JP7250648B2 - 生体計測方法 - Google Patents

生体計測方法 Download PDF

Info

Publication number
JP7250648B2
JP7250648B2 JP2019166438A JP2019166438A JP7250648B2 JP 7250648 B2 JP7250648 B2 JP 7250648B2 JP 2019166438 A JP2019166438 A JP 2019166438A JP 2019166438 A JP2019166438 A JP 2019166438A JP 7250648 B2 JP7250648 B2 JP 7250648B2
Authority
JP
Japan
Prior art keywords
coils
electrodes
bioinstrumentation
living body
line connecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019166438A
Other languages
English (en)
Other versions
JP2021041026A (ja
Inventor
明彦 神鳥
龍三 川畑
邦臣 緒方
崇子 溝口
司 舟根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2019166438A priority Critical patent/JP7250648B2/ja
Priority to US16/988,176 priority patent/US11872028B2/en
Publication of JP2021041026A publication Critical patent/JP2021041026A/ja
Application granted granted Critical
Publication of JP7250648B2 publication Critical patent/JP7250648B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/0809Detecting, measuring or recording devices for evaluating the respiratory organs by impedance pneumography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02444Details of sensor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/113Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb occurring during breathing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/28Bioelectric electrodes therefor specially adapted for particular uses for electrocardiography [ECG]
    • A61B5/282Holders for multiple electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0223Magnetic field sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/04Arrangements of multiple sensors of the same type
    • A61B2562/046Arrangements of multiple sensors of the same type in a matrix array
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/06Arrangements of multiple sensors of different types
    • A61B2562/066Arrangements of multiple sensors of different types in a matrix array
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/087Measuring breath flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/683Means for maintaining contact with the body
    • A61B5/6832Means for maintaining contact with the body using adhesives
    • A61B5/6833Adhesive patches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • A61B5/7207Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts
    • A61B5/7214Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts using signal cancellation, e.g. based on input of two identical physiological sensors spaced apart, or based on two signals derived from the same sensor, for different optical wavelengths

