KR20030077876A - The sensor system for measurement of tunnel endurance displacement and its ceiling subsidence - Google Patents
The sensor system for measurement of tunnel endurance displacement and its ceiling subsidence Download PDFInfo
- Publication number
- KR20030077876A KR20030077876A KR1020020016840A KR20020016840A KR20030077876A KR 20030077876 A KR20030077876 A KR 20030077876A KR 1020020016840 A KR1020020016840 A KR 1020020016840A KR 20020016840 A KR20020016840 A KR 20020016840A KR 20030077876 A KR20030077876 A KR 20030077876A
- Authority
- KR
- South Korea
- Prior art keywords
- sensor
- tunnel
- sensor system
- displacement
- length
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B7/00—Measuring arrangements characterised by the use of electric or magnetic techniques
- G01B7/28—Measuring arrangements characterised by the use of electric or magnetic techniques for measuring contours or curvatures
- G01B7/281—Measuring arrangements characterised by the use of electric or magnetic techniques for measuring contours or curvatures for measuring contour or curvature along an axis, e.g. axial curvature of a pipeline or along a series of feeder rollers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B7/00—Measuring arrangements characterised by the use of electric or magnetic techniques
- G01B7/28—Measuring arrangements characterised by the use of electric or magnetic techniques for measuring contours or curvatures
- G01B7/293—Measuring arrangements characterised by the use of electric or magnetic techniques for measuring contours or curvatures for measuring radius of curvature
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/002—Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/02—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
- G01B11/03—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring coordinates of points
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/08—Measuring arrangements characterised by the use of optical techniques for measuring diameters
- G01B11/12—Measuring arrangements characterised by the use of optical techniques for measuring diameters internal diameters
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Lining And Supports For Tunnels (AREA)
Abstract
Description
본 발명은 터널의 내공변위와 천단침하 측정을 위한 센서시스템에 관한 것으로서, 더욱 상세히는 터널 시공 중 및 유지관리 단계에서 측정할 시에 사용되는 센서시스템을 제공코자 하는 것이다.The present invention relates to a sensor system for measuring the internal displacement of the tunnel and the sedimentary settlement, and more particularly, to provide a sensor system to be used during measurement during tunnel construction and maintenance.
통상 터널 시공 중 및 유지관리 단계에서 터널의 내공변위와 천단침하현상을 측정하기 위해서는 작업자가 현장에서 직접 측정장비를 사용하여 인력에 의존하여 측정을 행하여 옴으로서, 인력의 낭비는 물론 신속한 측정이 불가능한 등 다수의 문제점을 안고 있었던 것이다.Normally, in order to measure the internal displacement of the tunnel and the sedimentary phenomena of the tunnel during the construction and maintenance phase of the tunnel, the operator makes the measurement by using the measuring equipment directly on the site, which is not only a waste of manpower but also a quick measurement. There were a number of problems.
특히 기존의 센서를 이용한 터널 내공변위와 천단침하 측정용 센서들은 내공 변위를 측정하기 위한 센서와 각도센서가 각각 독립적으로 설치되어, 측정코자 하는 점의 벡터 측정이 불가능하며, 각각의 센서에 맞는 데이터 수집용 로거(Logger)가 필요했었다.In particular, the sensors for measuring tunnel displacement and sedimentary settlement using existing sensors are installed independently of the sensor and angle sensor for measuring the displacement of the hole, so that it is impossible to measure the vector of the point to measure. A collecting logger was needed.
한편, 기존에 터널 내공변위를 측정하는 센서에는 크게 2가지 방식이 있는바, 하나는 변위측정 테이프(Converzence Tape) 센서와 광섬유센서 이다.On the other hand, there are two types of sensors for measuring tunnel displacement in tunnels, one of which is a displacement tape sensor and an optical fiber sensor.
변위측정 테이프 센서는 전통적인 방식으로 핀을 터널 라이닝에 고정시키고 테이프를 연결하는 형태로서, 변형이 가해지면 테이프의 길이가 변하는 정도를 측정하게 된다. 이는 시공이 간단하고, 테이프의 길이를 30m 까지 늘려서 측정이 가능하지만, 정밀성이 0.1~0.15mm 정도로 정밀도가 낮다는 점과 별도의 각도 센서가 필요하다는 단점을 안고 있었던 것이다.Displacement measuring tape sensors traditionally secure pins to tunnel linings and connect tapes, which measure the extent to which tape length changes when strain is applied. This construction is simple and can be measured by increasing the length of the tape to 30m, but the precision was low 0.1 ~ 0.15mm and had the disadvantage of requiring a separate angle sensor.
그리고 광섬유 센서는 최근에 개발된 기술로 기본적인 구성은 광원(주로 반도체 레이저), 광섬유, 그리고 광 검출기로 구성되어 외부의 물리적 힘이 가해지면 굽힘 광 손실 혹은 산란의 특성을 이용하여 길이로 산출해내는 방식이다.In addition, the optical fiber sensor is a recently developed technology, and the basic configuration is composed of a light source (mainly a semiconductor laser), an optical fiber, and a photo detector, which calculates the length by using bending light loss or scattering characteristics when an external physical force is applied. That's the way.
이는 주로 대교(大橋)와 같은 곳에 이용되고 있으며, 정밀한 계측을 위해서는 고가의 정밀한 광원과 광검출기가 필요하다는 단점이 있었던 것이다.It is mainly used in places such as bridges, and has the disadvantage of requiring expensive and accurate light sources and photodetectors for precise measurement.
이에 본 발명에서는 상기한 바와 같은 기존의 터널의 내공변위와 천단침하를 측정하기 위한 센서시스템이 안고 있는 제반 문제점을 해결할 수 있는 신규한 구성의 터널 내공변위와 천단침하 측정용 센서시스템을 제공코자 하는 것으로서,Therefore, the present invention is to provide a sensor system for measuring tunnel hole displacement and tip settlement of a novel configuration that can solve all the problems of the sensor system for measuring the hole displacement and tip settle of the existing tunnel as described above. As,
본 발명은 특히 센서기구부 상에 길이변형센서와 기울기센서를 동시에 설치하여 측정점에 대한 길이와 각을 정확히 측정할 수 있으며, 정밀성에 있어 월등한 성능을 지닌 센서시스템을 제공함에 발명의 기술적 과제를 두고 본 발명을 완성한 것이다.In particular, the present invention provides a sensor system having a superior performance in precision and precisely measuring the length and angle of a measuring point by simultaneously installing a length strain sensor and an inclination sensor on a sensor mechanism part. The present invention has been completed.
도 1은 본 발명의 내공변위와 천단침하 측정을 위한 센서시스템의 정면도1 is a front view of a sensor system for measuring the pore displacement and tip settlement of the present invention.
도 2는 본 발명의 내공변위와 천단침하 측정을 위한 센서시스템의 측면도Figure 2 is a side view of the sensor system for measuring the pore displacement and tip settlement of the present invention
도 3은 본 발명의 내공변위와 천단침하 측정을 위한 센서시스템의 연장 구성Figure 3 is an extended configuration of the sensor system for measuring the pore displacement and the tip settlement of the present invention
도Degree
도 4는 본 발명의 터널 내공변위와 천단침하 측정을 위한 센서시스템의 터널Figure 4 is a tunnel of the sensor system for measuring the tunnel internal displacement and the tip settlement of the present invention
단면 설치 상태를 보인 개략도Schematic diagram showing cross-sectional installation
도 5는 본 발명의 터널 내공변위와 천단침하에 의한 벡터 dx, dy 측정5 is a measurement of the vector dx, dy by the tunnel internal displacement and the tip settlement of the present invention
도 6은 본 발명에 있어서 라이닝 내공변위와 천단침하 절대좌표 방식의 계측6 is a measurement of the lining internal displacement and the hem settlement absolute coordinate system in the present invention
원리도Principle
도 7은 본 발명에 있어서 라이닝 내공변위와 천단침하 상대좌표 방식의 계측Fig. 7 is a measurement of lining internal displacement and celestial settlement relative coordinate system in the present invention.
원리도Principle
■ 도면의 주요부분에 사용된 부호의 설명 ■■ Explanation of symbols used in main part of drawing ■
1:센서시스템2:센서기구부1: Sensor system 2: Sensor mechanism
3:센서모듈부4:센서콘트롤러부3: sensor module part 4: sensor controller part
5:레코드샤프트 6:베이스5: record shaft 6: base
7:커넥터 8:기울기센서모듈7: Connector 8: Tilt Sensor Module
9:연결샤프트10:길이변형센서모듈9: Connection shaft 10: Length deformation sensor module
11:게이지가이드스케일 12:터널11: Gauge guide scale 12: Tunnel
도 1은 본 발명에서 제공하는 터널의 내공변위와 천단침하 측정을 위한 센서시스템(1)의 정면도이며, 도 2는 이의 측면도로서, 본 발명은 소정 길이를 갖고 연속적으로 연결하여 사용할 수 있는 단위 센서시스템(1)으로 구성된다.FIG. 1 is a front view of a sensor system 1 for measuring the hole displacement and the tip settlement of a tunnel provided by the present invention, and FIG. 2 is a side view thereof, and the present invention has a predetermined length and can be used continuously connected to a unit sensor. It consists of the system (1).
