JP2018163114A - Measuring device and measurement system - Google Patents

Measuring device and measurement system Download PDF

Info

Publication number
JP2018163114A
JP2018163114A JP2017061633A JP2017061633A JP2018163114A JP 2018163114 A JP2018163114 A JP 2018163114A JP 2017061633 A JP2017061633 A JP 2017061633A JP 2017061633 A JP2017061633 A JP 2017061633A JP 2018163114 A JP2018163114 A JP 2018163114A
Authority
JP
Japan
Prior art keywords
measurement
measuring device
measuring
inclination
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017061633A
Other languages
Japanese (ja)
Inventor
野沢 有
Tamotsu Nozawa
有 野沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Tech Institute Ltd
New Technology Institute Ltd
Original Assignee
New Tech Institute Ltd
New Technology Institute Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Tech Institute Ltd, New Technology Institute Ltd filed Critical New Tech Institute Ltd
Priority to JP2017061633A priority Critical patent/JP2018163114A/en
Publication of JP2018163114A publication Critical patent/JP2018163114A/en
Priority to JP2022070995A priority patent/JP7371874B2/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a measuring device or the like capable of easily measuring a position of an object, such as an excavator body.SOLUTION: A measuring device 1 measures a position of an excavator body 6 in excavation of a ground 7, is constituted by vertically connecting a plurality of rod-shaped measurement units 10, and measures a position of the excavator body 6 mounted to one end part. The measurement unit 10 includes: an inclination measuring device that is a casing including a cavity in the inside and measures inclination of the measurement unit 10; and an antenna member for transmitting a measurement result to the inclination measuring device. In a connection place for connecting the upper and lower measurement units 10, the upper and lower measurement units 10 can be relatively rotated. The connection place includes a connection place in which the upper and lower measurement units 10 are relatively rotatable at least within a predetermined surface, and a connection place in which the upper and lower measurement units 10 are relatively rotatable within a surface orthogonal to at least a predetermined surface.SELECTED DRAWING: Figure 1

Description

本発明は、対象物の位置を計測する計測装置および計測システムに関する。   The present invention relates to a measuring device and a measuring system for measuring the position of an object.

地中連続壁を構築する際に用いる掘削機として、懸垂型掘削機が知られている。懸垂型掘削機は、ベースマシンからワイヤ等で掘削機本体を懸垂し、掘削機本体を吊下ろしながら掘削機本体に設けたカッタ等で地盤を掘削するものである。   A suspended excavator is known as an excavator used for constructing a continuous underground wall. A suspended excavator hangs an excavator body from a base machine with a wire or the like, and excavates the ground with a cutter or the like provided on the excavator body while the excavator body is suspended.

懸垂型掘削機により地盤を掘削する際には、掘削機本体の姿勢を制御し掘削方向を常に鉛直に保つことが望ましい。そのための手法として、特許文献1では計測用のワイヤを掘削機本体に取付けて、掘削時のワイヤの繰り出し長さを計測したり、ワイヤの水平位置をカメラで計測したりして掘削機本体の位置を計測している。   When excavating the ground with a suspended excavator, it is desirable to control the attitude of the excavator body and keep the excavation direction vertical. As a technique for that purpose, in Patent Document 1, a measuring wire is attached to the excavator body, and the length of the wire during excavation is measured, or the horizontal position of the wire is measured with a camera, so that the excavator body The position is being measured.

また本発明者も、掘削機本体を懸垂するワイヤの位置をカメラ等で測定することによって掘削機本体の位置を計測するシステムを以前出願している(特許文献2参照)。   The present inventor has also filed a system for measuring the position of the excavator body by measuring the position of the wire that suspends the excavator body with a camera or the like (see Patent Document 2).

特開2001-234555号公報Japanese Patent Laid-Open No. 2001-234555 特開2016-075670号公報JP 2016-075670

しかしながら、特許文献1の方法ではワイヤの緩み防止の目的から多大なテンションをワイヤに付与する必要があり、そのために非常に大きなトルクモータが必要になり、トルクモータに要するコストやスペース、また安全性の面でも課題がある。   However, in the method of Patent Document 1, it is necessary to apply a great amount of tension to the wire for the purpose of preventing the loosening of the wire. For this reason, a very large torque motor is required, and the cost, space, and safety required for the torque motor are required. There is also a problem in terms of.

一方、本出願人による特許文献2のシステムでは上記のようなトルクモータが不要であり、簡便且つ正確に掘削機本体の位置を計測することができる。   On the other hand, the system of Patent Document 2 by the present applicant does not require the torque motor as described above, and can easily and accurately measure the position of the excavator body.

しかしながら、このような懸垂型掘削機では、掘削機本体やこれを懸垂するワイヤが泥はね防止シートで覆われた状態で使用されることがあり、カメラ等でワイヤの位置を測定するのが困難である。また、ワイヤの絡み防止の目的からワイヤがプラスチック製のボックスで被覆されていることもあり、この場合もワイヤの位置をカメラ等で直接測定するのが困難になる。   However, in such a suspended excavator, the excavator body and the wire that suspends the excavator may be used in a state of being covered with a mud splash prevention sheet, and the position of the wire is measured with a camera or the like. Have difficulty. In addition, for the purpose of preventing the entanglement of the wire, the wire may be covered with a plastic box, and in this case, it is difficult to directly measure the position of the wire with a camera or the like.

本発明は上記の問題に鑑みてなされたものであり、掘削機本体等の対象物の位置を容易に計測できる計測装置等を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a measuring device that can easily measure the position of an object such as an excavator body.

前述した課題を解決するための第1の発明は、複数の棒状の計測ユニットを上下に接続して構成され、下端部に取付けた対象物の位置を計測する計測装置であって、前記計測ユニットは、前記計測ユニットの傾斜を測定する傾斜測定装置と、前記傾斜測定装置の測定結果を送信する送信部を有し、上下の前記計測ユニットを接続する接続箇所では、上下の前記計測ユニットが前記計測ユニットの長手方向に沿った面内で相対回転可能であり、且つ、上下の前記計測ユニットが少なくとも所定の面内で相対回転可能な接続箇所と、上下の前記計測ユニットが少なくとも前記所定の面と直交する面内で相対回転可能な接続箇所が存在することを特徴とする計測装置である。
前記計測装置は例えば地盤の掘削時の掘削機本体の位置を計測するものであり、前記計測装置の下端部が前記掘削機本体の外部に取付けられる。
1st invention for solving the subject mentioned above is a measuring device which is constituted by connecting a plurality of bar-shaped measuring units up and down, and measures the position of the object attached to the lower end part, and the measuring unit Has a tilt measuring device for measuring the tilt of the measuring unit, and a transmitter for transmitting the measurement result of the tilt measuring device, and at the connection point connecting the upper and lower measuring units, the upper and lower measuring units are A connecting portion that is relatively rotatable in a plane along the longitudinal direction of the measurement unit, and in which the upper and lower measurement units can be relatively rotated in at least a predetermined plane, and the upper and lower measurement units are at least the predetermined plane. It is a measuring device characterized in that there is a connection location that can be relatively rotated in a plane orthogonal to the.
The measuring device measures, for example, the position of the excavator body during excavation of the ground, and the lower end of the measuring device is attached to the outside of the excavator body.

本発明の計測装置は、計測ユニットの長さと傾斜から求まる計測ユニットごとの変位を積算して計測装置の両端部間の変位を計測することができ、計測装置の端部を対象物に外部から取付けることで、対象物の位置を容易に計測できる。そのため、例えば前記したように懸垂用のワイヤによる掘削機本体の位置測定ができない場合でも、計測装置を掘削機本体に外部から取付けてその位置が容易に計測できるようになる。   The measuring device of the present invention can measure the displacement between both ends of the measuring device by accumulating the displacement of each measuring unit obtained from the length and inclination of the measuring unit. By attaching, the position of the object can be easily measured. Therefore, for example, even when the position of the excavator body cannot be measured using the suspension wire as described above, the position can be easily measured by attaching the measuring device to the excavator body from the outside.

また、上下の計測ユニットを接続する接続箇所については、上下の計測ユニットが所定の面内で相対回転可能な接続箇所と、上下の計測ユニットが所定の面と直交する面内で相対回転可能な接続箇所が存在するので、計測装置全体がフレキシブルな動きをすることが可能であり、対象物の位置に応じて変形したり、障害物を避けて上方に延びたり、障害物の衝突時の衝撃を和らげたりすることができる。   In addition, with respect to the connection location where the upper and lower measurement units are connected, the connection location where the upper and lower measurement units can be relatively rotated within a predetermined plane and the upper and lower measurement units can be relatively rotated within a plane orthogonal to the predetermined plane. Since there is a connection point, the entire measuring device can move flexibly, deform depending on the position of the object, extend upwards avoiding the obstacle, and impact when the obstacle collides Can be relieved.

前記計測ユニットは、内部に空洞を有する筒体であることが望ましい。
これにより、掘削溝内のソイルセメント等の流動体中に計測装置を配置する場合に、計測ユニットに浮力による上向きの力を働かせて浮かせることができる。その結果、計測装置の緩み防止のために大きなトルクモータ等が不要になる。
The measurement unit is preferably a cylinder having a cavity inside.
Thereby, when arrange | positioning a measuring apparatus in fluids, such as soil cement in a digging ditch, the upward force by a buoyancy can be made to act on a measurement unit, and can be made to float. As a result, a large torque motor or the like is not required to prevent the measuring device from loosening.

また前記空洞に充填体が設置されることが望ましい。
これにより、空洞内に水分等が浸入した場合でも、浮力による上向きの力を確実に働かせることができる。
In addition, it is desirable that a filler is installed in the cavity.
Thereby, even when moisture or the like enters the cavity, an upward force due to buoyancy can be reliably exerted.

前記筒体がポリカーボネイトによって形成されることも望ましい。
計測ユニットにポリカーボネイトを用いることで、軽量で浮力による上向きの力が働きやすく且つ高強度で耐衝撃性に優れたものとなる。
It is also desirable that the cylindrical body is formed of polycarbonate.
By using polycarbonate for the measurement unit, the upward force due to buoyancy is light, easy to work, high strength, and excellent impact resistance.

前記計測装置の上端部に、線材を介してカウンターウェイトが取付けられることも望ましい。
本発明では、上記のように計測ユニットに浮力による上向きの力を働かせる結果、計測装置の緩み防止のための構成はカウンターウェイトを用いた簡易なものとできる。
It is also desirable that a counterweight is attached to the upper end portion of the measuring device via a wire.
In the present invention, as a result of applying an upward force due to buoyancy to the measurement unit as described above, the configuration for preventing the loosening of the measurement device can be simplified using a counterweight.

上下の前記計測ユニットを接続する接続箇所では、上下の前記計測ユニットが相対的に上下移動可能であることが望ましい。
掘削溝内のソイルセメント等の流動体中に計測装置を配置する場合、上記の構成によって上下の計測ユニットの縁を切ることで、計測装置の下降開始時に計測装置全体に瞬間的に加わる静止摩擦抵抗が、計測装置と対象物の接続部に集中的に作用して接続部が破断するのを防ぐことができる。
It is desirable that the upper and lower measurement units are relatively movable up and down at the connection location where the upper and lower measurement units are connected.
When placing the measuring device in a fluid such as soil cement in the excavation groove, static friction is instantaneously applied to the entire measuring device at the start of the descent of the measuring device by cutting the edges of the upper and lower measuring units with the above configuration. It is possible to prevent the resistance from intensively acting on the connecting portion between the measuring device and the object and breaking the connecting portion.

上下の前記計測ユニットの前記傾斜測定装置の間で、電波が、上下の前記計測ユニットの接続箇所および前記計測ユニットの内部を透過して伝送されることが望ましい。
本発明では、上下の計測ユニットの接続箇所や計測ユニットの内部を、電波透過性を有する構成とすることで、上記のように傾斜測定装置の間で電波の伝送を行うことができ、各計測ユニットの傾斜測定装置の間でリレー形式による信号の送受信を行うことが可能になり、簡易な構成で各傾斜測定装置への測定指示や各傾斜測定装置の測定結果の収集を行うことができる。
It is desirable that radio waves are transmitted between the tilt measuring devices of the upper and lower measurement units through the connection locations of the upper and lower measurement units and the inside of the measurement unit.
In the present invention, by connecting the upper and lower measurement units and the inside of the measurement unit with radio wave transmission, radio waves can be transmitted between the tilt measuring devices as described above. It is possible to transmit and receive signals in a relay format between the inclination measurement devices of the units, and it is possible to collect measurement instructions to the inclination measurement devices and collection of measurement results of the inclination measurement devices with a simple configuration.

第2の発明は、第1の発明の計測装置と情報処理装置による計測システムであって、前記情報処理装置は、前記計測装置の下端部に取付けた対象物の位置を、各計測ユニットの長さおよび傾斜を用いて算出することを特徴とする計測システムである。
このように、本発明では計測ユニットの長さと傾斜から情報処理装置によって対象物の位置を好適に算出できる。
A second invention is a measurement system using the measurement device and the information processing device according to the first invention, wherein the information processing device determines the position of the object attached to the lower end of the measurement device by the length of each measurement unit. It is a measurement system characterized by calculating using height and inclination.
Thus, in the present invention, the position of the object can be suitably calculated by the information processing device from the length and inclination of the measurement unit.

本発明により、掘削機本体等の対象物の位置を容易に計測できる計測装置等を提供することができる。   According to the present invention, it is possible to provide a measuring device that can easily measure the position of an object such as an excavator body.

計測装置1を懸垂型掘削機の掘削機本体6に取付けた状態を示す図。The figure which shows the state which attached the measuring device 1 to the excavator main body 6 of a suspension type excavator. ベースマシン8の上部を側方から見た図。The figure which looked at the upper part of base machine 8 from the side. 計測ユニット10を示す図。The figure which shows the measurement unit 10. FIG. 上下の計測ユニット10の接続箇所16における相対回転について説明する図。The figure explaining the relative rotation in the connection location 16 of the upper and lower measuring units 10. FIG. 計測装置1の変形について示す図。The figure shown about a deformation | transformation of the measuring device. 傾斜測定装置30の概略を示す図。The figure which shows the outline of the inclination measuring apparatus 30. FIG. 計測ユニット10の傾斜を示す図。The figure which shows the inclination of the measurement unit 10. FIG. 掘削機本体6による地盤7の掘削について示す図。The figure shown about the excavation of the ground 7 by the excavator main body 6. FIG. 計測装置1による位置計測について説明する図。The figure explaining the position measurement by the measuring device 1. FIG. マーキング17について示す図。The figure shown about the marking 17. FIG. 上下の計測ユニット10aの接続箇所16aを示す図。The figure which shows the connection location 16a of the upper and lower measurement units 10a. 上下の計測ユニット10aの傾斜測定装置30間の電波の伝送を示す図。The figure which shows transmission of the electromagnetic wave between the inclination measuring apparatuses 30 of the upper and lower measurement units 10a.

以下、図面に基づいて本発明の好適な実施形態について詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.

[第1の実施形態]
(1.懸垂型掘削機と計測装置1)
図1は、本発明の第1の実施形態に係る計測装置1を懸垂型掘削機の掘削機本体6に取付けた状態を示す図である。
[First Embodiment]
(1. Suspended excavator and measuring device 1)
FIG. 1 is a view showing a state in which a measuring device 1 according to a first embodiment of the present invention is attached to an excavator body 6 of a suspended excavator.

計測装置1は、地中連続壁の施工時等に掘削機本体6のカッタ61で地盤7を掘削して掘削溝71を形成する際に用いられる。本実施形態では、地盤7の掘削と並行して掘削機本体6からセメントスラリー等を吐出し、これを掘削土と原位置で撹拌混練してソイルセメント(流動体)を生成しながら地盤7を下方へと掘り進んでゆくものとする。地中連続壁の施工としては、こうして掘削溝71を形成した後、掘削溝71内のソイルセメントに芯材を建て込む手順となる。   The measuring device 1 is used when excavating the ground 7 with the cutter 61 of the excavator body 6 to form the excavation groove 71 during construction of the underground continuous wall or the like. In the present embodiment, in parallel with excavation of the ground 7, cement slurry or the like is discharged from the excavator body 6, and this is stirred and kneaded in the original position with the excavated soil to generate the soil cement (fluid). It shall be digging down. The construction of the underground continuous wall is a procedure in which the core material is built in the soil cement in the excavation groove 71 after the excavation groove 71 is thus formed.

本実施形態では、掘削機本体6の立面の四隅に1つずつ計4つのカッタ61が設けられており、各カッタ61が水平軸を中心として独立に正逆回転することで地盤7の掘削ができるようになっている。また掘削機本体6の内部には、掘削機本体6の姿勢(傾斜)を計測するための光ファイバジャイロや傾斜計(不図示)が設けられる。ただし光ファイバジャイロは時間経過に伴って誤差が大きくなる傾向があるので、本実施形態では掘削機本体6の平面における向き(方位)をより正確に計測するため、さらに方位角センサ(不図示)なども設けている。   In this embodiment, a total of four cutters 61 are provided, one at each of the four corners of the vertical surface of the excavator body 6, and the ground 7 is excavated by rotating forward and backward independently about the horizontal axis. Can be done. Further, an optical fiber gyroscope and an inclinometer (not shown) for measuring the attitude (tilt) of the excavator body 6 are provided inside the excavator body 6. However, since the error tends to increase with the passage of time in the optical fiber gyroscope, in this embodiment, in order to more accurately measure the orientation (azimuth) of the excavator body 6 in the plane, an azimuth angle sensor (not shown) is further provided. Etc. are also provided.

掘削機本体6は吊材5によってベースマシン8から吊り下げられる。吊材5はワイヤ51をプラスチック製の箱状の複数の被覆材52によって連続的に覆った形となっており、これによりワイヤ51の絡みを防止している。吊材5は掘削機本体6の上面の左右両側に取付けられ、これらの吊材5の間には、カッタ駆動用の油圧を掘削機本体6に供給するための複数の油圧ホース9等も設けられる。   The excavator body 6 is suspended from the base machine 8 by the suspension material 5. The suspension member 5 has a shape in which the wire 51 is continuously covered with a plurality of plastic box-like covering materials 52, thereby preventing the wire 51 from being entangled. The suspension members 5 are attached to the left and right sides of the upper surface of the excavator body 6, and a plurality of hydraulic hoses 9 for supplying hydraulic pressure for driving the cutter to the excavator body 6 are provided between the suspension members 5. It is done.

なお、掘削機本体6の構成や掘削機本体6による地盤7の掘削方法はこれに限らない。掘削溝71内の流動体も掘削方法に応じて異なり、掘削溝71内に水(泥水)や安定液が満たされるケースもある。   In addition, the structure of the excavator body 6 and the excavation method of the ground 7 by the excavator body 6 are not limited thereto. The fluid in the excavation groove 71 varies depending on the excavation method, and the excavation groove 71 may be filled with water (muddy water) or a stable liquid.

図1に示すように、本実施形態の計測装置1は複数の棒状の計測ユニット10を上下に接続して構成される。計測装置1の下端部は、ボールジョイント等の接続部15によって掘削機本体6(対象物)の外部に球面接続され、自由な挙動が確保される。計測装置1の上端部にはワイヤ3(線材)が接続されており、ワイヤ3を介して後述するカウンターウェイト4が取付けられる。   As shown in FIG. 1, the measuring device 1 of this embodiment is configured by connecting a plurality of rod-shaped measuring units 10 up and down. The lower end portion of the measuring device 1 is spherically connected to the outside of the excavator body 6 (target object) by a connecting portion 15 such as a ball joint, so that free behavior is ensured. A wire 3 (wire material) is connected to the upper end of the measuring device 1, and a counterweight 4 described later is attached via the wire 3.

図2はベースマシン8の上部を側方から見た図である。図2に示すように、吊材5等(吊材5および油圧ホース9)はベースマシン8の上部に設けたドラム82に巻き付けられており、ドラム82から繰り出された吊材5等がベースマシン8の先頭に保持されたプーリ81に引掛けられて直下の掘削機本体6に接続される。   FIG. 2 is a side view of the upper portion of the base machine 8. As shown in FIG. 2, the suspension member 5 and the like (the suspension member 5 and the hydraulic hose 9) are wound around a drum 82 provided on the upper portion of the base machine 8, and the suspension member 5 and the like fed out from the drum 82 are the base machine. 8 is hooked on a pulley 81 held at the top of the head 8 and connected to the excavator body 6 directly below.

プーリ81やドラム82の回転中心には滑車811、821が取付けられる。前記したワイヤ3はこれらの滑車811、821に引掛けられ、その先端にカウンターウェイト4(錘)が取付けられる。このカウンターウェイト4により計測装置1の緩みが防止される。   Pulleys 811 and 821 are attached to the rotation centers of the pulley 81 and the drum 82. The aforementioned wire 3 is hooked on these pulleys 811 and 821, and a counterweight 4 (weight) is attached to the tip thereof. The counterweight 4 prevents the measuring device 1 from loosening.

(2.計測ユニット10)
図3は計測ユニット10を示す図であり、計測装置1のうち上下に並んだ3つの計測ユニット10を示したものである。なお、以下の説明では、必要に応じて、計測ユニット10を最下段のものから最上段のものへと順に10、10、…10n−1、10、10n+1、…10m−1、10と下付き文字を付した符号を用いて区別することがある。
(2. Measurement unit 10)
FIG. 3 is a diagram showing the measurement unit 10, and shows three measurement units 10 arranged vertically in the measurement apparatus 1. In the following description, the measuring units 10 are arranged in order from the bottom to the top 10 1 , 10 2 ,... 10 n−1 , 10 n , 10 n + 1 ,. A distinction may be made by using symbols with 1 , 10 m and subscripts.

図3に示すように、計測ユニット10は上下を塞いだ中空の筒体であり、内部に空洞を有する。そのため、計測ユニット10には掘削溝71内のソイルセメントに対する浮力によって上向きの力が働くようになっている。なお、計測ユニット10の外面には、地盤7の掘削時に土やセメントスラリー等が付着しないようにスプレー等により付着防止材が塗布される。   As shown in FIG. 3, the measurement unit 10 is a hollow cylinder whose top and bottom are closed, and has a cavity inside. Therefore, an upward force is applied to the measurement unit 10 by buoyancy against the soil cement in the excavation groove 71. An adhesion preventing material is applied to the outer surface of the measurement unit 10 by spraying or the like so that soil, cement slurry, or the like does not adhere when the ground 7 is excavated.

計測ユニット10の筒体の材料や形状、大きさ等は、計測ユニット10に上記した上向きの力が働くように種々定めることができる。本実施形態では、比重1の水に対し筒体単体で浮力による上向きの力を確保できるように、筒体の材料や形状、大きさ等を定める。ただし、比重1以上(例えば1.3〜1.4程度)のソイルセメントに対し筒体単体で浮力による上向きの力を確保できるように定めることもできる。   The material, shape, size, and the like of the cylinder of the measurement unit 10 can be variously determined so that the upward force described above acts on the measurement unit 10. In the present embodiment, the material, shape, size, and the like of the cylinder are determined so that an upward force due to buoyancy can be ensured by the cylinder alone with respect to water having a specific gravity of 1. However, it can also be determined so that an upward force due to buoyancy can be secured by a single cylinder for a soil cement having a specific gravity of 1 or more (for example, about 1.3 to 1.4).

筒体の形状は円筒状でもよいし、角筒状のものでもよい。また筒体の材料もある程度の軽さと筒体が自重で撓まない程度の強度を有していればよく、アルミ等の金属や、ポリカーボネイト、ABS(acrylonitrile butadiene styrene)樹脂、PVC(poly
vinyl chloride)樹脂等の樹脂、プラスチック系の各種の新素材などを用いることができる。本実施形態では特にポリカーボネイトを用いるものとする。ポリカーボネイトはアルミの比重の半分以下と軽量であり且つ高い強度を有しており、浮力による上向きの力が働きやすく耐衝撃性の面でも好ましい。なお、後述する電波の伝送路に当たる部分では特にアルミ等の金属は用いず、上記したポリカーボネイトのような電波透過性を有する材料を使用する必要がある。アルミ等の金属はそれ以外の部分に使用可能であるが、比重が大きいので浮力による上向きの力は働きにくくなる。
The cylindrical shape may be cylindrical or rectangular. Also, the cylinder material only needs to have a certain level of lightness and strength that the cylinder does not bend due to its own weight, such as metal such as aluminum, polycarbonate, ABS (acrylonitrile butadiene styrene) resin, PVC (poly
Vinyl chloride) resin and various new plastic materials can be used. In this embodiment, it is assumed that polycarbonate is used. Polycarbonate is light and less than half the specific gravity of aluminum and has high strength, and it is easy to work upward force due to buoyancy, and is also preferable in terms of impact resistance. In addition, it is necessary not to use a metal such as aluminum in the portion corresponding to the radio wave transmission path, which will be described later, but to use a radio wave permeable material such as the above-described polycarbonate. Metals such as aluminum can be used for other parts, but since the specific gravity is large, upward force due to buoyancy is difficult to work.

計測ユニット10の内部の空洞は、上から順に3つの室11、12、13に区画される。また計測ユニット10の上端部の外面にはスライダ14が設けられる。   The cavity inside the measurement unit 10 is partitioned into three chambers 11, 12, and 13 in order from the top. A slider 14 is provided on the outer surface of the upper end portion of the measurement unit 10.

計測ユニット10の最も上の室11には充填体20が設けられる。この室11やその下方の室12は内部に水分等が浸入しないように完全防水仕様となっているが、充填体20は、室11の内部空間を充填体20によって予め埋めておくことで、室11の内部に万が一水分等が浸入した際にも、室11の内部の浸水量を減らし、計測ユニット10に浮力による上向きの力を確保するために設けられる。   A filler 20 is provided in the uppermost chamber 11 of the measurement unit 10. The chamber 11 and the chamber 12 below the chamber 11 are completely waterproof so that moisture and the like do not enter the interior, but the filling body 20 is obtained by previously filling the interior space of the chamber 11 with the filling body 20. In the unlikely event that water or the like enters the inside of the chamber 11, the amount of water in the chamber 11 is reduced, and the measuring unit 10 is provided with an upward force due to buoyancy.

充填体20の材料や形状、大きさ等は、例えば室11の内部に比重1の水が浸入した際にも計測ユニット10に浮力による上向きの力が働くように種々定めることができ、例えばその重量を体積で割った比重が比重1の水よりも小さくなるようにする。   The material, shape, size, etc. of the filling body 20 can be variously determined so that upward force due to buoyancy acts on the measurement unit 10 even when water having a specific gravity of 1 enters the inside of the chamber 11, for example. The specific gravity obtained by dividing the weight by the volume is made smaller than that of water having a specific gravity of 1.

本実施形態では、充填体20として上下を塞いだ中空の円筒体または中実の円柱体を用いており、これを発泡スチロールによって形成している。しかしながら、充填体20の材料や形状、大きさ等はこれに限ることはなく、室11の内部に水分等が浸入した際に計測ユニット10に浮力による上向きの力を確保できればよい。例えば上記の充填体20を発泡スチロールの代わりにABS樹脂等で形成することも可能であり、この場合は強度を高めることができる。   In the present embodiment, a hollow cylindrical body or a solid cylindrical body whose upper and lower sides are closed is used as the filling body 20, and this is formed of foamed polystyrene. However, the material, shape, size, and the like of the filling body 20 are not limited to this, and it is sufficient that an upward force due to buoyancy can be secured in the measurement unit 10 when moisture or the like enters the chamber 11. For example, it is possible to form the filler 20 from an ABS resin or the like instead of polystyrene foam, and in this case, the strength can be increased.

本実施形態では、浮力による上向きの力を確保するため、計測ユニット10において上記の室11が大部分を占めており、例えば計測ユニット10の長さの2/3以上を占めている。従って、この室11の下方の室12、13は、計測ユニット10の下部において、計測ユニット10の長さの下から1/3以下の範囲に配置される。しかしながら、室11、12、13の配置がこれに限ることはない。   In this embodiment, in order to ensure upward force due to buoyancy, the chamber 11 occupies most of the measurement unit 10, for example, occupies 2/3 or more of the length of the measurement unit 10. Accordingly, the chambers 12 and 13 below the chamber 11 are arranged in the lower portion of the measurement unit 10 in a range of 1/3 or less from the bottom of the length of the measurement unit 10. However, the arrangement of the chambers 11, 12, and 13 is not limited to this.

計測ユニット10の室12内には傾斜測定装置30が設けられる。傾斜測定装置30からは、上下の室11、13内にアンテナ部材41、42(送信部)が延びている。アンテナ部材41、42は室11、13内の空洞に配置されるが、例えばアンテナ部材41を充填体20の内部に通したりすることも可能である。傾斜測定装置30については後述する。   A tilt measuring device 30 is provided in the chamber 12 of the measuring unit 10. From the inclination measuring device 30, antenna members 41 and 42 (transmitting units) extend into the upper and lower chambers 11 and 13. Although the antenna members 41 and 42 are disposed in the cavities in the chambers 11 and 13, for example, the antenna member 41 can be passed through the inside of the filling body 20. The inclination measuring device 30 will be described later.

計測ユニット10の最も下の室13、および前記したスライダ14は、上下の計測ユニット10同士を、鉛直面内(計測ユニット10の長手方向に沿った面内)で相対回転可能に接続するために設けられる。   The lowermost chamber 13 of the measurement unit 10 and the slider 14 described above are connected so that the upper and lower measurement units 10 can be relatively rotated within a vertical plane (in a plane along the longitudinal direction of the measurement unit 10). Provided.

すなわち、室13の側壁には所定長さ(例えば100m程度)のスリット131が設けられ、このスリット131に下方の計測ユニット10のスライダ14が取付けられる。   That is, a slit 131 having a predetermined length (for example, about 100 m) is provided on the side wall of the chamber 13, and the slider 14 of the lower measurement unit 10 is attached to the slit 131.

スライダ14は、軸141とその先端の頭部142を有し、計測ユニット10の外面に取付けた軸141が上記のスリット131に通され、その先端の頭部142が室13内に配置される。頭部142の幅はスリット131の幅より大きく、スライダ14がスリット131から外れないようになっている。   The slider 14 has a shaft 141 and a head portion 142 at the tip thereof. The shaft 141 attached to the outer surface of the measurement unit 10 is passed through the slit 131, and the head portion 142 at the tip is disposed in the chamber 13. . The width of the head 142 is larger than the width of the slit 131 so that the slider 14 does not come off the slit 131.

これにより、計測ユニット10とその下方の計測ユニット10が、接続箇所16においてスライダ14の軸方向を中心として鉛直面内で相対回転可能となる。さらに、スライダ14はスリット131に沿って上下移動可能であるため、接続箇所16では、計測ユニット10とその下方の計測ユニット10が相対的に上下移動可能になっている。   As a result, the measurement unit 10 and the measurement unit 10 below the measurement unit 10 can be relatively rotated in the vertical plane around the axial direction of the slider 14 at the connection location 16. Furthermore, since the slider 14 can move up and down along the slit 131, the measurement unit 10 and the measurement unit 10 below it can relatively move up and down at the connection location 16.

本実施形態では、図4(a)に模式的に示すように、1つの計測ユニット10を見た時に、その平面におけるスライダ14の設置位置とスリット131の形成位置は、計測ユニット10の中心に対し90度異なっている。   In this embodiment, as schematically shown in FIG. 4A, when one measurement unit 10 is viewed, the installation position of the slider 14 and the formation position of the slit 131 on the plane are at the center of the measurement unit 10. It is 90 degrees different.

従って、図4(b)に模式的に示すように、計測ユニット10のスライダ14をその上方の計測ユニット10n+1のスリット131に取付け、計測ユニット10のスリット131にその下方の計測ユニット10n−1のスライダ14を取付けると、計測ユニット10、10n+1が接続箇所16において相対回転する面P1と、計測ユニット10、10n−1が接続箇所16において相対回転する面P2とが直交することになる。 Therefore, as schematically shown in FIG. 4 (b), the mounting slider 14 of the measuring unit 10 n to the slit 131 of the upper measuring unit 10 n + 1, the measurement of the downward slits 131 of the measuring unit 10 n unit 10 When mounting the slider 14 of the n-1, the surface P1 to relative rotation in the measurement unit 10 n, 10 n + 1 is connected portion 16, and the surface P2 of the measuring unit 10 n, 10 n-1 are relatively rotated at the connection point 16 is Will be orthogonal.

その結果、本実施形態では、計測装置1の上下の計測ユニット10の接続箇所16については、ある接続箇所16で上下の計測ユニット10、10n+1が所定の面内で相対回転可能に接続される場合、その下の接続箇所16では、上下の計測ユニット10、10n−1が上記所定の面と直交する面内で相対回転可能に接続される、という関係になっている。 As a result, in the present embodiment, the upper and lower measurement units 10 n and 10 n + 1 are connected to each other so that the upper and lower measurement units 10 n and 10 n + 1 are relatively rotatable within a predetermined plane. In this case, the upper and lower measuring units 10 n and 10 n-1 are connected so as to be relatively rotatable in a plane orthogonal to the predetermined plane.

このように、本実施形態では、上下の計測ユニット10を所定の面内で相対回転可能に接続する接続箇所16と、上下の計測ユニット10を上記所定の面と直交する面内で相対回転可能に接続する接続箇所16が存在するので、計測装置1全体を見た時に図5に示すようにフレキシブルな動きが可能になっている。そのため掘削機本体6の位置に応じて変形したり、掘削溝71内の礫などの障害物73を避けて上方に延びたり、障害物73の衝突時の衝撃を和らげたりすることができる。   Thus, in this embodiment, the connection part 16 which connects the upper and lower measurement units 10 so that relative rotation is possible within a predetermined plane, and the upper and lower measurement units 10 can be relatively rotated within a plane orthogonal to the predetermined plane. Since there is a connection point 16 to be connected to, a flexible movement is possible as shown in FIG. Therefore, it can be deformed according to the position of the excavator main body 6, extend upward while avoiding obstacles 73 such as gravel in the excavation groove 71, and can reduce the impact at the time of collision of the obstacle 73.

(3.傾斜測定装置30)
図6は傾斜測定装置30の概略を示す図である。傾斜測定装置30は、中空の容器31の内部に傾斜センサ32、電源33、アンテナ部34等を収容したものである。傾斜測定装置30の容器31は完全に密封されており、万が一室12内に水分等が浸入した際にも容器31内への浸入は防止され、傾斜センサ32、電源33、アンテナ部34等の信頼性を確保することができる。
(3. Inclination measuring device 30)
FIG. 6 is a diagram showing an outline of the tilt measuring device 30. The tilt measuring device 30 is a device in which a tilt sensor 32, a power source 33, an antenna unit 34, and the like are accommodated in a hollow container 31. The container 31 of the inclination measuring device 30 is completely sealed, and even if moisture or the like enters the chamber 12, entry into the container 31 is prevented, and the inclination sensor 32, power source 33, antenna unit 34, etc. Reliability can be ensured.

傾斜センサ32は公知の傾斜センサであり、例えば、図7に示すように、平面において直交するX、Y方向についての計測ユニット10の傾斜を測定可能なジャイロを適用可能である。計測ユニット10の傾斜は、鉛直方向をZ方向として、X−Z面における傾斜角αとY−Z面における傾斜角βで示される。なお、以下の説明では傾斜センサ32の動作を制御する制御部については説明を省略するが、傾斜センサ32は、その駆動やデータ変換を行う制御部を含むものとして説明する。   The tilt sensor 32 is a known tilt sensor, and for example, as shown in FIG. 7, a gyro capable of measuring the tilt of the measurement unit 10 in the X and Y directions orthogonal to each other in the plane can be applied. The inclination of the measurement unit 10 is indicated by an inclination angle α in the XZ plane and an inclination angle β in the YZ plane, where the vertical direction is the Z direction. In the following description, a description of the control unit that controls the operation of the tilt sensor 32 will be omitted, but the tilt sensor 32 will be described as including a control unit that drives and converts data.

電源33は傾斜センサ32に電力を供給するものである。アンテナ部34は傾斜センサ32からの信号を送受信するためのものである。   The power source 33 supplies power to the tilt sensor 32. The antenna unit 34 is for transmitting and receiving signals from the tilt sensor 32.

傾斜測定装置30の容器31の上下面には凹部311が形成される。凹部311はアンテナ部材41、42の外形に対応した形状であり、図6の矢印a、bに示すようにアンテナ部材41、42を挿入することで容易に傾斜測定装置30を組立てることができる。アンテナ部材41、42は傾斜測定装置30の外部に配置されるため、アンテナ部材41、42によって傾斜測定装置30の水密性が悪化することがない。アンテナ部材41、42は棒状の部材であり、例えば鋼棒または鋼管を用いることができる。   Concave portions 311 are formed on the upper and lower surfaces of the container 31 of the inclination measuring device 30. The recess 311 has a shape corresponding to the outer shape of the antenna members 41 and 42, and the tilt measuring device 30 can be easily assembled by inserting the antenna members 41 and 42 as indicated by arrows a and b in FIG. Since the antenna members 41 and 42 are disposed outside the inclination measuring device 30, the water tightness of the inclination measuring device 30 is not deteriorated by the antenna members 41 and 42. The antenna members 41 and 42 are rod-shaped members, and for example, steel bars or steel pipes can be used.

容器31の内部において、アンテナ部34は例えば凹部311の周囲に巻き付けられる。そのため、容器31の内外にあるアンテナ部34とアンテナ部材41、42との間で確実に信号の送受信を行うことができる。   Inside the container 31, the antenna part 34 is wound around the recessed part 311, for example. Therefore, signal transmission / reception can be reliably performed between the antenna portion 34 inside and outside the container 31 and the antenna members 41 and 42.

図3に示すように、上下の計測ユニット10の接続箇所16では、下段の計測ユニット10のアンテナ部材41と上段の計測ユニット10のアンテナ部材42が非接触で近接する。これらのアンテナ部材41、42同士の間で電波が伝送され、非接触で信号を送受信することができる。   As shown in FIG. 3, the antenna member 41 of the lower measurement unit 10 and the antenna member 42 of the upper measurement unit 10 are in close contact with each other at the connection location 16 of the upper and lower measurement units 10. Radio waves are transmitted between these antenna members 41 and 42, and signals can be transmitted and received without contact.

本発明では、信号の送受信にマイクロ波を用いることが望ましい。例えば、周波数が300MHz〜3THzの電波を用いることが望ましく、さらに望ましくは、0.9GHz以上である。このような高周波を用いることで、発振器およびアンテナ部をコンパクトにすることができる。一方、920MHz程度あるいはそれ以下とすることも望ましく、この場合は省電力とできる。   In the present invention, it is desirable to use microwaves for signal transmission and reception. For example, it is desirable to use a radio wave having a frequency of 300 MHz to 3 THz, and more desirably 0.9 GHz or more. By using such a high frequency, the oscillator and the antenna portion can be made compact. On the other hand, it is also desirable to set it to about 920 MHz or less, and in this case, power saving can be achieved.

(4.計測装置1による位置計測)
本実施形態では、図8(a)、(b)に示すように掘削機本体6で地盤7を所定深さ掘り進めるごとに、計測ユニット10の上部に新たな計測ユニット10を継ぎ足してゆく。こうして掘削機本体6による掘削を行うが、その途中で適宜掘削を一旦停止し、計測装置1によって掘削機本体6の位置計測を行う。位置計測を行った後は、再び掘削を開始する。
(4. Position measurement by measuring device 1)
In this embodiment, as shown in FIGS. 8A and 8B, each time the ground 7 is dug to a predetermined depth by the excavator body 6, a new measurement unit 10 is added to the upper part of the measurement unit 10. In this way, excavation by the excavator main body 6 is performed, but excavation is temporarily stopped during the excavation, and the position of the excavator main body 6 is measured by the measuring device 1. After the position is measured, excavation is started again.

図9に示すように、計測装置1による位置計測を行う際は、情報処理装置2が、有線または無線によって最上部の計測ユニット10のアンテナ部材41を介して最上部の計測ユニット10の傾斜測定装置30に測定指示を送信する(矢印A参照)。 As illustrated in FIG. 9, when the position measurement is performed by the measurement device 1, the information processing device 2 is connected to the uppermost measurement unit 10 m via the antenna member 41 of the uppermost measurement unit 10 m by wire or wirelessly. A measurement instruction is transmitted to the inclination measuring device 30 (see arrow A).

なお、情報処理装置2は制御部、記憶部、入力部、表示部、通信部等を有する通常のコンピュータによって実現でき、本実施形態では情報処理装置2と計測装置1とで掘削機本体6の位置を計測する計測システム100が構成される。   The information processing device 2 can be realized by a normal computer having a control unit, a storage unit, an input unit, a display unit, a communication unit, and the like. In this embodiment, the information processing device 2 and the measuring device 1 are used to configure the excavator body 6. A measurement system 100 that measures the position is configured.

情報処理装置2からの測定指示を受信した傾斜測定装置30は、計測ユニット10のアンテナ部材42、およびその下段の計測ユニット10m−1のアンテナ部材41を介して下段の計測ユニット10m−1の傾斜測定装置30に測定指示を送信する(矢印B参照)。以上を繰り返し、最上段の計測ユニット10の傾斜測定装置30から最下段の計測ユニット10の傾斜測定装置30へと順に、アンテナ部材41、42を介して測定指示が伝達される(矢印A〜F参照)。 Inclination measuring device 30 that has received the measurement instruction from the information processing apparatus 2, the measuring unit 10 m antenna member 42, and the lower measuring unit via the antenna member 41 of the measuring unit 10 m-1 of the lower 10 m- A measurement instruction is transmitted to one inclination measuring device 30 (see arrow B). Repeating the above, in order from the inclined measuring device 30 of the uppermost measuring unit 10 m to tilt measuring device 30 of the lowermost measuring unit 10 1, the measurement instruction is transmitted via the antenna member 41 (arrow A ~ F).

各計測ユニット10〜10の傾斜測定装置30は、測定指示を受信するとその傾斜センサ32によって各計測ユニット10〜10の傾斜(図7の傾斜角α、β)を測定する。 Inclination measuring device 30 of each measurement unit 10 1 to 10 m, the (tilt angle of Fig. 7 alpha, beta) measure instructing receives the inclination by the inclination sensor 32 of each measurement unit 10 1 to 10 m is measured.

最下段の計測ユニット10の傾斜測定装置30は、計測ユニット10の傾斜を測定すると、計測ユニット10の傾斜をアンテナ部材41、およびその上段の計測ユニット10のアンテナ部材42を介して上段の計測ユニット10の傾斜測定装置30に送信する(矢印G参照)。 Inclination measuring device 30 of the lowermost measuring unit 10 1, when measuring the inclination of the measuring unit 10 1, the inclination of the measuring unit 10 first antenna member 41, and via the antenna member 42 of the measurement unit 10 2 of the upper transmitting the inclination measuring device 30 of the upper measuring unit 10 2 (see arrow G).

計測ユニット10の傾斜を受信した上段の計測ユニット10の傾斜測定装置30は、自身の傾斜の測定結果を加えた計測ユニット10、10の傾斜を、計測ユニット10のアンテナ部材41、およびその上段の計測ユニット10のアンテナ部材42を介して上段の計測ユニット10の傾斜測定装置30へと送信する(矢印H参照)。 Inclination measuring device 30 of the upper measuring unit 10 2 receives the inclination of the measuring unit 10 1, the measurement results inclination of the measuring unit 10 1, 10 2 plus its slope, the measurement unit 10 2 antenna member 41 , and transmitted via the antenna member 42 of the measuring unit 10 3 of the upper stage to the inclination measuring device 30 of the upper measuring unit 10 3 (see arrow H).

このように、本実施形態では、計測ユニット10の傾斜測定装置30が、それより下方にある全ての計測ユニット10〜10n−1の傾斜をその下段の計測ユニット10n−1の傾斜測定装置30から受信し、これに自身の傾斜の測定結果を加えた計測ユニット10〜10の傾斜をその上段の計測ユニット10n+1に送信する。 Thus, in this embodiment, the inclination measuring device 30 of the measurement unit 10 n uses the inclinations of all the measurement units 10 1 to 10 n-1 below the inclination of the measurement unit 10 n-1 in the lower stage. The inclination of the measurement units 10 1 to 10 n received from the measurement device 30 and added with the measurement result of its own inclination is transmitted to the upper measurement unit 10 n + 1 .

以上の処理を最下段の計測ユニット10の傾斜測定装置30から最上段の計測ユニット10の傾斜測定装置30まで繰り返し、最終的に全ての計測ユニット10〜10の傾斜が最上段の計測ユニット10の傾斜測定装置30から情報処理装置2に送信される(矢印G〜L参照)。それぞれの計測ユニット10〜10の傾斜の値は、これを測定した傾斜測定装置30のIDと紐づけられており、識別が可能である。 The above processing from the inclined measuring device 30 of the lowermost measuring unit 10 1 repeated until the inclination measuring device 30 of the uppermost measuring unit 10 m, finally inclination of all measurement units 10 1 to 10 m is uppermost It is transmitted from the inclination measuring device 30 of the measuring unit 10 m to the information processing device 2 (see arrows G to L). The inclination value of each of the measurement units 10 1 to 10 m is associated with the ID of the inclination measuring device 30 that has measured this, and can be identified.

なお、各傾斜測定装置30の測定指示や測定結果の収集方法はこれに限らない。例えばタイマなどを用いて所定の間隔で自動的に傾斜の測定と測定結果の送信を行うようにしてもよい。また、測定指示と測定結果の送信を別系統で行ってもよい。   In addition, the measurement instruction | indication of each inclination measuring apparatus 30 and the collection method of a measurement result are not restricted to this. For example, a tilt may be automatically measured and a measurement result transmitted at a predetermined interval using a timer or the like. Further, the transmission of the measurement instruction and the measurement result may be performed by different systems.

情報処理装置2には予め各計測ユニット10〜10の長さLが入力されており、それぞれの計測ユニット10〜10の長さLと傾斜角α、βによって、各計測ユニット10〜10の上端部に対する下端部の変位(図7のΔX、ΔY、ΔZ参照)を求めることができる。 The length L of each measurement unit 10 1 to 10 m is input to the information processing apparatus 2 in advance, and each measurement unit 10 is determined according to the length L and the inclination angles α and β of each measurement unit 10 1 to 10 m. The displacement of the lower end relative to the upper end of 1 to 10 m (see ΔX, ΔY, ΔZ in FIG. 7) can be obtained.

一方、本実施形態では、計測装置1の上端部(最上段の計測ユニット10の上端部)の位置および平面における向きを、所定の2方向から計測装置1の上端部を撮影するカメラ等を用いた既知の測量手法(例えば、特許文献2参照)によって取得し、計測装置1の上端部の位置を始点として、各計測ユニット10〜10の上記の変位を最上段の計測ユニット10から最下段の計測ユニット10へと順に積算してゆくことで、計測装置1の下端部、すなわち掘削機本体6の位置を算出可能である。 On the other hand, in the present embodiment, the position of the upper end of the measuring device 1 (the upper end of the uppermost measurement unit 10 m ) and the orientation in the plane are determined by using a camera or the like that images the upper end of the measuring device 1 from two predetermined directions. Using the known surveying technique used (see, for example, Patent Document 2), starting from the position of the upper end of the measuring apparatus 1, the displacement of each of the measuring units 10 1 to 10 m is the uppermost measuring unit 10 m. by slide into integrated in order to lowermost measuring unit 10 1 from the lower end portion of the measuring apparatus 1, that is, it can calculate the position of the excavator main body 6.

計測装置1の上端部の平面における向きは、前記したX方向、Y方向を現実空間で特定するために用いられるが、その測定は、図10に示すように最上段の計測ユニット10の上端部に設けたマーキング17を用いて行うことができる。 The orientation of the upper end portion of the measuring device 1 in the plane is used to specify the X direction and the Y direction in the real space. The measurement is performed at the upper end of the uppermost measurement unit 10 m as shown in FIG. This can be done using the marking 17 provided on the part.

マーキング17は、計測ユニット10の周方向の所定位置(例えば前記のX方向あるいはY方向に対応する位置)に形成された基準線171と、当該基準線171から方位が左右に所定角度ずれるごとに設けた計測線172を有し、測量用のカメラに計測線172がどの範囲まで映し出されているか確認することで、計測ユニット10の(基準線171の)平面の向きを迅速に計測することができる。 The marking 17 has a reference line 171 formed at a predetermined position in the circumferential direction of the measuring unit 10 m (for example, a position corresponding to the X direction or the Y direction), and the azimuth is deviated from the reference line 171 to the left and right by a predetermined angle. The measurement line 172 is provided, and the range of the measurement line 172 projected on the surveying camera is checked to quickly measure the plane direction (of the reference line 171) of the measurement unit 10 m. be able to.

以上説明したように、本実施形態の計測装置1は、計測ユニット10の長さLと傾斜から求まる計測ユニット10ごとの変位を積算して計測装置1の両端部間の変位を計測することができ、計測装置1の下端部を掘削機本体6に外部から取付けることで、情報処理装置2によって掘削機本体6の位置を容易に計測できるようになる。そのため、例えば前記したように懸垂用のワイヤによる掘削機本体6の位置測定ができない場合でも、計測装置1を掘削機本体6に外部から取付けてその位置が容易に計測できるようになる。   As described above, the measuring apparatus 1 according to the present embodiment can measure the displacement between both ends of the measuring apparatus 1 by integrating the displacement for each measuring unit 10 obtained from the length L and the inclination of the measuring unit 10. In addition, the position of the excavator body 6 can be easily measured by the information processing apparatus 2 by attaching the lower end of the measuring apparatus 1 to the excavator body 6 from the outside. Therefore, for example, even when the position of the excavator main body 6 cannot be measured using the suspension wire as described above, the measuring device 1 can be attached to the excavator main body 6 from the outside and the position can be easily measured.

また、上下の計測ユニット10を接続する接続箇所16については、上下の計測ユニット10が所定の面内で相対回転可能な接続箇所16と、上下の計測ユニット10が所定の面と直交する面内で相対回転可能な接続箇所16が存在するので、計測装置1全体がフレキシブルな動きをすることが可能であり、掘削機本体6の位置に応じて変形したり、掘削溝71内の障害物73を避けて上方に延びたり、障害物73の衝突時の衝撃を和らげたりすることができる。   In addition, with respect to the connection place 16 for connecting the upper and lower measurement units 10, the connection place 16 in which the upper and lower measurement units 10 can relatively rotate within a predetermined plane and the upper and lower measurement units 10 within a plane orthogonal to the predetermined plane. Therefore, the measuring device 1 as a whole can move flexibly and can be deformed according to the position of the excavator body 6, or an obstacle 73 in the excavation groove 71. It is possible to extend upward while avoiding the above, and to reduce the impact at the time of collision of the obstacle 73.

また、計測ユニット10は内部に空洞を有する筒体であり、計測装置1を掘削溝71内のソイルセメント等の流動体中に配置する場合に、計測ユニット10に浮力による上向きの力を働かせて浮かせることができる。その結果、計測装置1の緩み防止のために前記した大きなトルクモータ等が不要になり、安価で省スペース且つ安全な構成となる。   Further, the measuring unit 10 is a cylindrical body having a hollow inside, and when the measuring device 1 is arranged in a fluid such as soil cement in the excavation groove 71, an upward force due to buoyancy is applied to the measuring unit 10. Can float. As a result, the above-described large torque motor or the like is not required to prevent the measuring device 1 from loosening, and the structure is inexpensive, space-saving, and safe.

また空洞内の前記の室11に充填体20を設置することで、室11内に水分等が浸入した場合でも、計測ユニット10に浮力による上向きの力を確保することができる。   Further, by installing the filler 20 in the chamber 11 in the cavity, an upward force due to buoyancy can be secured in the measurement unit 10 even when moisture or the like enters the chamber 11.

また計測ユニット10の筒体をポリカーボネイトによって形成することで、軽量で浮力による上向きの力が働きやすく且つ耐衝撃性に優れたものとなり、筒体が破損して落下するのを防ぐことができる。   Further, by forming the cylindrical body of the measuring unit 10 from polycarbonate, the upward force due to buoyancy is light and easy to work, and the impact resistance is excellent, and the cylindrical body can be prevented from being damaged and dropped.

また、本実施形態では計測ユニット10に浮力による上向きの力を働かせる結果、計測装置1の緩み防止のための構成は、浮力の働かない最上段の計測ユニット10にカウンターウェイト4をワイヤ3を介して取付けるだけの簡易なものとできる。なお、場合によってはカウンターウェイト4を省略することも可能である。   Further, in this embodiment, as a result of applying an upward force due to buoyancy to the measurement unit 10, the configuration for preventing the loosening of the measurement apparatus 1 is to attach the counterweight 4 to the uppermost measurement unit 10 that does not work buoyancy via the wire 3. Can be simply installed. In some cases, the counterweight 4 can be omitted.

また、本実施形態では上下の計測ユニット10の接続箇所16において上下の計測ユニット10を相対的に上下移動可能として縁を切ることで、掘削開始時(計測装置1の下降開始時)にソイルセメント等から計測装置1に瞬間的に加わる静止摩擦抵抗が、計測装置1と掘削機本体6の接続部15に集中して作用するのを防ぐことができる。すなわち、仮に計測装置1が一体のものであると掘削開始時の瞬間的な静止摩擦抵抗が接続部15に集中して作用し、掘削深度が深いと静止摩擦抵抗に伴う過大な引張力によって接続部15が破断する恐れがある。しかしながら、本実施形態では各計測ユニット10の縁を切ることで、計測ユニット1本毎に静止摩擦抵抗が発生するだけになり、上記の破断を防ぐことができる。なお、接続箇所16においてスライダ14の上部と室13の上面、あるいはスライダ14の下部と室13の下面との間にバネ等の弾性部材による緩衝材を設け、上記した静止摩擦抵抗による衝撃を吸収し、破断を防止することもできる。   Moreover, in this embodiment, the soil cement is obtained at the start of excavation (at the start of descent of the measuring device 1) by cutting the edge so that the upper and lower measurement units 10 can be relatively moved up and down at the connection point 16 of the upper and lower measurement units 10. Thus, it is possible to prevent the static frictional resistance that is instantaneously applied to the measuring device 1 from, for example, from being concentrated on the connecting portion 15 between the measuring device 1 and the excavator body 6. In other words, if the measuring device 1 is integrated, the instantaneous static frictional resistance at the start of excavation is concentrated on the connecting portion 15, and if the excavation depth is deep, the measuring device 1 is connected by an excessive tensile force accompanying the static frictional resistance. The part 15 may be broken. However, in the present embodiment, by cutting the edge of each measurement unit 10, only a static frictional resistance is generated for each measurement unit, and the above breakage can be prevented. In addition, a shock absorbing material such as a spring is provided between the upper portion of the slider 14 and the upper surface of the chamber 13 or the lower portion of the slider 14 and the lower surface of the chamber 13 at the connection point 16 to absorb the impact caused by the above-mentioned static frictional resistance. In addition, breakage can be prevented.

しかしながら、本発明は上記の実施形態に限ることはない。例えば本実施形態では計測装置1を掘削機本体6に取付けているが、計測装置1を取付ける対象物はこれに限らない。例えばバケット式の掘削機のバケットに取付けたり、クレーン等の吊下げ装置の先端のフックや吊荷に取付けたりして、これらの対象物の位置を計測することも可能である。   However, the present invention is not limited to the above embodiment. For example, in the present embodiment, the measuring device 1 is attached to the excavator body 6, but the object to which the measuring device 1 is attached is not limited to this. For example, it is possible to measure the positions of these objects by attaching to a bucket of a bucket type excavator or attaching to a hook or a suspended load at the tip of a suspension device such as a crane.

さらに、本実施形態では接続箇所16において上下の計測ユニット10が1つの面内で相対回転可能に接続されるが、上下の計測ユニット10が1つの面(所定の面)とこれに直交する面の少なくとも2面内で相対回転可能に接続されてもよい。さらに、計測ユニット10の構成も上記に限らず、室12と室13を入れ替えて接続箇所16を傾斜測定装置30の上方とする構成も可能である。   Furthermore, in the present embodiment, the upper and lower measurement units 10 are connected so as to be relatively rotatable in one plane at the connection location 16, but the upper and lower measurement units 10 are one plane (predetermined plane) and a plane orthogonal thereto. May be connected so as to be relatively rotatable in at least two planes. Furthermore, the configuration of the measurement unit 10 is not limited to the above, and a configuration in which the chamber 12 and the chamber 13 are interchanged so that the connection portion 16 is above the inclination measuring device 30 is also possible.

さらに、傾斜測定装置30の配置や形状も上記に限らない。例えば水密性が保たれれば傾斜測定装置30が計測ユニット10の外部に配置されていてもよく、メンテナンスや電源の交換等が容易になる。また、傾斜測定装置30の上下面に凹部311を設ける代わりに、傾斜測定装置30の側面に略U字状の凹部を設け、この凹部にアンテナ部材41、42を配置するようにしてもよい。   Furthermore, the arrangement and shape of the inclination measuring device 30 are not limited to the above. For example, if the water tightness is maintained, the inclination measuring device 30 may be disposed outside the measuring unit 10, and maintenance, power supply replacement, and the like are facilitated. Further, instead of providing the concave portions 311 on the upper and lower surfaces of the inclination measuring device 30, a substantially U-shaped concave portion may be provided on the side surface of the inclination measuring device 30, and the antenna members 41 and 42 may be arranged in the concave portions.

[第2の実施形態]
次に、本発明の第2の実施形態として、上下の計測ユニット同士の接続箇所の構成と電波の伝送路が異なる例について説明する。第2の実施形態は第1の実施形態と異なる点について説明し、第1の実施形態と同様の点については説明を省略する。
[Second Embodiment]
Next, as a second embodiment of the present invention, an example in which the configuration of the connection location between the upper and lower measurement units and the radio wave transmission path are different will be described. The second embodiment will be described with respect to differences from the first embodiment, and description of points that are the same as those of the first embodiment will be omitted.

図11は、第2の実施形態に係る上下の計測ユニット10a同士の接続箇所16aを示す図である。図11では傾斜測定装置や充填体等の図示を省略している。   FIG. 11 is a diagram illustrating a connection portion 16a between the upper and lower measurement units 10a according to the second embodiment. In FIG. 11, illustration of a tilt measuring device, a filler, and the like is omitted.

図11に示すように、本実施形態では上下の計測ユニット10a同士が一直線状に接続される。上下の計測ユニット10aの接続箇所16aでは、上段の計測ユニット10aの筒体の下端部に筒状の第1端部部材91がネジ97等によって取付けられ、下段の計測ユニット10aの筒体の上端部に有底筒状の第2端部部材92が同じくネジ97等によって取付けられる。   As shown in FIG. 11, in this embodiment, the upper and lower measurement units 10a are connected in a straight line. At the connection portion 16a of the upper and lower measurement units 10a, a cylindrical first end member 91 is attached to the lower end of the cylinder of the upper measurement unit 10a with a screw 97 or the like, and the upper end of the cylinder of the lower measurement unit 10a. A bottomed cylindrical second end member 92 is similarly attached to the portion with a screw 97 or the like.

接続箇所16aでは、第1端部部材91に挿入部材93の一端が挿入され、挿入部材93の他端が第2端部部材92にピン接続される。   At the connection location 16a, one end of the insertion member 93 is inserted into the first end member 91, and the other end of the insertion member 93 is pin-connected to the second end member 92.

すなわち、挿入部材93の一端には挿入部931が設けられており、この挿入部931が第1端部部材91の孔911に挿入される。挿入部931には円柱状のピン933が取付けられ、ピン933は第1端部部材91の孔911の側面に設けられた上下方向の長穴912に通される。   That is, an insertion portion 931 is provided at one end of the insertion member 93, and the insertion portion 931 is inserted into the hole 911 of the first end member 91. A cylindrical pin 933 is attached to the insertion portion 931, and the pin 933 is passed through a long hole 912 in the vertical direction provided on the side surface of the hole 911 of the first end member 91.

一方、挿入部材93の他端には突出部932が設けられており、この突出部932が第2端部部材92の凹部921に挿入される。突出部932には円柱状のピン934が取付けられ、このピン934が第2端部部材92の凹部921の側面に設けられた孔922に挿入される。   On the other hand, a protrusion 932 is provided at the other end of the insertion member 93, and this protrusion 932 is inserted into the recess 921 of the second end member 92. A cylindrical pin 934 is attached to the protruding portion 932, and the pin 934 is inserted into a hole 922 provided on the side surface of the recess 921 of the second end member 92.

挿入部材93と第1端部部材91はバネ95(圧縮バネ)によって接続される。バネ95は上記した挿入部931の根元部分の外周面に沿って設けられる。   The insertion member 93 and the first end member 91 are connected by a spring 95 (compression spring). The spring 95 is provided along the outer peripheral surface of the root portion of the insertion portion 931 described above.

以上の構成により、本実施形態でも、上下の計測ユニット10aを接続する接続箇所16aにおいて、上下の計測ユニット10aが鉛直面内(計測ユニット10aの長手方向に沿った面内)で相対回転可能であり、且つ相対的に上下移動可能となっている。   With the above configuration, also in this embodiment, the upper and lower measurement units 10a can be relatively rotated in a vertical plane (in the plane along the longitudinal direction of the measurement unit 10a) at the connection portion 16a connecting the upper and lower measurement units 10a. Yes, and relatively movable up and down.

すなわち、下段の計測ユニット10aがピン934の軸方向を中心として回転することで上下の計測ユニット10aが鉛直面内で相対回転し、また挿入部材93の挿入部931が第1端部部材91の孔911内を上下移動することで、上下の計測ユニット10aが相対的に上下移動する。前記のバネ95は、この上下移動に応じて伸縮し、衝撃を吸収する役割を果たす。   That is, when the lower measurement unit 10 a rotates about the axial direction of the pin 934, the upper and lower measurement units 10 a rotate relative to each other in the vertical plane, and the insertion portion 931 of the insertion member 93 is connected to the first end member 91. By moving up and down in the hole 911, the upper and lower measurement units 10a relatively move up and down. The spring 95 expands and contracts in accordance with the vertical movement and plays a role of absorbing an impact.

挿入部931が孔911内を上下移動する際は、挿入部931に取付けられたピン933も孔911の側面の長穴912に沿って上下移動し、図11(b)に示すようにピン933が長穴912の端部に突き当たることで挿入部931の移動が停止する。図11(b)は上下の計測ユニット10aが相対的に上下移動して計測ユニット10a間の距離が縮まった状態を示しており、このとき前記のバネ95は縮んでいる。   When the insertion portion 931 moves up and down in the hole 911, the pin 933 attached to the insertion portion 931 also moves up and down along the long hole 912 on the side surface of the hole 911, and as shown in FIG. Butt against the end of the elongated hole 912, the movement of the insertion portion 931 stops. FIG. 11B shows a state in which the upper and lower measurement units 10a are relatively moved up and down and the distance between the measurement units 10a is reduced. At this time, the spring 95 is compressed.

以上の接続箇所16aの外面は1層又は複数層のゴムバンド等による弾性を有する被覆層96で覆われ、接続箇所16aの防水を確実にする構成となっている。被覆層96は樹脂やステンレス材等による結束バンド98を外側から巻くことにより両計測ユニット10aの筒体端部に固定される。   The outer surface of the above connection part 16a is covered with a coating layer 96 having elasticity by one or more layers of rubber bands or the like, so that the connection part 16a is waterproof. The covering layer 96 is fixed to the end portions of the cylinders of both measurement units 10a by winding a binding band 98 made of resin, stainless steel, or the like from the outside.

また本実施形態では、図12に概略を示す上下の計測ユニット10aの傾斜測定装置30の間で電波を伝送する(矢印R参照)ものとする。傾斜測定装置30および前記のアンテナ部材(不図示)は前記した室12(測定部)の中に配置されているが、アンテナ部材は必要に応じて長さを調整することが可能である。   In the present embodiment, radio waves are transmitted between the inclination measuring devices 30 of the upper and lower measurement units 10a schematically shown in FIG. 12 (see arrow R). Although the inclination measuring device 30 and the antenna member (not shown) are arranged in the chamber 12 (measurement unit), the length of the antenna member can be adjusted as necessary.

電波は、計測ユニット10aの内部の空洞あるいは充填体20、および、上下の計測ユニット10aの接続箇所16a(第1端部部材91、第2端部部材92、挿入部材93)を透過する。そのため、少なくとも電波が透過する部分ではアルミ等の金属は使用されず、電波透過性を有する材料を使用している。本実施形態では充填体20に発泡スチロールを使用し、計測ユニット10aの筒体並びに第1端部部材91、第2端部部材92、挿入部材93等にはポリカーボネイトを使用している。   A radio wave permeate | transmits the cavity or the filling body 20 inside the measurement unit 10a, and the connection location 16a (the 1st end member 91, the 2nd end member 92, the insertion member 93) of the upper and lower measurement units 10a. For this reason, metal such as aluminum is not used at least in a portion through which radio waves are transmitted, and a material having radio wave permeability is used. In the present embodiment, foamed polystyrene is used for the filling body 20, and polycarbonate is used for the cylindrical body of the measuring unit 10a, the first end member 91, the second end member 92, the insertion member 93, and the like.

これにより、第2の実施形態でもリレー形式による信号の送受信を行うことが可能になり、簡易な構成で各傾斜測定装置30への測定指示や各傾斜測定装置30の測定結果の収集を行うことができる。   As a result, it is possible to transmit and receive signals in the relay format in the second embodiment as well, and to collect measurement instructions to the inclination measuring devices 30 and measurement results of the inclination measuring devices 30 with a simple configuration. Can do.

以上、添付図面を参照して、本発明の好適な実施形態について説明したが、本発明は係る例に限定されない。当業者であれば、本願で開示した技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   The preferred embodiments of the present invention have been described above with reference to the accompanying drawings, but the present invention is not limited to such examples. It will be apparent to those skilled in the art that various changes or modifications can be conceived within the scope of the technical idea disclosed in the present application, and these are naturally within the technical scope of the present invention. Understood.

1:計測装置
2:情報処理装置
3、51:ワイヤ
4:カウンターウェイト
5:吊材
6:掘削機本体
7:地盤
8:ベースマシン
9:油圧ホース
10、10a:計測ユニット
11、12、13:室
14:スライダ
15:接続部
16、16a:接続箇所
17:マーキング
20:充填体
30:傾斜測定装置
31:容器
32:傾斜センサ
33:電源
34:アンテナ部
41、42:アンテナ部材
52:被覆材
61:カッタ
71:掘削溝
73:障害物
81:プーリ
82:ドラム
91:第1端部部材
92:第2端部部材
93:挿入部材
95:バネ
96:被覆層
97:ネジ
98:結束バンド
100:計測システム
131:スリット
141:軸
142:頭部
171:基準線
172:計測線
311:凹部
811、821:滑車
1: Measuring device 2: Information processing device 3, 51: Wire 4: Counterweight 5: Hanging material 6: Excavator body 7: Ground 8: Base machine 9: Hydraulic hose 10, 10a: Measuring units 11, 12, 13: Chamber 14: Slider 15: Connection part
16, 16a: Connection location 17: Marking 20: Filler 30: Inclination measuring device 31: Container 32: Inclination sensor 33: Power supply 34: Antenna part 41, 42: Antenna member 52: Covering material 61: Cutter 71: Excavation groove 73 : Obstacle 81: Pulley 82: Drum 91: First end member 92: Second end member 93: Insertion member 95: Spring 96: Cover layer 97: Screw 98: Binding band 100: Measuring system 131: Slit 141: Axis 142: head 171: reference line 172: measurement line 311: recesses 811, 821: pulley

Claims (9)

複数の棒状の計測ユニットを上下に接続して構成され、下端部に取付けた対象物の位置を計測する計測装置であって、
前記計測ユニットは、前記計測ユニットの傾斜を測定する傾斜測定装置と、前記傾斜測定装置の測定結果を送信する送信部を有し、
上下の前記計測ユニットを接続する接続箇所では、上下の前記計測ユニットが前記計測ユニットの長手方向に沿った面内で相対回転可能であり、且つ、
上下の前記計測ユニットが少なくとも所定の面内で相対回転可能な接続箇所と、上下の前記計測ユニットが少なくとも前記所定の面と直交する面内で相対回転可能な接続箇所が存在することを特徴とする計測装置。
A measuring device that is configured by connecting a plurality of bar-shaped measuring units up and down, and that measures the position of an object attached to the lower end,
The measurement unit includes an inclination measurement device that measures the inclination of the measurement unit, and a transmission unit that transmits a measurement result of the inclination measurement device,
At the connection location where the upper and lower measurement units are connected, the upper and lower measurement units are relatively rotatable in a plane along the longitudinal direction of the measurement unit, and
The upper and lower measurement units have a connection portion that can be relatively rotated in at least a predetermined plane, and the upper and lower measurement units have a connection portion that can be relatively rotated in a plane orthogonal to the predetermined surface. Measuring device.
前記計測装置は地盤の掘削時の掘削機本体の位置を計測するものであり、
前記計測装置の下端部が前記掘削機本体の外部に取付けられることを特徴とする請求項1に記載の計測装置。
The measuring device is for measuring the position of the excavator body during excavation of the ground,
The measuring device according to claim 1, wherein a lower end portion of the measuring device is attached to the outside of the excavator body.
前記計測ユニットは、内部に空洞を有する筒体であることを特徴とする請求項1または請求項2記載の計測装置。   The measuring apparatus according to claim 1, wherein the measuring unit is a cylindrical body having a cavity inside. 前記空洞に充填体が設置されることを特徴とする請求項3記載の計測装置。   The measuring device according to claim 3, wherein a filler is installed in the cavity. 前記筒体がポリカーボネイトによって形成されることを特徴とする請求項3または請求項4に記載の計測装置。   The measuring apparatus according to claim 3, wherein the cylindrical body is formed of polycarbonate. 前記計測装置の上端部に、線材を介してカウンターウェイトが取付けられることを特徴とする請求項3から請求項5のいずれかに記載の計測装置。   The measuring device according to any one of claims 3 to 5, wherein a counterweight is attached to an upper end portion of the measuring device via a wire. 上下の前記計測ユニットを接続する接続箇所では、上下の前記計測ユニットが相対的に上下移動可能であることを特徴とする請求項1から請求項6のいずれかに記載の計測装置。   The measurement apparatus according to claim 1, wherein the upper and lower measurement units are relatively movable up and down at a connection location where the upper and lower measurement units are connected. 上下の前記計測ユニットの前記傾斜測定装置の間で、電波が、上下の前記計測ユニットの接続箇所および前記計測ユニットの内部を透過して伝送されることを特徴とする請求項1から請求項7のいずれかに記載の計測装置。   The radio wave is transmitted between the inclination measuring devices of the upper and lower measurement units and transmitted through the connection location of the upper and lower measurement units and the inside of the measurement unit. The measuring apparatus in any one of. 請求項1から請求項8のいずれかに記載の計測装置と情報処理装置による計測システムであって、
前記情報処理装置は、
前記計測装置の下端部に取付けた対象物の位置を、
各計測ユニットの長さおよび傾斜を用いて算出することを特徴とする計測システム。
A measurement system comprising the measurement device according to any one of claims 1 to 8 and an information processing device,
The information processing apparatus includes:
The position of the object attached to the lower end of the measuring device,
A measurement system characterized by calculating using the length and inclination of each measurement unit.
JP2017061633A 2017-03-27 2017-03-27 Measuring device and measurement system Pending JP2018163114A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017061633A JP2018163114A (en) 2017-03-27 2017-03-27 Measuring device and measurement system
JP2022070995A JP7371874B2 (en) 2017-03-27 2022-04-22 Measuring device, measuring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017061633A JP2018163114A (en) 2017-03-27 2017-03-27 Measuring device and measurement system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022070995A Division JP7371874B2 (en) 2017-03-27 2022-04-22 Measuring device, measuring system

Publications (1)

Publication Number Publication Date
JP2018163114A true JP2018163114A (en) 2018-10-18

Family

ID=63860193

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017061633A Pending JP2018163114A (en) 2017-03-27 2017-03-27 Measuring device and measurement system
JP2022070995A Active JP7371874B2 (en) 2017-03-27 2022-04-22 Measuring device, measuring system

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022070995A Active JP7371874B2 (en) 2017-03-27 2022-04-22 Measuring device, measuring system

Country Status (1)

Country Link
JP (2) JP2018163114A (en)

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3903974A (en) * 1974-03-12 1975-09-09 Roy H Cullen Drilling assembly, deviation sub therewith, and method of using same
JP2001234556A (en) * 2000-02-22 2001-08-31 Yanmar Diesel Engine Co Ltd Cooling air passage for backhoe
JP2001234555A (en) * 2000-02-23 2001-08-31 Ohbayashi Corp Position measuring system for excavating machine
JP2003097186A (en) * 2001-09-27 2003-04-03 Shinwa Gijutsu Kaihatsu Kk Measuring method of boring machine position in pipe jacking method
JP2003148959A (en) * 2001-11-12 2003-05-21 Chem Grouting Co Ltd Insertion type measuring instrument, and drilling method
US20030145658A1 (en) * 2002-01-11 2003-08-07 Gerhard Weithe Method and apparatus for surveying the geometry of tunnels
JP2004183375A (en) * 2002-12-05 2004-07-02 Raito Kogyo Co Ltd Drilling position detecting method and drilling device used for the same
JP2005283419A (en) * 2004-03-30 2005-10-13 Railway Technical Res Inst System for measuring drilling tip position in vertical depth drilling, and measuring method using same
JP2007231635A (en) * 2006-03-01 2007-09-13 Tokyo Electric Power Co Inc:The Position measuring method for jacking method and its apparatus
JP2009293959A (en) * 2008-06-02 2009-12-17 Tokyo Electric Power Co Inc:The Method for detecting position of conduit in jacking method, apparatus thereof, and jacking method using the apparatus
JP2010031523A (en) * 2008-07-28 2010-02-12 Endo Ecoraise Co Ltd Vertical shaft excavator
JP2011144593A (en) * 2010-01-18 2011-07-28 Seiko Juki:Kk Construction management system for soil improving machine
JP2013032691A (en) * 2011-06-28 2013-02-14 Sanshin Corp Drilling device and laying method of injection pipe using the same
JP2014085327A (en) * 2012-10-29 2014-05-12 Myzox Co Ltd Slide type fixing mechanism
JP2016130406A (en) * 2015-01-13 2016-07-21 株式会社安藤・間 Shear force meter, measurement and evaluation method using the same for excavated soil property in chamber used with earth pressure shield tunneling, shield machine, and plastic fluidity testing device for earth and sand
JP2017025636A (en) * 2015-07-24 2017-02-02 大成建設株式会社 Positioning method of tunnel excavator and guiding device of tunnel excavator

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4054948B2 (en) * 2001-05-09 2008-03-05 オムロン株式会社 Linked sensor system
JP6462220B2 (en) * 2014-03-04 2019-01-30 東日本旅客鉄道株式会社 Railway equipment monitoring system
JP6398359B2 (en) * 2014-06-18 2018-10-03 富士電機株式会社 Mesh wireless communication system, wireless communication method, and wireless device
JP6718213B2 (en) * 2015-08-24 2020-07-08 佐鳥電機株式会社 Positioning system
JP2017046237A (en) * 2015-08-27 2017-03-02 沖電気工業株式会社 Radio communication device

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3903974A (en) * 1974-03-12 1975-09-09 Roy H Cullen Drilling assembly, deviation sub therewith, and method of using same
JP2001234556A (en) * 2000-02-22 2001-08-31 Yanmar Diesel Engine Co Ltd Cooling air passage for backhoe
JP2001234555A (en) * 2000-02-23 2001-08-31 Ohbayashi Corp Position measuring system for excavating machine
JP2003097186A (en) * 2001-09-27 2003-04-03 Shinwa Gijutsu Kaihatsu Kk Measuring method of boring machine position in pipe jacking method
JP2003148959A (en) * 2001-11-12 2003-05-21 Chem Grouting Co Ltd Insertion type measuring instrument, and drilling method
US20030145658A1 (en) * 2002-01-11 2003-08-07 Gerhard Weithe Method and apparatus for surveying the geometry of tunnels
JP2004183375A (en) * 2002-12-05 2004-07-02 Raito Kogyo Co Ltd Drilling position detecting method and drilling device used for the same
JP2005283419A (en) * 2004-03-30 2005-10-13 Railway Technical Res Inst System for measuring drilling tip position in vertical depth drilling, and measuring method using same
JP2007231635A (en) * 2006-03-01 2007-09-13 Tokyo Electric Power Co Inc:The Position measuring method for jacking method and its apparatus
JP2009293959A (en) * 2008-06-02 2009-12-17 Tokyo Electric Power Co Inc:The Method for detecting position of conduit in jacking method, apparatus thereof, and jacking method using the apparatus
JP2010031523A (en) * 2008-07-28 2010-02-12 Endo Ecoraise Co Ltd Vertical shaft excavator
JP2011144593A (en) * 2010-01-18 2011-07-28 Seiko Juki:Kk Construction management system for soil improving machine
JP2013032691A (en) * 2011-06-28 2013-02-14 Sanshin Corp Drilling device and laying method of injection pipe using the same
JP2014085327A (en) * 2012-10-29 2014-05-12 Myzox Co Ltd Slide type fixing mechanism
JP2016130406A (en) * 2015-01-13 2016-07-21 株式会社安藤・間 Shear force meter, measurement and evaluation method using the same for excavated soil property in chamber used with earth pressure shield tunneling, shield machine, and plastic fluidity testing device for earth and sand
JP2017025636A (en) * 2015-07-24 2017-02-02 大成建設株式会社 Positioning method of tunnel excavator and guiding device of tunnel excavator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
佐藤一彦: ""クローラ型掘削機械の機体位置検出システムに関する研究 平成6年度 (文部省S)"", クローラ型掘削機械の機体位置検出システムに関する研究 平成6年度 NO.06555307, JPN6021007899, 1996, JP, ISSN: 0004461938 *

Also Published As

Publication number Publication date
JP2022097559A (en) 2022-06-30
JP7371874B2 (en) 2023-10-31

Similar Documents

Publication Publication Date Title
CN106065767B (en) Method for the drilling equipment for generating cased bore-bole and for operating drilling equipment
EP3334900B1 (en) Borehole testing device
US6315062B1 (en) Horizontal directional drilling machine employing inertial navigation control system and method
ES2867857T3 (en) Measuring device of an excavation site
US20210310780A1 (en) Method and device for controlled filling and inspection of blast holes
KR20110026226A (en) Apparatus and method for investigating joint exploitation of three-dimensional underground
WO2001048353A1 (en) Autonomous omnidirectional driller
WO2002035048A1 (en) Solid-state inertial navigation control system for a horizontal drilling machine
JP7371874B2 (en) Measuring device, measuring system
JP2009002809A (en) Hole wall measuring device
CN112814681A (en) Coal mining method for open pit coal mine in frozen soil area
JP6321056B2 (en) Rotary excavator, tilt measurement method of rotary excavator
CN116446473A (en) Automatic construction monitoring and alarm system for oversized foundation pit
JP4608440B2 (en) Excavator twist management device
JP2021067113A (en) Data transmission system
JP2012177274A (en) Multiaxis type continuous wall groove drilling machine
JP7193336B2 (en) Drilling device
JP6761709B2 (en) Face ground exploration method and equipment
JP2016061050A (en) Soil pressure measuring device
KR20200138389A (en) Device for controlling boring attachments with angle measuring device
JP2009041977A (en) Survey device
JP3975185B2 (en) Measuring device for tilt angle and excavation depth in excavator
JPH10221070A (en) Apparatus for measuring verticality of excavator
JP3465006B2 (en) Vertical hole wall condition measuring device
EP3933353B1 (en) A hose reel unit and a method of a hose reel unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200325

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20200325

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210713

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220125