Description

本発明は、生体計測の技術に関する。
患者のベッドサイドモニタやリハビリ中に欠かせない呼吸モニタとして、呼吸に関するガスを検出する方法、呼吸の気流を検出する方法、呼吸における胸や腹の動きを検出する方法の3つの方法が実用化されている。呼吸モニタの指標として最も精度が高いのは、血中のガスに関する指標である動脈血酸素分圧(PaO2)と動脈血二酸化炭素分圧(PaCO2)である。これらは血流ガス分析装置によって測定されるが、採血の必要性があり、連続測定をすることが困難である。
また、呼吸の気流を検出する方法に関し、換気量を正確にモニタする方法はフローセンサのみである。しかし、フローセンサは、挿管されて意識のないような重篤な患者に対して使用されているが、呼吸以外の運動が可能な患者に対しては、運動や会話などで精度が非常に悪くなるため使用されていない。
一方で、一番多く研究が進んできた方法の一つとして、インピーダンスプレチスモグラフィ(以下、胸部インピーダンス法)がある。胸部インピーダンス法は、生体に交流電流を流し、その時の電気インピーダンスの変化を検出する。非特許文献1では、胸部インピーダンス法を用いて、呼吸をモニタリングすることが記載されている。
「呼吸モニタ用センサの最新動向」、医機学 Vol 80, No. 1, (2010) 山森 伸二
上記非特許文献1では、胸部インピーダンス法を用いて呼吸をモニタリングすることを開示する一方、体動の影響を受けやすいなどの課題が記載されている。一般病棟にいるような、又は介護在宅を受けているような、会話や体を動かすことが可能な患者(以下、一般患者)に対して、胸部インピーダンス法により呼吸モニタリングを行う場合、体動の影響が課題となる。
胸部インピーダンス法による呼吸モニタリングは、研究では正確に換気量などの測定が可能とされていたが、現実には体動や心電図の影響を強く受けるため、臨床現場では使用されていない。
そこで、本発明の目的は、一般患者に対して、呼吸モニタリングや心拍出量の計測をすることができる生体計測装置を提供することにある。
上記目的を達成するため、本発明の生体計測装置の一態様は、生体に装着される少なくとも二つの電極と、二つの電極の間に交流電流を流す電源と、二つの電極を結ぶ線を挟むように配置され、生体のインピーダンスの変化にともなう交流電流の変化に関する磁場を検出する少なくとも二つのコイルと、二つのコイルで検出した磁場に関する信号を加算または減算し、インピーダンスの変化として信号を出力する検出回路を備える。
本発明によれば、一般患者に対して、呼吸モニタリングや心拍出量の計測をすることができる。
実施例に係る生体計測装置の呼吸モニタリングの原理を説明する図である。 実施例1に係る生体計測装置の概要を示す図である。 実施例1の生体計測装置の電極間で発生する磁場分布を示した図である。 実施例1の生体計測装置の電極と検出コイルの配置位置を示した図である。 実施例1の生体計測装置の電極と検出コイルの位置関係を示した図である。 実施例1の生体計測装置に用いる検出コイルの上面図である。 実施例1の生体計測装置に用いる検出コイルを示す側面図である。 コイルが一つの場合に検出回路によって検出される波形を示す図である。 実施例1の生体計測装置により検出される波形を示す図である。 実施例2の生体計測装置を用いて、心拍出量測定を行うことを説明するための図面である。 実施例2の生体計測装置を用いて、他の方法により心拍出量測定を行うことを説明するための図面である。 実施例2の生体計測装置を用いて計測した心拍出量の計測結果を示した図である。
以下の説明において、種々の対象の識別情報として、識別番号が使用されるが、識別番号以外の種類の識別情報(例えば、英字や符号を含んだ識別子)が採用されてもよい。
また、以下の説明において、同種の要素を区別しないで説明する場合には、参照符号(又は、参照符号のうちの共通符号)を使用し、同種の要素を区別して説明する場合は、要素の識別番号(又は参照符号)を使用することがある。
以下、図面を参照して、実施例1を説明する。
図1は、実施例に係る生体計測装置の呼吸モニタリングの原理を説明する図である。
胸部にはった2つの電極102a、102bにより、生体に高周波微小電流(以下、電流)110を通電すると、生体の組織固有の電気特性に応じて電圧降下が生じる。ここで、血液や肺内空気といった、生体の他の組織と電気特性が著しく異なる物質が通電された生体組織内に存在し、その物質の量などが心拍や呼吸と共に変化すると、その変化が通電された生体組織のインピーダンスの変化として現れる。実施例1や実施例2の呼吸モニタリングでは、このインピーダンスの変化から生じる電流量変化は、血液や肺内空気の変化に比例していると考えられ、この電流変化から発生する磁場変化を測定する。
131は胸壁を示し、胸壁131より右側が体内で、肺、横隔膜130が存在する。肺130は、呼吸により吸気の際には拡張(横隔膜は収縮して下がり)して130aの状態になり、呼気の際には縮小(横隔膜が弛緩して上がる)して130bの状態となる。
二つの電極102a、102bにより、被検体に電流110を通電すると、肺、横隔膜の拡張、縮小により肺内空気が変化し、電流110のパスが変化することで、磁気センサやコイル103によって検出されるインピーダンスが変化する。ただし、二つの電極102a、102bの間のトータルのインピーダンスは、体動の影響を受けやすい。
実施例1では、この体動の影響を小さくした、呼吸モニタリング可能な生体計測装置について説明する。
図2は、実施例1に係る生体計測装置の概要を示す図である。
交流電源101に接続された二つの電極102a、102bにより、体内に微小電流110を通電する。交流電源101は、10kHz‐100kHzの周波数とし、電流が10mAまでとする。二つの電極102a、102bによる電流のパスの変化を、二つのコイル103a、103bで検出される電圧から、インピーダンスの変化として検出する。二つの電極102a、102bは、心電図検査装置の電極を用いることができる。
コイル103aによって検出された電圧は、プリアンプ104aにより、コイル103bによって検出された電圧は、プリアンプ104bにより、それぞれ増幅される。プリアンプ104a、104bで増幅された信号は、加算器105で加算される。
図3に示すように、二つの電極102a、102b間を電流110が流れると、上下に逆の極性を有する磁場分布が生じる。この電流110を流した時に、実際に検出したい信号は電流110がわずかに変化する成分(電流110の数%以下)である。したがって、電流110から発生する磁場を直接検出してしまうと、増幅器(アンプ)のゲインをあげることが出来ず、このわずかな変化を捉えることができない。この電流110本体から発生する磁場をキャンセルする方法として、コイル103a、103bを二つの電極102a、102bを結ぶ線に対し、上下に等距離の位置に配置する。このコイル103a、103bにより磁場の変化をそれぞれ検出し、加算器105で加算することで、生体全体に流れている電流成分(検波後に直流成分となる成分)からの磁場信号をキャンセルすることができ、肺や心臓の動きによる微小な磁場変化だけを捉えることができる。さらに、生体全体に流れている電流成分からの磁場信号をキャンセルができるため、体動による磁場への影響も相殺することができ、コイル103a、103bの近傍のみの動きを計測でき、安定して呼吸あるいは心臓の動きを検出可能である。
この生体全体に流れている電流成分からの磁場信号をキャンセルする方法について、2つの方法があるため、2つの場合に分けて説明する。二つのコイル103a、103bが体表に対するコイルの向きが同じ向きに配置される場合(コイルの極性が同じ場合)、加算器105は二つのコイルで検出した磁場に関する信号を足し合わせる加算処理を行う。一方、二つのコイル103a、103bが体表に対するコイルの向きが逆向きに配置される場合(コイルの極性が異なる場合)は、加算器105は二つのコイルで検出した磁場に関する信号の差分をとる減算処理を行う。これらの構成により、生体全体に流れている電流成分(検波後に直流成分となる成分)からの磁場信号をキャンセルすることができ、肺や心臓の微小な磁場変化だけ信号検出感度高く捉えることができる。
二つのコイル103a、103bは、二つの電極102a、102bを結ぶ線に対し、上下に対称となる位置に配置する。
加算器105で加算された信号は、二つの電極102a、102bと共通の交流電源101に接続された振幅・位相の調整回路106によって残留成分をキャンセルできるように調整される。調整された信号は、調整回路106からキャンセル回路107に入力され、生体全体に流れている電流成分(検波後に直流成分となる成分)からの磁場信号のうち加算器105でキャンセルしきれなかった残留成分のキャンセル等を行う。これにより、残留成分が最小化された後、同期検波をロックインアンプ108にて行う。このようにキャンセル回路107からの信号は、ロックインアンプ108に入力される前に十分に前記残留成分をキャンセルすることができる。ここで調整回路106の振幅と位相の調整は、加算器105で加算された信号をAD(アナログ・デジタル)変換させて、CPUやFPGAなどで自動計算しキャンセルに必要な振幅と位相を持つ信号に自動で調整することもできる。また、キャンセルに必要な振幅と位相について、呼吸計測や心拍出量計測の前に生体に電極102a、102bを配置して検出回路109と接続を行なった後に、自動的に調整回路106のキャリブレーションや設定を行なうこともできる。ロックインアンプ108では、測定信号を参照信号と比較し、参照信号と等しい周波数成分の検出を行い、二つのコイル103a、103bから得られたインピーダンスの変化を測定する。
コイル103で検出された出力電圧から、インピーダンスの変化を測定するため、プリアンプ104、加算器105、キャンセル回路107、ロックインアンプ108で、検出回路109を構成する。
また、血液や肺内空気といった生体内物質と生体インピーダンスとの既知の関係(例えば、澤田 幸展、他1名、「インピーダンス・プレチスモグラフィー再訪」、Japanese Journal of Physiological Psychology and Psychophysiology, vol 11, No. 2, 1993, 47-58)に基づいて、検出回路109からの出力から呼吸換気量や心拍出量を算出できる。
図4は、二つの電極102a、102bと二つのコイル103a、103bの配置関係を示した図である。
二つの電極102a、102bは、生体40の正中面に対して挟むように、胸部又は腹部に配置される。二つのコイル103a、103bは、電極102a、102bの間を結ぶ線を挟むように配置され、生体40の動きにともなう生体のインピーダンスの変化に関する電圧を検出する。二つのコイル103a、103bのうち、少なくとも一つのコイルは、生体40内部の横隔膜130の可動域の直上にあたる腹側の体表に配置される。二つのコイル103a、103bにより、生体40の呼吸活動における肺または横隔膜の動きにともなうインピーダンスの変化を検出することで、呼吸活動に関する生体信号を計測する。
好ましくは、電極102a、102bは、呼吸により横隔膜が上下する位置の直上に配置される。二つの電極102a、102bによる電流のパスが、呼吸による肺内空気によって最も顕著に変化すると考えられるからである。
また、好ましくは、二つの電極102a、102bは、生体40の正中面に対して対称的に、胸部又は腹部に配置される。二つのコイル103a、103bは、二つの電極102a、102bを結ぶ線の上下に対称的に配置される。
図5は、二つの電極102a、102bと二つのコイル103a、103bの配置関係を詳細に示した図である。図5に示したように、二つのコイル103a、103bの配置位置は、好ましくは、二つの電極102a、102b間の電流による磁場における体動の影響をキャンセルするため、電極102a、102bの中心線の上下に対称な位置に配置される。そのため、二つのコイルを結ぶ線の中心または中心付近で、二つの電極を結ぶ線と二つのコイルを結ぶ線とが直交するように、二つの電極および二つのコイルは配置される。なお、二つの電極を結ぶ線と二つのコイルを結ぶ線とが略直交していればよい。
被検体のインピーダンスの変化には、被検体の呼吸による肺や横隔膜の拡張や縮小、また肺内空気の変化がもたらすインピーダンスの変化だけでなく、呼吸と直接連動していない体動(例えば被検体の手の動き)等がもたらすインピーダンスの変化も含まれる。このようなインピーダンスの変化により、二つの電極102a、102bの間を流れる電流110が変化し、電流110による磁場も変化する。二つのコイル103a、103bの其々は、電流110の変化がもたらす磁場の変化を、電圧の変化として検出するため、コイル103a、103bの其々が検出した信号には、呼吸と直接連動していない体動等が影響する可能性がある。
ここで、図4を用いて説明した、電極102a、102bとコイル103a、103bの配置関係において計測を行った場合、例えば被検体の手の動きのような体動の影響は、二つのコイル103a、103bで検出される信号に、同じように表れることを、発明者らは見出した。なお、二つのコイル103a、103bは、二つの電極102a、102bの間を流れる高周波微小電流110の変化がもたらす磁場の変化を検出できるように近くに配置され、かつ電極102a、102bを結んだ線に対して対称的に配置されているため、例えば被検体の手の動きのような体動の影響は、二つのコイル103a、103bで検出される信号に同じように表れるものと考えられる。したがって、二つのコイル103a、103bで検出される信号を、コイルの極性によって足し合わせ、または差分をとることにより、体動の影響を低減することができる。
また、被検体の呼吸による肺や横隔膜の拡張や縮小、また肺内空気の変化がもたらすインピーダンスの変化によって、電流110には局所的な変化が生じ、それによる磁場の変化を、コイル103a、103bで検出することができる。これにより、被検体の体動の影響を低減しつつ、被検体の生体40の呼吸活動における肺または横隔膜の動きにともなうインピーダンスの変化を検出することで、呼吸活動に関する生体信号を計測できる。
図6A-図6Bは、実施例の生体計測装置に用いる検出コイルを示す図である。
図6Aは、二つのコイル103a、103bを一体成型した四角形上の検出コイル60の上面部を示している。尚、生体計測装置が備える検出コイル60は、二つのコイル103a、103bを所定の間隔で固定する保持部61を有する。保持部61は、生体の安全を確保するため、頂点が丸みを帯びるよう、rが付けられている。また、二つのコイル103a、103bが、二つの電極を結ぶ線と対称の位置に配置できるように、二つのコイル103a、103bの中心線を示す補助線(図示せず)を付しても良い。尚、検出コイル60は、フレキシブルプリント基板(FPC)で作成されても良い。図6Aに示すように、検出コイル60には、検出回路109に接続するためのコネクタ63、コイル103aとコネクタ63を接続するリード線62a、コイル103bとコネクタ63を接続するリード線62bを含む。
図6Bは、検出コイル60の側面図である。検出コイル60を生体に張り付けるため、二つのコイル103a、103bに粘着層65を有する。これにより、生体に対して、装着が容易となる。また、衛生上の観点から検出コイル60を使い捨てとすることができる。検出回路109からのリード線は、検出コイル60に確実に装着するため矢印64aからコネクタ63に接続する。尚、生体に負荷を与えないように検出回路109からのリード線は矢印64bの方向から接続されても良い。
図7は、コイルが一つの場合に検出回路によって検出される波形を示す図である。横軸は時間、縦軸は検出回路の出力(例えば、インピーダンス)を示している。図7の上のグラフは、被検体が静止した状態の呼吸時に検出される波形で、図7の下のグラフが、被検体が呼吸を止め、腕を上下に動かした際に検出される波形である。図7に示されたように、腕を上下に動かすと、呼吸時と同様の振幅が計測され、意識のない重篤な患者ではなく、意識があり、会話をしたり、体を自由に動かすことができる一般患者に対する呼吸モニタリングを行うことが難しい。
図8は、実施例1に記載の二つのコイル103を用いた場合に検出回路109により検出される波形を示す図である。図7と同様、横軸は時間、縦軸は検出回路の出力を示している。図7と同様、図8の上のグラフは、被検体が静止した状態の呼吸時の波形で、図8の下のグラフが、被検体が呼吸を止め、腕を上下に動かした際の波形である。図8の上でのグラフに示したように被検体が静止している状態の呼吸のモニタリングが可能であることが分かる。なお、図8の上のグラフの一例では、例えば息を吐く動作では出力値が増加して、息を吸うときに出力値が減少している。例えば、規則的な呼吸動作においては、出力信号に規則的な山と谷が観測される。このように、出力信号の波形により、呼吸数や呼吸の深さ、呼吸のリズムなどを計測可能であり、呼吸のモニタリングが可能である。
一方、図8の下のグラフでは、図7の下のグラフにあるような大きな出力信号の変化が観測されていない。これは、二つのコイル103の出力電圧が加算器105で加算されるため、腕を上下に動かした際の影響が相殺(低減)されることを示している。これにより、図8の上のグラフで示したように、呼吸によるインピーダンスの変化を正確に測定することができる。
以上の通り、実施例1によれば、一般病棟にいるような、介護在宅を受けているような、又は歩行可能な、一般患者に対して、呼吸の換気量等も計測可能な呼吸モニタリングを行うことができる。
実施例2は心拍出量を測定する生体計測装置について説明する。
図9A、Bは、被検体に対する実施例2の生体計測装置の二つの電極102と二つのコイル103の配置位置を示した図である。
図9Aに示すように、二つの電極102a、102bを結ぶ線が、心尖部901の直上を通り、生体40の体軸41と垂直(または略垂直)となるように、二つの電極102a、102bは配置される。ここで、心尖部901とは、被検体の心臓の心尖部とその近傍を含む領域、すなわち心尖部付近を含んでいても良く、以降の説明においても同様である。そして、二つのコイル103a、103bは、二つの電極102a、102bを結んだ線の中心で上下対称となり、二つのコイル103a、103bを結ぶ線が生体40の体軸41と平行(または略平行)となるように配置される。これにより、左室の収縮により全身に血液を送り出す左室の動きを観測することができる。つまり、二つのコイル103a、103bにより、生体の心臓の動きにともなうインピーダンスの変化を検出することで、心臓の動きに関する心拍出量などの生体信号を計測する。
二つの電極102a、102bは、電極の間の少なくとも一部の領域が、生体内部の心臓の直上、より好ましくは、心臓の心尖部901の直上に位置するように配置されればよい。二つのコイル103a、103bは、当該コイルの間の少なくとも一部の領域が、生体内部の心臓の直上、より好ましくは、心臓の心尖部901の直上に位置するように配置されれば良い。
図9Bは、二つの電極102a、102bを結ぶ線が、心尖部901の直上を通り、生体40の体軸41と平行(または略平行)となるように、二つの電極102a、102bは配置される。そして、二つのコイル103a、103bは、二つの電極102a、102bを結んだ線の中心で左右対称となり、二つのコイル103a、103bを結ぶ線が生体40の体軸41と垂直(または略垂直)となるように配置される。これにより、左室の収縮により全身に血液を送り出す左室の動きを観測することができる。つまり、二つのコイル103a、103bにより、生体の心臓の動きにともなうインピーダンスの変化を検出することで、心臓の動きに関する心拍出量などの生体信号を計測する。
二つの電極102a、102bは、電極の間の少なくとも一部の領域が、生体内部の心臓の直上、より好ましくは、心臓の心尖部901の直上に位置するように配置されればよい。二つのコイル103a、103bは、当該コイルの間の少なくとも一部の領域が、生体内部の心臓の直上、より好ましくは、心臓の心尖部901の直上に位置するように配置されれば良い。
図10は、生体計測装置により、心拍出量を検出した波形図である。横軸は時間、縦軸は検出回路109の出力を示している。図10に示した波形の高さ、面積から心拍出量を計算することができる。検出回路109は、二つのコイル103a、103bで検出した磁場に関する信号を基に、生体40の心拍出量に関する信号を出力することができる。また、波形の形状から心臓の異常、例えば、弁や心室等の異常を推定することができる。
以上、実施例2によると、計測中に会話や体を動かすことができる一般患者に対して、心拍出量を正確に計測することができる。
実施例1や実施例2で説明したように、生体計測装置の一態様は、生体に装着される少なくとも二つの電極102a、102bと、当該二つの電極の間に交流電流を流す電源101と、当該二つの電極を結ぶ線を挟むように配置され、生体のインピーダンスの変化にともなう交流電流の変化に関する磁場を検出する少なくとも二つのコイル103a、103bと、当該二つのコイル103a、103bで検出した磁場に関する信号を加算または減算し、インピーダンスの変化として信号を出力する検出回路を備える。ここで、例えば二つの電極102a、102bの間に、二つのコイル103a、103bを備える検出コイル60を複数配置して計測を行ってもよく、コイル103a、103bは少なくとも二つ以上あればよい。同様に、電極102a、102bも少なくとも二つ以上あればよい。また、二つのコイル103a、103bで検出した磁場に関する信号とは、当該二つのコイルで検出した信号(具体的には電圧)をプリアンプ104で増幅された信号等、信号処理をした信号であってもよいし、または当該検出した信号であってもよい。検出回路は、二つのコイル103a、103bで検出した磁場に関する信号を加算または減算をユーザの操作等により切り替えて処理できるものであってもよいし、加算あるいは減算のどちらかの処理のみ行うことができるものであってもよい。
101:交流電源、
102:電極、
103:コイル、
104:プリアンプ、
105:加算器、
107:キャンセル回路、
108:ロックインアンプ、
109:検出回路、
110:電流、
63:コネクタ、
65:粘着層。

Claims (10)

  1. 生体に装着される二つの電極と、
    前記二つの電極の間に交流電流を流す電源と、
    前記二つの電極を結ぶ線を挟むように配置され、前記生体のインピーダンスの変化にともなう交流電流の変化に関する磁場に関する信号を検出する二つのコイルと、
    前記二つのコイルで検出した磁場に関する信号を足し合わせる加算処理または差分をとる減算処理を行い、インピーダンスの変化として信号を出力する検出回路を備えることを特徴とする生体計測装置を用いた生体計測方法において、
    前記二つの電極は、前記生体の正中面に対して対称的に、胸部又は腹部に配置され、
    前記二つのコイルは、前記二つの電極を結ぶ線に対して対称的に配置されることを特徴とする生体計測方法。
  2. 請求項1に記載の生体計測方法において、
    前記二つの電極は、前記生体の正中面に対して挟むように、胸部又は腹部に配置され、
    前記二つのコイルのうち、少なくとも一つのコイルは、前記生体の内部の横隔膜の可動域の直上にあたる腹側の体表に配置され、
    前記二つのコイルで検出した磁場に関する信号に基づいて、前記生体の呼吸活動における肺または横隔膜の動きにともなうインピーダンスの変化を検出することで、前記呼吸活動に関する生体信号を計測することを特徴とする生体計測方法
  3. 請求項1に記載の生体計測方法において、
    前記二つの電極は、当該電極の間の少なくとも一部の領域が、前記生体の内部の心臓の直上に位置するように配置され、
    前記二つのコイルは、当該コイルの間の少なくとも一部の領域が、前記生体の内部の前記心臓の直上に位置するように配置され、
    前記二つのコイルで検出した磁場に関する信号に基づいて、前記生体の心臓の動きにともなうインピーダンスの変化を検出することで、前記心臓の動きに関する生体信号を計測することを特徴とする生体計測方法
  4. 請求項3に記載の生体計測方法において、
    前記二つの電極は、当該電極の間の少なくとも一部の領域が、前記心臓の心尖部の直上に位置するように配置されることを特徴とする生体計測方法
  5. 請求項3に記載の生体計測方法において、
    前記二つのコイルは、当該コイルの間の少なくとも一部の領域が、前記心臓の心尖部の直上に位置するように配置されることを特徴とする生体計測方法
  6. 請求項1又は請求項3の何れかに記載の生体計測方法において、
    前記二つの電極は、当該二つの電極を結ぶ線が前記生体の体軸と垂直となるように配置され、
    前記二つのコイルは、当該二つのコイルを結ぶ線が前記生体の体軸と平行となるように配置されることを特徴とする生体計測方法
  7. 請求項1又は請求項3の何れかに記載の生体計測方法において、
    前記二つの電極は、当該二つの電極を結ぶ線が前記生体の体軸と平行となるように配置され、
    前記二つのコイルは、当該二つのコイルを結ぶ線が前記生体の体軸と垂直となるように配置されることを特徴とする生体計測方法
  8. 請求項1に記載の生体計測方法において、
    前記二つの電極を結ぶ線と前記二つのコイルを結ぶ線とが直交するように、前記二つの電極および前記二つのコイルは配置されることを特徴とする生体計測方法
  9. 請求項1に記載の生体計測方法において、
    前記二つのコイルは、体表に対するコイルの向きが同じ向きに配置され、
    前記検出回路は、前記二つのコイルで検出した磁場に関する信号を足し合わせる加算処理を行うことを特徴とする生体計測方法
  10. 請求項1に記載の生体計測方法において、
    前記二つのコイルは、体表に対するコイルの向きが逆向きに配置され、
    前記検出回路は、前記二つのコイルで検出した磁場に関する信号の差分をとる減算処理を行うことを特徴とする生体計測方法
JP2019166438A 2019-09-12 2019-09-12 生体計測方法 Active JP7250648B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019166438A JP7250648B2 (ja) 2019-09-12 2019-09-12 生体計測方法
US16/988,176 US11872028B2 (en) 2019-09-12 2020-08-07 Biological measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019166438A JP7250648B2 (ja) 2019-09-12 2019-09-12 生体計測方法

Publications (2)

Publication Number Publication Date
JP2021041026A JP2021041026A (ja) 2021-03-18
JP7250648B2 true JP7250648B2 (ja) 2023-04-03

Family

ID=74864619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019166438A Active JP7250648B2 (ja) 2019-09-12 2019-09-12 生体計測方法

Country Status (2)

Country Link
US (1) US11872028B2 (ja)
JP (1) JP7250648B2 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002243766A (ja) 2001-02-16 2002-08-28 Fuji Electric Co Ltd 電流センサ
JP2003035758A (ja) 2001-07-19 2003-02-07 Hitachi Ltd 磁場計測装置
US20120157866A1 (en) 2010-12-20 2012-06-21 Alexander Seth Ross System and method for determining physiological parameters based on electrical impedance measurements
JP2014509891A (ja) 2011-02-14 2014-04-24 コーニンクレッカ フィリップス エヌ ヴェ 検出コイルにおいて部分的に補償された磁気励起場を有する磁気誘導インピーダンス測定装置のためのコイル配置
JP2016059625A (ja) 2014-09-18 2016-04-25 株式会社タニタ 生体情報測定装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4243628A1 (de) * 1992-12-22 1994-06-23 Siemens Ag Vorrichtung zur nichtinvasiven Bestimmung der räumlichen Verteilung der elektrischen Impedanz im Innern eines Lebewesens
DE19808985B4 (de) * 1997-03-07 2012-06-14 Hitachi, Ltd. Verfahren und Vorrichtung zur Biomagnetfeld-Messung
JP4426773B2 (ja) * 2003-04-18 2010-03-03 株式会社日立ハイテクノロジーズ 生体磁場計測装置及び当該装置により実行される生体磁場計測方法
JP6535030B2 (ja) * 2014-06-03 2019-06-26 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 組織流体含有量をモニタリングするために磁気誘導分光法を使う装置および方法
GB2551025B (en) * 2016-04-25 2019-10-30 Creavo Medical Tech Limited Use of noise in magnetometer for medical use

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002243766A (ja) 2001-02-16 2002-08-28 Fuji Electric Co Ltd 電流センサ
JP2003035758A (ja) 2001-07-19 2003-02-07 Hitachi Ltd 磁場計測装置
US20120157866A1 (en) 2010-12-20 2012-06-21 Alexander Seth Ross System and method for determining physiological parameters based on electrical impedance measurements
JP2014509891A (ja) 2011-02-14 2014-04-24 コーニンクレッカ フィリップス エヌ ヴェ 検出コイルにおいて部分的に補償された磁気励起場を有する磁気誘導インピーダンス測定装置のためのコイル配置
JP2016059625A (ja) 2014-09-18 2016-04-25 株式会社タニタ 生体情報測定装置

Also Published As

Publication number Publication date
US20210076978A1 (en) 2021-03-18
US11872028B2 (en) 2024-01-16
JP2021041026A (ja) 2021-03-18

Similar Documents

Publication Publication Date Title
US6015389A (en) Impedance pneumography
US8682424B2 (en) Noninvasive multi-channel monitoring of hemodynamic parameters
JP6799661B2 (ja) 睡眠時無呼吸モニタリングシステム
CN110035691B (zh) 用于测量睡眠呼吸暂停的方法和设备
CN109414204A (zh) 用于确定针对对象的呼吸信息的方法和装置
JP2011212441A (ja) 運動検出を伴う心電図検査を実行するシステム及び方法
JP2020503990A (ja) 被験者の映像監視装置及びその方法と、映像監視システム
Młyńczak et al. Impedance pneumography: Is it possible?
JP5632570B1 (ja) 生体信号計測システム、装置、方法およびそのプログラム
Foo et al. Estimation of breathing interval from the photoplethysmographic signals in children
Sel et al. A wrist-worn respiration monitoring device using bio-impedance
JP7250648B2 (ja) 生体計測方法
Bawua et al. Agreement between respiratory rate measurement using a combined electrocardiographic derived method versus impedance from pneumography
D’Alvia et al. Tetrapolar low-cost systems for thoracic impedance plethysmography
Khambete et al. Movement artefact rejection in impedance pneumography using six strategically placed electrodes
Dosinas et al. Measurement of human physiological parameters in the systems of active clothing and wearable technologies
Kuo et al. Using ECG surface electrodes in measurement of respiration rate for preterm infants
Paukkunen et al. A system for detection of three-dimensional precordial vibrations
Li et al. Thoracic impedance measurement for lung function evaluation
Jeong et al. Measurement of respiration rate and depth through difference in temperature between skin surface and nostril by using thermal image
JP6133638B2 (ja) 上部消化管カテーテルおよびカテーテルシステム
Carden Recording sleep: The electrodes, 10/20 recording system, and sleep system specifications
Ochoa et al. Development of an apnea detector for neonates using diaphragmatic surface electromyography
Pereira et al. Development of a medical care terminal for efficient monitoring of bedridden subjects
Ansari et al. Extraction of respiratory rate from impedance signal measured on arm: A portable respiratory rate measurement device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230322

R150 Certificate of patent or registration of utility model

Ref document number: 7250648

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150