즉, 상기 센서시스템(1)은 크게 사각형의 바아 등으로 이루어지는 센서기구부(2)와, 상기 센서기구부(2)상에 설치되며 길이 및 기울기 변형을 측정하기 위한 센서모듈부(3), 그리고 이들을 제어하기 위한 센서콘트롤러부(4)로 크게 구성된다.That is, the sensor system 1 includes a sensor mechanism part 2 consisting of a large bar and the like, a sensor module part 3 installed on the sensor mechanism part 2 for measuring length and tilt deformation, and these It is largely composed of a sensor controller 4 for controlling.
상기 센서기구부(2)는 레코드샤프트(5)를 양단에 각각 연결하기 위한 베이스(6)와 길이방향으로 이웃하여 연속적으로 연결되는 센서기구부(2)의 베이스(6)상에 설치된 커넥터(7)와 연결된다.The sensor mechanism (2) is a connector (7) provided on the base (6) of the sensor mechanism (2) continuously connected in a longitudinal direction with the base (6) for connecting the record shaft (5) to both ends, respectively. Connected with
상기 레코드샤프트(5)에는 센서모듈부(3)를 구성하는 1/100도의 분해능을 갖는 기울기센서모듈(8)이 연결샤프트(9)로 연결설치되며, 커넥터(7)의 단부에는 1/100mm의 분해능을 갖는 길이변형센서모듈(10)이 게이지가이드스케일(11)에 의해 설치된다.The inclination sensor module 8 having a resolution of 1/100 degrees constituting the sensor module 3 is connected to the record shaft 5 by a connecting shaft 9, and the end of the connector 7 is 1/100 mm. The length deformation sensor module 10 having a resolution of 10 is installed by the gauge guide scale 11.
이러한 구성상의 특징을 갖는 본 발명의 센서시스템(1)은 도 3과 같이 터널(12)의 내공변위와 천단침하를 측정하기 위하여 베이스(6) 부위에 레코드샤프트(5)를 길이방향으로 이웃하여 연속적으로 연결시켜 측정작업을 수행하도록 구성되는 것이다.The sensor system 1 of the present invention having such a configuration features the record shaft 5 adjacent to the base 6 in the longitudinal direction in order to measure the hole displacement and the tip settlement of the tunnel 12 as shown in FIG. 3. It is configured to carry out the measurement work by connecting continuously.
도면중의 부호 13은 터널(12)의 천단을 도시한 것이다.Reference numeral 13 in the figure shows the top end of the tunnel 12.
상기와 같이 구성될 수 있는 본 발명의 센서시스템(1)을 사용하여 터널(12)의 내공변위와 천단침하를 측정코자 할 시는 도 4와 같이 터널(12)의 천단(13)을 따라 센서시스템(1)을 도 3과 같이 길이방향으로 연장되게 연결하여 라이닝 길이에 맞게 설계ㆍ설치한다.In order to measure the internal hole displacement and the tip settlement of the tunnel 12 using the sensor system 1 of the present invention, which can be configured as described above, the sensor along the top end 13 of the tunnel 12 as shown in FIG. 4. The system 1 is connected and extended in the longitudinal direction as shown in Fig. 3, and designed and installed to fit the lining length.
센서시스템(1)은 1m의 길이로 도 2에서와 같이 a 포인트가 관측점이며, b 포인트가 계측점이 된다. 즉, 도 6에서 B가 계측점일 때는 A가 관측점이며, B가 관측점일 때는 C가 계측점이 된다. 라이닝에 변형이 발생하여 B~D 포인트가 이동을 하면 새로운 좌표 B'~D'로 구성되며, A좌표는 불변이다.The sensor system 1 has a length of 1 m and a point is an observation point and b point is a measurement point as shown in FIG. That is, in FIG. 6, when B is a measurement point, A is an observation point, and when B is an observation point, C is a measurement point. When deformation occurs in the lining and the B ~ D point moves, it consists of new coordinates B '~ D' and the A coordinate is invariant.
본 발명의 센서시스템(1)에서 라이닝 변형을 계측하는 기본 원리는 내공변위를 구하는 방법에 따라 '절대좌표방식'과 '상대좌표방식'이 있다.The basic principle of measuring the deformation of the lining in the sensor system 1 of the present invention is 'absolute coordinate method' and 'relative coordinate method' according to the method of obtaining the internal displacement.
절대좌표방식의 계측법에서 내공변위는 도 6의 예에서 보면 변형후의 중점좌표와 변형이전의 중점좌표의 이동거리이다. 그러므로 변형에 따른 이전의 계측점의 좌표를 반드시 알아야 한다.In the absolute coordinate measuring method, the internal displacement is a moving distance between the center coordinate after deformation and the center coordinate before deformation in the example of FIG. 6. Therefore, you must know the coordinates of the previous measuring point according to the deformation.
반면에 상대좌표방식은 도 7과 같이 변형에 의해 발생된 길이변형과 각도변형을 이용하여 좌표와 상관없이 한 시각 변화에 대하여 삼각함수 관계에 의한 곡률변화() 값을 내공변위로 놓는다.On the other hand, in the relative coordinate method, as shown in FIG. 7, the curvature change due to the trigonometric function with respect to a visual change irrespective of the coordinate using the length deformation and the angle deformation generated by the deformation ( ) Is set to internal displacement.
절대좌표방식은 한 단면의 연속된 센서시스템(1)에서 중간에 해당하는 센서시스템(1)에 고장이 발생할 경우 새로운 좌표 생성을 못하게 되거나 센서시스템(1)의 오동작으로 인한 오차 값의 전달이 이루어지는 문제점이 있을 수 있다.Absolute coordinate method prevents the generation of new coordinates or transfers error values due to malfunction of sensor system 1 when a failure occurs in the sensor system 1 corresponding to the middle in the continuous sensor system 1 of one section. There may be a problem.
반면에 상대좌표방식은 앞의 경우에 각 센서시스템(1)이 독립적 계측을 하므로 정상 센서시스템(1)에 대하여 내공변위를 모두 구할 수 있으나 수식적 값 축약에 의하여 각도변형이 미세할 경우에 그 정확성을 가진다.On the other hand, in the case of the relative coordinate method, since each sensor system 1 independently measures, the internal displacement can be obtained with respect to the normal sensor system 1, but when the angular deformation is minute due to the formal value reduction, Have accuracy.
이하 절대좌표방식에 의한 계측법을 보다 상세히 설명하면;Hereinafter, the measurement method based on the absolute coordinate method will be described in detail;
터널의 단면변형 측정을 위한 센서시스템(1)은 터널(12) 단면의 천단(13)을 따라 도 6과 같이 S1~S4까지 센서시스템(1)이 설치되었을 때, 단면변형이 일어나는 경우 좌표점의 이동은 B'~D' 좌표로 나타내며, 선행 센서시스템(1)의 좌표이동에 영향을 받는다.The sensor system 1 for measuring the cross-sectional deformation of a tunnel is a coordinate point when the cross-sectional deformation occurs when the sensor system 1 is installed from S1 to S4 along the top end 13 of the cross section of the tunnel 12 as shown in FIG. 6. The movement of is represented by B'-D 'coordinates and is affected by the coordinate movement of the preceding sensor system 1.
S1 센서시스템(1)의 경우를 살펴보면, 선행 센서시스템(1)이 없으므로 B에서 B'로의 이동을 dx(b), dy(b) 성분만으로 나타낼 수 있다.Referring to the case of the S1 sensor system 1, since there is no preceding sensor system 1, the movement from B to B 'can be represented only by the dx (b) and dy (b) components.
각 설치좌표점(A~D)은 센서시스템(1)의 설치점 설계에 의하여 이미 알고 있으며, 변형 좌표점 B'(Xb',Yb')는와에 의한 삼각 함수에 의하여 구할 수 있다.Each installation coordinate point (A to D) is already known by the design of the installation point of the sensor system 1, and the deformation coordinate point B '(Xb', Yb ') Wow It can be obtained by trigonometric function by.
여기서,,이다.here, , to be.
따라서 dx, dy는 B(Xb,Yb)와 B'(Xb',Yb')를 이용하여 다음과 같이 구할 수 있다.Therefore, dx and dy can be obtained as follows using B (Xb, Yb) and B '(Xb', Yb ').
결과적으로 B점에서의 터널(12)의 단면변화는 위의 수식에 따라과을 구하여 얻을 수 있다.As a result, the cross-sectional change of the tunnel 12 at point B is and Obtained by
S2 센서시스템(1)의 순수한 변형은 C에서 C"로의 이동이며, C' 좌표는 C"좌표에 S1의 B에서 B'점으로의 이동 성분인 dx(b), dy(b)을 더한 값이다.The pure deformation of the S2 sensor system 1 is the movement from C to C ", and the C 'coordinate is the C" coordinate plus the dx (b) and dy (b) components of the movement from B to B' of S1. to be.
위의 수식과 같이 C'점을 구할 수 있으며, 나머지 D', E' 좌표 역시 같은 방식으로 구하게 된다.You can get the point C 'as shown in the above formula, and the rest of the D' and E 'coordinates are obtained in the same way.
그리고 본 발명의 센서시스템(1)을 사용하여 라이닝 변형을 상대좌표방식에 의한 계측법은 다음과 같다.And using the sensor system 1 of the present invention, the measurement method of the lining deformation by the relative coordinate method is as follows.
도 7에서 곡률변화와 h', h 는 다음 수식과 같으며 이를 내공변위로 하여 축력 및 휨모멘트를 구하게된다. 즉, 각와을 구하면 각 센서시스템(1)에서 각 좌표와 독립적인 내공변위값을 구하게 된다.Curvature change in FIG. And h 'and h are as follows, and the axial force and the bending moment are obtained by using the internal displacement. That is, each Wow If we obtain, we obtain the internal displacement value independent of each coordinate in each sensor system (1).
절대좌표방식 및 상대좌표방식의 계측원리에서 결과적으로 각 센서시스템(1)에서와을 구하면 된다.는 도 1의 센서시스템(1)의 A부와 B부, A'부와 B'부가 각각 조인트 구조로 단면변형에 의한 상하운동은 기울기센서모듈(8)에 의하여값을 구하게된다.The measuring principle of the absolute coordinate method and relative coordinate method results in each sensor system (1). Wow You can find A and B, A 'and B' of the sensor system 1 of Figure 1 is a joint structure, the vertical movement of the cross-sectional deformation by the inclination sensor module (8) Get the value.
또한 B와 B'부는 서로 슬라이딩할 수 있는 구조로 단면변형에 의한 좌표점의 이동 거리가 길이변형센서모듈(10)에 의하여값을 구하게 된다.In addition, the B and B 'portion is a structure that can slide with each other by the longitudinal deformation sensor module 10 the movement distance of the coordinate point by the cross-sectional deformation Get the value.
이상에서 상세히 살펴 본 바와 같이 본 발명은 터널 내공변위와 천단침하를 측정하기 위한 센서시스템(1)을 제공하되, 센서기구부(2) 상에 길이변형센서와 기울기센서를 동시에 설치하여 측정점에 대한 길이와 각을 정확히 센싱할 수 있으며, 계측 정밀성에 있어 월등한 성능을 지닌 센서시스템(1)을 제공할 수 있는 등 그 기대되는 효과가 예상외로 다대한 발명이다.As described in detail above, the present invention provides a sensor system (1) for measuring tunnel internal displacement and sedimentary settling, and simultaneously installs a length strain sensor and a tilt sensor on the sensor mechanism (2) to measure the length of the measurement point. It is possible to accurately sense angles and angles, and to provide a sensor system 1 with superior performance in measurement precision.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2002-0016840A KR100439203B1 (en) | 2002-03-27 | 2002-03-27 | The sensor system for measurement of tunnel endurance displacement and its ceiling subsidence |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2002-0016840A KR100439203B1 (en) | 2002-03-27 | 2002-03-27 | The sensor system for measurement of tunnel endurance displacement and its ceiling subsidence |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20030077876A true KR20030077876A (en) | 2003-10-04 |
KR100439203B1 KR100439203B1 (en) | 2004-07-07 |
Family
ID=32376889
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR10-2002-0016840A KR100439203B1 (en) | 2002-03-27 | 2002-03-27 | The sensor system for measurement of tunnel endurance displacement and its ceiling subsidence |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100439203B1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100473479B1 (en) * | 2004-09-06 | 2005-03-14 | (주) 한국시설안전연구원 | Measure apparatus for safety check-up of bridge |
KR100734390B1 (en) * | 2005-06-24 | 2007-07-06 | (주)지티씨코퍼레이션 | Instrument for measuring two dimensional deformation in tunnels |
KR101220311B1 (en) * | 2012-03-27 | 2013-01-09 | (주)카이센 | Bending sensor apparatus |
CN106705876A (en) * | 2016-12-12 | 2017-05-24 | 浙江大学 | Laser ranging railway tunnel detection vehicle based on gyroscope positioning and detection method |
KR102159222B1 (en) * | 2019-06-12 | 2020-09-23 | 이근호 | Measuring apparatus for retain wall and measuring method using the same |
KR102416102B1 (en) * | 2022-02-04 | 2022-07-05 | 청암이앤씨주식회사 | Corrugated steel plate structure displacement automatic measurement system and method thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102914250B (en) * | 2012-11-22 | 2014-12-31 | 长沙理工大学 | Peripheral displacement monitoring and measuring system during tunnel construction |
-
2002
- 2002-03-27 KR KR10-2002-0016840A patent/KR100439203B1/en not_active IP Right Cessation
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100473479B1 (en) * | 2004-09-06 | 2005-03-14 | (주) 한국시설안전연구원 | Measure apparatus for safety check-up of bridge |
KR100734390B1 (en) * | 2005-06-24 | 2007-07-06 | (주)지티씨코퍼레이션 | Instrument for measuring two dimensional deformation in tunnels |
KR101220311B1 (en) * | 2012-03-27 | 2013-01-09 | (주)카이센 | Bending sensor apparatus |
CN106705876A (en) * | 2016-12-12 | 2017-05-24 | 浙江大学 | Laser ranging railway tunnel detection vehicle based on gyroscope positioning and detection method |
KR102159222B1 (en) * | 2019-06-12 | 2020-09-23 | 이근호 | Measuring apparatus for retain wall and measuring method using the same |
KR102416102B1 (en) * | 2022-02-04 | 2022-07-05 | 청암이앤씨주식회사 | Corrugated steel plate structure displacement automatic measurement system and method thereof |
Also Published As
Publication number | Publication date |
---|---|
KR100439203B1 (en) | 2004-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101790177B1 (en) | Apparatus for measuring convergence and ceiling subsidence using fiber bragg grating sensor | |
CN102878975B (en) | A kind of tunnel convergence deformation monitoring method | |
WO2006065923A2 (en) | Centralizer-based survey and navigation device and method | |
CN102914282A (en) | Monitoring and measuring method using displacement sensor to measure tunnel deformation | |
KR100439203B1 (en) | The sensor system for measurement of tunnel endurance displacement and its ceiling subsidence | |
CN110030939A (en) | A kind of country rock linear displacement measuring device and method | |
KR100734390B1 (en) | Instrument for measuring two dimensional deformation in tunnels | |
CN204630548U (en) | A kind of Fiber Bragg Grating Displacement Sensor device | |
KR100550108B1 (en) | Method for measuring 2d convergence of tunnel and apparatus thereof | |
KR20060136002A (en) | Instrument for measuring two dimensional deformation in tunnels | |
SE9500512D0 (en) | Apparatus for determining the curvature of an elongated channel such as a borehole, for example in rock | |
KR100879601B1 (en) | Equipment for measuring displacement for construction using optical fiber sensor and Method thereof | |
CN117433478B (en) | Guide rail parallelism detection robot and detection method | |
KR100857306B1 (en) | Measuring method of endurance displacement and its ceiling subsidence used FBG sensor | |
JPH0788744B2 (en) | Measuring method of excavation hole displacement by auger boring | |
KR100796161B1 (en) | Apparatus for measuring convergence and ceiling subsidence using fiber bragg grating sensor | |
CN108592875B (en) | Novel calculation method for convergence displacement of contact type tunnel convergence monitoring system | |
CN101556144B (en) | Laser longitude and latitude multifunctional fast arc-measuring apparatus as well as measuring and calculating method thereof | |
JPH07208991A (en) | Method for measuring displacement | |
KR200399594Y1 (en) | Instrument for measuring two dimensional deformation in tunnels | |
KR101266159B1 (en) | Measuring apparatus for displacement and measuring system using the same | |
CN102927926B (en) | Dynamic correcting method of linear measurement system based on fiber-optic gyroscope | |
CN113670239B (en) | Vertical shaft digging pose measuring device and method | |
RU2819109C1 (en) | Method of controlling alignment of shafts | |
Ciddor et al. | A 70-metre laser interferometer for the calibration of survey tapes and EDM equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20070611 Year of fee payment: 5 |
|
LAPS | Lapse due to unpaid annual fee |