JP7249823B2 - インダクタ - Google Patents

インダクタ Download PDF

Info

Publication number
JP7249823B2
JP7249823B2 JP2019044772A JP2019044772A JP7249823B2 JP 7249823 B2 JP7249823 B2 JP 7249823B2 JP 2019044772 A JP2019044772 A JP 2019044772A JP 2019044772 A JP2019044772 A JP 2019044772A JP 7249823 B2 JP7249823 B2 JP 7249823B2
Authority
JP
Japan
Prior art keywords
region
wiring
particles
less
wirings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019044772A
Other languages
English (en)
Other versions
JP2020150060A (ja
Inventor
佳宏 古川
圭佑 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2019044772A priority Critical patent/JP7249823B2/ja
Priority to KR1020217028620A priority patent/KR20210137029A/ko
Priority to PCT/JP2020/004234 priority patent/WO2020183995A1/ja
Priority to CN202080019742.2A priority patent/CN113544803A/zh
Priority to TW109104981A priority patent/TWI832971B/zh
Publication of JP2020150060A publication Critical patent/JP2020150060A/ja
Application granted granted Critical
Publication of JP7249823B2 publication Critical patent/JP7249823B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • H01F17/06Fixed inductances of the signal type  with magnetic core with core substantially closed in itself, e.g. toroid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/28Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder dispersed or suspended in a bonding agent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2823Wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明は、インダクタに関する。
インダクタは、電子機器などに搭載されて、電圧変換部材などの受動素子として用いられることが知られている。
例えば、磁性体材料からなる直方体状のチップ本体部と、そのチップ本体部の内部に埋設された銅などの内部導体とを備え、チップ本体部の断面形状と内部導体の断面形状とが相似形であるインダクタが提案されている(特許文献1参照。)。すなわち、特許文献1のインダクタでは、断面視矩形状(直方体状)の配線(内部導体)の周囲に磁性体材料が被覆されている。
特開平10-144526号公報
ところで、磁性体材料として、扁平状磁性粒子などの異方性磁性粒子を用いて、配線の周囲に、その異方性磁性粒子を配向させて、インダクタのインダクタンスを向上させることが検討されている。
しかしながら、特許文献1のインダクタでは、配線が、断面視矩形状であるため、角部などの存在によって、その配線の周囲に異方性磁性粒子を配向させにくい不具合が生じる。そのため、インダクタンスの向上が不十分となる場合がある。
また、複数の配線を備えるインダクタも要望されている。しかしながら、インダクタが複数の配線を備えると、異方性磁性粒子によって、隣り合う配線同士の磁気が影響し合い、ノイズが発生する不具合(クロストーク)が生じる。
本発明は、インダクタンスが良好であり、クロストークを抑制できるインダクタを提供する。
本発明[1]は、複数の配線と、前記複数の配線を被覆する磁性層とを備え、前記複数の配線は、第1方向において、互いに間隔を隔てて配置されており、前記複数の配線は、それぞれ、導線と、前記導線を被覆する絶縁層とを備え、前記磁性層は、異方性磁性粒子と、バインダとを含有し、互いに隣り合う前記複数の配線間において、それら配線の中心を通る仮想線を含むように、前記異方性磁性粒子が前記第1方向に沿って配向する第1方向配向領域が形成されており、前記第1方向配向領域の距離が、前記仮想線上の前記配線間の間隔に対して60%以下である、インダクタを含む。
このインダクタによれば、複数の配線と、複数の配線を被覆する磁性層とを備えるため、複数の配線の周辺に、異方性磁性粒子が外周方向に沿って容易に配向することができる。よって、インダクタンスを向上させることができる。
また、複数の配線の中心を通る仮想線を含むように、異方性磁性粒子が第1方向に沿って配向する第1方向配向領域が形成されており、第1方向配向領域の距離が、前記仮想線上の配線間の間隔に対して50%以下である。すなわち、第1方向に沿って流れる磁束の通り道である配線間のスペースにおいて、第1方向配向領域の距離が、それ以外の距離よりも短い。よって、一方の配線から他方の配線への磁気に関する影響を低減でき、クロストークを抑制することができる。
本発明[2]は、前記複数の配線の周囲には、それぞれ、前記異方性磁性粒子が前記配線の外周方向に沿って配向する第1領域を有する、[1]に記載のインダクタを含む。よって、インダクタンスを向上させることができる。
本発明[3]は、前記複数の配線の周囲には、それぞれ、前記異方性磁性粒子が前記外周方向に沿って配向しない第2領域をさらに有する、[2]に記載のインダクタを含む。よって、直流重畳特性を向上させることができる。
本発明のインダクタによれば、インダクタンスが良好であり、クロストークを抑制することができる。
図1A-Bは、本発明のインダクタの一実施形態であって、図1Aは、平面視図、図1Bは、図1AのA-A断面図を示す。 図2は、図1Bの破線部の部分拡大図を示す。 図3A-Bは、図1A-Bに示すインダクタの製造工程であって、図3Aは、配置工程、図3Bは、積層工程を示す。 図4は、図1A-Bに示すインダクタの実際のSEM写真断面図を示す。 図5は、本発明のインダクタの変形例(第2領域の中心部が第1仮想線上に位置する形態)の断面図を示す。
図1Aにおいて、紙面左右方向は、第1方向であって、紙面左側が第1方向一方側、紙面右側が第1方向他方側である。紙面上下方向は、第2方向(第1方向と直交する方向)であって、紙面上側が第2方向一方側(配線軸方向一方向)、紙面下側が第2方向他方側(配線軸他方向)である。紙面紙厚方向は、上下方向(第1方向および第2方向と直交する第3方向、厚み方向)であって、紙面手前側が上側(第3方向一方側、厚み方向一方側)、紙面奥側が下側(第3方向他方側、厚み方向他方側)である。具体的には、各図の方向矢印に準拠する。
<一実施形態>
1.インダクタンス
本発明のインダクタの一実施形態を、図1A-図2を参照して説明する。
図1A-Bに示すように、インダクタ1は、面方向(第1方向および第2方向)に延びる平面視略矩形状を有する。
インダクタ1は、図1A-図2に示すように、複数(2つ)の配線2と、磁性層3とを備える。
(配線)
複数の配線2は、それぞれ、第1配線4と、第1配線4と幅方向(第1方向)に間隔を隔てて配置される第2配線5とを備える。
第1配線4は、図1A-Bに示すように、第2方向に長尺に延び、例えば、平面視略U字形状を有する。第1配線4は、図2に示すように、断面視略円形状を有する。
第1配線4は、導線6と、それを被覆する絶縁層7とを備える。
導線6は、第2方向に長尺に延び、例えば、平面視略U字形状を有する。また、導線6は、第1配線4と中心軸線を共有する断面視略円形状を有する。
導線6の材料は、例えば、銅、銀、金、アルミニウム、ニッケル、これらの合金などの金属導体であり、好ましくは、銅が挙げられる。導線6は、単層構造であってもよく、コア導体(例えば、銅)の表面にめっき(例えば、ニッケル)などがされた複層構造であってもよい。
導線6の半径R1は、例えば、25μm以上、好ましくは、50μm以上であり、また、例えば、2000μm以下、好ましくは、200μm以下である。
絶縁層7は、導線6を薬品や水から保護し、また、導線6の短絡を防止するための層である。絶縁層7は、導線6の外周面全面を被覆するように、配置されている。
絶縁層7は、第1配線4と中心軸線(中心C1)を共有する断面視略円環形状を有する。
絶縁層7の材料としては、例えば、ポリビニルホルマール、ポリエステル、ポリエステルイミド、ポリアミド(ナイロンを含む)、ポリイミド、ポリアミドイミド、ポリウレタンなどの絶縁性樹脂が挙げられる。これらは、1種単独で用いてもよく、2種以上併用してもよい。
絶縁層7は、単層から構成されていてもよく、複数の層から構成されていてもよい。
絶縁層7の厚みR2は、円周方向のいずれの位置においても配線2の径方向において略均一であり、例えば、1μm以上、好ましくは、3μm以上であり、また、例えば、100μm以下、好ましくは、50μm以下である。
絶縁層7の厚みR2に対する、導線6の半径R1の比(R1/R2)は、例えば、1以上、好ましくは、10以上であり、例えば、200以下、好ましくは、100以下である。
第1配線4の半径(R1+R2)は、例えば、25μm以上、好ましくは、50μm以上であり、また、例えば、2000μm以下、好ましくは、200μm以下である。
第1配線4が略U字形状である場合、第1配線4の中心間距離D2は、後述する複数の配線2間の中心間距離D1と同一距離であり、例えば、20μm以上、好ましくは、50μm以上であり、また、例えば、3000μm以下、好ましくは、2000μm以下である。
第2配線5は、第1配線4と同一形状であり、同一の構成、寸法および材料を備える。すなわち、第2配線5は、第1配線4と同様に、導線6と、それを被覆する絶縁層7とを備える。
第1配線4と第2配線5との間隔Sは、第1配線4の外周縁と、第2配線5の外周縁との最短距離であり、すなわち、第1配線4と第2配線5との間に位置する磁性層3における第1仮想線上L2の距離である。具体的には、配線間2(4、5)の間隔Sは、例えば、20μm以上、好ましくは、70μm以上であり、また、例えば、2000μm以下、好ましくは、1000μm以下である。
第1配線4と第2配線5との中心間距離D1は、例えば、20μm以上、好ましくは、50μm以上であり、また、例えば、3000μm以下、好ましくは、2000μm以下である。
(磁性層)
磁性層3は、インダクタンスを向上させるための層である。
磁性層3は、複数の配線2の外周面全面を被覆するように、配置されている。磁性層3は、インダクタ1の外形をなす。具体的には、磁性層3は、面方向(第1方向および第2方向)に延びる平面視略矩形状を有する。また、磁性層3は、その第2方向他方面において、複数の配線2の第2方向端縁を露出する。
磁性層3は、異方性磁性粒子8およびバインダ9を含有する磁性組成物から形成されている。
異方性磁性粒子(以下、「粒子」とも略する。)8を構成する磁性材料としては、軟磁性体、硬磁性体が挙げられる。好ましくは、インダクタンスの観点から、軟磁性体が挙げられる。
軟磁性体としては、例えば、1種類の金属元素を純物質の状態で含む単一金属体、例えば、1種類以上の金属元素(第1金属元素)と、1種類以上の金属元素(第2金属元素)および/または非金属元素(炭素、窒素、ケイ素、リンなど)との共融体(混合物)である合金体が挙げられる。これらは、単独または併用することができる。
単一金属体としては、例えば、1種類の金属元素(第1金属元素)のみからなる金属単体が挙げられる。第1金属元素としては、例えば、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、その他、軟磁性体の第1金属元素として含有することが可能な金属元素の中から適宜選択される。
また、単一金属体としては、例えば、1種類の金属元素のみを含むコアと、そのコアの表面の一部または全部を修飾する無機物および/または有機物を含む表面層とを含む形態、例えば、第1金属元素を含む有機金属化合物や無機金属化合物が分解(熱分解など)された形態などが挙げられる。後者の形態として、より具体的には、第1金属元素として鉄を含む有機鉄化合物(具体的には、カルボニル鉄)が熱分解された鉄粉(カルボニル鉄粉と称される場合がある)などが挙げられる。なお、1種類の金属元素のみを含む部分を修飾する無機物および/または有機物を含む層の位置は、上記のような表面に限定されない。なお、単一金属体を得ることができる有機金属化合物や無機金属化合物としては、特に制限されず、軟磁性体の単一金属体を得ることができる公知乃至慣用の有機金属化合物や無機金属化合物から適宜選択することができる。
合金体は、1種類以上の金属元素(第1金属元素)と、1種類以上の金属元素(第2金属元素)および/または非金属元素(炭素、窒素、ケイ素、リンなど)との共融体であり、軟磁性体の合金体として利用することができるものであれば特に制限されない。
第1金属元素は、合金体における必須元素であり、例えば、鉄(Fe)、コバルト(Co)、ニッケル(Ni)などが挙げられる。なお、第1金属元素がFeであれば、合金体は、Fe系合金とされ、第1金属元素がCoであれば、合金体は、Co系合金とされ、第1金属元素がNiであれば、合金体は、Ni系合金とされる。
第2金属元素は、合金体に副次的に含有される元素(副成分)であり、第1金属元素に相溶(共融)する金属元素であって、例えば、鉄(Fe)(第1金属元素がFe以外である場合)、コバルト(Co)(第1金属元素がCo以外である場合)、ニッケル(Ni)(第1金属元素Ni以外である場合)、クロム(Cr)、アルミニウム(Al)、ケイ素(Si)、銅(Cu)、銀(Ag)、マンガン(Mn)、カルシウム(Ca)、バリウム(Ba)、チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)、バナジウム(V)、ニオブ(Nb)、タンタル(Ta)、モリブデン(Mo)、タングステン(W)、ルテニウム(Ru)、ロジウム(Rh)、亜鉛(Zn)、ガリウム(Ga)、インジウム(In)、ゲルマニウム(Ge)、スズ(Sn)、鉛(Pb)、スカンジウム(Sc)、イットリウム(Y)、ストロンチウム(Sr)、各種希土類元素などが挙げられる。これらは、単独使用または2種以上併用することができる。
非金属元素は、合金体に副次的に含有される元素(副成分)であり、第1金属元素に相溶(共融)する非金属元素であって、例えば、ホウ素(B)、炭素(C)、窒素(N)、ケイ素(Si)、リン(P)、硫黄(S)などが挙げられる。これらは、単独使用または2種以上併用することができる。
合金体の一例であるFe系合金として、例えば、磁性ステンレス(Fe-Cr-Al-Si合金)(電磁ステンレスを含む)、センダスト(Fe-Si-Al合金)(スーパーセンダストを含む)、パーマロイ(Fe-Ni合金)、Fe-Ni-Mo合金、Fe-Ni-Mo-Cu合金、Fe-Ni-Co合金、Fe-Cr合金、Fe-Cr-Al合金、Fe-Ni-Cr合金、Fe-Ni-Cr-Si合金、ケイ素銅(Fe-Cu-Si合金)、Fe-Si合金、Fe-Si―B(-Cu-Nb)合金、Fe-B-Si-Cr合金、Fe-Si-Cr-Ni合金、Fe-Si-Cr合金、Fe-Si-Al-Ni-Cr合金、Fe-Ni-Si-Co合金、Fe-N合金、Fe-C合金、Fe-B合金、Fe-P合金、フェライト(ステンレス系フェライト、さらには、Mn-Mg系フェライト、Mn-Zn系フェライト、Ni-Zn系フェライト、Ni-Zn-Cu系フェライト、Cu-Zn系フェライト、Cu-Mg-Zn系フェライトなどのソフトフェライトを含む)、パーメンジュール(Fe-Co合金)、Fe-Co-V合金、Fe基アモルファス合金などが挙げられる。
合金体の一例であるCo系合金としては、例えば、Co-Ta-Zr、コバルト(Co)基アモルファス合金などが挙げられる。
合金体の一例であるNi系合金としては、例えば、Ni-Cr合金などが挙げられる。
これら軟磁性体の中でも、磁気特性の点から、好ましくは、合金体、より好ましくは、Fe系合金、さらに好ましくは、センダスト(Fe-Si-Al合金)が挙げられる。また、軟磁性体として、好ましくは、単一金属体、より好ましくは、鉄元素を純物質の状態で含む単一金属体、さらに好ましくは、鉄単体、あるいは、鉄粉(カルボニル鉄粉)が挙げられる。
粒子8の形状としては、異方性の観点から、例えば、扁平状(板状)、針状などが挙げられ、好ましくは、面方向(二次元)に比透磁率が良好である観点から、扁平状が挙げられる。なお、磁性層3は、異方性磁性粒子8に加え、非異方性磁性粒子をさらに含有することもできる。非異方性磁性粒子は、例えば、球状、顆粒状、塊状、ペレット状などの形状を有していてもよい。非異方性磁性粒子の平均粒子径は、例えば、0.1μm以上、好ましくは、0.5μm以上であり、また、例えば、200μm以下、好ましくは、150μm以下である。
なお、扁平状の粒子8の扁平率(扁平度)は、例えば、8以上、好ましくは、15以上であり、また、例えば、500以下、好ましくは、450以下である。扁平率は、例えば、粒子8の平均粒子径(平均長さ)(後述)を粒子8の平均厚さで除したアスペクト比として算出される。
粒子8(異方性磁性粒子)の平均粒子径(平均長さ)は、例えば、3.5μm以上、好ましくは、10μm以上であり、また、例えば、200μm以下、好ましくは、150μm以下である。粒子8が扁平状であれば、その平均厚みが、例えば、0.1μm以上、好ましくは、0.2μm以上であり、また、例えば、3.0μm以下、好ましくは、2.5μm以下である。
バインダ9としては、例えば、熱硬化性樹脂、熱可塑性樹脂が挙げられる。
熱硬化性樹脂としては、例えば、エポキシ樹脂、フェノール樹脂、メラミン樹脂、熱硬化性ポリイミド樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、シリコーン樹脂などが挙げられる。接着性、耐熱性などの観点から、好ましくは、エポキシ樹脂、フェノール樹脂が挙げられる。
熱可塑性樹脂としては、例えば、アクリル樹脂、エチレン-酢酸ビニル共重合体、ポリカーボネート樹脂、ポリアミド樹脂(6-ナイロン、6,6-ナイロンなど)、熱可塑性ポリイミド樹脂、飽和ポリエステル樹脂(PET、PBTなど)などが挙げられる。好ましくは、アクリル樹脂が挙げられる。
好ましくは、バインダ9として、熱硬化性樹脂および熱可塑性樹脂の併用が挙げられる。より好ましくは、アクリル樹脂、エポキシ樹脂およびフェノール樹脂の併用が挙げられる。これにより、粒子8を所定の配向状態で、かつ、高充填で、配線2の周囲により確実に固定できる。
また、磁性組成物は、必要に応じて、熱硬化触媒、無機粒子、有機粒子、架橋剤などの添加剤を含有することもできる。
磁性層3では、粒子8がバインダ9内に配向しながら均一に配置されている。
磁性層3は、断面視において、周辺領域11と、外側領域12とを有する。
周辺領域11は、配線2の周辺領域であって、複数の配線2と接触するように複数の配線2の周囲に位置する。周辺領域11は、配線2と中心軸線を共有する断面視略円環状を有する。より具体的には、周辺領域11は、磁性層3のうち、配線2の半径(配線2の中心(重心)C1から外周面までの距離の平均;R1+R2)の1.5倍値(好ましくは、1.2倍値、より好ましくは、1倍値、さらに好ましくは、0.8倍値、とりわけ好ましくは、0.5倍値)、配線2の外周面から径方向外側に進んだ領域である。
周辺領域11は、複数の配線2のそれぞれの周囲、すなわち、第1配線4および第2配線5の周囲に配置されている。
周辺領域11は、それぞれ、複数(2つ)の第1領域13と、複数(2つ)の第2領域14とを備える。
複数の第1領域13は、円周方向配向領域である。すなわち、第1領域13では、粒子8が配線2(第1配線4または第2配線5)の円周方向(外周方向)に沿って配向する。
複数の第1領域13は、配線2の上側(第3方向一方側)および下側(第3方向他方側)に、配線2の中心C1を挟んで互いに対向配置されている。すなわち、複数の第1領域13は、配線2の上側に配置される上側第1領域15と、配線2の下側に配置される下側第1領域16とを備える。また、上側第1領域15と下側第1領域16との上下方向中央に、配線2の中心C1が位置する。
それぞれの第1領域13では、粒子8の比透磁率が高い方向(例えば、扁平状異方性磁性粒子では、粒子の面方向)が、配線2の中心C1を中心とした円の接線と略一致する。より具体的には、粒子8の面方向と、その粒子8が位置する円の接線とがなす角度が、15°以下である場合を、粒子8が円周方向に配向していると定義する。
第1領域13に含まれる粒子8全体の数に対して、円周方向に配向している粒子8の数の割合は、例えば、50%を超過し、好ましくは、70%以上、より好ましくは、80%以上である。すなわち、第1領域13では、円周方向に配向していない粒子8を、例えば、50%未満、好ましくは、30%以下、より好ましくは、20%以下含んでいてもよい。 複数の第1領域13の総面積割合は、周辺領域11全体に対して、例えば、40%以上、好ましくは、50%以上、より好ましくは、60%以上であり、また、例えば、90%以下、好ましくは、80%以下である。
第1領域13の円周方向の比透磁率は、例えば、5以上、好ましくは、10以上、より好ましくは、30以上であり、また、例えば、500以下である。径方向の比透磁率は、例えば、1以上、好ましくは、5以上であり、また、例えば、100以下、好ましくは、50以下、より好ましくは、25以下である。また、径方向に対する円周方向の比透磁率の比(円周方向/径方向)は、例えば、2以上、好ましくは、5以上であり、また、例えば、50以下である。比透磁率が上記範囲であれば、インダクタンスに優れる。
比透磁率は、例えば、磁性材料テストフィクスチャを使用したインピーダンスアナライザ(Agilent社製、「4291B」)によって測定することができる。
複数の第2領域14は、円周方向非配向領域である。すなわち、第2領域14では、粒子8が、配線2の円周方向(外周方向)に沿って配向していない。換言すると、第2領域14では、粒子8が、配線2の円周方向以外の方向(例えば、第1方向や径方向)に沿って配向するか、または、配向していない。
複数の第2領域14は、配線2の第1方向一方側および他方側に、配線2を挟んで互いに対向配置されている。すなわち、複数の第2領域14は、配線2(第1配線4または第2配線5)の第1方向一方側に配置される一方側第2領域17と、配線2の第1方向他方側に配置される他方側第2領域18とを有する。一方側第2領域17と他方側第2領域18とは、第2仮想線L3を基準に略線対称である。
なお、第2仮想線L3は、第1配線4または第2配線の中心C1を通り、かつ、上下方向に延びる直線である。
それぞれの第2領域14では、粒子8の比透磁率が高い方向(例えば、扁平状異方性磁性粒子では、粒子の面方向)が、配線2の中心C1を中心とした円の接線と一致しない。より具体的には、粒子8の面方向と、その粒子8が位置する円の接線とがなす角度が、15°を超過する場合を、粒子8が円周方向に配向していないと定義する。
第2領域14に含まれる粒子8全体の数に対して、円周方向に配向していない粒子8の数の割合は、50%を超過し、好ましくは、70%以上であり、また、例えば、95%以下、好ましくは、90%以下である。
第2領域14では、例えば、円周方向に配向する粒子8を含んでいてもよい。第2領域14に含まれる粒子8全体の数に対して、円周方向に配向する粒子8の数の割合は、50%未満であり、好ましくは、30%以下であり、また、例えば、5%以上、好ましくは、10%以上である。
なお、円周方向に配向する粒子8を含む場合、好ましくは、その円周方向に配向する粒子8は、第2領域14の最内側、すなわち、配線2の表面に配置されている。
複数の第2領域14の総面積割合は、周辺領域11全体に対して、例えば、10%以上、好ましくは、20%以上であり、また、例えば、60%以下、好ましくは、50%以下、より好ましくは、40%以下である。
第2領域14の中心C2は、第1仮想線L2上に存在しない。すなわち、中心C2は、第1仮想線L2に対し、下側に位置し、好ましくは、第1仮想線L2に対し、半径Rの0.1倍の距離分、下方に位置し、より好ましくは、第1仮想線L2に対し、半径Rの0.3倍の距離分、下方に位置する。より具体的には、中心C2は、第1仮想線L2に対し、好ましくは、10μm下方、より好ましくは、30μm下方に位置する。
また、第2領域14の中心C2は、第1仮想線L2と第2仮想線L3との間に、位置する。すなわち、第2領域14の中心C2は、第1仮想線L2および第2仮想線L3のいずれの線上に存在しない。
なお、第2領域14の中心C2は、第2領域14において、円周方向一端と円周方向他端とを結ぶ仮想円弧L1の中心である。より具体的には、第2領域14の中心C2は、第2領域14において、円周方向一端縁の径方向中心と、円周方向他端縁の径方向中心とを結ぶ仮想円弧L1の中心である。
第1仮想線L2は、互いに隣り合う複数の配線2の中心C1を通り、第1方向に延びる直線である。
第2領域14では、配向方向が異なる少なくとも2種類の粒子8により交差部(頂部)19が形成されている。すなわち、第2領域14の上側において、配線2の外側に向かうに従って円周方向から第1方向に配向する粒子8(第1粒子)と、第2領域14の下側において、配線2の外側に向かうに従って円周方向から第1方向に配向する粒子8(第2粒子)とが、略三角形状の少なくとも2辺を構成して、これによって、交差部19を形成する。具体的には、第1粒子と、第2粒子とは、第2領域14の内側において円周方向に配向する粒子8(第3粒子)とともに、略三角形状(好ましくは、鋭角三角形状)を形成する。
交差部19は、第1配線4および第2配線5の間において、それらの中心を通る第1仮想線L2上に、存在しない。すなわち、交差部19は、第1仮想線L2の下側に、仮想円弧L1と間隔を隔てる位置に配置されている。より具体的には、交差部19の中心および配線2の中心C1を結ぶ直線と、第1仮想線L2とのなす角度θは、例えば、15°以上、好ましくは、45°以上であり、また、例えば、75°以下、好ましくは、60°以下である。
周辺領域11(特に、第1領域13および第2領域14のそれぞれ)において、粒子8の充填率は、例えば、40体積%以上、好ましくは、45体積%以上であり、また、例えば、90体積%以下、好ましくは、70体積%以下である。充填率が上記下限以上であれば、インダクタンスに優れる。
充填率は、実比重の測定、SEM写真断面図の二値化などによって算出することができる。
周辺領域11において、複数の第1領域13と複数の第2領域14とは、円周方向に互いに隣接するように、配置されている。具体的には、上側第1領域15、一方側第2領域17、下側第1領域16および他方側第2領域18は、円周方向に、この順で連続する。なお、第1領域13と第2領域14との円周方向における境界(一端縁または他端縁)は、配線2の中心から径方向外側に延びる仮想直線とする。
外側領域12は、磁性層3のうち、周辺領域11以外の領域である。外側領域12は、周辺領域11の外側において、周辺領域11と連続するように配置されている。
外側領域12では、粒子8が面方向(特に第1方向)に沿って配向している。
外側領域12では、粒子8の比透磁率が高い方向(例えば、扁平状異方性磁性粒子では、粒子の面方向)が、第1方向と略一致する。より具体的には、粒子8の面方向と、第1方向とがなす角度が、15°以下である場合を、粒子8が第1方向に配向していると定義する。
外側領域12では、外側領域12に含まれる粒子8全体の数に対して、第1方向に配向している粒子8の数の割合が、50%を超過し、好ましくは、70%以上、より好ましくは、90%以上である。すなわち、外側領域12では、第1方向に配向していない粒子8を50%未満、好ましくは、30%以下、より好ましくは、10%以下含んでいてもよい。
外側領域12において、第1方向の比透磁率は、例えば、5以上、好ましくは、10以上、より好ましくは、30以上であり、また、例えば、500以下である。上下方向の比透磁率は、例えば、1以上、好ましくは、5以上であり、また、例えば、100以下、好ましくは、50以下、より好ましくは、25以下である。また、上下方向に対する第1方向の比透磁率の比(第1方向/上下方向)は、例えば、2以上、好ましくは、5以上であり、また、例えば、50以下である。比透磁率が上記範囲であれば、インダクタンスに優れる。
外側領域12において、粒子8の充填率は、例えば、40体積%以上、好ましくは、45体積%以上であり、また、例えば、90体積%以下、好ましくは、70体積%以下である。充填率が上記下限以上であれば、インダクタンスに優れる。
また、周辺領域11および外側領域12を含む複数の配線2間において、第1仮想線Lを含む第1方向配向領域10が形成されている。すなわち、第1方向配向領域10は、インダクタ1を第1方向および上下方向に沿って切断した断面において、複数の配線2間に位置し、第1仮想線Lを含む。具体的には、第1方向配向領域10は、上下方向位置において第1仮想線L2を中心にしており、上下方向長さが導線6の半径R1の40%の長さ(好ましくは、50μm)である領域であって、かつ、粒子8が第1方向に沿って配向している領域とする。
第1方向配向領域10に含まれる粒子8全体の数に対して、第1方向に配向している粒子8の数の割合は、例えば、85%以上、好ましくは、90%以上、より好ましくは、95%以上である。すなわち、第1方向配向領域10では、第1方向に配向していない粒子8を、例えば、15%以下、好ましくは、10%以下、より好ましくは、5%以下含んでいてもよい。
なお、第1方向配向領域10の第1方向一方側および他方側に隣接する領域では、粒子8は、第1方向に配向していない。
第1方向配向領域10の第1方向距離Nは、例えば、500μm以下、好ましくは、400μm以下、より好ましくは、300μm以下であり、また、例えば、10μm以上、好ましくは、40μm以上である。
第1方向配向領域10の第1方向距離Nは、配線間の間隔Sに対して、60%以下であり、好ましくは、50%以下であり、より好ましくは、30%以下であり、また、例えば、5%以上である。上記割合(N/S×100%)が上記上限以下であれば、配線2間のクロストークを抑制することができる。
磁性層3の第1方向長さTは、例えば、5mm以上、好ましくは、10mm以上であり、また、例えば、5000mm以下、好ましくは、2000mm以下である。
磁性層3の第2方向長さTは、例えば、5mm以上、好ましくは、10mm以上であり、また、例えば、5000mm以下、好ましくは、2000mm以下である。
磁性層3の上下方向長さ(厚さ)Tは、例えば、100μm以上、好ましくは、200μm以上であり、また、例えば、2000μm以下、好ましくは、1000μm以下である。
2.インダクタの製造方法
図3A-Bを参照して、インダクタ1の製造方法の一実施形態について説明する。インダクタ1の製造方法は、例えば、用意工程、配置工程および積層工程を順に備える。
用意工程では、複数の配線2、および、2つの異方性磁性シート20を用意する。
2つの異方性磁性シート20は、それぞれ、面方向に延びるシート状を有し、磁性組成物から形成されている。異方性磁性シート20では、粒子8が、面方向に配向されている。好ましくは、2つの半硬化状態(Bステージ)の異方性磁性シート20を用いる。
このような異方性磁性シート20としては、特開2014-165363号、特開2015-92544号などに記載の軟磁性熱硬化性接着フィルムや軟磁性フィルムなどが挙げられる。
配置工程では、図3Aに示すように、一方の異方性磁性シート20の上面に複数の配線2を配置するとともに、複数の配線2の上方に、他方の異方性磁性シート20を対向配置する。
具体的には、下側異方性磁性シート21を水平台に載置し、続いて、下側異方性磁性シート21の上面に複数の配線2を第1方向に所望の間隔を隔てて配置する。
次いで、上側異方性磁性シート22を、下側異方性磁性シート21および複数の配線2の上側に、間隔を隔てて対向配置する。
積層工程では、図3Bに示すように、複数の配線2を埋設するように、2つの異方性磁性シート20を、積層する。
具体的には、上側異方性磁性シート22を下側に向かって押圧する。
この際、2つの異方性磁性シート20が半硬化状態である場合は、押圧によって、複数の配線2は、下側異方性磁性シート21内にわずかに沈み込み、沈み込み部分において、粒子8が複数の配線2に沿って配向する。すなわち、下側第1領域16が形成される。
また、上側異方性磁性シート22は、複数の配線2に沿って被覆され、その粒子8が複数の配線2に沿って配向するとともに、下側異方性磁性シート21の上面に積層される。すなわち、配線2の上側では、上側異方性磁性シート22によって、上側第1領域15が形成されるとともに、配線2の第1方向両側(側方)では、下側異方性磁性シート21と上側異方性磁性シート22との接触付近にて、これらに配向している粒子8が衝突し、その結果、第2領域14や交差部19が形成される。
なお、異方性磁性シート20が半硬化状態である場合は、加熱する。これにより、異方性磁性シート20が硬化状態(Cステージ)となる。また、2つの異方性磁性シート20の接触界面25が消滅し、2つの異方性磁性シート20は、一の磁性層3を形成する。
これにより、図2に示すように、断面視略円形状の配線2と、それを被覆する磁性層3とを備えるインダクタ1が得られる。すなわち、インダクタ1は、複数(2つ)の異方性磁性シート20を、配線2を挟むように、積層してなるものである。なお、実際のインダクタ1の一例の断面図(SEM写真)を図4に示す。
3.用途
インダクタ1は、電子機器の一部品、すなわち、電子機器を作製するための部品であり、電子素子(チップ、キャパシタなど)や、電子素子を実装する実装基板を含まず、部品単独で流通し、産業上利用可能なデバイスである。
インダクタ1は、例えば、電子機器などに搭載される(組み込まれる)。図示しないが、電子機器は、実装基板と、実装基板に実装される電子素子(チップ、キャパシタなど)とを備える。そして、インダクタ1は、はんだなどの接続部材を介して実装基板に実装され、他の電子機器と電気的に接続され、コイルなどの受動素子として作用する。
そして、インダクタ1によれば、複数の配線2と、複数の配線2を被覆する磁性層3とを備えるため、複数の配線2の周辺に、粒子8が円周方向に沿って容易に配向することができる。よって、粒子8の磁化容易軸が配線周囲に発生する磁力線の方向と同一となるため、インダクタンスを向上させることができる。
また、第1仮想線L2と重複するように、粒子8が第1方向に沿って配向する第1方向配向領域10が形成されており、第1方向配向領域10の第1方向の距離Nが、第1仮想線L2上の配線2間の間隔Sに対して50%以下である。すなわち、第1方向に沿って流れる磁束の通り道である配線2間のスペースにおいて、第1方向配向領域10の距離Nが、それ以外の距離(すなわち、第1方向配向領域10の両側に位置する、粒子8が第1方向に配向していない領域)よりも短くなっている。よって、一方の配線2(第1配線4または第2配線5)から他方の配線(第2配線5または第1配線4)への磁気に関する影響を低減でき、クロストークを抑制することができる。
また、インダクタ1では、複数の配線2の周辺領域11には、それぞれ、円周方向配向領域である第1領域13を有する。よって、インダクタンスを向上させることができる。
また、インダクタ1では、複数の配線2の周辺領域11には、それぞれ、円周方向非配向領域である第2領域14を有する。よって、粒子8の磁化困難軸が配線周囲に発生する磁力線の方向と同一となるため、直流重畳特性が良好である。
また、第2領域14における中心C2が、第1仮想線L1上に、存在しない。したがって、磁束が第2領域14を経由して第1配線4から第2配線5に到達する距離を長くすることができる。すなわち、配線2間の磁束が通る距離を実質的に長くすることができる。よって、第1配線4から第2配線5への磁気に関する影響を低減でき、クロストークをより一層抑制することができる。
<変形例>
以下に、図1A-図2に示す一実施形態の変形例について説明する。なお、変形例において、上記した一実施形態と同様の部材には、同様の符号を付し、その説明を省略する。これら変形例についても、上記した一実施形態などと同様の作用効果を奏する。
図2に示す実施形態では、第2領域14における中心C2が、仮想円弧L1上に、存在しないが、例えば、図5に示すように、第2領域14における中心C2が、仮想円弧L1上に、存在してもよい。
すなわち、図5に示す実施形態は、第1仮想線L2を基準に、略線対称である。
好ましくは、クロストークをより一層低減できる観点から、図1A-図2に示す実施形態が挙げられる。
図2に示す実施形態では、配線2は、断面視略円形状を有するが、その断面視形状は、特に限定されず、例えば、図示しないが、略楕円形状、略矩形状(正方形および長方形状を含む)、略不定形状であってもよい。なお、配線2が略矩形状を含む態様として、少なくとも1つの辺が湾曲してもよく、また、少なくとも1つの角が湾曲してもよい。
上記のいずれにおいても、周辺領域11は、断面視において、配線2の重心C1から配線2の外周面までの最長長さおよび最短長さの平均([最長長さ+最短長さ]/2)の1.5倍値、配線2の外周面から外側に進んだ領域である。
図1A-Bに示す実施形態では、2つの配線2を備えているが、その数は、限定されず、3つ以上とすることもできる。
図1A-Bに示す実施形態では、各配線2は、平面視略U字形状を有しているが、その形状は限定されず、適宜設定される。
図1A-Bに示す実施形態において、磁性層3がアライメントマークを有することもできる。
図1A-Bに示す実施形態において、磁性層3における異方性磁性粒子8の割合は、磁性層3において一様でもよく、また、各配線2から離れるに従って、高くなってもよく、あるいは、低くなってもよい。
1 インダクタ
2 配線
3 磁性層
6 導線
7 絶縁層
8 異方性磁性粒子
10 第1方向配向領域
13 第1領域
14 第2領域
C1 配線の中心
C2 仮想円弧の中心
L2 第1仮想線

Claims (3)

  1. 複数の配線と、前記複数の配線を被覆する磁性層とを備え、
    前記複数の配線は、第1方向において、互いに間隔を隔てて配置されており、
    前記複数の配線は、それぞれ、導線と、前記導線を被覆する絶縁層とを備え、
    前記磁性層は、異方性磁性粒子と、バインダとを含有し、
    互いに隣り合う前記複数の配線間において、それら配線の中心を通る仮想線を含むように、前記異方性磁性粒子が前記第1方向に沿って配向する第1方向配向領域が形成されており、
    前記第1方向配向領域の距離が、前記仮想線上の前記配線間の間隔に対して60%以下であることを特徴とする、インダクタ。
  2. 前記複数の配線の周囲には、それぞれ、前記異方性磁性粒子が前記配線の外周方向に沿って配向する第1領域を有することを特徴とする、請求項1に記載のインダクタ。
  3. 前記複数の配線の周囲には、それぞれ、前記異方性磁性粒子が前記外周方向に沿って配向しない第2領域をさらに有することを特徴とする、請求項2に記載のインダクタ。

JP2019044772A 2019-03-12 2019-03-12 インダクタ Active JP7249823B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019044772A JP7249823B2 (ja) 2019-03-12 2019-03-12 インダクタ
KR1020217028620A KR20210137029A (ko) 2019-03-12 2020-02-05 인덕터
PCT/JP2020/004234 WO2020183995A1 (ja) 2019-03-12 2020-02-05 インダクタ
CN202080019742.2A CN113544803A (zh) 2019-03-12 2020-02-05 电感器
TW109104981A TWI832971B (zh) 2019-03-12 2020-02-17 電感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019044772A JP7249823B2 (ja) 2019-03-12 2019-03-12 インダクタ

Publications (2)

Publication Number Publication Date
JP2020150060A JP2020150060A (ja) 2020-09-17
JP7249823B2 true JP7249823B2 (ja) 2023-03-31

Family

ID=72426738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019044772A Active JP7249823B2 (ja) 2019-03-12 2019-03-12 インダクタ

Country Status (5)

Country Link
JP (1) JP7249823B2 (ja)
KR (1) KR20210137029A (ja)
CN (1) CN113544803A (ja)
TW (1) TWI832971B (ja)
WO (1) WO2020183995A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4246543A1 (en) 2020-11-12 2023-09-20 Nitto Denko Corporation Magnetic sheet and inductor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185421A (ja) 1998-12-28 2001-07-06 Matsushita Electric Ind Co Ltd 磁性素子およびその製造方法
JP2013543635A (ja) 2010-09-23 2013-12-05 スリーエム イノベイティブ プロパティズ カンパニー 遮蔽された電気ケーブル
WO2014132701A1 (ja) 2013-02-26 2014-09-04 日東電工株式会社 軟磁性熱硬化性接着フィルム、軟磁性フィルム積層回路基板、および、位置検出装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10144526A (ja) 1996-11-05 1998-05-29 Murata Mfg Co Ltd 積層チップインダクタ
JP3844270B2 (ja) * 1997-07-22 2006-11-08 Necトーキン株式会社 ノイズ対策部品
JP5054445B2 (ja) * 2007-06-26 2012-10-24 スミダコーポレーション株式会社 コイル部品

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185421A (ja) 1998-12-28 2001-07-06 Matsushita Electric Ind Co Ltd 磁性素子およびその製造方法
JP2013543635A (ja) 2010-09-23 2013-12-05 スリーエム イノベイティブ プロパティズ カンパニー 遮蔽された電気ケーブル
WO2014132701A1 (ja) 2013-02-26 2014-09-04 日東電工株式会社 軟磁性熱硬化性接着フィルム、軟磁性フィルム積層回路基板、および、位置検出装置

Also Published As

Publication number Publication date
CN113544803A (zh) 2021-10-22
TWI832971B (zh) 2024-02-21
WO2020183995A1 (ja) 2020-09-17
JP2020150060A (ja) 2020-09-17
KR20210137029A (ko) 2021-11-17
TW202036611A (zh) 2020-10-01

Similar Documents

Publication Publication Date Title
JP2019220618A (ja) インダクタ
JP7325197B2 (ja) インダクタ
JP7286354B2 (ja) インダクタ
JP7321726B2 (ja) インダクタ
JP7249823B2 (ja) インダクタ
TWI845611B (zh) 電感器
JP7219641B2 (ja) インダクタ
CN113544806A (zh) 电感器的制造方法
JP7294833B2 (ja) インダクタ
TWI845612B (zh) 電感器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230320

R150 Certificate of patent or registration of utility model

Ref document number: 7249823

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150