JP7246866B2 - 医用画像処理装置 - Google Patents
医用画像処理装置 Download PDFInfo
- Publication number
- JP7246866B2 JP7246866B2 JP2018096474A JP2018096474A JP7246866B2 JP 7246866 B2 JP7246866 B2 JP 7246866B2 JP 2018096474 A JP2018096474 A JP 2018096474A JP 2018096474 A JP2018096474 A JP 2018096474A JP 7246866 B2 JP7246866 B2 JP 7246866B2
- Authority
- JP
- Japan
- Prior art keywords
- image
- weighted
- images
- imaging
- processing apparatus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 claims description 138
- 238000003384 imaging method Methods 0.000 claims description 81
- 238000012549 training Methods 0.000 claims description 70
- 238000012545 processing Methods 0.000 claims description 43
- 230000006870 function Effects 0.000 claims description 26
- 230000008569 process Effects 0.000 claims description 25
- 238000004088 simulation Methods 0.000 claims description 18
- 210000003484 anatomy Anatomy 0.000 claims description 13
- 238000013527 convolutional neural network Methods 0.000 claims description 12
- 238000013135 deep learning Methods 0.000 claims description 12
- 238000013528 artificial neural network Methods 0.000 claims description 8
- 230000000306 recurrent effect Effects 0.000 claims description 2
- 230000002159 abnormal effect Effects 0.000 claims 1
- 230000007423 decrease Effects 0.000 claims 1
- 238000013519 translation Methods 0.000 description 20
- 238000002591 computed tomography Methods 0.000 description 19
- 238000002595 magnetic resonance imaging Methods 0.000 description 11
- 230000000295 complement effect Effects 0.000 description 6
- 230000011218 segmentation Effects 0.000 description 6
- 208000006011 Stroke Diseases 0.000 description 5
- 230000005856 abnormality Effects 0.000 description 5
- 238000013459 approach Methods 0.000 description 4
- 230000003902 lesion Effects 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- 238000002604 ultrasonography Methods 0.000 description 4
- 238000002059 diagnostic imaging Methods 0.000 description 3
- 238000009206 nuclear medicine Methods 0.000 description 3
- 238000005457 optimization Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 238000002600 positron emission tomography Methods 0.000 description 3
- 238000011524 similarity measure Methods 0.000 description 3
- 210000001519 tissue Anatomy 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 239000002872 contrast media Substances 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 210000002569 neuron Anatomy 0.000 description 2
- 239000000700 radioactive tracer Substances 0.000 description 2
- 238000002603 single-photon emission computed tomography Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 201000006474 Brain Ischemia Diseases 0.000 description 1
- 206010051290 Central nervous system lesion Diseases 0.000 description 1
- 206010008120 Cerebral ischaemia Diseases 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 206010008118 cerebral infarction Diseases 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 238000013136 deep learning model Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000002597 diffusion-weighted imaging Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000002091 elastography Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000003709 image segmentation Methods 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000003211 malignant effect Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 230000005055 memory storage Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008450 motivation Effects 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 230000010412 perfusion Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 210000004872 soft tissue Anatomy 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/30—Determination of transform parameters for the alignment of images, i.e. image registration
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/54—Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
- G01R33/56—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
- G01R33/5602—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution by filtering or weighting based on different relaxation times within the sample, e.g. T1 weighting using an inversion pulse
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/54—Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
- G01R33/56—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
- G01R33/5608—Data processing and visualization specially adapted for MR, e.g. for feature analysis and pattern recognition on the basis of measured MR data, segmentation of measured MR data, edge contour detection on the basis of measured MR data, for enhancing measured MR data in terms of signal-to-noise ratio by means of noise filtering or apodization, for enhancing measured MR data in terms of resolution by means for deblurring, windowing, zero filling, or generation of gray-scaled images, colour-coded images or images displaying vectors instead of pixels
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T11/00—2D [Two Dimensional] image generation
- G06T11/003—Reconstruction from projections, e.g. tomography
- G06T11/008—Specific post-processing after tomographic reconstruction, e.g. voxelisation, metal artifact correction
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/4808—Multimodal MR, e.g. MR combined with positron emission tomography [PET], MR combined with ultrasound or MR combined with computed tomography [CT]
- G01R33/4812—MR combined with X-ray or computed tomography [CT]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10072—Tomographic images
- G06T2207/10081—Computed x-ray tomography [CT]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10072—Tomographic images
- G06T2207/10088—Magnetic resonance imaging [MRI]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10072—Tomographic images
- G06T2207/10104—Positron emission tomography [PET]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10072—Tomographic images
- G06T2207/10108—Single photon emission computed tomography [SPECT]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10116—X-ray image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10132—Ultrasound image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Theoretical Computer Science (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Signal Processing (AREA)
- High Energy & Nuclear Physics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Artificial Intelligence (AREA)
- Medical Informatics (AREA)
- Quality & Reliability (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
- Image Analysis (AREA)
- Apparatus For Radiation Diagnosis (AREA)
Description
DANにより訓練されたモダリティ変換器(DAN-trained modality converter)の有効性は、T1-強調対T2-強調剛体レジストレーション課題(マルチモダリティ剛体レジストレーション課題と呼ぶことができる)を、合成されたT2-強調対T2-強調剛体レジストレーション課題(単一モダリティタスクと呼ぶことができる)に変更することにより、実証することができ、それにより二乗差の和を使用することができるのである。
Claims (16)
- 被検体の解剖学的領域について第一の撮像法を用いて撮像された第一の画像を取得する取得部と、
前記第一の画像を用いて、前記第一の撮像法とは異なる第二の撮像法に対応するシミュレーション画像としての第二の画像を生成する生成部であって、前記第二の画像と前記第二の撮像法によって現実に取得された、病変のない第三の画像とを区別する識別器を用いた敵対的な訓練処理を繰り返すことで訓練された生成部と、
前記第二の撮像法を用いて撮像された前記被検体に関する第四の画像と前記シミュレーション画像としての前記第二の画像とを比較し、前記被検体に関する異常部位の特定結果を出力する比較部と、
を具備する医用画像処理装置。 - 前記生成部及び前記識別器の少なくとも一方は、深層学習ネットワークである請求項1記載の医用画像処理装置。
- 前記深層学習ネットワークは、畳み込みニューラルネットワーク、スキップ接続を伴う畳み込みニューラルネットワーク、多層ニューラルネットワーク、再帰型ニューラルネットワークのうちの少なくとも一つを具備する請求項2記載の医用画像処理装置。
- 前記識別器は、入力した一つの画像が前記第二の画像又は前記第三の画像であるかを区別する一つのアームを有する請求項1乃至3のうちいずれか一項記載の医用画像処理装置。
- 前記識別器は、入力した二つの画像のどちらが前記第二の画像でありどちらが前記第三の画像であるかを区別する二つのアームを有する請求項1乃至3のうちいずれか一項記載の医用画像処理装置。
- 前記識別器は、複数の前記第二の画像及び複数の前記第三の画像を含む訓練データと、識別誤差関数とを用いた訓練により、重み調整されて生成されたものである請求項1乃至5のうちいずれか一項記載の医用画像処理装置。
- 前記識別器は、前記識別誤差関数を最小にするように前記重みを調整する請求項6記載の医用画像処理装置。
- 前記生成部は、前記第二の画像と前記第三の画像との差を指標として、前記識別器を用いた敵対的な訓練処理を繰り返すことで訓練されたものである請求項1乃至7のうちいずれか一項記載の医用画像処理装置。
- 前記生成部は、前記第二の画像がシミュレーション画像であるのか前記第三の画像であるのかの識別誤差を指標として、前記識別器を用いた敵対的な訓練処理を繰り返すことで訓練されたものである請求項1乃至7のうちいずれか一項記載の医用画像処理装置。
- 前記生成部は、前記第二の画像がシミュレーション画像であるのか前記第三の画像であるのかの識別誤差を増加させ、前記第二の画像と前記第三の画像との差を減少させるように重みを調整することで訓練されたものである請求項1乃至7のうちいずれか一項記載の医用画像処理装置。
- 前記第一の撮像法は第一のモダリティを用いて実行され、前記第二の撮像法は前記第一のモダリティとは異なる第二のモダリティを用いて実行される請求項1乃至10のうちいずれか一項記載の医用画像処理装置。
- 前記第一の撮像法はT1-強調MR撮像とT2-強調MR撮像とのうちの一方を使用し、前記第二の撮像法はT1-強調MR撮像とT2-強調MR撮像とのうちの他方を使用する請求項1乃至10のうちいずれか一項記載の医用画像処理装置。
- 前記生成部は、前記第一の画像を用いて、輝度値、コントラスト値、画像解像度、シャープネス、特徴解像度、信号対ノイズレベルのうち少なくとも一つの属性を基準として前記第二の画像を生成する請求項1乃至12のうちいずれか一項記載の医用画像処理装置。
- 前記生成部は、前記第二の撮像法を用いて撮像された前記被検体に関する第四の画像と前記シミュレーション画像としての前記第二の画像とを用いた第一のレジストレーションを実行する請求項1乃至13のうちいずれか一項記載の医用画像処理装置。
- 前記生成部は、前記第一のレジストレーションの結果に基づいて、異なる撮像法を用いて撮像された異なる画像について第二のレジストレーションを実行する請求項14記載の医用画像処理装置。
- 前記生成部は、
前記第二の画像をセグメンテーションし、
前記セグメンテーションされた第二の画像に基づいて、前記第一の画像をセグメンテーションする、
請求項1乃至15のうちいずれか一項記載の医用画像処理装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/598,934 | 2017-05-18 | ||
US15/598,934 US10346974B2 (en) | 2017-05-18 | 2017-05-18 | Apparatus and method for medical image processing |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018192264A JP2018192264A (ja) | 2018-12-06 |
JP7246866B2 true JP7246866B2 (ja) | 2023-03-28 |
Family
ID=64272427
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018096474A Active JP7246866B2 (ja) | 2017-05-18 | 2018-05-18 | 医用画像処理装置 |
Country Status (2)
Country | Link |
---|---|
US (1) | US10346974B2 (ja) |
JP (1) | JP7246866B2 (ja) |
Families Citing this family (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10304219B2 (en) * | 2014-06-13 | 2019-05-28 | Siemens Medical Solutions Usa, Inc. | Intra reconstruction motion correction |
US10753997B2 (en) * | 2017-08-10 | 2020-08-25 | Siemens Healthcare Gmbh | Image standardization using generative adversarial networks |
US10878529B2 (en) | 2017-12-22 | 2020-12-29 | Canon Medical Systems Corporation | Registration method and apparatus |
US11199506B2 (en) * | 2018-02-21 | 2021-12-14 | Applied Materials Israel Ltd. | Generating a training set usable for examination of a semiconductor specimen |
US10956635B1 (en) * | 2019-12-04 | 2021-03-23 | David Byron Douglas | Radiologist-assisted machine learning with interactive, volume subtending 3D cursor |
US11238197B1 (en) * | 2018-04-03 | 2022-02-01 | David Byron Douglas | Generating a 3D dataset containing a simulated surgical device |
US11100632B2 (en) | 2018-04-13 | 2021-08-24 | Elekta, Inc. | Image synthesis using adversarial networks such as for radiation therapy |
US11501438B2 (en) * | 2018-04-26 | 2022-11-15 | Elekta, Inc. | Cone-beam CT image enhancement using generative adversarial networks |
WO2019224800A1 (en) * | 2018-05-25 | 2019-11-28 | Mahajan Vidur | Method and system for simulating and constructing original medical images from one modality to other modality |
EP3575813B1 (en) * | 2018-05-30 | 2022-06-29 | Siemens Healthcare GmbH | Quantitative mapping of a magnetic resonance imaging parameter by data-driven signal-model learning |
US10991148B2 (en) * | 2018-08-13 | 2021-04-27 | Canon Medical Systems Corporation | Medical image rendering method and apparatus |
US11484279B2 (en) | 2018-09-24 | 2022-11-01 | Siemens Medical Solutions Usa, Inc. | Systems to assess projection data inconsistency |
US20200143266A1 (en) * | 2018-11-07 | 2020-05-07 | International Business Machines Corporation | Adversarial balancing for causal inference |
JP7046786B2 (ja) * | 2018-12-11 | 2022-04-04 | 株式会社日立製作所 | 機械学習システム、ドメイン変換装置、及び機械学習方法 |
CN111369635A (zh) * | 2018-12-25 | 2020-07-03 | 通用电气公司 | 预测截断图像的系统和方法、准备数据的方法及其介质 |
JP7242288B2 (ja) * | 2018-12-25 | 2023-03-20 | キヤノンメディカルシステムズ株式会社 | 医用画像診断装置及びモデル学習装置 |
US10373026B1 (en) * | 2019-01-28 | 2019-08-06 | StradVision, Inc. | Learning method and learning device for generation of virtual feature maps whose characteristics are same as or similar to those of real feature maps by using GAN capable of being applied to domain adaptation to be used in virtual driving environments |
JP7268367B2 (ja) * | 2019-01-30 | 2023-05-08 | 富士通株式会社 | 学習装置、学習方法および学習プログラム |
JP7268368B2 (ja) * | 2019-01-30 | 2023-05-08 | 富士通株式会社 | 学習装置、学習方法および学習プログラム |
US10867375B2 (en) * | 2019-01-30 | 2020-12-15 | Siemens Healthcare Gmbh | Forecasting images for image processing |
JP7106741B2 (ja) * | 2019-02-28 | 2022-07-26 | 富士フイルム株式会社 | 学習方法、学習装置、生成モデル及びプログラム |
WO2020202680A1 (ja) * | 2019-03-29 | 2020-10-08 | キヤノン株式会社 | 情報処理装置及び情報処理方法 |
CN109961490A (zh) * | 2019-04-08 | 2019-07-02 | 深圳大学 | 剪影成像方法及装置 |
GB201907193D0 (en) | 2019-06-05 | 2019-07-03 | Secr Defence | Obtaining patterns for surfaces of objects |
JP7203978B2 (ja) * | 2019-07-25 | 2023-01-13 | 富士フイルム株式会社 | 学習装置、方法およびプログラム、関心領域抽出装置、方法およびプログラム、並びに学習済み抽出モデル |
JP7375403B2 (ja) * | 2019-09-19 | 2023-11-08 | コニカミノルタ株式会社 | 機械学習装置、機械学習方法及び機械学習プログラム |
CN110751187B (zh) * | 2019-09-26 | 2022-08-19 | 武汉中科医疗科技工业技术研究院有限公司 | 异常区域图像生成网络的训练方法和相关产品 |
WO2021060462A1 (ja) * | 2019-09-27 | 2021-04-01 | 富士フイルム株式会社 | 画像処理装置、方法およびプログラム、学習装置、方法およびプログラム、並びに導出モデル |
JP7170897B2 (ja) * | 2019-09-30 | 2022-11-14 | 富士フイルム株式会社 | 学習装置、方法およびプログラム、画像生成装置、方法およびプログラム、並びに画像生成モデル |
CN111260652B (zh) * | 2020-01-09 | 2023-09-08 | 浙江传媒学院 | 一种基于mimo-gan的图像生成系统和方法 |
EP4200744A1 (en) | 2020-08-21 | 2023-06-28 | Ventana Medical Systems, Inc. | Correcting differences in multi-scanners for digital pathology images using deep learning |
JP2023001431A (ja) * | 2021-06-21 | 2023-01-06 | コニカミノルタ株式会社 | 学習装置、学習システム、機械学習モデルの学習方法及びプログラム |
US11551432B1 (en) | 2021-07-16 | 2023-01-10 | The Government of the United States of America, as represented by the Secretary of Homeland Security | System and method for training an artificial intelligence (AI) classifier of scanned items |
US11379693B1 (en) * | 2021-07-16 | 2022-07-05 | The Government of the United States of America, as represented by the Secretary of Homeland Security | System and method of new understandable training for AI as applied to electromagnetic sensor detection |
CN114283151A (zh) * | 2021-08-16 | 2022-04-05 | 腾讯科技(深圳)有限公司 | 用于医学图像的图像处理方法、装置、设备及存储介质 |
US11955228B2 (en) | 2021-12-10 | 2024-04-09 | GE Precision Healthcare LLC | Methods and system for simulated radiology studies based on prior imaging data |
CN114580252A (zh) * | 2022-05-09 | 2022-06-03 | 山东捷瑞数字科技股份有限公司 | 一种用于流体仿真的图神经网络仿真方法及系统 |
WO2024043591A1 (ko) * | 2022-08-22 | 2024-02-29 | 고려대학교 산학협력단 | 융합 영상을 이용한 턱관절 및 두경부 질환 진단 방법 및 장치 |
WO2024063119A1 (ja) * | 2022-09-21 | 2024-03-28 | 国立大学法人大阪大学 | 画像翻訳装置、画像診断システム、画像翻訳方法、制御プログラム、記録媒体 |
EP4386626A1 (en) * | 2022-12-14 | 2024-06-19 | Leica Microsystems CMS GmbH | Methods, systems, and computer systems for training a machine-learning model, generating a training corpus, and using a machine-learning model for use in a scientific or surgical imaging system |
CN116071401B (zh) * | 2023-01-28 | 2023-08-01 | 中日友好医院(中日友好临床医学研究所) | 基于深度学习的虚拟ct图像的生成方法及装置 |
EP4446988A1 (en) * | 2023-04-12 | 2024-10-16 | TheraPanacea | Method for generating a registered image |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016092394A1 (en) | 2014-12-10 | 2016-06-16 | Koninklijke Philips N.V. | Systems and methods for translation of medical imaging using machine learning |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69729826T2 (de) * | 1996-05-30 | 2004-11-25 | Matsushita Electric Industrial Co., Ltd., Kadoma | Vorrichtung zur Übertragung von Daten, Verfahren und Vorrichtung zum Empfang von Daten und Kommunikationssystem |
CN1179565C (zh) * | 1996-05-31 | 2004-12-08 | 松下电器产业株式会社 | 数据通信系统和数据发送设备及数据接收设备 |
JP4267598B2 (ja) | 2005-07-11 | 2009-05-27 | ザイオソフト株式会社 | 画像融合処理方法、画像融合処理プログラム、画像融合処理装置 |
US8010009B2 (en) * | 2006-02-24 | 2011-08-30 | Kyocera Mita Corporation | Image forming apparatus with controller for automatically switching displays of operation procedure in rotation |
JP5053604B2 (ja) | 2006-09-21 | 2012-10-17 | 株式会社東芝 | 医用画像処理装置 |
CN104160424B (zh) | 2012-03-08 | 2017-09-19 | 皇家飞利浦有限公司 | 用于改进多模态图像融合中的配准准确度的智能标志选择 |
CN104380132B (zh) | 2012-05-31 | 2018-01-09 | 皇家飞利浦有限公司 | 用于图像分割的量化评估的方法和系统 |
JP6548393B2 (ja) | 2014-04-10 | 2019-07-24 | キヤノンメディカルシステムズ株式会社 | 医用画像表示装置および医用画像表示システム |
US9922272B2 (en) * | 2014-09-25 | 2018-03-20 | Siemens Healthcare Gmbh | Deep similarity learning for multimodal medical images |
US10043261B2 (en) * | 2016-01-11 | 2018-08-07 | Kla-Tencor Corp. | Generating simulated output for a specimen |
US10319076B2 (en) * | 2016-06-16 | 2019-06-11 | Facebook, Inc. | Producing higher-quality samples of natural images |
-
2017
- 2017-05-18 US US15/598,934 patent/US10346974B2/en active Active
-
2018
- 2018-05-18 JP JP2018096474A patent/JP7246866B2/ja active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016092394A1 (en) | 2014-12-10 | 2016-06-16 | Koninklijke Philips N.V. | Systems and methods for translation of medical imaging using machine learning |
Non-Patent Citations (2)
Title |
---|
Angel Torrado-Carvajal, et al.,Fast Patch-Based Pseudo-CT Synthesis from T1-Weighted MR Images for PET/MR Attenuation Correction in Brain Studies,THE JOURNAL OF NUCLEAR MEDICINE,Vol.57,2016年,pp.136-143 |
Philip Isola, et al.,Image-to-image Translation with Conditional Adversarial Networks,arXiv,2016年11月21日,1611.07004v1,pp.1-16 |
Also Published As
Publication number | Publication date |
---|---|
US10346974B2 (en) | 2019-07-09 |
JP2018192264A (ja) | 2018-12-06 |
US20180336677A1 (en) | 2018-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7246866B2 (ja) | 医用画像処理装置 | |
JP5893623B2 (ja) | データ・セットにおける異常検出方法およびシステム | |
Tomita et al. | Automatic post-stroke lesion segmentation on MR images using 3D residual convolutional neural network | |
JP7325954B2 (ja) | 医用画像処理装置、医用画像処理プログラム、学習装置及び学習プログラム | |
EP3611699A1 (en) | Image segmentation using deep learning techniques | |
US10867375B2 (en) | Forecasting images for image processing | |
JP5706389B2 (ja) | 画像処理装置および画像処理方法、並びに、画像処理プログラム | |
Moran et al. | Using super-resolution generative adversarial network models and transfer learning to obtain high resolution digital periapical radiographs | |
CN105074775A (zh) | 医学图像的配准 | |
US9224204B2 (en) | Method and apparatus for registration of multimodal imaging data using constraints | |
JP5955199B2 (ja) | 画像処理装置および画像処理方法、並びに、画像処理プログラム | |
US11769594B2 (en) | Deep learning model learning device and method for cancer region | |
JP2016189946A (ja) | 医用画像位置合わせ装置および方法並びにプログラム | |
JP6747785B2 (ja) | 医用画像処理装置及び医用画像処理方法 | |
CN108701360A (zh) | 图像处理系统和方法 | |
Cai et al. | Accurate weakly supervised deep lesion segmentation on CT scans: Self-paced 3D mask generation from RECIST | |
Barba-J et al. | Segmentation and optical flow estimation in cardiac CT sequences based on a spatiotemporal PDM with a correction scheme and the Hermite transform | |
Ramana | Alzheimer disease detection and classification on magnetic resonance imaging (MRI) brain images using improved expectation maximization (IEM) and convolutional neural network (CNN) | |
Garehdaghi et al. | Positron emission tomography image enhancement using magnetic resonance images and U-net structure | |
Karthik et al. | Automatic quality enhancement of medical diagnostic scans with deep neural image super-resolution models | |
US20230368913A1 (en) | Uncertainty Estimation in Medical Imaging | |
Muthiah et al. | Fusion of MRI and PET images using deep learning neural networks | |
Atehortúa et al. | Characterization of motion patterns by a spatio-temporal saliency descriptor in cardiac cine MRI | |
JP2024509039A (ja) | 分類の視覚的説明、方法、システム | |
Chang et al. | Inverse radon transform with deep learning: an application in cardiac motion correction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210330 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220222 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220308 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220412 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220823 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20221021 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20230106 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230214 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230315 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7246866 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |