JP2007231635A - Position measuring method for jacking method and its apparatus - Google Patents
Position measuring method for jacking method and its apparatus Download PDFInfo
- Publication number
- JP2007231635A JP2007231635A JP2006055415A JP2006055415A JP2007231635A JP 2007231635 A JP2007231635 A JP 2007231635A JP 2006055415 A JP2006055415 A JP 2006055415A JP 2006055415 A JP2006055415 A JP 2006055415A JP 2007231635 A JP2007231635 A JP 2007231635A
- Authority
- JP
- Japan
- Prior art keywords
- propulsion
- wire
- support
- excavator
- measurement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Excavating Of Shafts Or Tunnels (AREA)
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
Abstract
Description
この発明は、地中埋設管路の推進工法において、推進中の管路の位置計測を先端位置の計測のみならず、リアルタイムで後続管の敷設状況をも把握可能な方法及びその装置に関するものであり、主に800mm以下の小口径管の推進工法において、特に急曲線の推進工法における位置計測に適したものである。 The present invention relates to a method and apparatus capable of grasping not only the position of the tip position but also the laying status of the subsequent pipe in real time in the propulsion method of the underground buried pipe. There are mainly suitable for position measurement in the propulsion method for small diameter pipes of 800 mm or less, particularly in the sharp curve propulsion method.
この小口径管の推進工法は、先端の掘進機で地中を掘削しながら当該掘進機の後方に推進管を次々と連結して同推進管の最後尾を発進立坑で押圧し、発進立坑から目標位置まで直進又は湾曲して推進する工法である。この工法において、先端の掘進機及び後続の推進管が地中を計画通り推進しているかどうか、これらの位置を計測し、方向修正しながら地中を推進させている。直線推進の場合は、発進立坑から、掘進機の背面にあるターゲットにレーザー光を照射してその位置を計測することが出来るが、近年、曲線推進施工のニーズが飛躍的に増している。このような曲線推進の位置計測として、現状の実施工で最も確立しているのは、電磁誘導方式である。 This small-diameter pipe propulsion method involves excavating the ground with the excavator at the tip and connecting the propulsion pipes one after another behind the excavator and pressing the tail end of the propulsion pipe with the start-up shaft. It is a method of propelling straight or curved to the target position. In this construction method, whether or not the tip excavator and the subsequent propulsion pipe are propelling through the ground as planned, these positions are measured, and the ground is propelled while correcting the direction. In the case of linear propulsion, the target can be measured by irradiating the target on the back of the excavator from the starting shaft, and its position can be measured, but in recent years, the need for curve propulsion construction has increased dramatically. As the position measurement of such curve propulsion, the electromagnetic induction method is most established in the current implementation.
この電磁誘導方式は、地中の推進ヘッド(ロッド)内に設置した発信器が発する磁力線を、地上の受信器で、最も強く受信する位置を測定して平面位置とし、その際の信号の強さから深度を演算処理して求めるものである。本方式は、海外で実績豊富な弧状推進工法(HDD-System)として一般的に用いられている位置計測方法で、計測方法が簡易で低コストであるが、計測には個人差がでやすい、計測のためには発信器の真上に行かなければならない、発信器と受信器の間に埋設管などの遮蔽物があると計測できない、計測精度があまり高くない、計測は先端位置のみの計測で、途中線形精度が不明(計測地点での測量結果を累積すれば可能であるが、推進後にはロッド復元力が働き、横滑り現象が生じ、計測時の座標と実質敷設位置とでは誤差がでる)、計測は一定の間隔で計測することになり、常に測量結果を反映させての方向制御が出来ない、等の問題点がある。 In this electromagnetic induction method, the line of magnetic force generated by a transmitter installed in a propulsion head (rod) in the ground is measured by the ground receiver at the position where it is most strongly received to obtain a plane position. Then, the depth is calculated and processed. This method is a position measurement method that is generally used as an arc-shaped propulsion method (HDD-System) with a proven track record overseas, and the measurement method is simple and low cost. For measurement, it must go directly above the transmitter, it cannot be measured if there is a shield such as an embedded pipe between the transmitter and the receiver, the measurement accuracy is not very high, the measurement is only at the tip position In the middle, linear accuracy is unknown (it is possible by accumulating the survey results at the measurement point, but after propulsion, the rod restoring force works, a skid phenomenon occurs, and there is an error between the coordinates at the time of measurement and the actual laying position ), The measurement is performed at regular intervals, and there is a problem that the direction control cannot always be performed while reflecting the survey result.
一方、3D曲がりセンサーによる先端ロッド曲がり量計測とチェーンド・ドライブジャイロによる削孔軌跡の併用測量方法は、前記電磁誘導方式の問題点を解決するべく弧状推進工法のドリルの方位、姿勢をドリルに近接して設けたセンサユニットにより計測するシステムを採用しており、また、ジャイロ製作技術の進化で究極に小型化されて直径62mmという極めて小型かつ高精度な位置計測を実現しており、ロッド回転時にも位置計測を行えるといった、工法に即した計測構造である。 On the other hand, the combined measurement method of the tip rod bending amount measurement by the 3D bending sensor and the drilling locus by the chained drive gyro makes the orientation and posture of the arc propulsion method drill to solve the problems of the electromagnetic induction method. The system uses a sensor unit installed in close proximity, and has been miniaturized by the evolution of gyro fabrication technology, realizing extremely small and highly accurate position measurement with a diameter of 62 mm, and rod rotation It is a measurement structure that conforms to the construction method so that position measurement can sometimes be performed.
しかし、この計測方法においても、機械式ジャイロ装置の径は62mmと小型であるが、長さが1925mmであり、また、その材質も剛体であり、同ジャイロ装置箇所はロッド内空間とこのジャイロ装置の外径との間隙分しか曲げられず、この条件から最小曲率は30mR程となり、急曲線の推進工法において要求される曲率(10mR)の確保は困難である。また、曲線推進ではスプリングバックといわれる地中内で直線に戻ろうする力が加わり、横滑り現象が発生するが、こういった場合に測量精度に大幅な誤差を生じる。また、計測装置が非常に高価であるため施工費が高額となる最大要因となっている。 However, even in this measurement method, the mechanical gyro device has a small diameter of 62 mm, but the length is 1925 mm, and the material thereof is also a rigid body. The gyro device location is the space inside the rod and the gyro device. From this condition, the minimum curvature is about 30 mR, and it is difficult to secure the curvature (10 mR) required in the sharply curved propulsion method. Also, in the curve propulsion, a force that returns to a straight line in the ground, called springback, is applied and a skid phenomenon occurs. In such a case, a large error occurs in the surveying accuracy. Moreover, since the measuring device is very expensive, it is the biggest factor that increases the construction cost.
そこで、掘削すべきトンネルに沿って、所定の距離をおいて複数の測量定点を設定し、当該複数の測量定点を通過して折り曲がる測量用ワイヤを張架し、各測量定点において測量定点を中心として測量用ワイヤ検出手段を回転させ、測量用ワイヤ検出手段が最初に測量用ワイヤを検出したときの角度と次に測量用ワイヤを検出したときの角度とから各測量定点において測量用ワイヤがなす折れ角度を求め、当該折れ角度と前記所定の距離から各測量定点の位置を求める、小口径の推進工法に適したカーブ測量方法が開発されている。
また。上記と同様に推進管内に継線(ワイヤ)を通し、前後の継線のなす継線角度を継線角度測定器で測定し、推進管のローリングによって発生する傾いた状態の継線角度を水平面に投影した投影角度を継線角度とする補正を行って、継線角度と継線長さから継線のx成分の総和と継線のy成分の総和から掘進機の位置を求めるようにした推進工法における掘進機位置の測定方法が開発されている。
Also. In the same way as above, a connecting line (wire) is passed through the propulsion pipe, the connecting angle between the front and rear connecting lines is measured with a connecting angle measuring instrument, and the inclined connecting angle generated by rolling of the propelling pipe is measured in the horizontal plane. The position of the digging machine is obtained from the sum of the x component of the joint and the sum of the y component of the joint from the joint angle and the joint length. A method for measuring the position of the excavator in the propulsion method has been developed.
しかしながら、上記前者のカーブ測量方法は小口径管の中にワイヤを通し、所定の距離をおいた測量定点で当該ワイヤの折れ角度を求め、上記所定の距離から各測量定点の位置を求めていって、先端の掘進機の位置を計測するため、小口径推進には適したものであるが、各測量定点でのワイヤの折れ角度の測定が、平面的であり、三次元的に折れ曲がった角度や方向を計測することはできない。また、各測量定点で測量用ワイヤ検出手段によりワイヤの折れ角度を測定する場合、測量用ワイヤ検出手段を各測量定点に移動させなければならない。従って、計測に手間がかかると同時に時間もかかる欠点を有している。また、後者の掘進機位置の測定方法は、継線と継線角度測定器を用いる複雑な計測により掘進機の位置を求めるものであり、掘進機の後続の推進管全体の位置まで計測するものではない。 However, in the former curve surveying method, a wire is passed through a small-diameter tube, the bending angle of the wire is determined at a surveying fixed point at a predetermined distance, and the position of each surveying fixed point is determined from the predetermined distance. It is suitable for small-diameter propulsion because it measures the position of the excavator at the tip, but the measurement of the wire bending angle at each surveying fixed point is planar and the angle bent three-dimensionally And the direction cannot be measured. Further, when the wire break angle is measured by the surveying wire detection means at each surveying fixed point, the surveying wire detection means must be moved to each surveying fixed point. Therefore, there is a drawback that it takes time and time for measurement. In addition, the latter method for measuring the position of the excavator is to determine the position of the excavator by complicated measurement using a connecting line and a connecting angle measuring device, and to measure the position of the entire propulsion pipe following the excavator. is not.
この発明はこれらの点に鑑みて為されたもので、複数接続された推進管の中にワイヤを通し、所定間隔で当該ワイヤを支持し、これらのワイヤの各支持点で、当該ワイヤの折れ角度を三次元的に計測でき、かつ、即座に各支持点の折れ角度と各支持点の距離からこれらの推進管全体の位置を計測できる、推進工法用位置計測方法及びこれに使用する装置を提供し上記課題を解決しようとするものである。 The present invention has been made in view of these points. A wire is passed through a plurality of connected propulsion pipes, the wire is supported at predetermined intervals, and the wire is bent at each support point of these wires. A position measuring method for a propulsion method and an apparatus used therefor, which can measure the angle three-dimensionally and can immediately measure the position of each propelling pipe from the bending angle of each supporting point and the distance between the supporting points. It is intended to solve the above problems.
そこで、請求項1の発明は、先端の掘進機で地中を掘削しながら当該掘進機の後方に推進管を次々と連結して同推進管の最後尾を発進立坑で押圧し、発進立坑から目標位置まで直進又は湾曲して推進する工法において、上記掘進機の後部付近に一端を固定し、他端を当該掘進機に連結した複数の推進管の中を各推進管に沿って通して発進立坑内でテンション装置により張力をかけた測定用ワイヤを設け、当該測定用ワイヤを発進立坑からの所定距離の推進管内の複数の位置で支持させ、当該測定用ワイヤの各支持は、当該測定用ワイヤを遊通させる支持体で支持し、当該支持体箇所で当該測定用ワイヤの外周周囲の少なくとも上下左右の4箇所に、歪みゲージを有するゲージプレートを設け、上記測定用ワイヤの挙動方向により、当該測定用ワイヤが上記ゲージプレートを押圧して荷重をかけ、当該荷重がかかったゲージプレートの歪みゲージが示す歪み量と荷重がかかった歪みゲージの位置を検出して、各支持点における上記測定用ワイヤの張力を勘案して、各支持点の測定ワイヤの折れ角度及び方向を計測し、各支持点の距離から、上記掘進機及び複数の推進管の位置を計測する、推進工法用位置計測方法とした。 Therefore, in the invention of claim 1, while excavating the ground with the excavator at the tip, the propulsion pipe is connected one after another to the rear of the excavator and the rear end of the propulsion pipe is pressed with the start shaft, In the method of propelling straight ahead or curving to the target position, one end is fixed near the rear of the excavator and the other end is passed through the propulsion pipes connected to the excavator along each propulsion pipe. A measuring wire tensioned by a tension device is provided in the shaft, and the measuring wire is supported at a plurality of positions within a propulsion pipe at a predetermined distance from the starting shaft, and each support of the measuring wire is used for the measurement. Supporting with a support that allows the wire to pass through, and providing a gauge plate having strain gauges in at least four locations around the outer periphery of the measurement wire at the support location, and depending on the behavior direction of the measurement wire, For the measurement The ear presses the gauge plate to apply a load, detects the strain amount indicated by the strain gauge of the gauge plate to which the load is applied, and the position of the strain gauge to which the load is applied, and detects the position of the measurement wire at each support point. Taking into account the tension, the bending angle and direction of the measuring wire at each support point are measured, and the position of the excavator and the plurality of propulsion pipes are measured from the distance of each support point. .
また、請求項2の発明は、上記請求項1の発明において、各支持点における上記測定用ワイヤの張力は、発進立坑箇所で測定した測定用ワイヤの張力値を基にして、発進立坑から各支持点までの距離により各支持点の張力値を算出する、推進工法用位置計測方法とした。 According to a second aspect of the present invention, in the first aspect of the present invention, the tension of the measuring wire at each support point is determined from the starting shaft based on the tension value of the measuring wire measured at the starting shaft location. The position measurement method for the propulsion method calculates the tension value at each support point based on the distance to the support point.
また、請求項3の発明は、上記請求項1又は2に記載の発明の方法に使用する装置であって、上記掘進機の後部付近に一端を固定し、他端を当該掘進機に連結した複数の推進管の中を当該推進管に沿って通して発進立坑内でテンション装置により張力をかけた測定用ワイヤを設け、当該測定用ワイヤを発進立坑からの所定距離の推進管内の位置で支持させ、当該測定用ワイヤの各支持は上記推進管の内部に固定した支持体に支持し、これらの各支持体は、複数のスペーサにより一定間隔を保持したフランジを二枚相対向して設け、これらのフランジの相対向する内面に、二つの管体を相対向して設け、これらの各管体の先端は相互に一定の間隔をあけ、上記管体の外周周囲の少なくとも上下左右の四箇所に、各管体の外周から一定幅離れてゲージプレートを夫々設け、これらのゲージプレートは上記二枚のフランジの間に渡されて支持され、これらのゲージプレートの各外面に歪みゲージが設けられ、上記二つの管体の先端の間隙に、中心孔を有する円板が挿入され、当該円板は、上記少なくとも上下左右の4枚のゲージプレートに囲まれているが、円板の外周と各ゲージプレートの内面との間に隙間を有し、上記測定用ワイヤはこの支持体の上記一方のフランジに開口部を有する一方の管体から挿入され、上記円板の中心孔を通り、他方の管体を通って他方のフランジの開口部から外方に抜けており、上記測定用ワイヤは、上記円板の中心孔及び上記管体内で長手方向に摺動自在であり、当該長手方向に直角な面方向に対しては円板の外周が四方のゲージプレートのいずれかの内面に当たるまで、移動自在となっており、また、上記支持体に回転角度計を設け、上記測定用ワイヤの挙動方向により、上記円板が上記ゲージプレートの一つ又は複数を押圧して荷重をかけ、当該荷重がかかったゲージプレートの歪みゲージが示す歪み量と荷重がかかった歪みゲージの位置を検出して、各支持点における上記測定用ワイヤの張力を勘案して測定用ワイヤの折れ角度を計測し、かつ上記回転角度計で検知した推進管の鉛直軸の傾き状態を勘案して上記荷重がかかった歪みゲージの位置から測定用ワイヤの折れ方向を計測し、発進立坑から各支持点までの距離から、上記掘進機及び複数の推進管の位置を計測する、推進工法用位置計測装置とした。 The invention of claim 3 is an apparatus for use in the method of the invention of claim 1 or 2, wherein one end is fixed near the rear portion of the excavator and the other end is connected to the excavator. A measuring wire that is tensioned by a tension device in the starting shaft through a plurality of propelling tubes is provided, and the measuring wire is supported at a position within the propelling tube at a predetermined distance from the starting shaft. And each support of the measurement wire is supported by a support fixed inside the propulsion tube, and each of these supports is provided with two flanges that are spaced apart by a plurality of spacers, facing each other, Two pipes are provided opposite to each other on the opposite inner surfaces of these flanges, and the tips of these pipes are spaced apart from each other at least at four locations around the outer periphery of the pipe. At a certain distance from the outer periphery of each tube. These gauge plates are supported by being passed between the two flanges, strain gauges are provided on the outer surfaces of these gauge plates, and the gap between the tips of the two tubes is centered. A disc having a hole is inserted, and the disc is surrounded by at least four gauge plates on the top, bottom, left, and right, but has a gap between the outer periphery of the disc and the inner surface of each gauge plate, The measurement wire is inserted from one tube having an opening in the one flange of the support, passes through the center hole of the disk, passes through the other tube, and is removed from the opening of the other flange. The measurement wire is slidable in the longitudinal direction in the central hole of the disc and in the tube, and the outer periphery of the disc is square in the direction perpendicular to the longitudinal direction. Within one of the gauge plates In addition, the support is provided with a rotation angle meter, and depending on the behavior direction of the measuring wire, the disk presses one or more of the gauge plates and applies a load. Detect the strain amount indicated by the strain gauge of the gauge plate to which the load is applied and the position of the strain gauge to which the load is applied, and take into account the tension of the measurement wire at each support point to determine the bending angle of the measurement wire. Measure the bending direction of the measuring wire from the position of the strain gauge where the load is applied in consideration of the inclination state of the vertical axis of the propulsion pipe measured and detected by the rotation angle meter, from the starting shaft to each support point The position measuring device for the propulsion method is used to measure the position of the excavating machine and the plurality of propulsion pipes from the distance.
また、請求項4の発明は、先端の掘進機で地中を掘削しながら当該掘進機の後方に推進管を次々と連結して同推進管の最後尾を発進立坑で押圧し、発進立坑から目標位置まで直進又は湾曲して推進する工法において、上記掘進機の後部付近に一端を固定し、他端を当該掘進機に連結した複数の推進管の中を各推進管に沿って通して発進立坑内でテンション装置により張力をかけた測定用ワイヤを設け、当該測定用ワイヤを上記発進立坑からの所定距離の推進管内の複数の位置で支持させ、当該測定用ワイヤの各支持は、上記推進管の内部に固定した支持体内のフランジを有する横長の軸からなる接続体に支持させ、当該測定用ワイヤを当該各支持体箇所で分断し、これらの分断端部を当該接続体の両端で連結し、上記支持体内の接続体のフランジを挟んだ一方の側の軸の外周の少なくとも上下左右の4箇所に歪みゲージを設け、上記測定用ワイヤの挙動方向により、当該測定用ワイヤが上記歪みゲージを押圧して荷重をかけ、当該荷重がかかった歪みゲージが示す歪み量と荷重がかかった歪みゲージの位置を検出して、各支持点で上記測定用ワイヤの張力を測定して、各支持点の測定ワイヤの折れ角度及び方向を計測し、各支持点の距離から、上記掘進機及び複数の推進管の位置を計測する推進工法用位置計測方法とした。 Further, in the invention of claim 4, the excavator is excavated in the ground with the excavator at the tip, and the propulsion pipe is connected to the rear of the excavator one after another, and the rear end of the propulsion pipe is pressed with the start shaft, In the method of propelling straight ahead or curving to the target position, one end is fixed near the rear of the excavator and the other end is passed through the propulsion pipes connected to the excavator along each propulsion pipe. A measuring wire tensioned by a tension device is provided in the shaft, and the measuring wire is supported at a plurality of positions within a propulsion pipe at a predetermined distance from the starting shaft, and each support of the measuring wire is supported by the propulsion A connecting body consisting of a horizontally long shaft having a flange in a supporting body fixed inside the tube is supported, and the measurement wire is divided at each supporting body portion, and these divided ends are connected to both ends of the connecting body. Connected to the support body in the support body. Strain gauges are provided at least at four locations on the outer circumference of the shaft on one side across the gap, and the measuring wire presses the strain gauge and applies a load depending on the behavior direction of the measuring wire, The strain amount indicated by the strain gauge under load and the position of the strain gauge under load are detected, the tension of the measurement wire is measured at each support point, and the bending angle and direction of the measurement wire at each support point are measured. The position measurement method for the propulsion method was used to measure the positions of the excavator and the plurality of propulsion pipes from the distances of the respective support points.
また、請求項5の発明は、上記請求項4の発明において、各支持点における上記測定用ワイヤの張力は、各支持点において張力計により各支持点の間の上記測定用ワイヤの張力を測定する推進工法用位置計測方法とした。また、請求項6の発明は、上記請求項4又は5に記載の発明の方法に使用する装置であって、上記測定用ワイヤの各支持が、上記推進管の内部に固定した支持体内に、中央にフランジを有する横長の軸からなる接続体を挿入して、上記フランジで上記支持体の内周に支持させ、当該支持点で測定用ワイヤを分断し、これらの分断端部を上記接続体の両端で連結し、上記支持体内の接続体の、フランジを挟んだ一方の側の軸の外周の少なくとも上下左右の4箇所に歪みゲージを設け、また、フランジを挟んだ他方の側の軸の外周に少なくとも2個以上の張力計、及び回転角度計をそれぞれ設けて支持した推進工法用位置計測装置とした。また、請求項7の発明は、上記請求項1、2、4及び5のいずれかに記載の位置計測方法において、上記推進工法に使用する管路が小口径であり、急曲線の推進工法である推進工法用位置計測方法とした。 The invention of claim 5 is the invention of claim 4, wherein the tension of the measurement wire at each support point is measured by measuring the tension of the measurement wire between the support points by a tension meter at each support point. The position measurement method for the propulsion method was used. The invention of claim 6 is an apparatus used in the method of the invention of claim 4 or 5, wherein each support of the measurement wire is in a support body fixed inside the propulsion tube. Insert a connecting body consisting of a horizontally long shaft having a flange in the center, and support it on the inner periphery of the supporting body with the flange, divide the measuring wire at the supporting point, and connect the dividing end parts to the connecting part. Connected at both ends of the body, strain gauges are provided at least at four positions on the upper and lower, left and right sides of the shaft on one side of the connecting body in the support body, and the shaft on the other side sandwiching the flange The propulsion method position measuring device provided with and supported by at least two tension meters and a rotation angle meter on the outer periphery of each. The invention according to claim 7 is the position measuring method according to any one of claims 1, 2, 4 and 5, wherein the pipe used for the propulsion method has a small diameter, and is a sharp curve propulsion method. A certain position measurement method for the propulsion method was used.
請求項1、2、4及び5の各発明によれば、推進管内に測定用ワイヤを通して、当該測定用ワイヤの複数の支持点で、当該測定用ワイヤ又はその接続体の外周周囲に設けた、歪みゲージにより、当該ワイヤの折れ角度及び折れ方向を計測するため、推進管内で場所をとらず、当該推進管の位置計測が可能である。しかも、先端の掘進機や推進管の位置のみならず、後続の推進管の敷設状況全体を把握可能である。また、地中の地盤のゆるい箇所は発進立坑から推進管の後部を押圧した場合、地盤が反力受けとならず推進管の先端部が横滑りすることがあるが、その場合でも、推進管内部で計測するため、推進管全体の位置を正確に検出できる。また、各支持点での測定用ワイヤの折れ角度や方向を三次元的に計測でき、極めて精度の高い計測が出来る。また、予め発進立坑からの距離の分かっている各支持点で上記測定用ワイヤの折れ角度や方向を計測するため、各支持点で同時に計測可能であり、掘進機及び複数の推進管の位置を即座に計測でき、かつ、リアルタイムな計測ができる。また、特に、請求項5の発明では、各支持点で当該箇所の測定用ワイヤの張力を計測するため、当該支持点箇所にコンピュータを設ければ、その場所で測定用ワイヤの折れ曲がり角度及び方向を計測することができ、従って当該コンピュータの出力用の配線のみを導出すればよく、各支持点からの配線を簡素化できる。 According to the inventions of claims 1, 2, 4 and 5, the measurement wire is passed through the propulsion tube, and is provided around the outer periphery of the measurement wire or its connection body at a plurality of support points of the measurement wire. Since the bending angle and the bending direction of the wire are measured by the strain gauge, the position of the propulsion tube can be measured without taking up space in the propulsion tube. Moreover, it is possible to grasp not only the position of the leading excavator and the propulsion pipe but also the entire laying situation of the subsequent propulsion pipe. In addition, when the back of the propulsion pipe is pressed from the starting shaft to the loose part of the ground, the ground may not receive reaction force and the tip of the propulsion pipe may slide sideways. Therefore, the position of the entire propulsion pipe can be accurately detected. In addition, the bending angle and direction of the measuring wire at each support point can be measured three-dimensionally, and extremely accurate measurement can be performed. In addition, since the bending angle and direction of the measuring wire are measured at each supporting point whose distance from the starting shaft is known in advance, it is possible to measure simultaneously at each supporting point, and the positions of the excavator and the plurality of propulsion pipes can be determined. It can be measured immediately and in real time. Particularly, in the invention of claim 5, in order to measure the tension of the measuring wire at the corresponding point at each supporting point, if a computer is provided at the supporting point, the bending angle and direction of the measuring wire at that point Therefore, it is only necessary to derive the output wiring of the computer, and the wiring from each support point can be simplified.
また、請求項3及び6の発明では、各支持点で測定用ワイヤの折れ角度及び方向を計測できるのに加え、回転角度計を設けたことにより、当該支持点を有する推進管のローリング状態を検出することが出来、測定用ワイヤの折れ曲がり方向をより正確に把握でき、より精度の高い位置計測が出来る。また、請求項7の発明は、上記請求項1,2、3又は4の位置計測方法を小口径管路の推進工法に適用したものであり、上記請求項1,2、3又は4の位置計測方法は、特に小口径管路及び急曲線推進に最適である。 Further, in the inventions of claims 3 and 6, in addition to being able to measure the bending angle and direction of the measuring wire at each support point, by providing a rotation angle meter, the rolling state of the propulsion pipe having the support point can be changed. It can be detected, the bending direction of the measuring wire can be grasped more accurately, and the position can be measured with higher accuracy. The invention of claim 7 applies the position measuring method of claim 1, 2, 3 or 4 to the propulsion method of a small-diameter pipe, and the position of claim 1, 2, 3 or 4 The measuring method is particularly suitable for small-bore pipelines and sharp curve propulsion.
先端の掘進機で地中を掘削しながら当該掘進機の後方に推進管を次々と連結して同推進管の最後尾を発進立坑で押圧し、発進立坑から目標位置まで直進又は湾曲して推進する工法において、上記掘進機の後部付近に一端を固定し、他端を当該掘進機に連結した複数の推進管の中を当該推進管に沿って通して発進立坑内でテンション装置により張力をかけた測定用ワイヤを設け、当該測定用ワイヤを発進立坑からの所定距離の推進管内の複数の位置で支持させ、当該測定用ワイヤの各支持は、上記ワイヤを中心孔に貫通させた円板外周の少なくとも上下左右の4箇所に、歪みゲージを設けたゲージプレートを固定し、かつ、上記円板の前後に、円板の測定用ワイヤの長手方向の移動を規制する、上記測定用ワイヤを遊貫した管体を固定した支持体を推進管の内部に設け、また、上記支持体に回転角度計を設け、上記測定用ワイヤの挙動方向により、上記円板がゲージプレートの一つ又は複数を押して荷重をかけ、当該荷重がかかったゲージプレートの歪みゲージが示す歪み量と荷重がかかった歪みゲージの位置を検出して、各支持点における上記測定用ワイヤの張力を勘案して測定ワイヤの折れ角度を計測し、かつ上記回転角度計で推進管のローリング(鉛直軸の傾き)状態を勘案して上記測定用ワイヤの折れ曲がり方向を計測し、発進立坑から各支持点までの距離から、上記掘進機及び複数の推進管の位置を計測する、推進工法用位置計測方法とした。 While excavating the ground with the excavator at the tip, propulsion pipes are connected one after another behind the excavator and the rear end of the propulsion pipe is pressed by the start shaft, and propelled straight from the start shaft to the target position or curved In the construction method, one end is fixed near the rear part of the excavator and the other end is passed through the plurality of propulsion pipes connected to the excavator along the propulsion pipe so that tension is applied by a tension device in the start shaft. A measurement wire is provided, and the measurement wire is supported at a plurality of positions in the propulsion pipe at a predetermined distance from the starting shaft, and each support of the measurement wire is supported on the outer periphery of the disk through which the wire penetrates the center hole. A gauge plate provided with strain gauges is fixed at least at four positions on the top, bottom, left, and right, and the measurement wire that regulates the longitudinal movement of the measurement wire of the disk is controlled before and after the disk. Support with fixed through tube Is provided inside the propulsion tube, and a rotation angle meter is provided on the support. Depending on the behavior direction of the measurement wire, the disk pushes one or more of the gauge plates to apply a load, and the load is applied. Detect the strain amount indicated by the strain gauge on the gauge plate and the position of the strain gauge where the load is applied, measure the bending angle of the measurement wire taking into account the tension of the measurement wire at each support point, and rotate the rotation Measure the bending direction of the measuring wire in consideration of the state of rolling of the propulsion pipe (tilt of the vertical axis) with an angle meter, and determine the position of the excavator and the plural propulsion pipes from the distance from the starting shaft to each support point The position measurement method for the propulsion method was used.
以下この発明を図面に基づいて説明する。
図1はこの発明の推進工法用位置計測方法の概略構成図を示すもので、まず、推進工法は、図1に示すように、先端の掘進機1で地中を掘削しながら当該掘進機1の後方に一定長の推進管2を次々と連結して同推進管2の最後尾を発進立坑3に設けた押圧装置4により押圧し、発進立坑3から目標位置まで直進又は湾曲して推進する工法である。そしてこの工法に使用する位置計測方法には、上記掘進機1の後部に測定用ワイヤ5の一端を固定し、他端を後続の複数の推進管2内に、各推進管2とほぼ平行に通し、最後尾の推進管2から発進立坑3に導出して当該発進立坑3内でテンション装置6により当該測定用ワイヤ5に一定の張力をかけておく。そして、当該測定用ワイヤ5は、各推進管2内の一端部で支持させる。当該測定用ワイヤ5の各支持は、各推進管2の内側に支持された支持体7により、ワイヤの長手方向に摺動自在かつ当該長手方向に直角な方向に揺動自在に上記測定用ワイヤ5を遊通させており、これらの各支持体7箇所で、測定用ワイヤ5の折れ角度及び方向を計測する構成となっている。
The present invention will be described below with reference to the drawings.
FIG. 1 shows a schematic configuration diagram of a position measuring method for a propulsion method according to the present invention. First, as shown in FIG. 1, the propulsion method is performed by excavating the ground with the excavator 1 at the tip. A certain length of the propulsion pipe 2 is connected to the back of the pipe one after another, and the rear end of the propulsion pipe 2 is pressed by a pressing device 4 provided on the start shaft 3, and propelled straight from the start shaft 3 to a target position. It is a construction method. In the position measuring method used in this construction method, one end of the measuring wire 5 is fixed to the rear portion of the excavator 1, and the other end is placed in a plurality of succeeding propulsion pipes 2 substantially parallel to the respective propulsion pipes 2. Then, it is led out from the last propelling pipe 2 to the starting shaft 3 and a certain tension is applied to the measuring wire 5 by the tension device 6 in the starting shaft 3. The measurement wire 5 is supported at one end in each propulsion pipe 2. Each support of the measurement wire 5 is supported by the support body 7 supported on the inside of each propulsion tube 2 so as to be slidable in the longitudinal direction of the wire and swingable in a direction perpendicular to the longitudinal direction. 5 is configured such that the bending angle and direction of the measuring wire 5 are measured at these seven support members.
図2及び図3は、上記支持体7の具体例を示す、一部切欠斜視図及び縦断面図である。この支持体7は、複数のスペーサ8を介在させて一定間隔のフランジ9を二枚相対向して設け、これらのフランジ9、9の相対向する内面に、二つの同径の管体10、10を相対向して設け、これらの各管体10の先端は一定の間隔をあけ、上記管体10、10の上下左右の位置に、各管体10の外周から一定幅離れてゲージプレート11を夫々設け、これらの4枚のゲージプレート11は上記二枚のフランジ9と9の間に渡され支持されている。また、これらのゲージプレート11の各外面には歪みゲージ12が設けられている。さらに、上記管体10と10の先端の間隙に、中心孔13aを有する円板13が挿入され、当該円板13は、上記4枚のゲージプレート11に囲まれているが、円板13の外周と各ゲージプレート11の内面との間に隙間を有している。また、上記スペーサ8の一つに、回転角度計18を設けている。 2 and 3 are a partially cutaway perspective view and a longitudinal sectional view showing a specific example of the support 7. This support body 7 is provided with a plurality of spaced flanges 9 with a plurality of spacers 8 interposed therebetween, and two flanges 9, 9 having two same diameter pipes 10, 10 are provided opposite to each other, and the tips of the tube bodies 10 are spaced apart from each other by a certain distance, and at the vertical and horizontal positions of the tube bodies 10, 10, the gauge plate 11 is spaced apart from the outer periphery of the tube bodies 10 by a certain width. These four gauge plates 11 are passed between and supported by the two flanges 9 and 9. A strain gauge 12 is provided on each outer surface of these gauge plates 11. Further, a disc 13 having a center hole 13a is inserted into the gap between the ends of the tubular bodies 10 and 10, and the disc 13 is surrounded by the four gauge plates 11. There is a gap between the outer periphery and the inner surface of each gauge plate 11. A rotation angle meter 18 is provided on one of the spacers 8.
そして、上記測定用ワイヤ5はこの支持体7の上記一方のフランジ9に開口部を有する一方の管体10から挿入され、円板13の中心孔13aを通り、他方の管体10を通って他方のフランジ9の開口部から外方に抜けている。従って、測定用ワイヤ5は、上記円板13の中心孔13aに挿通されているが、長手方向に摺動自在であり、当該長手方向に直角な面方向に対しては円板13の外周が四方のゲージプレート11のいずれかの内面に当たるまで、移動自在となっている。 The measurement wire 5 is inserted from one tube 10 having an opening in the one flange 9 of the support 7, passes through the central hole 13 a of the disk 13, and passes through the other tube 10. The other flange 9 is pulled out from the opening. Accordingly, the measuring wire 5 is inserted through the center hole 13a of the disk 13, but is slidable in the longitudinal direction, and the outer periphery of the disk 13 is not perpendicular to the surface direction perpendicular to the longitudinal direction. It is movable until it hits one of the inner surfaces of the four gauge plates 11.
従って、接続された二つの推進管2が一方に対して折れ曲がると、測定用ワイヤが折れ曲がり、その挙動方向により上記円板13が一つ又は複数のゲージプレート11を押圧して荷重をかけ、当該荷重がかかったゲージプレート11の歪みゲージ12が歪む。そこで、この歪みゲージ12の示す歪み量と荷重がかかった歪みゲージ12の位置を検出する。この歪みゲージ12の歪み量により測定用ワイヤ5の折れ角度を検出しようとするものであるが、この歪み量は測定用ワイヤ5の張力によって異なる。そこで、張力値と歪みゲージの歪み量との関係を予め算出しておく。そして当該支持体7箇所の測定用ワイヤ5の張力を計測する。各推進管2の長さが決まっているため、発進立坑3から当該支持体7までの測定用ワイヤ5の長さが分かる。また、発進立坑3で当該測定用ワイヤ5の張力値Ftを測定する。この張力値Ftを基に各支持体7までの距離によって減衰した値を算出し、図1に示す各支持体7箇所の張力Fθ1、Fθ2、Fθ3が得られ、これらの得られたFθを基にして、上記歪みゲージ12の歪み量から計算により各支持体7箇所での測定用ワイヤ5の折曲角度θ1、θ2、…θnを得ることが出来る。 Therefore, when the two connected propulsion pipes 2 are bent with respect to one side, the measuring wire is bent, and the disc 13 presses one or a plurality of gauge plates 11 according to the behavior direction to apply a load. The strain gauge 12 of the loaded gauge plate 11 is distorted. Therefore, the strain amount indicated by the strain gauge 12 and the position of the strain gauge 12 to which a load is applied are detected. The bending angle of the measuring wire 5 is to be detected based on the strain amount of the strain gauge 12, but this strain amount varies depending on the tension of the measuring wire 5. Therefore, the relationship between the tension value and the strain amount of the strain gauge is calculated in advance. And the tension | tensile_strength of the measurement wire 5 of the said support body 7 location is measured. Since the length of each propulsion pipe 2 is determined, the length of the measurement wire 5 from the start shaft 3 to the support 7 can be known. Moreover, the tension value Ft of the measurement wire 5 is measured at the start shaft 3. Based on this tension value Ft, the value attenuated by the distance to each support 7 is calculated, and the tensions Fθ1, Fθ2, Fθ3 of each support 7 shown in FIG. 1 are obtained, and these obtained Fθ are used as the basis. Thus, the bending angles θ1, θ2,... Θn of the measuring wire 5 at each of the seven support members can be obtained by calculation from the strain amount of the strain gauge 12.
なお、また、折れ曲がり方向は、上記荷重のかかった歪みゲージ12の位置から検出できる。その際、上記支持体7に回転角度計18を設けているため、当該支持体7の推進管2のローリング状態が分かり、上記荷重のかかった歪みゲージ12の位置を補正できる。また各支持点(支持体7)までの距離は、上述のように、推進管2の長さLが分かっているため算出できる。これにより、各支持点での折れ角度及び方向、及び発進立坑3から各支持点までの距離がわかるため、推進座標を計算推測することができる。なお、この実施例においても、上記各支持体7箇所ごとに張力計を設けて当該箇所の測定用ワイヤ5の張力を測定し、この張力値に基づいて歪みゲージ12の歪み量から折れ角度を計測することも出来る。 In addition, the bending direction can be detected from the position of the strain gauge 12 to which the load is applied. At this time, since the rotation angle meter 18 is provided on the support 7, the rolling state of the propulsion tube 2 of the support 7 can be known, and the position of the strain gauge 12 subjected to the load can be corrected. Further, the distance to each support point (support 7) can be calculated because the length L of the propulsion pipe 2 is known as described above. As a result, the folding angle and direction at each support point and the distance from the start shaft 3 to each support point can be known, so that the propulsion coordinates can be calculated and estimated. In this embodiment as well, a tension meter is provided for each of the seven support members to measure the tension of the measurement wire 5 at the corresponding location, and the bending angle is determined from the strain amount of the strain gauge 12 based on the tension value. It can also be measured.
図4は、上記支持体7の他の具体例を示す側面図である。この支持体7´は上記推進管2の内周に固定した支持管体16内に、中央にフランジ15aを有する横長の軸からなる接続体15を挿入して、上記フランジ15aを上記支持管体16の内周に摺動自在に支持させ、当該支持点で測定用ワイヤ5を分断し、これらの分断端部を上記接続体15の両端で連結し、上記支持管体16内の接続体15の、フランジ15aを挟んだ一方の側の軸の外周上下左右の4箇所に歪みゲージ12を設け、また、フランジ15aを挟んだ他方の側の軸の外周の相対向する面に2枚の引張り力検出歪みゲージ17を設け、さらに当該他方の側の軸の外周に回転角度計18を設けたものである。 FIG. 4 is a side view showing another specific example of the support 7. The support body 7 'is inserted into a support tube body 16 fixed to the inner periphery of the propulsion tube 2, and a connecting body 15 comprising a horizontally long shaft having a flange 15a at the center is inserted, and the flange 15a is inserted into the support tube body. 16 is slidably supported on the inner periphery of 16, the measurement wire 5 is divided at the support point, and these divided ends are connected at both ends of the connection body 15, so that the connection body in the support tube body 16 is connected. 15, strain gauges 12 are provided at four locations on the outer circumference of the shaft on one side across the flange 15a, and two on the opposite surfaces of the outer circumference of the shaft on the other side across the flange 15a. A tensile force detection strain gauge 17 is provided, and a rotation angle meter 18 is provided on the outer periphery of the other shaft.
この支持体7´は、図4の左側を発進立坑3側に、右側を掘削機1側に接続し、掘進機1側の前方の推進管2が折れ曲がると測定用ワイヤ5が折れ曲がり、それに続くフランジ15aを挟んだ歪みゲージ12を有する接続体15の一側が歪み、上下左右にある歪みゲージ12の一つ又は複数の歪みゲージ12が歪む。これにより歪んだ歪みゲージ12の歪み量と歪み位置を検出し、上記フランジ15aを挟んだ接続体15の他側の引張り力検出歪みゲージ17により測定した、隣接する他の支持体7´との間の張力値を勘案して、当該接続体7´箇所の測定用ワイヤ5の折れ角度及び方向を検出する。さらに回転角度計18により当該推進管2のローリング状態を検出し、発進立坑3からの当該支持体7´間での距離により、当該距離と上記角度及び方向で推進座標を計算推測することができる。また、このように各支持体7´箇所で測定用ワイヤ5の張力値及び歪みゲージの歪み量を検出し、当該支持点箇所にコンピュータを設ければ(図示省略)、その場所で測定用ワイヤ5の折れ曲がり角度及び方向を計測することができ、従って当該コンピュータの出力用の配線のみを導出すればよい。 This support 7 'is connected to the start shaft 3 side on the left side of FIG. 4 and to the excavator 1 side on the right side. When the propulsion pipe 2 on the front side of the excavator 1 is bent, the measuring wire 5 is bent, and the following. One side of the connecting body 15 having the strain gauge 12 sandwiching the flange 15a is distorted, and one or more strain gauges 12 of the strain gauges 12 on the top, bottom, left and right are distorted. Thus, the strain amount and strain position of the strain gauge 12 which has been distorted are detected, and measured with the tensile force detection strain gauge 17 on the other side of the connection body 15 sandwiching the flange 15a. In consideration of the tension value between them, the bending angle and direction of the measuring wire 5 at the location of the connecting body 7 'are detected. Further, the rotation state of the propulsion pipe 2 can be detected by the rotation angle meter 18, and the propulsion coordinates can be calculated and estimated based on the distance, the angle and the direction, based on the distance between the support shaft 7 ′ from the start shaft 3. . Further, if the tension value of the measurement wire 5 and the strain amount of the strain gauge are detected at each support 7 ′ position and a computer is provided at the support point position (not shown), the measurement wire is located at that position. 5 bend angles and directions can be measured, so only the output wiring of the computer need be derived.
図5は、この発明の位置計測に使用する実際の装置の断面図を示し、上記各推進管2内に、一回り小径の各ケーシング管20を挿入し、各ケーシング管20は外周の複数箇所に設けたガイドローラ21を各推進管20の内周面に回転自在に当接させて支持させている。そしてこれらの各ケーシング管20内に上記測定用ワイヤ5を通し、このケーシング管20内に設けた支持体7で当該測定用ワイヤ5を支持している。また、上記掘進機1は先頭の推進管2の先端に支持固定され(図示省略)、掘進機1の回転軸(図示省略)は、上記ケーシング管20内に回転自在に設けた回転ロッド22の先端に接続され、当該回転ロッド22の基端は発進立坑3内の油圧回転モータ(図示省略)に接続されている。なお、図中、22aは注水パイプ、23は上記掘進機1で掘削した土砂の排泥ホース、24は滑剤供給ホース、25は方向修正用油圧ホース、26はワイヤ式計測器データ処理部、27はワイヤ式計測器データリンクケーブル、28は傾斜計等補助計測装置である。 FIG. 5 shows a cross-sectional view of an actual apparatus used for position measurement according to the present invention. Each casing pipe 20 having a small diameter is inserted into each propulsion pipe 2, and each casing pipe 20 has a plurality of positions on the outer periphery. A guide roller 21 provided on the inner surface of each propulsion pipe 20 is rotatably abutted and supported. The measurement wires 5 are passed through the casing tubes 20, and the measurement wires 5 are supported by a support 7 provided in the casing tubes 20. Further, the excavator 1 is supported and fixed at the tip of the leading propulsion pipe 2 (not shown), and the rotary shaft (not shown) of the excavator 1 is formed by a rotating rod 22 rotatably provided in the casing pipe 20. Connected to the tip, the base end of the rotary rod 22 is connected to a hydraulic rotary motor (not shown) in the start shaft 3. In the figure, 22a is a water injection pipe, 23 is a mud drainage hose excavated by the excavator 1, 24 is a lubricant supply hose, 25 is a hydraulic hose for direction correction, 26 is a wire-type measuring instrument data processing unit, 27 Is a wire-type measuring instrument data link cable, and 28 is an auxiliary measuring device such as an inclinometer.
なお、上記実施例では測定用ワイヤの一端を掘進機1の後部に固定しているが、これに限らず、先頭の推進管2の先端部、又は先頭のケーシング管20の先端部等、掘進機1の後部付近であれば良い。また、上記実施例では測定用ワイヤ5又は接続体15の軸の周囲又は外周の上下左右に4枚の歪みゲージ12を有するゲージプレート11又は歪みゲージ12を設けているが、上下左右のみでなく、これらの間に、歪みゲージ12を有するゲージプレート11又は歪みゲージ12を夫々入れて、合計8枚、16枚にしても良い。これらの歪みゲージ12を有するゲージプレート11又は歪みゲージ12の数は、4枚以上であれば良い。また、上記実施例では、支持体7´の引張り力検出歪みゲージ17は相対向する面に2枚設けたが、この引張り力検出歪みゲージ17は精度を上げるために4枚、6枚、8枚等、偶数の枚数のゲージを設けることもある。さらに、この引張り力検出歪みゲージに代えて、他の適宜の張力計を用いても良い。 In the above embodiment, one end of the measurement wire is fixed to the rear part of the engraving machine 1, but the present invention is not limited to this, and the front end part of the leading propulsion pipe 2 or the front end part of the leading casing pipe 20, etc. It may be in the vicinity of the rear part of the machine 1. Moreover, in the said Example, although the gauge plate 11 or the strain gauge 12 which has the four strain gauges 12 is provided in the circumference | surroundings or the outer periphery of the axis | shaft of the measurement wire 5 or the connection body 15 or the outer periphery, In addition, a gauge plate 11 having a strain gauge 12 or a strain gauge 12 may be inserted between them to make a total of 8 or 16 sheets. The number of gauge plates 11 or strain gauges 12 having these strain gauges 12 may be four or more. In the above embodiment, two tensile force detection strain gauges 17 of the support 7 ′ are provided on opposite surfaces. However, the tensile force detection strain gauges 17 are four, six, and eight to increase accuracy. An even number of gauges may be provided. Furthermore, instead of this tensile force detection strain gauge, another appropriate tension meter may be used.
1 掘進機
2 推進管
3 発進立坑
4 押圧装置
5 測定用ワイヤ
6 テンション装置
7 支持体
7´ 支持体
8 スペーサ
9 フランジ
10 管体
11 ゲージプレート
12 歪みゲージ
13 円板
13a 中心孔
15 接続体
15a フランジ
16 支持管体
17 引張り力検出歪みゲージ
18 回転角度計
20 ケーシング管
21 ガイドローラ
22 回転ロッド
22a 注水ホース
23 排泥ホース
24 滑剤供給ホース
25 方向修正用油圧ホース
26 ワイヤ式計測器データ処理部
27 ワイヤ式計測器データリンクケーブル
28 傾斜計等補助計測装置
DESCRIPTION OF SYMBOLS 1 Excavator 2 Propulsion pipe 3 Starting shaft 4 Pressing device 5 Measuring wire 6 Tension device 7 Support body 7 'Support body 8 Spacer 9 Flange 10 Tube body 11 Gauge plate 12 Strain gauge 13 Disc 13a Center hole 15 Connection body 15a Flange DESCRIPTION OF SYMBOLS 16 Support pipe body 17 Tensile-force detection distortion gauge 18 Rotation angle meter 20 Casing pipe 21 Guide roller 22 Rotating rod 22a Water injection hose 23 Drainage hose 24 Lubricant supply hose 25 Direction correction hydraulic hose 26 Wire type measuring device data processing part 27 Wire Type measuring instrument data link cable 28 Auxiliary measuring device such as inclinometer
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006055415A JP4647520B2 (en) | 2006-03-01 | 2006-03-01 | Position measuring method and apparatus for propulsion method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006055415A JP4647520B2 (en) | 2006-03-01 | 2006-03-01 | Position measuring method and apparatus for propulsion method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007231635A true JP2007231635A (en) | 2007-09-13 |
JP4647520B2 JP4647520B2 (en) | 2011-03-09 |
Family
ID=38552499
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006055415A Expired - Fee Related JP4647520B2 (en) | 2006-03-01 | 2006-03-01 | Position measuring method and apparatus for propulsion method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4647520B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010223930A (en) * | 2009-03-19 | 2010-10-07 | Toshiko Deguchi | Rail displacement gauge |
CN102359752A (en) * | 2011-08-09 | 2012-02-22 | 山东大学 | Device for monitoring deformation in front of tunnel/roadway excavation surfaces in model test and arrangement method |
JP2018163114A (en) * | 2017-03-27 | 2018-10-18 | 株式会社新技術総研 | Measuring device and measurement system |
JP2020041994A (en) * | 2018-09-13 | 2020-03-19 | 株式会社大林組 | Underground displacement gauge and underground displacement calculation method |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102095401B (en) * | 2010-12-06 | 2012-06-13 | 上海隧道工程股份有限公司 | Long-distance shield tunnel breakthrough survey method |
CN102538741B (en) * | 2011-12-23 | 2014-04-16 | 上海交通大学 | Determination method of deformation of soil body caused by pipe jacking construction by considering grouting pressure |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6428501A (en) * | 1987-07-23 | 1989-01-31 | Power Reactor & Nuclear Fuel | Three-dimensional displacement detector |
JPH0710758A (en) * | 1993-06-22 | 1995-01-13 | Nippon Iyakuhin Kogyo Kk | Long acting cefaclor pharmaceutical preparation |
JPH11117672A (en) * | 1997-10-14 | 1999-04-27 | Nanno Construction Co Ltd | Pipe propulsion method |
JP2003097186A (en) * | 2001-09-27 | 2003-04-03 | Shinwa Gijutsu Kaihatsu Kk | Measuring method of boring machine position in pipe jacking method |
-
2006
- 2006-03-01 JP JP2006055415A patent/JP4647520B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6428501A (en) * | 1987-07-23 | 1989-01-31 | Power Reactor & Nuclear Fuel | Three-dimensional displacement detector |
JPH0710758A (en) * | 1993-06-22 | 1995-01-13 | Nippon Iyakuhin Kogyo Kk | Long acting cefaclor pharmaceutical preparation |
JPH11117672A (en) * | 1997-10-14 | 1999-04-27 | Nanno Construction Co Ltd | Pipe propulsion method |
JP2003097186A (en) * | 2001-09-27 | 2003-04-03 | Shinwa Gijutsu Kaihatsu Kk | Measuring method of boring machine position in pipe jacking method |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010223930A (en) * | 2009-03-19 | 2010-10-07 | Toshiko Deguchi | Rail displacement gauge |
CN102359752A (en) * | 2011-08-09 | 2012-02-22 | 山东大学 | Device for monitoring deformation in front of tunnel/roadway excavation surfaces in model test and arrangement method |
JP2018163114A (en) * | 2017-03-27 | 2018-10-18 | 株式会社新技術総研 | Measuring device and measurement system |
JP2022097559A (en) * | 2017-03-27 | 2022-06-30 | 株式会社新技術総研 | Measuring device and measurement system |
JP7371874B2 (en) | 2017-03-27 | 2023-10-31 | 株式会社新技術総研 | Measuring device, measuring system |
JP2020041994A (en) * | 2018-09-13 | 2020-03-19 | 株式会社大林組 | Underground displacement gauge and underground displacement calculation method |
JP7246883B2 (en) | 2018-09-13 | 2023-03-28 | 株式会社大林組 | Underground Displacement Meter and Underground Displacement Calculation Method |
Also Published As
Publication number | Publication date |
---|---|
JP4647520B2 (en) | 2011-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4647520B2 (en) | Position measuring method and apparatus for propulsion method | |
EP2795247B1 (en) | System and method for measuring pipe | |
JP4642576B2 (en) | Baseline measurement system and baseline measurement method | |
JP7246883B2 (en) | Underground Displacement Meter and Underground Displacement Calculation Method | |
US9617712B2 (en) | Method for determining the position of a cutting device in the ground using a mobile carriage | |
JP5468315B2 (en) | Drilling position measuring method and system | |
JP3836699B2 (en) | Measuring method of excavator position in propulsion method | |
JP2006284359A (en) | Conduit position measuring system | |
JP6033202B2 (en) | Insertion posture measuring device | |
JP4606226B2 (en) | Displacement meter position measuring method and position measuring device | |
JP3891345B2 (en) | Underground curve drilling device and drilling control method using the device | |
JP5183317B2 (en) | Positioning device | |
JP4336264B2 (en) | Displacement measuring device | |
JP2013170356A (en) | Position measurement method of small-diameter propulsion technique capable of sharp curve construction, and device therefor | |
JP6669590B2 (en) | Positioning method of shield machine | |
JP2005232834A (en) | Ground hole drilling device and hole bend measuring method in ground drilling hole | |
JP4164429B2 (en) | Propulsion excavator and excavator position calculation method | |
JP2005232834A5 (en) | ||
JP4388882B2 (en) | Curved survey cylinder | |
JP2001065286A (en) | Position detecting device for tunnel excavator | |
JP4909420B2 (en) | Drilling direction control device for shield machine in propulsion shield method | |
JP3976195B2 (en) | Small-diameter pipe propulsion method with one muddy water method | |
JP2006010628A (en) | Detector for detecting object | |
JP3056870B2 (en) | Propulsion device | |
JP2005213743A (en) | Pipe insertion control device and pipe insertion control method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090226 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100902 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100914 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101112 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101207 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101208 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131217 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4647520 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |