treatment). 2 samples and No. 2 after the second heat treatment for 12 hours, 24 hours, 48 hours, 72 hours, 96 hours. Two samples were measured for Vickers hardness.
The result is shown in FIG. FIG. 17 shows No. 2 after the second heat treatment. It is a graph which shows the relationship between the 2nd heat processing time and Vickers hardness about 2 samples.
図17によると,第2熱処理なしの試料では,ビッカース硬さがHv360程度であったが,12時間の第2熱処理によって,ビッカース硬さが上昇し,24時間の第2熱処理でさらにビッカース硬さが上昇した。48時間の第2熱処理では,これ以上のビッカース硬さの上昇は見られず,72時間及び96時間の第2熱処理では,ビッカース硬さは,第2熱処理前の値よりも小さくなった。ビッカース硬さの上昇は,時効硬化によるものであると考えられる。ビッカース硬さの下降は,過時効によるNi3Ti相の粗大化によるものと考えられる。 According to FIG. 17, in the sample without the second heat treatment, the Vickers hardness was about Hv360, but the Vickers hardness increased by the second heat treatment for 12 hours, and further increased by the second heat treatment for 24 hours. Rose. In the second heat treatment for 48 hours, no further increase in the Vickers hardness was observed, and in the second heat treatment for 72 hours and 96 hours, the Vickers hardness was smaller than the value before the second heat treatment. The increase in Vickers hardness is thought to be due to age hardening. The decrease in Vickers hardness is thought to be due to the coarsening of the Ni 3 Ti phase due to overaging.
(3)引張試験
次に,均質化熱処理後のNo.2試料,第1熱処理後のNo.2試料及び第2熱処理(1223K−48時間)後のNo.2試料について,引張試験を行った。引張試験は,常温〜1173Kの範囲で,ゲージ部が10×2×1mm3の試験片を用いて,真空中,ひずみ速度1.67×10-4s-1の条件で行った。
(3) Tensile test Next, No. 2 samples, No. 1 after the first heat treatment. 2 samples and No. 2 after the second heat treatment (1223K-48 hours). Two samples were subjected to a tensile test. The tensile test was performed in a vacuum at a strain rate of 1.67 × 10 −4 s −1 using a test piece having a gauge portion of 10 × 2 × 1 mm 3 in the range of room temperature to 1173K.
その結果を図18及び図19に示す。図18は,均質化熱処理後のNo.2試料,第1熱処理後のNo.2試料,第2熱処理(1223K−48時間)後のNo.2試料についての,温度と最大引張強度との関係を示すグラフである。図19は,均質化熱処理後のNo.2試料,第1熱処理後のNo.2試料,第2熱処理(1223K−48時間)後のNo.2試料についての,温度と伸びとの関係を示すグラフである。 The results are shown in FIGS. 18 shows No. after the homogenization heat treatment. 2 samples, No. 1 after the first heat treatment. 2 samples, No. 2 after the second heat treatment (1223K-48 hours). It is a graph which shows the relationship between temperature and the maximum tensile strength about 2 samples. FIG. 19 shows the No. after the homogenization heat treatment. 2 samples, No. 1 after the first heat treatment. 2 samples, No. 2 after the second heat treatment (1223K-48 hours). It is a graph which shows the relationship between temperature and elongation about 2 samples.
図18によると,第1熱処理後の試料は,673K以上の高温域において,均質化熱処理後の試料よりも,引張強度が大きかったことが分かる。また,第2熱処理後の試料は,全温度域において,3つの試料の中で最も高い引張強度を示したことが分かる。 According to FIG. 18, it can be seen that the sample after the first heat treatment had a higher tensile strength than the sample after the homogenization heat treatment in a high temperature region of 673 K or higher. It can also be seen that the sample after the second heat treatment showed the highest tensile strength among the three samples in the entire temperature range.
図19によると,第1熱処理後の試料は,室温以外の温度域において,均質化熱処理後の試料よりも,伸びが大きかったことが分かる。また,第2熱処理後の試料は,672K以外の温度では,第1熱処理後の試料よりも伸びが大きかったことが分かる。また,第2熱処理後の試料は,全温度域において,均質化熱処理後の試料よりも,伸びが大きかったことが分かる。 According to FIG. 19, it can be seen that the sample after the first heat treatment was larger in elongation than the sample after the homogenization heat treatment in a temperature range other than room temperature. It can also be seen that the sample after the second heat treatment was larger in elongation than the sample after the first heat treatment at a temperature other than 672K. It can also be seen that the sample after the second heat treatment was larger in elongation than the sample after the homogenization heat treatment in the entire temperature range.
以上の結果より,第1熱処理によって,引張強度及び伸びの両方を高めることができたことが分かる。また,第2熱処理よって,伸びをほとんど低下させずに,引張強度をさらに高めることができたことが分かる。 From the above results, it can be seen that both the tensile strength and the elongation could be increased by the first heat treatment. Further, it can be seen that the second heat treatment can further increase the tensile strength without substantially reducing the elongation.
Claims (13)
L12相とD024相からなる2相共存状態又はL12相,D024相及びD0a相からなる3相共存状態となる温度で均質化熱処理を行う工程を備えるNi3Si-Ni3Ti-Ni3Nb系複相金属間化合物の製造方法。 Si: 5.1 to 9.2 at%, Ti: 5 to 16 at%, Nb: 0.5 to 10 at%, B: 0 to 1000 ppm by weight, the balance is made of an ingot made of Ni excluding impurities,
Ni 3 Si—Ni 3 Ti comprising a step of performing a homogenization heat treatment at a temperature at which a two-phase coexisting state consisting of L1 2 phase and D0 24 phase or a three-phase coexisting state consisting of L1 2 phase, D0 24 phase and D0 a phase A method for producing a Ni 3 Nb-based multiphase intermetallic compound.
L12相からなる単相状態又はL12相及びD0a相からなる2相共存状態となる温度で,均質化熱処理を兼ねた第1熱処理を行い,
L12相とD024相からなる2相共存状態又はL12相,D024相及びD0a相からなる3相共存状態となる温度で第2熱処理を行う工程を備えるNi3Si-Ni3Ti-Ni3Nb系複相金属間化合物の製造方法。 Si: 5.1 to 9.2 at%, Ti: 5 to 16 at%, Nb: 0.5 to 10 at%, B: 0 to 1000 ppm by weight, the balance is made of an ingot made of Ni excluding impurities,
Perform a first heat treatment that also serves as a homogenization heat treatment at a temperature that results in a single-phase state consisting of L1 2 phase or a two-phase coexistence state consisting of L1 2 phase and D0 a phase,
Ni 3 Si—Ni 3 Ti comprising a step of performing a second heat treatment at a temperature at which a two-phase coexistence state consisting of L1 2 phase and D0 24 phase or a three-phase coexistence state consisting of L1 2 phase, D0 24 phase and D0 a phase A method for producing a Ni 3 Nb-based multiphase intermetallic compound.
L12相とD024相からなる2相共存状態又はL12相,D024相及びD0a相からなる3相共存状態となる温度で均質化熱処理を行い,
L12相からなる単相状態又はL12相及びD0a相からなる2相共存状態となる温度で第1熱処理を行い,
L12相とD024相からなる2相共存状態又はL12相,D024相及びD0a相からなる3相共存状態となる温度で第2熱処理を行う工程を備えるNi3Si-Ni3Ti-Ni3Nb系複相金属間化合物の製造方法。 Si: 5.1 to 9.2 at%, Ti: 5 to 16 at%, Nb: 0.5 to 10 at%, B: 0 to 1000 ppm by weight, the balance is made of an ingot made of Ni excluding impurities,
A homogenization heat treatment is performed at a temperature at which a two-phase coexisting state consisting of L1 2 phase and D0 24 phase or a three-phase coexisting state consisting of L1 2 phase, D0 24 phase and D0 a phase,
The first heat treatment is performed at a temperature at which the single-phase state composed of the L1 2 phase or the two-phase coexistence state composed of the L1 2 phase and the D0 a phase is performed.
Ni 3 Si—Ni 3 Ti— comprising a step of performing a second heat treatment at a temperature at which a two-phase coexisting state consisting of L1 2 phase and D0 24 phase or a three-phase coexisting state consisting of L1 2 phase, D0 24 phase and D0a phase A method for producing a Ni 3 Nb-based multiphase intermetallic compound.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006079279A JP5010841B2 (en) | 2005-03-25 | 2006-03-22 | Ni3Si-Ni3Ti-Ni3Nb multiphase intermetallic compound, method for producing the same, high-temperature structural material |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005089372 | 2005-03-25 | ||
JP2005089372 | 2005-03-25 | ||
JP2006079279A JP5010841B2 (en) | 2005-03-25 | 2006-03-22 | Ni3Si-Ni3Ti-Ni3Nb multiphase intermetallic compound, method for producing the same, high-temperature structural material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006299410A JP2006299410A (en) | 2006-11-02 |
JP5010841B2 true JP5010841B2 (en) | 2012-08-29 |
Family
ID=37468049
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006079279A Expired - Fee Related JP5010841B2 (en) | 2005-03-25 | 2006-03-22 | Ni3Si-Ni3Ti-Ni3Nb multiphase intermetallic compound, method for producing the same, high-temperature structural material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5010841B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4756974B2 (en) * | 2005-09-26 | 2011-08-24 | 公立大学法人大阪府立大学 | Ni3 (Si, Ti) -based foil and method for producing the same |
JP5327664B2 (en) * | 2008-07-29 | 2013-10-30 | 公立大学法人大阪府立大学 | Nickel-based intermetallic compound, said intermetallic compound rolled foil, and method for producing said intermetallic compound rolled plate or foil |
JP5445750B2 (en) * | 2009-07-28 | 2014-03-19 | 公立大学法人大阪府立大学 | High temperature bearing formed of Ni3 (Si, Ti) intermetallic compound alloy and method for manufacturing the same |
US9371574B2 (en) | 2009-09-14 | 2016-06-21 | Osaka Prefecture University Public Corporation | Ni3(Si, Ti)-based intermetallic compound to which W is added, and method for producing same |
JP6746458B2 (en) * | 2016-10-07 | 2020-08-26 | 三菱日立パワーシステムズ株式会社 | Turbine blade manufacturing method |
JP6746457B2 (en) * | 2016-10-07 | 2020-08-26 | 三菱日立パワーシステムズ株式会社 | Turbine blade manufacturing method |
US11525172B1 (en) | 2021-12-01 | 2022-12-13 | L.E. Jones Company | Nickel-niobium intermetallic alloy useful for valve seat inserts |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04268037A (en) * | 1991-02-23 | 1992-09-24 | Nippon Stainless Steel Co Ltd | Ni3(si,ti)-base heat resisting alloy excellent in creep resistance |
-
2006
- 2006-03-22 JP JP2006079279A patent/JP5010841B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2006299410A (en) | 2006-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5146935B2 (en) | Ni3Al-based intermetallic compound containing V and Nb and having a double-phase structure, method for producing the same, and heat-resistant structural material | |
JP5010841B2 (en) | Ni3Si-Ni3Ti-Ni3Nb multiphase intermetallic compound, method for producing the same, high-temperature structural material | |
JP5237801B2 (en) | Doped iridium with improved high temperature properties | |
JP5127144B2 (en) | Ni3Al-based intermetallic compound containing V and Ti having two-phase structure, method for producing the same, heat-resistant structural material | |
EP3318648B1 (en) | Copper alloy and method for producing same | |
JP5224246B2 (en) | Ni-based compound superalloy excellent in oxidation resistance, manufacturing method thereof and heat-resistant structural material | |
KR20180043361A (en) | Low thermal expansion super heat resistant alloys and method for manufacturing the same | |
JP7387139B2 (en) | Titanium alloy, its manufacturing method, and engine parts using it | |
US9249488B2 (en) | Ni-base dual multi-phase intermetallic compound alloy containing Nb and C, and manufacturing method for same | |
JP5162492B2 (en) | Ni-based intermetallic alloy with high hardness | |
KR101715149B1 (en) | Ni3(si,ti) intermetallic compound to which ta is added | |
JP5757507B2 (en) | Ni-based double-duplex intermetallic compound alloy with Re added and method for producing the same | |
JP5733728B2 (en) | Ni-based double-duplex intermetallic alloy containing Ti and C and method for producing the same | |
JP2008266754A (en) | Ni3(Si, Ti)-BASED INTERMETALLIC COMPOUND EXCELLENT IN OXIDATION RESISTANCE AND CORROSION RESISTANCE, INTERMETALLIC COMPOUND ROLLED FOIL, AND METHOD FOR MANUFACTURING INTERMETALLIC COMPOUND ROLLED FOIL | |
US9371574B2 (en) | Ni3(Si, Ti)-based intermetallic compound to which W is added, and method for producing same | |
EP4159360A1 (en) | Cobalt-based alloy product and method for producing cobalt-based alloy product | |
Chrzan et al. | Selected Properties of High Entropy Alloys Based on the AlFeMnNbNiTi System | |
JP2004232013A (en) | Niobium based composite material | |
JP2008001969A (en) | Fe3Al-BASED INTERMETALLIC COMPOUND AND PRODUCING METHOD THEREOF | |
JP2012201892A (en) | Ni3(Si,Ti) INTERMETALLIC COMPOUND ALLOY TO WHICH Re IS ADDED, AND METHOD OF PRODUCING THE SAME |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090318 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20090318 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20090318 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110725 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110802 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110905 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120529 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120604 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5010841 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150608 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |