JP7246883B2 - Underground Displacement Meter and Underground Displacement Calculation Method - Google Patents
Underground Displacement Meter and Underground Displacement Calculation Method Download PDFInfo
- Publication number
- JP7246883B2 JP7246883B2 JP2018171878A JP2018171878A JP7246883B2 JP 7246883 B2 JP7246883 B2 JP 7246883B2 JP 2018171878 A JP2018171878 A JP 2018171878A JP 2018171878 A JP2018171878 A JP 2018171878A JP 7246883 B2 JP7246883 B2 JP 7246883B2
- Authority
- JP
- Japan
- Prior art keywords
- measurement
- excavation
- joint
- measurement points
- position coordinates
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000006073 displacement reaction Methods 0.000 title claims description 169
- 238000004364 calculation method Methods 0.000 title claims description 42
- 238000005259 measurement Methods 0.000 claims description 237
- 238000009412 basement excavation Methods 0.000 claims description 71
- 238000010276 construction Methods 0.000 claims description 21
- 239000002184 metal Substances 0.000 claims description 9
- 230000008878 coupling Effects 0.000 claims 2
- 238000010168 coupling process Methods 0.000 claims 2
- 238000005859 coupling reaction Methods 0.000 claims 2
- 238000000034 method Methods 0.000 description 23
- 238000009434 installation Methods 0.000 description 6
- 238000000691 measurement method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 230000001174 ascending effect Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000011435 rock Substances 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Images
Landscapes
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
- Length Measuring Devices With Unspecified Measuring Means (AREA)
Description
本発明は、トンネル構築予定領域周辺の切羽前方における地山変位を計測する地中変位計および地中変位計を用いた地中変位算定方法に関する。 The present invention relates to an underground displacement gauge for measuring rock displacement in front of a face around a planned tunnel construction area, and an underground displacement calculation method using the underground displacement gauge.
従来より、地中にトンネル構造物を構築するべく掘削作業を行うと、トンネル構築予定領域の周辺地山にゆるみが生じて鉛直方向に変位が生じるだけでなく、トンネル軸線方向やトンネル横断方向等への水平変位も生じるなど、周辺地山に3次元的な影響を与えることが知られている。特に、軟弱な不良地山でのトンネル工事は、掘削時にも切羽崩落等の可能性があることから、切羽前方の先行変位を事前に計測することが重要となっている。 Conventionally, when excavation work is carried out to construct a tunnel structure in the ground, loosening of the ground surrounding the planned tunnel construction area causes not only displacement in the vertical direction, but also in the tunnel axis direction, tunnel transverse direction, etc. It is known to have a three-dimensional effect on the surrounding ground, such as horizontal displacement to the ground. In particular, it is important to measure the preceding displacement in front of the face in advance, because there is a possibility that the face will collapse even during excavation in tunnel construction on soft ground.
このような中、トンネル掘削時における周辺地山の変位をモニタリング可能な計測機として、重力加速度センサ等を用いた傾斜計が広く知られている。この傾斜計は、トンネル軸方向に延在するボーリング孔を切羽前方の天端部に削孔し、このボーリング孔に設置されてトンネル掘削時における天端の沈下計測を行うものであり、地山の鉛直方向の変位を計測することはできるものの、水平方向の変位を計測することができない。 Under such circumstances, an inclinometer using a gravitational acceleration sensor or the like is widely known as a measuring instrument capable of monitoring the displacement of the surrounding ground during tunnel excavation. This inclinometer is installed in a borehole extending in the axial direction of the tunnel at the top of the face in front of the tunnel face, and is installed in the borehole to measure settlement of the top of the tunnel during excavation. Although it is possible to measure the displacement in the vertical direction, it is not possible to measure the displacement in the horizontal direction.
一方、鉛直方向と水平方向の変位を計測可能な変位計として、リンク型変位計が知られている。リンク型変位計は、例えば特許文献1で開示されているように、地山の変位を感知する感知手段が内装された筒体と中継ロッドとを交互に接続してなり、これをトンネル工事周辺地盤に設置して、地盤の水平変位や鉛直変位を連続的に算定するものである。
On the other hand, a link-type displacement gauge is known as a displacement gauge capable of measuring vertical and horizontal displacements. A link-type displacement gauge, as disclosed in
しかし、リンク型変位計は、水平方向の変位を計測する感知手段と鉛直方向の変位を計測する感知手段が、リンク型変位計の長手方向に位置をずらして設置されることから、水平変位と鉛直変位の計測値点が同一地点とならない。 However, in the link-type displacement meter, the sensing means for measuring horizontal displacement and the sensing means for measuring vertical displacement are installed at different positions in the longitudinal direction of the link-type displacement sensor. The measurement point of vertical displacement is not the same point.
また、リンク型変位計はその断面径が大きく、広い設置空間を確保できる場合、例えば、既設トンネル内に敷設されている線路に対して支持部材を介して設置し、既設トンネル近傍の掘削工事に伴う地盤の緩みを計測するような場合に好適である。しかし、地山に設けたボーリング孔に挿入・設置して、地山の変位を測定する場合には、ボーリング孔を規格の大きい口径とせざるを得ず、適しているとはいえない。 In addition, when a link-type displacement sensor has a large cross-sectional diameter and a wide installation space can be secured, for example, it can be installed on the railroad track laid in an existing tunnel via a support member, making it suitable for excavation work near the existing tunnel. This is suitable for measuring looseness of the ground that accompanies this. However, when measuring the displacement of the ground by inserting and installing it in a borehole provided in the ground, the borehole must have a large standard diameter, which is not suitable.
本発明は、かかる課題に鑑みなされたものであって、その主な目的は、トンネル掘削に伴い切羽前方の地山に生じる水平方向及び鉛直方向の変位を、同一の計測地点で計測することの可能な、地中変位計及び地山の変位計測方法を提供することである。 The present invention has been made in view of such problems, and its main purpose is to measure the horizontal and vertical displacements of the natural ground in front of the face due to tunnel excavation at the same measurement point. An object of the present invention is to provide an underground displacement meter and a ground displacement measuring method that are possible.
かかる目的を達成するため本発明の地中変位計は、地中に削孔された孔内に設置されて地中変位を計測する地中変位計であって、直列に配置される複数の長尺部材と、隣り合う該長尺部材どうしを連結する複数のジョイント部材と、該ジョイント部材に収納され、板面にひずみセンサが設置される起歪板を備える2体の計測部と、を備え、前記ジョイント部材が、直列に配置され、前記長尺部材の端部に接続される一対の継手スリーブと、一対の該継手スリーブ間に配置され、該継手スリーブが互いに直交する方向に回動自在となるように接続される中空筒体とを有し、該中空筒体の内側に2体の前記計測部が、前記起歪板の板面を互い直交する方向に向けて、一対の前記継手スリーブに跨って並列に設置され、前記一対の継手スリーブが鉛直回動スリーブと水平回動スリーブとにより構成され、前記鉛直回動スリーブの一端と前記中空筒体の一方の端部は水平軸ピンを介して連結され、前記水平回動スリーブの一端と前記中空筒体の他方の端部は、鉛直軸ピンを介して連結されることを特徴とする。 In order to achieve this object, an underground displacement gauge of the present invention is an underground displacement gauge that is installed in a hole drilled in the ground to measure the A long member, a plurality of joint members that connect the adjacent long members, and two measuring units that are housed in the joint members and have strain-generating plates on which strain sensors are installed on the plate surface. a pair of joint sleeves arranged in series and connected to ends of the elongate members; and a hollow cylindrical body connected so as to be a pair of joint The pair of joint sleeves is composed of a vertically rotating sleeve and a horizontally rotating sleeve, and one end of the vertically rotating sleeve and one end of the hollow cylindrical body are connected to a horizontal shaft pin. and one end of the horizontal rotation sleeve and the other end of the hollow cylindrical body are connected via a vertical axis pin.
本発明の地中変位計によれば、2体の計測部が並列に配置された状態で、それぞれの起歪板の板面を直交させてジョイント部材に収納されている。したがって、地中変位計を地中に設置する際に、起歪板の板面をそれぞれ鉛直方向及び水平方向に向けて配置することで、ジョイント部材の配置位置を計測地点とし、この計測地点で鉛直方向および水平方向の計測値の両者を取得できる。これにより、1つの計測地点で、鉛直方向および水平方向の計測値に基づく鉛直方向及び水平方向の地中変位の両者を算出することが可能となる。 According to the underground displacement meter of the present invention, the two measurement units are arranged in parallel and housed in the joint member with the plate surfaces of the strain plates perpendicular to each other. Therefore, when installing an underground displacement meter in the ground, by arranging the plate surface of the strain plate in the vertical direction and the horizontal direction respectively, the joint member arrangement position is set as the measurement point, and at this measurement point Both vertical and horizontal measurements can be taken. This makes it possible to calculate both the vertical and horizontal underground displacements based on the vertical and horizontal measured values at one measurement point.
本発明の地中変位計は、前記計測部が、記起歪板の一端を一方の前記継手スリーブに固定する固定具と、他端を他方の前記継手スリーブに対して前記板面と平行な方向に摺動自在に押圧する押圧具と、を備えることを特徴とする。 In the underground displacement meter of the present invention, the measurement unit includes a fixture for fixing one end of the distorted plate to one of the joint sleeves, and a fixture that fixes the other end to the other joint sleeve so as to be parallel to the plate surface. and a pressing tool that presses slidably in a direction.
本発明の地中変位計によれば、一対の継手スリーブが何れに回動しても、前記起歪板は、ひずみセンサが設置される板面と直交する方向にのみ変形するため、2体の計測部各々で計測したい方向の変位を精度よく計測することが可能となる。 According to the underground displacement meter of the present invention, no matter which direction the pair of joint sleeves rotates, the strain plate deforms only in the direction orthogonal to the plate surface on which the strain sensor is installed. It is possible to accurately measure the displacement in the direction desired to be measured by each of the measurement units.
本発明の地中変位計は、前記ジョイント部材に、前記継手スリーブと前記長尺部材との間に配置されて両者を接続する金具本体と、該金具本体の外面に先端を前記孔の孔壁に向けて放射状に設置される複数の支持棒材と、を有する連結金具を一対備え、前記支持棒材は、長手方向に伸縮する弾性棒材を1本含む少なくとも3本以上設置されることを特徴とする。 In the underground displacement meter of the present invention, the joint member includes a metal fitting body disposed between the joint sleeve and the elongated member to connect them, and a hole wall of the hole having a tip end on the outer surface of the metal fitting body. A pair of connecting fittings having a plurality of supporting rods installed radially toward the direction of the supporting rods, and at least three or more of the supporting rods including one elastic rod that expands and contracts in the longitudinal direction are installed. Characterized by
本発明の地中変位計によれば、ボーリング孔内において、複数の支持棒材のうち弾性棒材を収縮した状態で鉛直上向きに配置し、他の支持棒材で地中変位計を支持するように設置すると、弾性棒材は常時、鉛直上方の孔壁を押圧するとともに、その反力での他の支持棒材も孔壁を押圧する態様となる。これにより、周辺地山に変形が生じた際にも地中変位計はボーリング孔内で位置ズレ等を生じることがなく、周辺地山の挙動に追従して隣り合う長尺部材間の角度をジョイント部材を介して変化させることが可能となる。 According to the underground displacement gauge of the present invention, among the plurality of supporting rods, the elastic rods are arranged vertically upward in a contracted state in the borehole, and the other supporting rods support the underground displacement gauge. When installed in this manner, the elastic rod always presses the vertically upper hole wall, and the other supporting rods also press the hole wall by the reaction force thereof. As a result, even if the surrounding ground is deformed, the underground displacement sensor does not shift in position within the borehole. It becomes possible to change via the joint member.
本発明の地中変位計測方法は、トンネル構築予定領域の周辺地山に請求項1から3のいずれか1項に記載の地中変位計を、切羽近傍からトンネル掘進方向に延在する削孔に挿入するとともに、2体の前記計測部各々の前記起歪板が板面をそれぞれ鉛直方向および水平方向に向くようにして設置した後、最も坑口側に位置する前記長尺部材の坑口側端部を計測補助地点、複数の前記ジョイント部材の配置位置を計測地点として設定し、掘削開始前および掘削を開始し切羽位置が所定の距離だけ進むごとに複数の前記計測地点各々で計測を行い、掘削開始前および掘削開始後に計測を行った各時点における前記計測地点各々の位置座標を、前記計測補助地点の位置座標を基準とし、複数の前記計測地点で得た計測値のうちの自己よりも坑口側に位置する前記計測地点の計測値に基づいて算定し、複数の前記計測地点各々における掘削前後の位置座標の変位を、鉛直方向および水平方向各々で算定することを特徴とする。
An underground displacement measuring method according to the present invention is a method of drilling a hole extending in a tunnel excavation direction from the vicinity of the face by placing the underground displacement meter according to any one of
本発明の地中変位計測方法によれば、地中に削孔した孔内に地中変位計を、2体の計測部に備える起歪板の板面がそれぞれ鉛直方向および水平方向を向くように設置するのみの簡略な設置方法で、多大な手間を要することなく、複数の計測地点各々で、トンネル掘削に伴い切羽前方の地山に生じる水平方向及び鉛直方向の変位の両者を算定することが可能となる。 According to the underground displacement measuring method of the present invention, the underground displacement meter is placed in the hole drilled in the ground, and the plate surfaces of the strain-generating plates provided in the two measurement units are oriented in the vertical direction and the horizontal direction, respectively. To calculate both the horizontal and vertical displacements generated in the ground in front of the face due to excavation of tunnels at each of multiple measurement points with a simple installation method of just installing it on a wall without requiring a lot of time and effort. becomes possible.
また、本発明の地中変位計測方法は、トンネル構築予定領域の周辺地山に請求項1から3のいずれか1項に記載の地中変位計、もしくは、直列に配置される複数の長尺部材と、隣り合う該長尺部材どうしを連結する複数のジョイント部材と、該ジョイント部材に収納され、板面にひずみセンサが設置される起歪板を備える2体の計測部と、を備え、前記ジョイント部材が、直列に配置され、前記長尺部材の端部に接続される一対の継手スリーブと、一対の該継手スリーブ間に配置され、該継手スリーブが互いに直交する方向に回動自在となるように接続される中空筒体とを有し、該中空筒体の内側に2体の前記計測部が、前記起歪板の板面を互い直交する方向に向けて、一対の前記継手スリーブに跨って並列に設置される地中変位計を、切羽近傍からトンネル掘進方向に延在する削孔に挿入するとともに、2体の前記計測部各々の前記起歪板が板面をそれぞれ鉛直方向および水平方向に向くようにして設置した後、最も坑口側に位置する前記長尺部材の坑口側端部を計測補助地点、複数の前記ジョイント部材の配置位置を計測地点として設定し、掘削開始前および掘削を開始し切羽位置が所定の距離だけ進むごとに複数の前記計測地点各々で計測を行い、掘削開始前における前記計測地点各々の位置座標を、前記計測補助地点の位置座標を基準とし、複数の前記計測地点で得た計測値のうちの自己よりも坑口側に位置する前記計測地点の計測値に基づいて算定し、掘削開始後に計測を行った各時点における前記計測地点各々の位置座標を、掘削前に算定した前記地中変位計の最も先端側に位置する計測地点の位置座標を基準とし、複数の前記計測地点で得た計測値のうちの自己よりも先端側に位置する前記計測地点の計測値に基づいて算定し、複数の前記計測地点各々における掘削前後の位置座標の変位を、鉛直方向および水平方向各々で算定することを特徴とする。
Further, an underground displacement measuring method according to the present invention comprises an underground displacement meter according to any one of
本発明の地中変位計測方法によれば、掘削開始後の各計測地点の地山変位を、掘削作業による影響を受ける程度が最も小さい計測地点の位置座標を基準に算定することから、掘削に伴うトンネル周辺地山の挙動をより精度よく把握することが可能となる。 According to the underground displacement measuring method of the present invention, the ground displacement at each measurement point after the start of excavation is calculated based on the position coordinates of the measurement point that is least affected by the excavation work. It is possible to grasp the behavior of the ground surrounding the tunnel with higher accuracy.
本発明によれば、地中に削孔した孔内に地中変位計を、2体の計測部各々に備える起歪板の板面がそれぞれ鉛直方向および水平方向を向くようにして設置することにより、複数の計測地点各々で、トンネル掘削に伴い切羽前方の地山に生じる水平方向及び鉛直方向の変位の両者を把握することが可能となる。 According to the present invention, an underground displacement meter is installed in a hole drilled in the ground so that the plate surfaces of the strain plates provided in each of the two measurement units face the vertical direction and the horizontal direction, respectively. Therefore, it is possible to grasp both the horizontal and vertical displacements of the ground in front of the face due to tunnel excavation at each of a plurality of measurement points.
本発明は、トンネルの掘削工事に伴って生じる、トンネル構築領域周辺の切羽前方における地山変位を計測するための地中変位計、および地中変位計を用いた地中変位計測方法に関するものである。本実施の形態では、地中変位計をトンネル構築予定領域の側方に位置する周辺地山に設置する場合を事例に挙げ、地中変位計測方法を説明しつつ、地中変位計の詳細および地山変位の算定方法を、図1~図10を用いて説明する。 TECHNICAL FIELD The present invention relates to an underground displacement gauge for measuring ground displacement in front of a face around a tunnel construction area, which is caused by tunnel excavation work, and an underground displacement measurement method using the underground displacement gauge. be. In this embodiment, a case where an underground displacement meter is installed in the surrounding natural ground located on the side of a planned tunnel construction area is taken as an example, and while explaining the underground displacement measurement method, the details of the underground displacement meter and the A method for calculating ground displacement will be described with reference to FIGS. 1 to 10. FIG.
≪地中変位測定方法:地中変位計10を地山に設置≫
トンネルの掘削工事を開始するにあたって、図1の平面図で示すように、掘削開始位置近傍の地山をトンネル構築予定領域Tの断面より広い範囲にわたって掘削し、拡幅部Wを構築する。この後、拡幅部Wから切羽前方のトンネル掘進方向に向けて、トンネル軸線Cと平行にボーリング孔Hを設け、このボーリング孔Hの内方に地中変位計10を挿入・設置する。
<<Method for measuring underground displacement: Install an
At the start of the tunnel excavation work, as shown in the plan view of FIG. 1, the natural ground near the excavation start position is excavated over a wider area than the cross section of the planned tunnel construction area T to construct the widened portion W. After that, a boring hole H is provided in parallel with the tunnel axis C from the widened portion W toward the tunnel excavation direction in front of the face.
本実施の形態では、切羽を前方に見てトンネル構築予定領域Tの左側に位置する周辺地山の1箇所にボーリング孔Hを構築して地中変位計10を設置している。しかし、地中変位計10は、トンネル構築予定領域Tの周辺地山いずれの位置に設けてもよく、その数量も1箇所に限定されるものではない。
In the present embodiment, a boring hole H is constructed in one location of the surrounding natural ground located on the left side of the planned tunnel construction area T when the face is viewed forward, and an
また、本実施の形態では、地中変位計10をボーリング孔Hの孔壁に直接設置しているが、ボーリング孔H内に孔壁保護用のパイプ材を設置してもよく、その場合には、パイプ材の内方に地中変位計10を設置すればよい。さらに、ボーリング孔Hは必ずしもトンネル軸線Cと平行でなくてもよく、トンネル軸線Cに対して所定の角度傾斜させて構築してもよい。
Further, in the present embodiment, the
<地中変位計10:長尺部材1およびジョイント部材2>
ボーリング孔Hに挿入・設置される地中変位計10は、直列に配置される複数の長尺部材1と、隣り合う長尺部材1どうしを連結する複数のジョイント部材2と、ジョイント部材2に内装される2体の計測部3と備え、ジョイント部材2の配置位置がそれぞれ、地中変位計10における計測地点Pとなる。
<Underground Displacement Gauge 10:
The
長尺部材1は、図1及び図2で示すように、例えばステンレス製の高い剛性を有する断面四角形状の長尺パイプよりなり、その部材長は、計測地点Pを配置したい間隔に応じて適宜設定される。本実施の形態では、地中変位を計測する計測地点Pを、例えば500mmおきに設定するべく、長尺部材1の部材長を500mmとしているが、部材長を1000mmとし計測地点Pの間隔を1000mmとしてもよい。
As shown in FIGS. 1 and 2, the
また、長尺部材1は、ボーリング孔H内に設置された際に断面視で、対向する2つの平面が鉛直方向を向き、他の2つの平面が水平方向を向くように配置される。これら長尺部材1は複数を直列に配置されて、ジョイント部材2を介して連結される。
Further, the
ジョイント部材2は、計測部3を収納している中空筒体21と、中空筒体21の両端部各々に連結される一対の継手スリーブ(鉛直回動スリーブ22及び水平回動スリーブ23)と、一対の継手スリーブ各々に接続される一対の連結金具27とを有する。
The
図2で示すように、中空筒体21は、長尺部材1より内径の大きい例えばステンレス製の高い剛性を有する中空角筒体よりなり、両端部のうち一方には鉛直回動スリーブ22の一端が、他方には水平回動スリーブ23の一端がそれぞれ挿入される。鉛直回動スリーブ22及び水平回動スリーブ23は、ともに長尺部材1と同じ断面径を有する例えばステンレス製の高い剛性を有する角柱により構成される。
As shown in FIG. 2, the
これら中空筒体21と鉛直回動スリーブ22及び水平回動スリーブ23は、いずれも長尺部材1と同様にボーリング孔H内に設置された際に断面視で、対向する2つの平面が鉛直方向を向き、他の2つの平面が水平方向を向くように配置される。
The hollow
そして、図2及び図3で示すように、鉛直回動スリーブ22の一端と中空筒体21の一方の端部は、軸線が水平方向に延びる水平軸ピン25が貫通され、水平回動スリーブ23の一端と中空筒体21の他方の端部は、軸線が鉛直方向に延びる鉛直軸ピン26が貫通されることにより連結される。これにより、ジョイント部材2は、中空筒体21に対して鉛直回動スリーブ22が、水平軸ピン25を軸にして鉛直方向に揺動し、水平回動スリーブ23が、鉛直軸ピン26を軸にして水平方向に揺動する、いわゆるユニバーサルジョイントとして機能する。なお、図3は、中空筒体21の内部を図示するため、中空筒体21を取り外した状態となっている。
As shown in FIGS. 2 and 3, one end of the
このため、中空筒体21の内径は、鉛直回動スリーブ22及び水平回動スリーブ23を挿入可能なだけでなく、鉛直回動スリーブ22の鉛直揺動及び水平回動スリーブ23の水平揺動を許容する大きさが確保されている。一方、中空筒体21の外径は、最小規格値(一般には径66mm)のボーリング孔Hに挿入・設置が可能な程度に成形するとよい。
For this reason, the inner diameter of the hollow
また、図2で示すように、中空筒体21に一端が連結されている鉛直回動スリーブ22及び水平回動スリーブ23各々の他端には、それぞれ連結金具27が接続されており、この連結金具27を介して長尺部材1が連結される。
Further, as shown in FIG. 2, connecting
連結金具27は、帯状鋼板を折り曲げ加工した長尺の金具本体271を備え、金具本体271の長手方向両端部各々に一対の接続板272が設けられている。一方の接続板272は鉛直回動スリーブ22もしくは水平回動スリーブ23の他端に、ボルト等の締結具24を介して締結され、他方の接続板272は、長尺部材1にボルト等の締結具24を介して締結される。
The connecting
また、金具本体271には、連結金具27を地中変位計10のセントラライザーとして機能させるべく、バネ等の弾性部材を装備した長手方向に伸縮する1本の弾性棒材273aと、ネジ等の長さ調整機能を備えた2本の長さ調整棒材273bとよりなる3本の支持棒材273が放射状に設けられている。これらはいずれも金具本体271に対して、その軸心から放射方向に延在するように設置されるとともに、先端にはボールキャスターが設置されている。なお、長さ調整棒材273bの数量は、2本に限定するものではなく、3本以上設けてもよい。
In order to allow the connecting fitting 27 to function as a centralizer of the
これらジョイント部材2を構成する、中空筒体21、鉛直回動スリーブ22、水平回動スリーブ23、連結金具27は、各々の軸心が同一線上に位置するよう配置された状態でそれぞれ連結される。そして、これらジョイント部材2に接続される長尺部材1も、その軸心がジョイント部材2の軸心と同一線上に位置するよう接続される。
The hollow
上述する構成の地中変位計10は、地中変位計10の軸心がボーリング孔Hの軸心と合致し、また、連結金具27に備えた3本の支持部材273が孔壁に当接するように、支持部材273のうち2本の長さ調整棒材273bの長さを調整した後、孔壁にボールキャスターを当接させながら挿入・設置される。このとき、弾性棒材273aを収縮させた状態で鉛直上向きに配置するとともに、2本の長さ調整棒材273bで地中変位計10を支持するように設置する。
In the
すると、ボーリング孔H内において、弾性棒材273aは常時、鉛直上方の孔壁を押圧するとともに、その反力で2本の長さ調整棒材273bも孔壁を押圧する態様となり、地中変位計10が孔壁に対して固定される。したがって、周辺地山に変形が生じた際にも地中変位計10はボーリング孔H内で位置ズレ等を生じることがなく、周辺地山の挙動に追従して隣り合う長尺部材1間の角度をジョイント部材2を介して変化させることが可能となる。
Then, in the borehole H, the
≪地中変位測定方法:地山変位の測定≫
上記のとおり、ボーリング孔Hに地中変位計10を挿入・設置した後、トンネル構築予定領域Tの掘削を開始する前と、掘削開始後であって切羽位置が所定距離だけ進むごとに、計測地点P各々について、ジョイント部材2に収納されている計測部3による計測を行うとともに、計測地点P各々の位置座標と、水平方向および鉛直方向の変位を算出する。
≪Underground Displacement Measurement Method: Measurement of Ground Displacement≫
As described above, after the
<地中変位計10:計測部3>
計測部3は、トンネル構築予定領域Tを掘削することにより生じる周辺地山の変形に伴って地中変位計10に外力が作用し、ジョイント部材2を介して連結される長尺部材1どうしが角度を持って隣り合う状態となった際に、その角度(水平方向の角度及び鉛直方向の角度)を計測するものである。本実施の形態では、図2で示すように、2体の計測部3をジョイント部材2を構成する中空筒体21の内方に配置し、中空筒体21でこれら2体の計測部3を保護している。
<Underground displacement meter 10:
The
2体の計測部3はいずれも、図3で示すように、起歪板31と、固定具32と、押圧具33とを備え、板バネにより構成される起歪板31の、板面の表裏各々にひずみセンサ34が設置されている。これら2体の計測部3は、起歪板31の板面を互いに直交させた状態で並列に配置され、中空筒体21の内方で鉛直回動スリーブ22と水平回動スリーブ23とに跨るように設置されるが、設置される向きにより水平方向の角度を計測するための水平計測部3a、もしくは鉛直方向の角度を計測するための鉛直計測部3bとして取り扱われる。
As shown in FIG. 3, each of the two
水平方向の角度を計測する水平計測部3aは、起歪板31の板面を水平方向に向けた状態で、起歪板31の一端が、水平回動スリーブ23の一端に固定具32により固定され、起歪板31の他端が、鉛直回動スリーブ22の一端に押圧具33を介して板面と平行な方向に摺動自在となる状態で押圧される。
In the
押圧具33は、いずれの構造のものを採用してもよいが、本実施の形態では押圧板331と押圧板331を鉛直回動スリーブ22に固定するボルト等の固定具332とにより構成し、押圧板331と鉛直回動スリーブ22の表面との間で起歪板31の他端を摺動可能な程度の押圧力で挟み込む態様としている。
The pressing
一方、鉛直方向の角度を計測する鉛直計測部3bは、起歪板31の板面を鉛直方向に向けた状態で、起歪板31の一端が、鉛直回動スリーブ22の一端に固定具32により固定され、起歪板31の他端が、水平回動スリーブ23の一端に押圧具33を介して板面と平行な方向に摺動自在となる状態で押圧される。
On the other hand, the
したがって、例えば、ジョイント部材2近傍に水平方向の外力が作用すると、図4で示すように、長尺部材1に接続された水平回動スリーブ23が中空筒体21に対して水平方向に回動する。すると、水平計測部3aの起歪板31は鉛直回動スリーブ22上を摺動しつつ、板面が撓んで水平方向に凸面を形成する。これを板面に設置されたひずみセンサ34が検知して電気信号を出力し、この出力値から、ジョイント部材2を介して隣り合う長尺部材1間の水平方向の角度αhを得ることができる。
Therefore, for example, when a horizontal external force acts on the vicinity of the
このとき、鉛直計測部3bを構成する起歪板31は、水平回動スリーブ23上を板面と平行な方向に摺動するため変形することはなく、また、水平力が作用したことによる水平回動スリーブ23の揺動を阻害することもない。
At this time, the
同様に、ジョイント部材2近傍に鉛直方向の外力が作用した際には、鉛直回動スリーブ22が中空筒体21に対して鉛直方向に回転する。すると、鉛直計測部3bを構成する起歪板31は水平回動スリーブ23上を摺動しつつ、板面が撓んで鉛直方向に凸面を形成する。これを板面に設置されたひずみセンサ34が検知して、隣り合う長尺部材1間の鉛直方向の角度αvを得ることができる。
Similarly, when an external force acts in the vicinity of the
このように、起歪板31は一対の継手スリーブ22、23が何れに回動しても、ひずみセンサ34が設置される板面と直交する方向にのみ変形し、水平計測部3aと鉛直計測部3b各々で計測したい方向の角度を精度よく計測することが可能となる。
In this way, the
上記のとおり地中変位計10は、並列に配置した水平計測部3aと鉛直計測部3bの2体の計測部3をジョイント部材2に収納しているため、ジョイント部材2の配置位置である計測地点Pにおいて、水平計測部3aの計測値である水平方向の角度αhと鉛直計測部3bの計測値である鉛直方向の角度αvの両者を、ともに計測することが可能となる。
As described above, the
そして、計測地点P各々において、水平方向の角度αhと鉛直方向の角度αvの両者を計測できることにより、水平方向及び鉛直方向の位置座標を算出することができ、これにより計測地点Pにおいて、地山の水平方向の変位uhおよび鉛直方向の変位uvの両者を算出することが可能となる。 Since both the horizontal angle αh and the vertical angle αv can be measured at each measurement point P, the horizontal and vertical position coordinates can be calculated. It is possible to calculate both the horizontal displacement uh and the vertical displacement uv of .
<計測地点Pの位置座標および地中変位uh、uvの算出方法>
以下に、計測地点Pにおける位置座標のおよび地中変位の算出方法を説明する。本実施の形態では、平面視の位置座標と水平方向の変位uhを算出する方法を事例に挙げ、その算定方法を2パターン(第1の算定方法及び第2の算定方法)説明する。
<Method for calculating position coordinates of measurement point P and underground displacement uh, uv>
A method of calculating the position coordinates at the measurement point P and the underground displacement will be described below. In the present embodiment, a method of calculating the position coordinates in plan view and the horizontal displacement uh will be described as an example, and two patterns of the calculation method (first calculation method and second calculation method) will be described.
なお、計測地点Pにおける平面視の位置座標と水平方向の変位uhを算出するにあたり、図1で示すように、拡幅部Wに計測補助地点Psを設定し、計測補助地点Psに係る実測値を用いる。計測補助地点Psとは、地中変位計10の最も坑口側に位置する坑口側長尺部材1aの坑口側端部の配置位置を指し、実測値は、図6(a)(b)で示すように、坑口側長尺部材1aにおける坑口側端部の平面視の位置座標(x0,y0)と、坑口側長尺部材1aの延在方向とトンネル軸線Cにより形成される角の水平方向の傾斜角βh0である。
In addition, in calculating the position coordinates in plan view and the horizontal displacement uh at the measurement point P, as shown in FIG. use. The auxiliary measurement point Ps refers to the arrangement position of the portal-side end of the portal-side
また、図5で示すように、X軸はトンネル軸線C方向(+方向は掘進方向)であり、Y軸はトンネル軸線Cと直交する方向(-方向はトンネル軸線Cに近づく方向)、である。なお、鉛直方向(-方向は鉛直下向き)はZ軸とする。 Also, as shown in FIG. 5, the X-axis is the direction of the tunnel axis C (the + direction is the excavation direction), and the Y-axis is the direction orthogonal to the tunnel axis C (the - direction is the direction approaching the tunnel axis C). . Note that the vertical direction (the minus direction is vertically downward) is the Z axis.
<第1の算定方法:地中変位計10の坑口側から先端に向かって順に算出する方法>
第1の算定方法を説明するにあたり複数の計測地点Pi(i=1~計測地点の数量)は、図6(a)で示すように、地中変位計10の最も坑口側に位置する計測地点を計測地点P1とし、地中変位計10の先端に向けて昇順に配置されているものとする。図6(a)では、事例として、計測地点Piを4点(i=1~4)示しており、計測地点Pi間の距離はLである。
<First Calculation Method: Method of Calculating in Order from the Entrance Side of the
In describing the first calculation method, a plurality of measurement points Pi (i = 1 to the number of measurement points) are, as shown in FIG. is a measurement point P1, and are arranged in ascending order toward the tip of the
そして、第1の算定方法では、拡幅部Wに位置する計測補助地点Psの実測値を基準とし、坑口側に位置する基準地点P1から先端側に向けて順に位置座標を算定する。 In the first calculation method, the position coordinates are calculated in order from the reference point P1 located on the portal side toward the tip side, using the measured value of the auxiliary measurement point Ps located in the widened portion W as a reference.
まず、地中変位計10の設置後であってトンネル構築予定領域Tの掘削を開始する前の時点で、図6(a)で示すように、計測補助地点Psの位置座標(x0,y0)と切羽位置長尺部材1aのトンネル軸線Cに対する水平方向の傾斜角βh0を実測する。併せて、各計測地点Piについて、水平計測部3aの計測値である水平方向の角度αhiを計測する。
First, after installation of the
次に、各計測地点Piについて、トンネル軸線Cに対する水平方向の傾斜角βhiを、下記(1)式と、実測した傾斜角βh0及び計測値である角度αhiにより算出する。
Next, for each measurement point Pi, the inclination angle βhi in the horizontal direction with respect to the tunnel axis C is calculated using the following equation (1), the actually measured inclination angle βh0, and the measured angle αhi.
各計測地点Piにおける平面視の位置座標を、先に実測した計測補助地点Psの位置座標(x0,y0)と(1)式で算出したβhiとに基づいて、(2)式より算出する。
The positional coordinates of the planar view at each measurement point Pi are calculated by Equation (2) based on the previously measured positional coordinates (x0, y0) of the auxiliary measurement point Ps and βhi calculated by Equation (1).
上記の(1)式及び(2)式による算定を、地中変位計10の坑口側に位置する計測地点P1から先端に向かって順に繰り返し、各々の位置座標(xi、yi)を算出する。
Calculations by the above formulas (1) and (2) are repeated in order from the measurement point P1 located on the entrance side of the
上記と同様の手順を、トンネル構築予定領域Tの掘削開始後であって切羽位置が所定距離だけ進むごとに繰り返し実施する。なお、計測補助地点Psの位置座標(x0、y0)と坑口側長尺部材1aのトンネル軸線Cに対する水平方向の傾斜角βh0は、掘削作業が進むごとに変化することから、これらを実測する作業も、掘削開始前と同様に切羽位置が所定距離だけ進むごとに実施する。
A procedure similar to the above is repeated every time the face position advances by a predetermined distance after the start of excavation of the planned tunnel construction region T. Since the positional coordinates (x0, y0) of the auxiliary measurement point Ps and the horizontal inclination angle βh0 of the portal-side
図7(a)に位置座標の算出結果を示すグラフ、図7(b)に水平計測部3aによる計測値αhとトンネル軸線Cに対する水平方向の傾斜角βhの一覧表を示す。なお、計測地点Pi間の距離Lは1000mmである。図7では、上記の第1の算定方法を切羽位置A(掘削開始前)の時点、及び切羽位置B~Dの時点(位置座標を算出した時点)の合計4回にわたって行っている。これを見ると、掘削作業が進んで切羽が切羽位置A~切羽位置Dに進むにつれて、計測補助地点Psおよび計測地点P1~P4が徐々にトンネル軸線に近づく方向(Y軸の-方向)に移動している様子が見て取れる。特に、切羽位置Cおよび切羽位置Dの時点では、計測地点P2の位置座標が他の計測地点よりトンネル軸線側に大きく移動しており、計測地点P2付近が軟弱な地盤である可能性を含んでいる様子も見て取れる。
FIG. 7(a) shows a graph showing the calculation results of the position coordinates, and FIG. 7(b) shows a list of the measured values αh by the
次に、計測地点Pi(i=1~計測地点の数量)各々について、切羽位置A(掘削開始前)の時点の位置座標(初期座標)と切羽位置B~Dの時点(掘削が所定距離だけ進んだ時点)各々における位置座標の差を算出し、切羽位置B~Dの時点各々における水平方向の変位uhを算出する。なお、水平方向の変位uhは、図5で示すようなx-y平面内のx方向変位uxおよびy方向変位uyから成るベクトル(ux、uy)である。 Next, for each of the measurement points Pi (i = 1 to the number of measurement points), the position coordinates (initial coordinates) at the time of the face position A (before the start of excavation) and the time points of the face positions B to D (the excavation is only a predetermined distance) The difference between the position coordinates at each of the time points BD advanced is calculated, and the horizontal displacement uh at each time point of the face positions B to D is calculated. The horizontal displacement uh is a vector (ux, uy) consisting of x-direction displacement ux and y-direction displacement uy in the xy plane as shown in FIG.
この場合には、先に算出した切羽位置A(掘削開始前)における計測地点Pi各々の平面視における位置座標を初期座標として、(3)式の(xi0,yi0)に代入し、各計測値Piの変位uhiを算出する。
In this case, the position coordinates in plan view of each of the measurement points Pi at the face position A (before the start of excavation) calculated in advance are used as initial coordinates and substituted into (xi0, yi0) in the equation (3), and each measurement value A displacement uhi of Pi is calculated.
なお、拡幅部Wの計測補助地点Psの変位uhについても、計測地点Piと同様に上記の(3)式により算定できる。この場合には、先に実測した切羽位置A(掘削開始前)における計測補助地点Psの位置座標を初期座標として、(3)式の(xi0,yi0)に代入し、切羽位置B~Dの時点各々における計測補助地点Psの位置座標を(xi、yi)に代入することで変位uhを算出する。 The displacement uh at the measurement auxiliary point Ps of the widened portion W can also be calculated by the above equation (3) in the same manner as the measurement point Pi. In this case, the position coordinates of the measurement assistance point Ps at the previously measured face position A (before the start of excavation) are used as the initial coordinates and substituted into (xi0, yi0) in the equation (3) to obtain the face positions B to D. The displacement uh is calculated by substituting the position coordinates of the measurement assistance point Ps at each time point into (xi, yi).
また、鉛直方向の変位uvを算定する場合には、計測補助地点Psの位置座標(x0、y0)と切羽位置長尺部材1aのトンネル軸線Cに対する水平方向の傾斜角βh0に代えて、計測補助地点Psの位置座標(x0、z0)と切羽位置長尺部材1aのトンネル軸線Cに対する鉛直方向の傾斜角βv0を実測する。併せて、各計測地点Piについて、鉛直計測部3bを用いて鉛直方向の角度αviをそれぞれ計測する。これらを用いて、上記の手順により、計測地点Pi各々の鉛直方向の位置座標および鉛直方向の変位uvを算定すればよい。なお、鉛直方向の変位uvは、図5で示すようなx-z平面内のx方向変位uxおよびz方向変位uzから成るベクトル(ux、uz)である。
Further, when calculating the displacement uv in the vertical direction, instead of the position coordinates (x0, y0) of the measurement assistance point Ps and the horizontal inclination angle βh0 of the face position
上記の地中変位計測方法によれば、地中に削孔したボーリング孔H内に地中変位計10を、2体の計測部3に備える起歪板31の板面がそれぞれ鉛直方向および水平方向を向くように設置するのみの簡略な設置方法で、多大な手間を要することなく、複数の計測地点Pi各々で、トンネル掘削に伴い切羽前方の地山に生じる水平方向変位uh及び鉛直方向の変位uvの両者を算定することが可能となる。なお、実際に管理する値は、算出した水平方向の変位uhおよび鉛直方向の変位uvを各方向成分に分解した値ux、uy、uzである。
According to the underground displacement measuring method described above, the
<第2の算定方法:地中変位計10の先端から後端(切羽側)に向かって算出する方法>
第1の算定方法では、各計測地点Pi(i=1~計測地点の数量)としたが、第2の算定方法では、各計測地点Pi(i=0~(計測地点の数量-1))と設定している。つまり、地中変位計10の最も坑口側に位置する計測地点を計測地点P1とし、地中変位計10の先端に向けて昇順に配置され、最も先端側に位置する計測地点の1つ手前をP(n-1)とする。そして、地中変位計10の最も先端側に位置する計測地点を計測地点Pnとし、拡幅部Wに設定した計測補助地点Psを計測地点P0としている。なお、図6(b)では、事例として、計測地点を4点示している(i=0~3、n=4)。
<Second calculation method: method of calculating from the tip of the
In the first calculation method, each measurement point Pi (i = 1 to the number of measurement points), but in the second calculation method, each measurement point Pi (i = 0 to (quantity of measurement points - 1)) is set. That is, the measurement point located closest to the tunnel entrance of the
そして、第2の算定方法では、第1の算定方法と異なり、地中変位計10の先端側に位置する計測地点Pnの位置座標を基準とし、坑口側に向けて最も坑口側に位置する計測地点P1および計測補助地点Psに至るまで順に位置座標を算定する。
In the second calculation method, unlike the first calculation method, the position coordinates of the measurement point Pn located on the tip side of the
まず、地中変位計10の設置後であってトンネル構築予定領域Tの掘削を開始する前の時点で、第1の算定方法により、計測地点Pi(i=0~(n-1))、Pn各々について、トンネル軸線Cに対する水平方向の傾斜角βhi、βhn、位置座標(xi、yi)、(xn,yn)を各々算出する。なお、P0(計測補助地点Ps)の位置座標(x0,y0)および傾斜角βh0は、第1の算定方法で示したように、実測値を用いる。
First, after installation of the
そして、上記の算出結果のうち、地中変位計10の最も先端側に位置する計測地点Pnの位置座標(xn,yn)およびトンネル軸線Cに対する水平方向の傾斜角βhnを、掘削作業を開始した後にも変動することのない固定値として取り扱うこととし、以降の(4)式及び(5)式に用いる。
Then, the position coordinates (xn, yn) of the measurement point Pn located on the extreme tip side of the
トンネル構築予定領域Tの掘削作業を開始し、切羽位置が所定の距離だけ進んだところで、各計測地点P1~P(n-1)について、水平計測部3aの計測値である水平方向の角度αhiを計測する。
When the excavation work of the planned tunnel construction area T is started and the face position advances by a predetermined distance, the horizontal angle αhi, which is the measurement value of the
次に、各計測地点Piについて、トンネル軸線Cに対する傾斜角βhiを、(4)式により算出する。このとき、水平方向の角度αhnおよびトンネル軸線Cに対する水平方向の傾斜角βhnはともに、掘削開始前の時点で第1の算定方法により算定した計測地点Pnの計測値および算定値である。
Next, for each measurement point Pi, the inclination angle βhi with respect to the tunnel axis C is calculated by the equation (4). At this time, both the horizontal angle αhn and the horizontal inclination angle βhn with respect to the tunnel axis C are the measured value and the calculated value at the measurement point Pn calculated by the first calculation method before the start of excavation.
この後、計測地点Piにおける平面視の位置座標を、掘削開始前の時点で第1の算定方法により算定した計測地点Pnの位置座標(xn,yn)と、(4)式で算出したβhiとに基づいて、(5)式より算出する。
After that, the position coordinates of the measurement point Pi in a plan view are determined by the position coordinates (xn, yn) of the measurement point Pn calculated by the first calculation method before the start of excavation, and βhi calculated by the equation (4). Based on, it is calculated from the formula (5).
上記の(4)式及び(5)式による算定を、地中変位計10の先端側に位置する計測地点P(n-1)から最も坑口側に位置する計測地点P1及び拡幅部wに位置する計測地点P0(計測補助地点Ps)に向かって順に繰り返し、各計測地点Piの位置座標(xi、yi)をそれぞれ算出する。
Calculations by the above formulas (4) and (5) are performed at the measurement point P (n-1) located on the tip side of the
上記と同様の作業を、切羽位置が所定距離だけ進むごとに繰り返す。こうすると、掘削開始後では、各計測地点Piの位置座標を、水平計測部3aの計測値である水平方向の角度αh1~αh(n-1)を計測するのみで算定でき、第1の算定方法のように、計測補助地点Psの位置座標(x0、y0)と切羽位置長尺部材1aのトンネル軸線Cに対する水平方向の傾斜角βh0を、繰り返し実測する必要が無い。
The same operation as described above is repeated each time the face position advances by a predetermined distance. In this way, after the start of excavation, the position coordinates of each measurement point Pi can be calculated only by measuring the horizontal angles αh1 to αh(n−1), which are the measured values of the
図8(a)に位置座標の算出結果を示すグラフ、図8(b)に水平計測部3aによる計測値αhとトンネル軸線Cに対する水平方向の傾斜角βhの一覧表を示す。なお、計測地点Pi間の距離Lは1000mmである。図8では、切羽位置A(掘削開始前)の時点では第1の算定方法により計測地点P0~P4各々について位置座標を算定し、切羽位置B~Dの時点各々で、第2の算定方法により計測地点P0~P3の位置座標を算定している。なお、切羽位置B~Dの時点では、前述したようにP4(地中変位計10の最も先端側に位置する計測地点Pn)は、掘削作業を開始した後にも変動することのない固定値として取り扱っている。
FIG. 8(a) shows a graph showing the calculation results of the position coordinates, and FIG. 8(b) shows a list of the measured values αh by the
図8を見ると、第1の算定方法と同様に、掘削作業が進んで切羽が切羽位置A~切羽位置Dに進むにつれて、計測補助地点P0~P3が徐々にトンネル軸線に近づく方向(Y軸の-方向)に移動している様子が見て取れる。また、切羽位置Dの時点で、計測地点P2の位置座標が他の計測地点よりトンネル軸線側に大きく移動している様子も見て取れる。 Looking at FIG. 8, similarly to the first calculation method, as the excavation work progresses and the face advances from face position A to face position D, the auxiliary measurement points P0 to P3 gradually approach the tunnel axis in the direction (Y-axis (- direction)). It can also be seen that the position coordinates of the measurement point P2 at the face position D have moved farther toward the tunnel axis than the other measurement points.
なお、各計測地点Pi各々の水平方向の変位uhを算出する方法は、第1の算定方法で示した方法と同様に、(3)式を用いればよい。 It should be noted that the method of calculating the horizontal displacement uh of each measurement point Pi may use equation (3) in the same manner as the method shown in the first calculation method.
また、鉛直方向の変位uvを算定する場合には、掘削開始前の計測地点P0(計測補助地点Ps)の位置座標(x0、y0)と切羽位置長尺部材1aのトンネル軸線Cに対する水平方向の傾斜角βh0に代えて、計測地点P0(計測補助地点Ps)の位置座標(x0、z0)と切羽位置長尺部材1aのトンネル軸線Cに対する鉛直方向の傾斜角βv0を実測する。併せて、各計測地点Pi、Pnについて、鉛直計測部3bの計測値である鉛直方向の角度αvi、αvnを計測する。これらを用いて上記と同様の手順により、計測地点Pi、Pn各々の鉛直方向の位置座標および鉛直方向の変位uvを算定すればよい。
Further, when calculating the vertical displacement uv, the position coordinates (x0, y0) of the measurement point P0 (measurement auxiliary point Ps) before the start of excavation and the horizontal direction of the face position
上記の地中変位計測方法によれば、掘削後の各計測地点Piの地山変位を、掘削作業による影響を受ける程度が最も小さい計測地点Pnの位置座標を基準に算定することから、掘削に伴うトンネル構築予定領域Tの周辺地山の挙動をより精度よく把握することが可能となる。 According to the underground displacement measurement method described above, the ground displacement at each measurement point Pi after excavation is calculated based on the position coordinates of the measurement point Pn that is least affected by the excavation work. Therefore, it is possible to grasp the behavior of the ground surrounding the planned tunnel construction area T with higher accuracy.
また、第1の算定方法と第2の算定方法を併せて実施し算定結果の比較検証を行うと、水平方向の変位uhおよび鉛直方向の変位uvの信頼性をより高めることができる。 Further, if the first calculation method and the second calculation method are performed together and the calculation results are compared and verified, the reliability of the horizontal displacement uh and the vertical displacement uv can be further improved.
本発明の地中変位計および地中変位計を用いた地中変位計測方法は、上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更が可能である。 The underground displacement gauge and the underground displacement measuring method using the underground displacement gauge of the present invention are not limited to the above embodiments, and various modifications are possible without departing from the scope of the present invention.
例えば、本実施の形態では、ジョイント部材2に計測部3として水平計測部3aと鉛直計測部3bをそれぞれ1体ずつ採用したが、必ずしもこれに限定するものではなく、図9で示すように、両者を2体ずつ設置してもよい。この場合には、水平計測部3aと鉛直計測部3bの各々で固定具32と押圧具33の位置が逆転するように配置するとよい。
For example, in the present embodiment, one
また、例えば、水平計測部3aを2体、鉛直計測部3bを1体という具合に、地盤特性や変位を把握した方向の重要度等により、変則的な数量で設置してもよく、さらには、鉛直回動スリーブ22及び水平回動スリーブ23の内面及び外面の両者を利用して、最大8体の計測部3を設けることも可能である。
In addition, for example, two
さらに、計測部3は、必ずしも図3で示すような構造に限定されるものではなく、例えば、図10で示すように、鉛直回動スリーブ22及び水平回動スリーブ23各々に対して、起歪板31と、これに直交して設置される押圧板331の両者を一体に備える構成としてもよい。こうすると、起歪板31を鉛直回動スリーブ22もしくは水平回動スリーブ23に固定する固定具32、および押圧板331を鉛直回動スリーブ22もしくは水平回動スリーブ23に固定する固定具332、の両者が不要となり、また、押圧板331も別途製作する必要がないため、部材点数を減少させてより簡略な構成とすることが可能となる。
Furthermore, the
また、地中変位計10は、端末装置(図示せず)無線接続させておくとよい。端末装置は、演算処理装置、入力部、出力部及び記憶部等を備えた、いわゆるノート型パソコンやタブレット端末である。そして、地中変位計10に備えた計測部3の電気信号を入力部より端末装置に入力させるととともに、演算処理装置に上記第1の算定手段により計測地点Pの位置座標および水平方向の変位uh及び鉛直方向の変位uvを算定する第1の算定部を格納しておく。
Further, the
同様に、演算処理装置に上記第2の算定手段により計測地点Pの位置座標および水平方向の変位uh及び鉛直方向の変位uvを算定する第2の算定部を格納しておく。こうすると、管理者は現場や管理事務所等において、端末装置に備えたディスプレィ等の出力装置に、図7及び図8で示すような計測地点Pの算出結果を表示させ、トンネル構築予定領域Tの周辺地山の変形挙動をモニタリングすることが可能となる。 Similarly, a second calculation unit for calculating the position coordinates of the measurement point P, the horizontal displacement uh and the vertical displacement uv by the second calculating means is stored in the arithmetic processing unit. 7 and 8, the administrator displays the calculation result of the measurement point P as shown in FIGS. It is possible to monitor the deformation behavior of the surrounding ground.
1 長尺部材
2 ジョイント部材
21 中空筒体
22 鉛直回動スリーブ(一対の継手スリーブ)
23 水平回動スリーブ(一対の継手スリーブ)
24 締結具
25 水平軸ピン
26 鉛直軸ピン
27 連結金具
271 金具本体
272 接続板
273 支持棒材
273a 弾性棒材
273b 長さ調整棒材
3 計測部
3a 水平計測部
3b 鉛直計測部
31 起歪板
32 固定具
33 押圧具
331 押圧板
332 固定具
34 ひずみセンサ
10 地中変位計
H ボーリング孔
P 計測地点
T トンネル構築予定領域
W 拡幅部
23 horizontal rotation sleeve (a pair of joint sleeves)
24
Claims (6)
直列に配置される複数の長尺部材と、
隣り合う該長尺部材どうしを連結する複数のジョイント部材と、
該ジョイント部材に収納され、板面にひずみセンサが設置される起歪板を備える2体の
計測部と、を備え、
前記ジョイント部材が、
直列に配置され、前記長尺部材の端部に接続される一対の継手スリーブと、
一対の該継手スリーブ間に配置され、該継手スリーブが互いに直交する方向に回動自在
となるように接続される中空筒体とを有し、
該中空筒体の内側に2体の前記計測部が、前記起歪板の板面を互い直交する方向に向け
て、一対の前記継手スリーブに跨って並列に設置され、
前記一対の継手スリーブが鉛直回動スリーブと水平回動スリーブとにより構成され、
前記鉛直回動スリーブの一端と前記中空筒体の一方の端部は水平軸ピンを介して連結され、前記水平回動スリーブの一端と前記中空筒体の他方の端部は、鉛直軸ピンを介して連結されることを特徴とする地中変位計。 An underground displacement meter that is installed in a hole drilled in the ground and measures underground displacement,
a plurality of elongated members arranged in series;
a plurality of joint members that connect the adjacent elongated members;
and two measurement units that are housed in the joint member and that include a strain plate on which a strain sensor is installed on the plate surface,
The joint member
a pair of coupling sleeves arranged in series and connected to ends of the elongate members;
a hollow cylinder disposed between the pair of joint sleeves and connected so that the joint sleeves are rotatable in directions orthogonal to each other;
The two measurement units are installed in parallel across the pair of joint sleeves inside the hollow cylindrical body with the plate surfaces of the strain-generating plates oriented in directions orthogonal to each other ,
The pair of joint sleeves is composed of a vertical rotation sleeve and a horizontal rotation sleeve,
One end of the vertical rotation sleeve and one end of the hollow cylinder are connected via a horizontal axis pin, and one end of the horizontal rotation sleeve and the other end of the hollow cylinder are connected by the vertical axis pin. An underground displacement gauge, characterized by being connected via .
前記計測部が、前記起歪板の一端を一方の前記継手スリーブに固定する固定具と、他端を他方の前記継手スリーブに対して前記板面と平行な方向に摺動自在に押圧する押圧具と、を備えることを特徴とする地中変位計。 In the underground displacement meter according to claim 1,
The measurement unit includes a fixture for fixing one end of the distorted plate to one of the joint sleeves, and a press for pressing the other end of the strain plate against the other joint sleeve so as to be slidable in a direction parallel to the plate surface. An underground displacement gauge comprising:
前記ジョイント部材に、前記継手スリーブと前記長尺部材との間に配置されて両者を接続する金具本体と、該金具本体の外面に先端を前記孔の孔壁に向けて放射状に設置される複数の支持棒材と、を有する連結金具を一対備え、
前記支持棒材は、長手方向に伸縮する弾性棒材を1本含む少なくとも3本以上設置されることを特徴とする地中変位計。 The underground displacement meter according to claim 1 or 2,
The joint member includes a metal fitting body disposed between the joint sleeve and the elongated member to connect them, and a plurality of metal fitting bodies radially installed on the outer surface of the metal fitting body with their tips directed toward the hole wall of the hole. and a pair of connecting fittings having
An underground displacement meter, wherein at least three or more of the support rod members including one elastic rod member that expands and contracts in the longitudinal direction are installed.
最も坑口側に位置する前記長尺部材の坑口側端部を計測補助地点、2体の前記計測部が収納される複数の前記ジョイント部材の配置位置を計測地点として設定し、
掘削開始前、および掘削を開始し切羽位置が所定の距離だけ進むごとに、複数の前記計測地点各々で計測を行い、
掘削開始前および掘削開始後に計測を行った各時点における前記計測地点各々の位置座標を、前記計測補助地点の位置座標を基準とし、複数の前記計測地点で得た計測値のうちの自己よりも坑口側に位置する前記計測地点の計測値に基づいて算定し、
複数の前記計測地点各々における掘削前後の位置座標の変位を、鉛直方向および水平方向各々で算定することを特徴とする地中変位算定方法。 The underground displacement meter according to any one of claims 1 to 3 is inserted into the ground surrounding the planned tunnel construction area into a drilled hole extending in the tunnel excavation direction from the vicinity of the face, and the two bodies are measured. After the distorted plate of each part is installed so that the plate surface is oriented in the vertical direction and the horizontal direction,
setting the pit-side end of the long member located closest to the pit-side as a measurement auxiliary point, and setting the arrangement positions of the plurality of joint members in which the two measurement units are accommodated as measurement points,
Measurement is performed at each of the plurality of measurement points before the start of excavation and each time excavation is started and the face position advances by a predetermined distance,
The position coordinates of each of the measurement points at each point in time when the measurements were performed before and after the start of excavation are compared with the position coordinates of the auxiliary measurement points, among the measurement values obtained at the plurality of measurement points. Calculated based on the measured values at the measurement points located on the side of the tunnel,
An underground displacement calculation method, wherein the displacement of position coordinates before and after excavation at each of the plurality of measurement points is calculated in each of the vertical direction and the horizontal direction.
最も坑口側に位置する前記長尺部材の坑口側端部を計測補助地点、2体の前記計測部が収納される複数の前記ジョイント部材の配置位置を計測地点として設定し、
掘削開始前および掘削を開始し切羽位置が所定の距離だけ進むごとに複数の前記計測地点各々で計測を行い、
掘削開始前における前記計測地点各々の位置座標を、前記計測補助地点の位置座標を基準とし、複数の前記計測地点で得た計測値のうちの自己よりも坑口側に位置する前記計測地点の計測値に基づいて算定し、
掘削開始後に計測を行った各時点における前記計測地点各々の位置座標を、掘削前に算定した前記地中変位計の最も先端側に位置する計測地点の位置座標を基準とし、複数の前記計測地点で得た計測値のうちの自己よりも先端側に位置する前記計測地点の計測値に基づいて算定し、
複数の前記計測地点各々における掘削前後の位置座標の変位を、鉛直方向および水平方向各々で算定することを特徴とする地中変位算定方法。 The underground displacement meter according to any one of claims 1 to 3 is inserted into the ground surrounding the planned tunnel construction area into a drilled hole extending in the tunnel excavation direction from the vicinity of the face, and the two bodies are measured. After the distorted plate of each part is installed so that the plate surface is oriented in the vertical direction and the horizontal direction,
setting the pit-side end of the long member located closest to the pit-side as a measurement auxiliary point, and setting the arrangement positions of the plurality of joint members in which the two measurement units are accommodated as measurement points,
Measurement is performed at each of the plurality of measurement points before the start of excavation and every time the face position advances by a predetermined distance after the start of excavation,
The position coordinates of each of the measurement points before the start of excavation are based on the position coordinates of the measurement auxiliary point, and among the measurement values obtained at the plurality of measurement points, the measurement of the measurement point located on the portal side of the self. calculated based on the value of
The position coordinates of each of the measurement points at each point of time when the measurement was performed after the start of excavation, with reference to the position coordinates of the measurement point located on the most tip side of the underground displacement gauge calculated before excavation, and the plurality of measurement points. Calculation based on the measurement value of the measurement point located on the tip side of the self among the measurement values obtained in
An underground displacement calculation method, wherein the displacement of position coordinates before and after excavation at each of the plurality of measurement points is calculated in each of the vertical direction and the horizontal direction.
直列に配置される複数の長尺部材と、
隣り合う該長尺部材どうしを連結する複数のジョイント部材と、
該ジョイント部材に収納され、板面にひずみセンサが設置される起歪板を備える2体の計測部と、を備え、
前記ジョイント部材が、
直列に配置され、前記長尺部材の端部に接続される一対の継手スリーブと、
一対の該継手スリーブ間に配置され、該継手スリーブが互いに直交する方向に回動自在となるように接続される中空筒体とを有し、
該中空筒体の内側に2体の前記計測部が、前記起歪板の板面を互い直交する方向に向けて、一対の前記継手スリーブに跨って並列に設置される地中変位計を、
切羽近傍からトンネル掘進方向に延在する削孔に挿入するとともに、2体の前記計測部各々の前記起歪板が板面をそれぞれ鉛直方向および水平方向に向くようにして設置した後、
最も坑口側に位置する前記長尺部材の坑口側端部を計測補助地点、2体の前記計測部が収納される複数の前記ジョイント部材の配置位置を計測地点として設定し、
掘削開始前および掘削を開始し切羽位置が所定の距離だけ進むごとに複数の前記計測地点各々で計測を行い、
掘削開始前における前記計測地点各々の位置座標を、前記計測補助地点の位置座標を基準とし、複数の前記計測地点で得た計測値のうちの自己よりも坑口側に位置する前記計測地点の計測値に基づいて算定し、
掘削開始後に計測を行った各時点における前記計測地点各々の位置座標を、掘削前に算定した前記地中変位計の最も先端側に位置する計測地点の位置座標を基準とし、複数の前記計測地点で得た計測値のうちの自己よりも先端側に位置する前記計測地点の計測値に基づいて算定し、
複数の前記計測地点各々における掘削前後の位置座標の変位を、鉛直方向および水平方向各々で算定することを特徴とする地中変位算定方法。 In the ground surrounding the planned tunnel construction area,
a plurality of elongated members arranged in series;
a plurality of joint members that connect the adjacent elongated members;
and two measurement units that are housed in the joint member and that include a strain-generating plate on which a strain sensor is installed on the plate surface,
The joint member
a pair of coupling sleeves arranged in series and connected to ends of the elongate members;
a hollow cylinder disposed between the pair of joint sleeves and connected so that the joint sleeves are rotatable in directions orthogonal to each other;
an underground displacement meter in which the two measurement units are installed in parallel across the pair of joint sleeves with the plate surfaces of the distorted plates oriented in mutually orthogonal directions inside the hollow cylinder;
After inserting it into a drilled hole extending in the tunnel excavation direction from the vicinity of the face, and installing the strain plate of each of the two measurement units so that the plate surface faces the vertical direction and the horizontal direction,
setting the pit-side end of the long member located closest to the pit-side as a measurement auxiliary point, and setting the arrangement positions of the plurality of joint members in which the two measurement units are accommodated as measurement points,
Measurement is performed at each of the plurality of measurement points before the start of excavation and every time the face position advances by a predetermined distance after the start of excavation,
The position coordinates of each of the measurement points before the start of excavation are based on the position coordinates of the measurement auxiliary point, and among the measurement values obtained at the plurality of measurement points, the measurement of the measurement point located on the portal side of the self. calculated based on the value of
The position coordinates of each of the measurement points at each point in time when the measurement is performed after the start of excavation are determined based on the position coordinates of the measurement point located on the most tip side of the underground displacement gauge calculated before excavation, and the plurality of measurement points. Calculation based on the measurement value of the measurement point located on the tip side of the self among the measurement values obtained in
An underground displacement calculation method, wherein the displacement of position coordinates before and after excavation at each of the plurality of measurement points is calculated in each of the vertical direction and the horizontal direction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018171878A JP7246883B2 (en) | 2018-09-13 | 2018-09-13 | Underground Displacement Meter and Underground Displacement Calculation Method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018171878A JP7246883B2 (en) | 2018-09-13 | 2018-09-13 | Underground Displacement Meter and Underground Displacement Calculation Method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020041994A JP2020041994A (en) | 2020-03-19 |
JP7246883B2 true JP7246883B2 (en) | 2023-03-28 |
Family
ID=69798103
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018171878A Active JP7246883B2 (en) | 2018-09-13 | 2018-09-13 | Underground Displacement Meter and Underground Displacement Calculation Method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7246883B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7166971B2 (en) * | 2019-03-26 | 2022-11-08 | 鹿島建設株式会社 | Ground deformation observation system and method |
CN112359806A (en) * | 2020-09-27 | 2021-02-12 | 中建东设岩土工程有限公司 | Device and method for monitoring influence of deep foundation pit excavation on vertical deformation of subway |
CN115371630B (en) * | 2022-04-28 | 2024-06-25 | 武汉科技大学 | Simulation test monitoring device for subsidence of top plate of underground roadway |
CN115031603B (en) * | 2022-06-07 | 2024-10-18 | 中煤浙江勘测设计有限公司 | Geological fracture measuring device and application method thereof |
CN115325981B (en) * | 2022-10-11 | 2023-01-13 | 深圳市瑞芬科技有限公司 | Multipoint displacement transmission calculation method and installation device of array type displacement meter |
CN116379948B (en) * | 2023-02-13 | 2024-01-30 | 长江水利委员会长江科学院 | Large-range serial multi-point displacement meter suitable for surrounding rock large deformation |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000039316A (en) | 1998-07-22 | 2000-02-08 | Tokyo Keisoku:Kk | Linked displacement meter |
JP2001304853A (en) | 2000-04-18 | 2001-10-31 | Tokyo Keisoku:Kk | Link-type displacement meter |
JP2002048518A (en) | 2000-08-03 | 2002-02-15 | Shimizu Corp | Method of measuring displacement using optical fiber sensor |
JP2007231635A (en) | 2006-03-01 | 2007-09-13 | Tokyo Electric Power Co Inc:The | Position measuring method for jacking method and its apparatus |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58208614A (en) * | 1982-05-31 | 1983-12-05 | Taisei Corp | Device for measuring bending of pipe |
JPS61148301A (en) * | 1984-12-22 | 1986-07-07 | Kyowa Electronic Instr Corp Ltd | Angle gauge |
JPH0624751Y2 (en) * | 1987-11-06 | 1994-06-29 | 株式会社京三製作所 | Transducer using strain resistance |
-
2018
- 2018-09-13 JP JP2018171878A patent/JP7246883B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000039316A (en) | 1998-07-22 | 2000-02-08 | Tokyo Keisoku:Kk | Linked displacement meter |
JP2001304853A (en) | 2000-04-18 | 2001-10-31 | Tokyo Keisoku:Kk | Link-type displacement meter |
JP2002048518A (en) | 2000-08-03 | 2002-02-15 | Shimizu Corp | Method of measuring displacement using optical fiber sensor |
JP2007231635A (en) | 2006-03-01 | 2007-09-13 | Tokyo Electric Power Co Inc:The | Position measuring method for jacking method and its apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP2020041994A (en) | 2020-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7246883B2 (en) | Underground Displacement Meter and Underground Displacement Calculation Method | |
CN103513016B (en) | Adopt the soft rock multi-measuring point detecting earth stress method of sensing post | |
KR101790177B1 (en) | Apparatus for measuring convergence and ceiling subsidence using fiber bragg grating sensor | |
JP2009294039A (en) | Structure deformation monitoring method using distribution type optical-fiber sensing system, and device thereof | |
US20100006337A1 (en) | Apparatus for drilling machine alignment | |
CN106441224A (en) | Fixed clinometer and using method thereof | |
WO2006065923A2 (en) | Centralizer-based survey and navigation device and method | |
US11512589B2 (en) | Downhole strain sensor | |
KR101718714B1 (en) | A three-dimensional displacement measuring device having a length displacement measuring | |
Guo et al. | Development and operation of a fiber Bragg grating based online monitoring strategy for slope deformation | |
CN107882011B (en) | miniature probe with temperature compensation function | |
KR100550108B1 (en) | Method for measuring 2d convergence of tunnel and apparatus thereof | |
KR101391885B1 (en) | The Three Dimension Displacement Measuring Device | |
JP2011007502A (en) | Method and system for measuring drilling position | |
JPH0363387A (en) | Displacement measuring for pit by auger boring | |
TW201420853A (en) | Steel pipe insertion work steel pipe strain detection structure | |
JP4530358B2 (en) | Drilling control device in the construction of column-type underground continuous walls | |
CN108020198A (en) | A kind of monitor with crack bending distortion measurement | |
CN211596854U (en) | Pipe jacking working well horizontal deformation measurement system | |
CN109186547B (en) | Cross measuring instrument for measuring roadway section and using method | |
KR20030077876A (en) | The sensor system for measurement of tunnel endurance displacement and its ceiling subsidence | |
JPH07159146A (en) | Displacement measurement of discontinuous surface and discontinuous surface displacement gage | |
JP2024087519A (en) | Displacement meter and underground displacement calculation method | |
CN115263326B (en) | Method for monitoring pipe-jacking pipeline deviation in real time based on triaxial inclination sensor | |
JP2018136311A (en) | Displacement measurement device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210820 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220826 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220913 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20221109 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230214 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230315 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7246883 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |