JP7246789B1 - Positive electrode active material, positive electrode mixture and secondary battery - Google Patents
Positive electrode active material, positive electrode mixture and secondary battery Download PDFInfo
- Publication number
- JP7246789B1 JP7246789B1 JP2022094146A JP2022094146A JP7246789B1 JP 7246789 B1 JP7246789 B1 JP 7246789B1 JP 2022094146 A JP2022094146 A JP 2022094146A JP 2022094146 A JP2022094146 A JP 2022094146A JP 7246789 B1 JP7246789 B1 JP 7246789B1
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- active material
- electrode active
- present
- sulfur
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000007774 positive electrode material Substances 0.000 title claims abstract description 77
- 239000000203 mixture Substances 0.000 title claims description 27
- 229910052717 sulfur Inorganic materials 0.000 claims description 47
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 46
- 150000001875 compounds Chemical class 0.000 claims description 46
- 239000011593 sulfur Substances 0.000 claims description 46
- 239000002131 composite material Substances 0.000 claims description 26
- 239000004020 conductor Substances 0.000 claims description 21
- 239000003792 electrolyte Substances 0.000 claims description 15
- 229910052708 sodium Inorganic materials 0.000 abstract description 17
- 229910052700 potassium Inorganic materials 0.000 abstract description 14
- 239000000126 substance Substances 0.000 abstract description 12
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 abstract description 10
- 229910052744 lithium Inorganic materials 0.000 abstract description 10
- 229910052723 transition metal Inorganic materials 0.000 abstract description 8
- 150000003464 sulfur compounds Chemical class 0.000 abstract 1
- 239000011734 sodium Substances 0.000 description 29
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 23
- 239000002994 raw material Substances 0.000 description 20
- 239000011230 binding agent Substances 0.000 description 18
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 13
- 239000003575 carbonaceous material Substances 0.000 description 12
- 239000007773 negative electrode material Substances 0.000 description 12
- 239000010920 waste tyre Substances 0.000 description 11
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 10
- 238000005259 measurement Methods 0.000 description 10
- 238000000034 method Methods 0.000 description 10
- 239000000047 product Substances 0.000 description 10
- 239000002033 PVDF binder Substances 0.000 description 9
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 9
- 229910052799 carbon Inorganic materials 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 9
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 9
- 239000011591 potassium Substances 0.000 description 9
- 229960003975 potassium Drugs 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- 239000000463 material Substances 0.000 description 8
- 239000002041 carbon nanotube Substances 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- PODWXQQNRWNDGD-UHFFFAOYSA-L sodium thiosulfate pentahydrate Chemical compound O.O.O.O.O.[Na+].[Na+].[O-]S([S-])(=O)=O PODWXQQNRWNDGD-UHFFFAOYSA-L 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 238000002441 X-ray diffraction Methods 0.000 description 6
- 229910021393 carbon nanotube Inorganic materials 0.000 description 6
- 229910021385 hard carbon Inorganic materials 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 239000003153 chemical reaction reagent Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000012298 atmosphere Substances 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 239000007772 electrode material Substances 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- MHEBVKPOSBNNAC-UHFFFAOYSA-N potassium;bis(fluorosulfonyl)azanide Chemical compound [K+].FS(=O)(=O)[N-]S(F)(=O)=O MHEBVKPOSBNNAC-UHFFFAOYSA-N 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 238000000634 powder X-ray diffraction Methods 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- VCCATSJUUVERFU-UHFFFAOYSA-N sodium bis(fluorosulfonyl)azanide Chemical compound FS(=O)(=O)N([Na])S(F)(=O)=O VCCATSJUUVERFU-UHFFFAOYSA-N 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- 229920000049 Carbon (fiber) Polymers 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 229910021201 NaFSI Inorganic materials 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 239000006229 carbon black Substances 0.000 description 3
- 239000004917 carbon fiber Substances 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- FGRVOLIFQGXPCT-UHFFFAOYSA-L dipotassium;dioxido-oxo-sulfanylidene-$l^{6}-sulfane Chemical compound [K+].[K+].[O-]S([O-])(=O)=S FGRVOLIFQGXPCT-UHFFFAOYSA-L 0.000 description 3
- 239000008151 electrolyte solution Substances 0.000 description 3
- 230000001771 impaired effect Effects 0.000 description 3
- 238000004898 kneading Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000013507 mapping Methods 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 229920000620 organic polymer Polymers 0.000 description 3
- 238000000550 scanning electron microscopy energy dispersive X-ray spectroscopy Methods 0.000 description 3
- AKHNMLFCWUSKQB-UHFFFAOYSA-L sodium thiosulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=S AKHNMLFCWUSKQB-UHFFFAOYSA-L 0.000 description 3
- 235000019345 sodium thiosulphate Nutrition 0.000 description 3
- -1 sodium transition metal Chemical class 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- 244000043261 Hevea brasiliensis Species 0.000 description 2
- 240000007594 Oryza sativa Species 0.000 description 2
- 235000007164 Oryza sativa Nutrition 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 239000006230 acetylene black Substances 0.000 description 2
- 239000002134 carbon nanofiber Substances 0.000 description 2
- 239000011280 coal tar Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- VTIIJXUACCWYHX-UHFFFAOYSA-L disodium;carboxylatooxy carbonate Chemical compound [Na+].[Na+].[O-]C(=O)OOC([O-])=O VTIIJXUACCWYHX-UHFFFAOYSA-L 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 150000002170 ethers Chemical class 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 229920003049 isoprene rubber Polymers 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical class C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 229920003052 natural elastomer Polymers 0.000 description 2
- 229910021382 natural graphite Inorganic materials 0.000 description 2
- 229920001194 natural rubber Polymers 0.000 description 2
- 235000021317 phosphate Nutrition 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 2
- 238000000197 pyrolysis Methods 0.000 description 2
- 235000009566 rice Nutrition 0.000 description 2
- 239000005060 rubber Substances 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 229940045872 sodium percarbonate Drugs 0.000 description 2
- 159000000000 sodium salts Chemical class 0.000 description 2
- ZMQDTYVODWKHNT-UHFFFAOYSA-N tris(2,2,2-trifluoroethyl) phosphate Chemical compound FC(F)(F)COP(=O)(OCC(F)(F)F)OCC(F)(F)F ZMQDTYVODWKHNT-UHFFFAOYSA-N 0.000 description 2
- UUAMLBIYJDPGFU-UHFFFAOYSA-N 1,3-dimethoxypropane Chemical compound COCCCOC UUAMLBIYJDPGFU-UHFFFAOYSA-N 0.000 description 1
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- VWIIJDNADIEEDB-UHFFFAOYSA-N 3-methyl-1,3-oxazolidin-2-one Chemical compound CN1CCOC1=O VWIIJDNADIEEDB-UHFFFAOYSA-N 0.000 description 1
- 101000575029 Bacillus subtilis (strain 168) 50S ribosomal protein L11 Proteins 0.000 description 1
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 1
- 235000017491 Bambusa tulda Nutrition 0.000 description 1
- 239000002028 Biomass Substances 0.000 description 1
- 102100035793 CD83 antigen Human genes 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- PYVHTIWHNXTVPF-UHFFFAOYSA-N F.F.F.F.C=C Chemical compound F.F.F.F.C=C PYVHTIWHNXTVPF-UHFFFAOYSA-N 0.000 description 1
- 101000946856 Homo sapiens CD83 antigen Proteins 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- 229910004878 Na2S2O4 Inorganic materials 0.000 description 1
- 229910004879 Na2S2O5 Inorganic materials 0.000 description 1
- 229910004882 Na2S2O8 Inorganic materials 0.000 description 1
- 239000007832 Na2SO4 Substances 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 244000082204 Phyllostachys viridis Species 0.000 description 1
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- JZYOKFKXOPFCLQ-UHFFFAOYSA-N [Fe].[Co].[Na] Chemical compound [Fe].[Co].[Na] JZYOKFKXOPFCLQ-UHFFFAOYSA-N 0.000 description 1
- WGSBLDIOQQANMK-UHFFFAOYSA-N [Mn].[Co].[Ni].[Na] Chemical compound [Mn].[Co].[Ni].[Na] WGSBLDIOQQANMK-UHFFFAOYSA-N 0.000 description 1
- YJZAGVXNTRPOQK-UHFFFAOYSA-N [Ni].[Ti].[Mn].[Na] Chemical compound [Ni].[Ti].[Mn].[Na] YJZAGVXNTRPOQK-UHFFFAOYSA-N 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 229910001413 alkali metal ion Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 239000011425 bamboo Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000004657 carbamic acid derivatives Chemical class 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 238000010000 carbonizing Methods 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 229920003090 carboxymethyl hydroxyethyl cellulose Polymers 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000006182 cathode active material Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000006232 furnace black Substances 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 239000011357 graphitized carbon fiber Substances 0.000 description 1
- HCDGVLDPFQMKDK-UHFFFAOYSA-N hexafluoropropylene Chemical compound FC(F)=C(F)C(F)(F)F HCDGVLDPFQMKDK-UHFFFAOYSA-N 0.000 description 1
- 239000010903 husk Substances 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 229920003063 hydroxymethyl cellulose Polymers 0.000 description 1
- 229940031574 hydroxymethyl cellulose Drugs 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 239000002931 mesocarbon microbead Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 239000002905 metal composite material Substances 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- SWVGZFQJXVPIKM-UHFFFAOYSA-N n,n-bis(methylamino)propan-1-amine Chemical compound CCCN(NC)NC SWVGZFQJXVPIKM-UHFFFAOYSA-N 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910021470 non-graphitizable carbon Inorganic materials 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 125000005575 polycyclic aromatic hydrocarbon group Chemical group 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 229910000028 potassium bicarbonate Inorganic materials 0.000 description 1
- 235000015497 potassium bicarbonate Nutrition 0.000 description 1
- 239000011736 potassium bicarbonate Substances 0.000 description 1
- CHKVPAROMQMJNQ-UHFFFAOYSA-M potassium bisulfate Chemical compound [K+].OS([O-])(=O)=O CHKVPAROMQMJNQ-UHFFFAOYSA-M 0.000 description 1
- 229910000343 potassium bisulfate Inorganic materials 0.000 description 1
- 235000010259 potassium hydrogen sulphite Nutrition 0.000 description 1
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 description 1
- 229940086066 potassium hydrogencarbonate Drugs 0.000 description 1
- 229910052939 potassium sulfate Inorganic materials 0.000 description 1
- OTYBMLCTZGSZBG-UHFFFAOYSA-L potassium sulfate Chemical compound [K+].[K+].[O-]S([O-])(=O)=O OTYBMLCTZGSZBG-UHFFFAOYSA-L 0.000 description 1
- 235000019252 potassium sulphite Nutrition 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- BHWBMOFUXJUDJW-UHFFFAOYSA-N prop-1-ene hexahydrofluoride Chemical group CC=C.F.F.F.F.F.F BHWBMOFUXJUDJW-UHFFFAOYSA-N 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000002296 pyrolytic carbon Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 230000027756 respiratory electron transport chain Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- WBHQBSYUUJJSRZ-UHFFFAOYSA-M sodium bisulfate Chemical compound [Na+].OS([O-])(=O)=O WBHQBSYUUJJSRZ-UHFFFAOYSA-M 0.000 description 1
- 229910000342 sodium bisulfate Inorganic materials 0.000 description 1
- 150000003388 sodium compounds Chemical class 0.000 description 1
- HRZFUMHJMZEROT-UHFFFAOYSA-L sodium disulfite Chemical compound [Na+].[Na+].[O-]S(=O)S([O-])(=O)=O HRZFUMHJMZEROT-UHFFFAOYSA-L 0.000 description 1
- JVBXVOWTABLYPX-UHFFFAOYSA-L sodium dithionite Chemical compound [Na+].[Na+].[O-]S(=O)S([O-])=O JVBXVOWTABLYPX-UHFFFAOYSA-L 0.000 description 1
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 235000010262 sodium metabisulphite Nutrition 0.000 description 1
- CHQMHPLRPQMAMX-UHFFFAOYSA-L sodium persulfate Chemical compound [Na+].[Na+].[O-]S(=O)(=O)OOS([O-])(=O)=O CHQMHPLRPQMAMX-UHFFFAOYSA-L 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 235000010265 sodium sulphite Nutrition 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Abstract
【課題】リチウムや遷移金属元素を必要としない、二次電池用正極活物質を提供する。【解決手段】以下の式(1)又は式(2)で表される硫黄化合物を含有する正極活物質。[化1]MxSyOz(1)(式(1)中、MはNa又はKであり、xは0を超え3以下の範囲であり、yは1以上8以下であり、zは1以上8以下である。)[化2]MxHSyOz(2)(式(2)中、MはNa又はKであり、xは0を超え3以下の範囲であり、yは1以上8以下であり、zは1以上8以下である。)【選択図】なしA positive electrode active material for a secondary battery that does not require lithium or a transition metal element is provided. A positive electrode active material containing a sulfur compound represented by the following formula (1) or (2). [Chemical Formula 1] MxSyOz (1) (wherein M is Na or K, x is in the range of more than 0 and 3 or less, y is 1 or more and 8 or less, and z is 1 or more and 8 or less ) [Chemical 2] MxHSyOz (2) (In formula (2), M is Na or K, x is greater than 0 and is 3 or less, y is 1 or more and 8 or less, and z is 1 or more and 8 or less.) [Selection] None
Description
本発明は、ナトリウム又はカリウムの含硫黄化合物を含有する正極活物質、及び当該正極活物質を含有する正極合剤並びに二次電池に関する。 TECHNICAL FIELD The present invention relates to a positive electrode active material containing a sulfur-containing compound of sodium or potassium, a positive electrode mixture containing the positive electrode active material, and a secondary battery.
リチウム二次電池は、携帯電話用途等の小型電源、電気自動車用途、電力貯蔵用途等の中型・大型電源としてその需要は近年増大している。一方、リチウム二次電池の正極活物質の主要な構成元素であるリチウムは、採算性が取れる塩湖からの生産は一部の国に限られていることから、リチウム二次電池の需要拡大に伴う供給不安や価格高騰が懸念されいる。そのため、リチウム二次電池を代替する新たな二次電池の正極活物質の研究開発が行われている。 Demand for lithium secondary batteries has been increasing in recent years as a small power source for mobile phones and the like, and medium- and large-sized power sources for electric vehicles, power storage, and the like. On the other hand, the production of lithium, which is a major constituent element of the positive electrode active material of lithium secondary batteries, from salt lakes, where it is profitable, is limited to some countries. There are concerns about supply instability and soaring prices. Therefore, research and development of positive electrode active materials for new secondary batteries to replace lithium secondary batteries are being conducted.
ナトリウム二次電池は、その構成材料には資源的に豊富なナトリウム化合物を正極活物質に使用できることから、リチウム二次電池の代替候補である。これまで、ナトリウム二次電池の正極活物質として、様々なナトリウム遷移金属複合化合物が提案されている。このようなナトリウム遷移金属複合化合物として、例えば、ナトリウム鉄コバルト複合金属酸化物(例えば、特許文献1)、ナトリウムマンガンコバルトニッケル複合金属酸化物(例えば、特許文献2)、ナトリウムマンガンチタンニッケル複合酸化物(例えば、特許文献3)等が報告されている。 A sodium secondary battery is an alternative candidate for a lithium secondary battery because sodium compounds, which are abundant in terms of resources, can be used as positive electrode active materials. Various sodium-transition metal complex compounds have been proposed as positive electrode active materials for sodium secondary batteries. Examples of such sodium-transition metal composite compounds include sodium-iron-cobalt composite metal oxides (for example, Patent Document 1), sodium-manganese-cobalt-nickel composite metal oxides (for example, Patent Document 2), and sodium-manganese-titanium-nickel composite oxides. (For example, Patent Document 3) and the like have been reported.
また、ナトリウム遷移金属複合化合物以外のナトリウム二次電池の正極活物質として、特許文献4には、特殊な多環芳香族炭化水素から選ばれる炭素源化合物由来の炭素骨格と、該炭素骨格と結合した硫黄(S)とからなる正極活物質が報告されている。
In addition, as a positive electrode active material for a sodium secondary battery other than a sodium transition metal complex compound,
また、リチウム二次電池のナトリウム二次電池以外の代替候補として、カリウム二次電池が挙げられる。特許文献5にはカリウム、遷移金属、リンを含む複合酸化物を正極活物質に使用したカリウム二次電池が報告されている。 Potassium secondary batteries can also be mentioned as alternative candidates for lithium secondary batteries other than sodium secondary batteries. Patent Document 5 reports a potassium secondary battery using a composite oxide containing potassium, a transition metal, and phosphorus as a positive electrode active material.
特許文献1~3等で開示されたナトリウム二次電池用の正極活物質は、資源的に乏しいコバルト、ニッケル等の遷移金属元素を必要であり、また、特許文献4の正極活物質は、遷移金属元素を含まないものの、特殊な炭素骨格と硫黄を結合させる合成が必要であり、かつ、正極活物質自体にアルカリ金属が含まれないため、電池として使用する際に電解液中のアルカリ金属イオンを正極活物質にプレドープする工程が必須となる等、原料供給、生産コスト、運転条件等の点で改善の余地があった。また、カリウム二次電池は、特許文献5等での報告もあるが、開発例が乏しく有用な正極活物質の候補が求められていた。 The positive electrode active materials for sodium secondary batteries disclosed in Patent Documents 1 to 3 and the like require transition metal elements such as cobalt and nickel, which are scarce in terms of resources. Although it does not contain metal elements, it requires a synthesis that combines a special carbon skeleton with sulfur, and the positive electrode active material itself does not contain alkali metals, so when used as a battery, alkali metal ions in the electrolyte There is room for improvement in terms of raw material supply, production cost, operating conditions, etc., such as the need to pre-dope the positive electrode active material with the process. In addition, although there are reports on potassium secondary batteries in Patent Document 5 and the like, development examples are scarce, and candidates for useful positive electrode active materials have been sought.
かかる状況下、本発明の目的は、リチウムや遷移金属元素を必要としない、新たな正極活物質及びこれを含む正極合剤、並びに二次電池を提供することにある。 Under such circumstances, an object of the present invention is to provide a novel positive electrode active material, a positive electrode mixture containing the same, and a secondary battery that do not require lithium or a transition metal element.
本発明者は、上記課題を解決すべく鋭意研究を重ねた結果、下記の発明が上記目的に合致することを見出し、本発明に至った。 As a result of earnest research to solve the above problems, the inventors of the present invention have found that the following inventions meet the above objects, and have completed the present invention.
すなわち、本発明は、以下の発明に係るものである。
<1> 以下の式(1)又は式(2)で表される含硫黄化合物を含有する正極活物質。
That is, the present invention relates to the following inventions.
<1> A positive electrode active material containing a sulfur-containing compound represented by the following formula (1) or (2).
[化1]
MxSyOz (1)
(式(1)中、MはNa又はKであり、xは0を超え3以下の範囲であり、yは1以上8以下であり、zは1以上8以下である。)
[Chemical 1]
MxSyOz ( 1 )
(In formula (1), M is Na or K, x is in the range of more than 0 and 3 or less, y is 1 or more and 8 or less, and z is 1 or more and 8 or less.)
[化2]
MxHSyOz (2)
(式(2)中、MはNa又はKであり、xは0を超え3以下の範囲であり、yは0を超え8以下であり、zは1以上8以下である。)
<2> 前記含硫黄化合物が、Na2SO3、NaHSO3、Na2SO4、NaHSO4、Na2SO5、Na2SO8、Na2S2O3、Na2S2O4、Na2S2O5、Na2S2O6、Na2S2O7及びNa2S2O8からなる群から選択される1種以上である<1>に記載の正極活物質。
<3> 前記含硫黄化合物が、K2SO3、KHSO3、K2SO4、KHSO4、K2SO5、K2SO8、K2S2O3、K2S2O4、K2S2O5、K2S2O6、K2S2O7及びK2S2O8からなる群から選択される1種以上である<1>に記載の正極活物質。
<4> 前記含硫黄化合物と炭化物との複合体からなる<1>から<3>のいずれかに記載の正極活物質。
<5> 前記炭化物が、タイヤ由来の炭化物である<4>に記載の正極活物質。
<6> <1>から<5>のいずれかに記載の正極活物質と導電材とを含有する正極合剤。
<7> 正極、負極、及び電解質を備え、前記正極が、<6>に記載の正極合剤を用いてなる二次電池。
[Chemical 2]
MxHSyOz ( 2 )
(In formula (2), M is Na or K, x ranges from 0 to 3, y ranges from 0 to 8, and z ranges from 1 to 8.)
<2> The sulfur-containing compound is Na2SO3 , NaHSO3 , Na2SO4 , NaHSO4 , Na2SO5 , Na2SO8 , Na2S2O3 , Na2S2O4 , Na 2 S 2 O 5 , Na 2 S 2 O 6 , Na 2 S 2 O 7 and Na 2 S 2 O 8 , the cathode active material according to <1>.
<3> The sulfur-containing compound is K2SO3 , KHSO3 , K2SO4 , KHSO4 , K2SO5 , K2SO8 , K2S2O3 , K2S2O4 , K 2 S 2 O 5 , K 2 S 2 O 6 , K 2 S 2 O 7 and K 2 S 2 O 8 .
<4> The positive electrode active material according to any one of <1> to <3>, comprising a composite of the sulfur-containing compound and carbide.
<5> The positive electrode active material according to <4>, wherein the carbide is a tire-derived carbide.
<6> A positive electrode mixture containing the positive electrode active material according to any one of <1> to <5> and a conductive material.
<7> A secondary battery comprising a positive electrode, a negative electrode, and an electrolyte, wherein the positive electrode uses the positive electrode mixture according to <6>.
本発明によれば、リチウムや遷移金属元素を含まず、従来のナトリウム二次電池やカリウム二次電池を代替する新たな二次電池の正極活物質及びこれを含む正極合剤、並びに二次電池が提供される。 According to the present invention, a positive electrode active material for a new secondary battery that does not contain lithium or a transition metal element and replaces the conventional sodium secondary battery or potassium secondary battery, a positive electrode mixture containing the same, and a secondary battery is provided.
以下、本発明について例示物等を示して詳細に説明するが、本発明は以下の例示物等に限定されるものではなく、本発明の要旨を逸脱しない範囲において任意に変更して実施できる。なお、本明細書において、「~」とはその前後の数値又は物理量を含む表現として用いるものとする。また、本明細書において、「A及び/又はB」と いう表現には、「Aのみ」、「Bのみ」、「A及びBの双方」が含まれる。 Hereinafter, the present invention will be described in detail with reference to examples, etc., but the present invention is not limited to the following examples, etc., and can be arbitrarily modified without departing from the scope of the present invention. In this specification, "~" is used as an expression including numerical values or physical quantities before and after it. Also, in this specification, the expression "A and/or B" includes "only A", "only B", and "both A and B".
<1.正極活物質>
本発明の正極活物質の第1の態様は、以下の式(1)で表される含硫黄化合物を含有する。
<1. Positive electrode active material>
A first aspect of the positive electrode active material of the present invention contains a sulfur-containing compound represented by the following formula (1).
[化3]
MxSyOz (1)
[Chemical 3]
MxSyOz ( 1 )
式(1)において、Mはナトリウム(Na)又はカリウム(K)である。xは、Mの割合を示し、0を超え3以下の範囲である。 In formula (1), M is sodium (Na) or potassium (K). x indicates the ratio of M and ranges from over 0 to 3 or less.
式(1)において、yは、硫黄(S)の割合を示し、1以上8以下の範囲である。 In formula (1), y represents the ratio of sulfur (S) and ranges from 1 to 8.
式(1)において、zは、酸素(O)の割合を示し、1以上8以下の範囲である。 In formula (1), z represents the proportion of oxygen (O) and ranges from 1 to 8.
なお、式(1)において、x、y、zはそれぞれ整数でない場合も含む。すなわち、式(1)で表される含硫黄化合物は不定比酸化物である場合も含まれる。 Note that in formula (1), x, y, and z may be not integers. That is, the sulfur-containing compound represented by Formula (1) may be a non-stoichiometric oxide.
式(1)において、x、y及びzが、上記範囲内であると、充放電を繰り返すことが可能な正極を与えることができる正極活物質となる。なお、x、y及びzの値は、原料の使用量、製造条件等を制御することで調整することができる。 In formula (1), when x, y, and z are within the above ranges, the positive electrode active material can provide a positive electrode that can be repeatedly charged and discharged. The values of x, y, and z can be adjusted by controlling the amount of raw materials used, manufacturing conditions, and the like.
本発明の正極活物質の第1の態様は、以下の式(2)で表される含硫黄化合物を含有する。 A first aspect of the positive electrode active material of the present invention contains a sulfur-containing compound represented by the following formula (2).
[化4]
MxHSyOz (2)
[Chemical 4]
MxHSyOz ( 2 )
式(2)において、MはNa又はKである。xは、Mの割合を示し、0を超え3以下の範囲である。 In formula (2), M is Na or K. x indicates the ratio of M and ranges from over 0 to 3 or less.
式(2)において、yは、硫黄(S)の割合を示し、0を超え8以下の範囲である。 In formula (2), y represents the ratio of sulfur (S) and is in the range of over 0 to 8 or less.
式(2)において、zは、酸素(O)の割合を示し、1以上8以下の範囲である。 In formula (2), z represents the proportion of oxygen (O) and ranges from 1 to 8.
なお、式(2)において、x、y、zはそれぞれ整数でない場合も含む。すなわち、式(2)で表される含硫黄化合物は不定比酸化物である場合も含まれる。 Note that in formula (2), x, y, and z may be non-integers. That is, the sulfur-containing compound represented by Formula (2) may be a non-stoichiometric oxide.
式(2)において、x、y及びzが、上記範囲内であると、充放電を繰り返すことが可能な正極を与えることができる正極活物質となる。なお、x、y及びzの値は、原料の使用量、製造条件等を制御することで調整することができる。 In formula (2), when x, y and z are within the above ranges, the positive electrode active material can provide a positive electrode that can be repeatedly charged and discharged. The values of x, y, and z can be adjusted by controlling the amount of raw materials used, manufacturing conditions, and the like.
以下、式(1)で表される含硫黄化合物と、式(2)で表される含硫黄化合物とを区別する必要がない場合には総称して、「本発明の含硫黄化合物」と記載するものとする。 Hereinafter, when it is not necessary to distinguish between the sulfur-containing compound represented by formula (1) and the sulfur-containing compound represented by formula (2), they are collectively referred to as "the sulfur-containing compound of the present invention". It shall be.
本発明の含硫黄化合物の好適例は、式(1)又は式(2)において、MがNaの含硫黄化合物である。そのような含硫黄化合物として、具体的には、Na2SO3、NaHSO3、Na2SO4、NaHSO4、Na2SO5、Na2SO8、Na2S2O3、Na2S2O4、Na2S2O5、Na2S2O6、Na2S2O7及びNa2S2O8が挙げられる。この中でも、チオ硫酸ナトリウム(Na2S2O3)は好適な一例である。 A preferred example of the sulfur-containing compound of the present invention is a sulfur-containing compound in which M is Na in Formula (1) or Formula (2). Specific examples of such sulfur-containing compounds include Na 2 SO 3 , NaHSO 3 , Na 2 SO 4 , NaHSO 4 , Na 2 SO 5 , Na 2 SO 8 , Na 2 S 2 O 3 , Na 2 S 2 O4 , Na2S2O5 , Na2S2O6 , Na2S2O7 and Na2S2O8 . _ _ _ Among these, sodium thiosulfate (Na 2 S 2 O 3 ) is a suitable example.
本発明の正極活物質の他の好適例は、式(1)又は式(2)において、MがKの含硫黄化合物である。そのような含硫黄化合物として、具体的には、K2SO3、KHSO3、K2SO4、KHSO4、K2SO5、K2SO8、K2S2O3、K2S2O4、K2S2O5、K2S2O6、K2S2O7及びK2S2O8からなる群から選択される1種以上である。この中でも、チオ硫酸カリウム(K2S2O3)は好適な一例である。 Another preferred example of the positive electrode active material of the present invention is a sulfur-containing compound in which M is K in Formula (1) or Formula (2). Specific examples of such sulfur-containing compounds include K 2 SO 3 , KHSO 3 , K 2 SO 4 , KHSO 4 , K 2 SO 5 , K 2 SO 8 , K 2 S 2 O 3 , K 2 S 2 O 4 , K 2 S 2 O 5 , K 2 S 2 O 6 , K 2 S 2 O 7 and K 2 S 2 O 8 . Among these, potassium thiosulfate (K 2 S 2 O 3 ) is a suitable example.
本発明の正極活物質は、上記含硫黄化合物を1種、または2種以上を含有することができる。 The positive electrode active material of the present invention can contain one or more of the above sulfur-containing compounds.
本発明の正極活物質において、本発明の含硫黄化合物は、結晶に限定されず、非晶質であってよく、結晶と非晶質の混合体であってもよい。また、本発明の含硫黄化合物は、非水和物であってもよいが、水和物として使用してもよい。 In the positive electrode active material of the present invention, the sulfur-containing compound of the present invention is not limited to crystals, and may be amorphous, or may be a mixture of crystals and amorphous. Moreover, the sulfur-containing compound of the present invention may be non-hydrated, but may be used as a hydrate.
本発明の正極活物質は、本発明の含硫黄化合物を含有すればよく、本発明の含硫黄化合物のみであってもよいが、本発明の効果を損なわない限り、他の物質を含有していてもよい。他の物質としては、例えば、炭化物が挙げられる。なお、本明細書において、「炭化物」は、含炭素原料(有機物)を炭化させたものであり、炭素(C)のみであってもよいが、本発明の目的を損なわない範囲で、炭素以外の元素を含んでいてもよいものとする。
炭素以外の元素としては、例えば、窒素(N)、硫黄(S)、酸素(O)、Fe等の金属元素等が挙げられるが、本発明の目的を損なわない限り制限されない。
The positive electrode active material of the present invention may contain the sulfur-containing compound of the present invention, and may contain only the sulfur-containing compound of the present invention, but may contain other substances as long as the effects of the present invention are not impaired. may Other substances include, for example, carbides. In the present specification, the term “carbide” refers to a carbon-containing raw material (organic substance) carbonized, and may be carbon (C) only. may contain elements of
Elements other than carbon include, for example, nitrogen (N), sulfur (S), oxygen (O), metal elements such as Fe, and the like, but are not limited as long as the object of the present invention is not impaired.
炭化物は、含炭素原料や焼成条件にもよるが、多孔質体とすることもできる。
炭化物の製造条件は、含炭素原料の種類や、目的とする炭化物の物性(結晶性、多孔度等)を考慮して適宜決定される。典型的には、含炭素原料を、低酸素分圧下(例えば、N2等の不活性ガスの流通下)で加熱し炭化処理を行う。炭化処理温度は、例えば、500℃以上2000℃以下である。
The carbide can be made porous, depending on the carbon-containing raw material and firing conditions.
The conditions for producing the carbide are appropriately determined in consideration of the type of carbon-containing raw material and the physical properties (crystallinity, porosity, etc.) of the desired carbide. Typically, the carbon-containing raw material is heated and carbonized under a low oxygen partial pressure (for example, under the flow of an inert gas such as N 2 ). The carbonization temperature is, for example, 500° C. or higher and 2000° C. or lower.
炭化物の原料となる含炭素原料は、本発明の目的を損なわない限り任意であり、バイオマス原料(例えば、木材、竹、籾殻等)、各種樹脂材料、ゴム材料等のプラスチック類が挙げられる。 The carbon-containing raw material, which is the raw material for the carbide, is arbitrary as long as it does not impair the object of the present invention, and includes biomass raw materials (for example, wood, bamboo, rice husks, etc.), various resin materials, and plastics such as rubber materials.
本発明の正極活物質は、本発明の含硫黄化合物と炭化物との複合体(以下、「本発明の複合体」又は単に「複合体」と記載する場合がある。)からなることが好ましい。ここで、本発明の複合体は、本発明の含硫黄化合物と炭化物とを単に混合したものではなく、本発明の含硫黄化合物と炭化物とが、物理的及び/又は化学的に複合化した複合体を意味する。物理的な複合体は、炭化物に本発明の含硫黄化合物を物理的に保持した複合体であり、例えば、炭化物上へ本発明の含硫黄化合物媒を担持した複合体、炭化物上へ本発明の含硫黄化合物を吸着させた複合体、炭化物上へ本発明の含硫黄化合物を析出させた複合体等が挙げられる。化学的な複合体は本発明の含硫黄化合物と炭化物とが化学的に結合された状態の複合体であり、例えば、本発明の含硫黄化合物又はその前駆体化合物と、炭化物とを混合し、不活性ガス雰囲気下で熱処理することで製造することができる。 The positive electrode active material of the present invention is preferably composed of a composite of the sulfur-containing compound of the present invention and a carbide (hereinafter sometimes referred to as "composite of the present invention" or simply "composite"). Here, the composite of the present invention is not simply a mixture of the sulfur-containing compound of the present invention and the carbide, but a composite obtained by physically and/or chemically combining the sulfur-containing compound of the present invention and the carbide. means body. A physical composite is a composite in which the sulfur-containing compound of the present invention is physically retained on a carbide. For example, a composite in which the sulfur-containing compound medium of the present invention is supported on a carbide, Examples include a composite having a sulfur-containing compound adsorbed thereon, and a composite having the sulfur-containing compound of the present invention deposited on a carbide. The chemical composite is a composite in which the sulfur-containing compound of the present invention and a carbide are chemically bonded. For example, the sulfur-containing compound of the present invention or a precursor compound thereof and a carbide are mixed, It can be manufactured by heat-treating in an inert gas atmosphere.
本発明の複合体において、炭化物に複合化された本発明の含硫黄化合物は、固体であっても、液体であっても、固体と液体の混合状態であってもよい。 In the composite of the present invention, the sulfur-containing compound of the present invention composited with the carbide may be solid, liquid, or a mixture of solid and liquid.
本発明の正極活物質に、本発明の複合体を使用することで電池性能が向上する。その理由は現段階では明らかでない部分もあるが、本発明の含硫黄化合物と炭化物との複合体を形成することによって、本発明の含硫黄化合物と炭化物とを混合したものと比較して、炭化物と含硫黄化合物との電子移動がよりスムーズになることが一因と推測される。 Battery performance is improved by using the composite of the present invention for the positive electrode active material of the present invention. The reason for this is partially unclear at this stage, but by forming the composite of the sulfur-containing compound and carbide of the present invention, compared to the mixture of the sulfur-containing compound and carbide of the present invention, the carbide It is speculated that one of the reasons is that the electron transfer between the sulfur-containing compound and the sulfur-containing compound becomes smoother.
上記複合体における炭化物の原料となる含炭素原料の好適な一例としてはタイヤが挙げられる。タイヤはゴム(例えば、天然ゴム(NR)、スチレンブタジエンゴム(SBR)、イソプレンゴム(IR))を主原料とし、各種配合剤や構造材を含む。このように本発明の正極活物質の一例は、タイヤ由来の炭化物を使用した複合体である。 A preferred example of the carbon-containing raw material that is the raw material of the carbide in the composite is a tire. A tire is mainly made of rubber (for example, natural rubber (NR), styrene-butadiene rubber (SBR), isoprene rubber (IR)), and contains various compounding agents and structural materials. Thus, one example of the positive electrode active material of the present invention is a composite using tire-derived carbide.
本発明の正極活物質における本発明の含硫黄化合物の割合は、正極活物質全体を100重量%(乾燥重量ベース)とした場合に、例えば、5~100重量%である。 The ratio of the sulfur-containing compound of the present invention in the positive electrode active material of the present invention is, for example, 5 to 100% by weight when the entire positive electrode active material is 100% by weight (dry weight basis).
本発明の正極活物質の形状は、本発明の目的を損なわない限り、任意である。例えば、粒子状、島状、膜状等が挙げられる。 The shape of the positive electrode active material of the present invention is arbitrary as long as it does not impair the purpose of the present invention. For example, it may be particulate, island-shaped, or film-shaped.
<2.正極合剤>
本発明の正極合剤は、上記の本発明の正極活物質と導電材とを含有する。
<2. Positive Electrode Mixture>
The positive electrode mixture of the present invention contains the positive electrode active material of the present invention and a conductive material.
本発明の正極活物質は、電気伝導度がそれほど高くないため、それのみで正極を形成すると電極内抵抗が大きくなる。そのため、通常、他の導電性材料である導電材(及び必要に応じて他の材料)と混合して使用することによって電極内の導通を確保する。 Since the positive electrode active material of the present invention does not have a very high electrical conductivity, the internal resistance of the electrode increases when the positive electrode is formed using only the positive electrode active material. Therefore, it is usually mixed with other conductive materials (and other materials as necessary) to ensure conduction in the electrodes.
導電材は、電極を形成した際に電子伝導性を向上させる役割を有する。導電材は、導電性(電子伝導性)を有し、本発明の正極活物質の性能を損なわない材料であればよく、無機材料、有機材料のいずれでもよいが、典型的には炭素系材料である。 The conductive material has a role of improving electron conductivity when forming an electrode. The conductive material may be any material as long as it has conductivity (electronic conductivity) and does not impair the performance of the positive electrode active material of the present invention, and may be either an inorganic material or an organic material, but is typically a carbon-based material. is.
炭素系材料としては、二次電池や燃料電池に使用される任意の炭素系材料を使用することができ、より具体的には、黒鉛粉末、カーボンブラック(例えば、アセチレンブラック、ケッチェンブラック、ファーネスブラック等)、繊維状炭素材料(カーボンナノチューブ、カーボンナノファイバー、気相成長炭素繊維等)などを挙げることができる。
この中でも、カーボンブラックは、微粒で表面積が大きく、電極材料中に添加されることにより、得られる電極内部の導電性を高め、充放電効率および大電流放電特性を向上させることも可能である。
Any carbon-based material used in secondary batteries and fuel cells can be used as the carbon-based material. More specifically, graphite powder, carbon black (for example, acetylene black, ketjen black, furnace black, etc.), fibrous carbon materials (carbon nanotubes, carbon nanofibers, vapor-grown carbon fibers, etc.).
Among these, carbon black is fine and has a large surface area, and by adding it to the electrode material, it is possible to increase the conductivity inside the obtained electrode and improve the charge-discharge efficiency and high-current discharge characteristics.
炭素系材料の形状や大きさは、電極の使用目的等を考慮して適宜選択できるが、炭素系材料が粒子状である場合には、例えば、粒径0.03~500μmであり、繊維状である場合、直径2nm~20μm、全長0.03~500μm程度である。 The shape and size of the carbon-based material can be appropriately selected in consideration of the purpose of use of the electrode. , the diameter is about 2 nm to 20 μm and the total length is about 0.03 to 500 μm.
本発明で使用される導電材は、1種類でもよいし、または大きさ(粒径、繊維径及び繊維長さ)や結晶性等の異なる2種以上の導電材を任意の割合で使用してもよい。 The conductive material used in the present invention may be one type, or two or more types of conductive materials having different sizes (particle diameter, fiber diameter and fiber length) and crystallinity, etc. may be used in an arbitrary ratio. good too.
電極材料における導電材の割合は、電極の使用目的等を考慮して適宜選択できるが、導電材が炭素系材料の場合、電極中の炭素系材料の場合は、通常、電極活物質100重量部に対して5~100重量部である。 The ratio of the conductive material in the electrode material can be appropriately selected in consideration of the purpose of use of the electrode, etc. When the conductive material is a carbon-based material and the carbon-based material in the electrode, it is usually 100 parts by weight of the electrode active material. 5 to 100 parts by weight.
本発明の電極材料は、本発明の正極活物質及び導電材のみから構成されていてもよいが、本発明の目的を損なわない範囲で他の成分を含有していてもよい。他の成分としては、典型的にはバインダーが挙げられる。 The electrode material of the present invention may be composed only of the positive electrode active material and the conductive material of the present invention, but may contain other components as long as the object of the present invention is not impaired. Other ingredients typically include binders.
バインダーは、他の電極構成材料を接着する結着剤としての作用を有する。なお、電極
が上述の電極形成剤を含有する場合には、バインダーは、電極形成剤の添加量が不十分で、接着性が不足している場合に用いられる。
バインダーとしては、例えば有機高分子化合物からなるバインダーが挙げられる。バインダーとしての有機高分子化合物としては、例えば、メチルセルロース、ヒドロキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、カルボキシメチルヒドロキシエチルセルロース、ニトロセルロースなどの多糖類及びその誘導体;
ポリフッ化ビニリデン(以下、PVDFということがある。)、ポリテトラフルオロエチレン(以下、PTFEということがある。)、四フッ化エチレン・六フッ化プロピレン・フッ化ビニリデン系共重合体、六フッ化プロピレン・フッ化ビニリデン系共重合体、四フッ化エチレン・パーフルオロビニルエーテル系共重合体;フェノール樹脂;メラミン樹脂;ポリウレタン樹脂;尿素樹脂;ポリアミド樹脂;ポリイミド樹脂;ポリアミドイミド樹脂;石油ピッチ;石炭ピッチなどが挙げられる。
The binder acts as a binding agent that adheres other electrode constituent materials. When the electrode contains the above electrode-forming agent, the binder is used when the amount of the electrode-forming agent added is insufficient and the adhesiveness is insufficient.
Examples of binders include binders made of organic polymer compounds. Examples of organic polymer compounds as binders include polysaccharides such as methylcellulose, hydroxymethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, carboxymethylhydroxyethylcellulose, and nitrocellulose, and derivatives thereof;
Polyvinylidene fluoride (hereinafter sometimes referred to as PVDF), polytetrafluoroethylene (hereinafter sometimes referred to as PTFE), ethylene tetrafluoride/propylene hexafluoride/vinylidene fluoride copolymer, hexafluoride Propylene/vinylidene fluoride copolymer, tetrafluoroethylene/perfluorovinyl ether copolymer; phenolic resin; melamine resin; polyurethane resin; urea resin; polyamide resin; etc.
バインダーは、結合剤としては複数種の結合剤を使用してもよい。 As for the binder, a plurality of types of binders may be used as binders.
バインダーの電極における構成材料の配合量は、例えば、正極活物質及び導電材の合計100重量部に対し、通常0.5~50重量部程度、好ましくは1~30重量部程度である。 The amount of the constituent material of the binder electrode is, for example, usually about 0.5 to 50 parts by weight, preferably about 1 to 30 parts by weight, per 100 parts by weight in total of the positive electrode active material and the conductive material.
<3.二次電池>
本発明の二次電池は、正極、負極、及び電解質を備え、正極が、上記本発明の正極合剤を用いてなることを特徴とする。なお、本発明の二次電池の構造は特に限定されず、従来公知の二次電池の構造を採用することができる。例えば、積層型(扁平型)電池、巻回型(円筒型)電池等が挙げられる。
<3. Secondary battery>
A secondary battery of the present invention comprises a positive electrode, a negative electrode, and an electrolyte, and is characterized in that the positive electrode is formed using the positive electrode mixture of the present invention. The structure of the secondary battery of the present invention is not particularly limited, and conventionally known secondary battery structures can be employed. Examples include stacked (flat) batteries and wound (cylindrical) batteries.
以下、それぞれの構成要素について説明する。 Each component will be described below.
正極は集電体と、当該集電体の表面に形成された正極活物質層とを有し、正極活物質層は、上記本発明の正極合剤(正極活物質、導電材及びバインダー)で形成される。 The positive electrode has a current collector and a positive electrode active material layer formed on the surface of the current collector, and the positive electrode active material layer is the positive electrode mixture (positive electrode active material, conductive material, and binder) of the present invention. It is formed.
集電体としては、特に限定されず従来公知のものを使用できる。例えば、ニッケル、アルミニウム、ステンレス(SUS)等の導電性の材料を用いた箔、メッシュ、エキスパンドグリッド(エキスパンドメタル)、パンチドメタル等が挙げられる。 The current collector is not particularly limited, and conventionally known ones can be used. Examples thereof include foils, meshes, expanded grids (expanded metals), punched metals, and the like using conductive materials such as nickel, aluminum, and stainless steel (SUS).
集電体の大きさや厚みは、電池の使用用途に応じて決定され、使用する正極の大きさに応じて適宜適した大きさのものを選択できる。 The size and thickness of the current collector are determined according to the application of the battery, and a suitable size can be selected according to the size of the positive electrode to be used.
正極を製造する方法は、典型的には正極合剤(正極活物質、導電材及びバインダー)と溶媒とを混合させて調整したスラリーを集電体上に塗工し、乾燥後プレスする等して固着することで、集電体の表面に正極活物質層を形成して正極を得る。 A method for producing a positive electrode typically involves coating a slurry prepared by mixing a positive electrode mixture (positive electrode active material, conductive material, and binder) and a solvent on a current collector, drying the slurry, and then pressing. A positive electrode active material layer is formed on the surface of the current collector to obtain a positive electrode.
スラリーの溶媒としては、例えば、N,N-ジメチルアミノプロピリアミン、ジエチルトリアミン等のアミン系;エチレンオキシド、テトラヒドロフラン等のエーテル系;メチルエチルケトン等のケトン系;酢酸メチル等のエステル系;ジメチルアセトアミド、N-メチル-2-ピロリドン等の非プロトン性極性溶媒等が挙げられる。
スラリーを集電体上に塗工する方法としては、本発明の目的を損なわない限り制限はないが、例えばスリットダイ塗工法、スクリーン塗工法、カーテン塗工法、ナイフ塗工法、グラビア塗工法、静電スプレー法等を挙げることができる。
Examples of the slurry solvent include amines such as N,N-dimethylaminopropylamine and diethyltriamine; ethers such as ethylene oxide and tetrahydrofuran; ketones such as methyl ethyl ketone; esters such as methyl acetate; -Aprotic polar solvents such as methyl-2-pyrrolidone.
The method for applying the slurry onto the current collector is not limited as long as it does not impair the object of the present invention. An electric spray method and the like can be mentioned.
負極は、集電体と、当該集電体の表面に形成された負極活物質層とを有し、負極活物質層は、典型的には負極活物質を含む負極合剤で形成される。 The negative electrode has a current collector and a negative electrode active material layer formed on the surface of the current collector, and the negative electrode active material layer is typically formed of a negative electrode mixture containing a negative electrode active material.
負極活物質としては、ナトリウムイオンを吸蔵・脱離することのできる天然黒鉛、人造黒鉛、コークス類、ハードカーボン、カーボンブラック、熱分解炭素類、炭素繊維、有機高分子化合物焼成体等の炭素材料が挙げられる。炭素材料の形状としては、例えば天然黒鉛のような薄片状、メソカーボンマイクロビーズのような球状、黒鉛化炭素繊維のような繊維状、又は微粉末の凝集体等のいずれでもよい。ここで、炭素材料は、導電材としての役割を果たす場合もある。 As the negative electrode active material, carbon materials such as natural graphite, artificial graphite, cokes, hard carbon, carbon black, pyrolytic carbons, carbon fiber, organic polymer compound sintered body, etc. that can occlude and desorb sodium ions. are mentioned. The shape of the carbon material may be flaky such as natural graphite, spherical such as mesocarbon microbeads, fibrous such as graphitized carbon fiber, or aggregates of fine powder. Here, the carbon material may also serve as a conductive material.
上記の通り、本発明において負極活物質は、特定のものに限定されないが、ハードカーボンを使用してもよい。 As described above, in the present invention, the negative electrode active material is not particularly limited, but hard carbon may be used.
ハードカーボンは、2000℃以上の高温で熱処理してもほとんど積層秩序が変化しない炭素材料であり、難黒鉛化炭素ともよばれる。ハードカーボンとしては、炭素繊維の製造過程の中間生成物である不融化糸を1000~1400℃程度で炭化した炭素繊維、有機化合物を150~300℃程度で空気酸化した後、1000~1400℃程度で炭化した炭素材料等が例示できる。ハードカーボンの製造方法は特に限定されず、従来公知の方法により製造されたハードカーボンを使用することができる。 Hard carbon is a carbon material whose stacking order hardly changes even when heat-treated at a high temperature of 2000° C. or higher, and is also called non-graphitizable carbon. As hard carbon, carbon fibers obtained by carbonizing infusible threads, which are intermediate products in the manufacturing process of carbon fibers, at about 1000 to 1400 ° C., organic compounds are air-oxidized at about 150 to 300 ° C., and then dried to about 1000 to 1400 ° C. can be exemplified by carbonized carbon materials. The method for producing hard carbon is not particularly limited, and hard carbon produced by a conventionally known method can be used.
負極活物質層中の負極活物質の含有量は特に限定されないが、80~95質量%である
ことが好ましい。
Although the content of the negative electrode active material in the negative electrode active material layer is not particularly limited, it is preferably 80 to 95% by mass.
バインダーとしては、正極に使用可能なものと同様のものが使用可能であるため、これらについては説明を省略する。集電体としては、ニッケル、銅、ステンレス(SUS)等の導電性の材料を用いる。集電体は正極用の集電体と同様に、箔、メッシュ、エキスパンドグリッド(エキスパンドメタル)、パンチドメタル等から構成される。 As the binder, the same binders as those usable for the positive electrode can be used, so the description thereof will be omitted. As the current collector, a conductive material such as nickel, copper, stainless steel (SUS) is used. The current collector is made of foil, mesh, expanded grid (expanded metal), punched metal, or the like, like the current collector for the positive electrode.
また、負極活物質層を集電体上に形成する方法としては、正極活物質層を集電体上に形成する方法と同様の方法を採用することができる。 Moreover, as a method of forming the negative electrode active material layer on the current collector, the same method as the method of forming the positive electrode active material layer on the current collector can be employed.
電解質は、特に限定されず、液体、固体のいずれの形態であってもよく、典型的には、
電解液(非水系溶媒)に電解質のナトリウム塩又はカリウム塩を溶解した溶液が使用される。本発明の二次電池における電解質は特に制限はないが、実施例で開示した電解質は好適な一例である。
The electrolyte is not particularly limited, and may be in either liquid or solid form.
A solution obtained by dissolving an electrolyte sodium salt or potassium salt in an electrolytic solution (non-aqueous solvent) is used. The electrolyte in the secondary battery of the present invention is not particularly limited, but the electrolyte disclosed in the examples is a suitable example.
電解質塩は、ナトリウム二次電池又はカリウム二次電池に一般的に用いられる電解質塩を使用できる。電解質塩のうち1種を用いてもよく、あるいは2種以上を組み合わせて用い。 As the electrolyte salt, electrolyte salts commonly used in sodium secondary batteries or potassium secondary batteries can be used. One type of electrolyte salt may be used, or two or more types may be used in combination.
電解液としては、ナトリウム二次電池又はカリウム二次電池に用いられる電解液を使用することができ、プロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等のカーボネート類;1,2-ジメトキシエタン、1,3-ジメトキシプロパン等のエーテル類;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド類;3-メチル-2-オキサゾリドン等のカーバメート類;トリス(2,2,2-トリフルオロエチル)ホスファート等のホスファート類;又は上記の有機溶媒にさらにフッ素置換基を導入したものを用いることができる。 As the electrolytic solution, an electrolytic solution used in a sodium secondary battery or a potassium secondary battery can be used, and carbonates such as propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethylmethyl carbonate; ethers such as dimethoxyethane and 1,3-dimethoxypropane; amides such as N,N-dimethylformamide and N,N-dimethylacetamide; carbamates such as 3-methyl-2-oxazolidone; Phosphates such as 2-trifluoroethyl)phosphate; or the above organic solvents further introduced with a fluorine substituent can be used.
以下に実施例を挙げて本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。また、以下における「%」は、特に明示しない限り「重量%」を示す。 EXAMPLES The present invention will be described in more detail with reference to examples below, but the present invention is not limited to these. In addition, "%" below indicates "% by weight" unless otherwise specified.
(実験例1)
実験例1の正極活物質として、試薬のチオ硫酸ナトリウム・五水和物(Na2S2O3・5H2O、富士フイルム和光純薬株式会社製)、導電材にアセチレンブラック(電気化学工業株式会社製、以下、「AB」と記載)、バインダーとしてポリフッ化ビニリデン(ダイキン工業株式会社製、以下、「PVDF」と記載)を使用した。なお、PVDFは、0.5%カーボンナノチューブ(CNT)を含むN‐メチル‐2‐ピロリドン溶液(楠本化成株式会社「TUBALLTM BATT NMP PVDF」、以下、「NMP溶媒」と記載)に溶解したバインダー溶液として使用した。
(Experimental example 1)
As the positive electrode active material in Experimental Example 1, the reagent sodium thiosulfate pentahydrate (Na 2 S 2 O 3.5H 2 O, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), and the conductive material acetylene black (Denki Kagaku Kogyo Co., Ltd., hereinafter referred to as "AB"), and polyvinylidene fluoride (Daikin Industries, Ltd., hereinafter referred to as "PVDF") was used as a binder. Incidentally, PVDF is a binder dissolved in an N-methyl-2-pyrrolidone solution containing 0.5% carbon nanotubes (CNT) (“TUBALL ™ BATT NMP PVDF” manufactured by Kusumoto Kasei Co., Ltd., hereinafter referred to as “NMP solvent”). used as a solution.
実施例1の正極は以下の通り作製した。
正極活物質としてチオ硫酸ナトリウム・五水和物0.8g(全体の74%)及び導電材としてのAB0.2g(全体の19%)を、PVDF0.076g(全体の7.01%)を含むNMP溶媒0.747g(CNTは実質0.004g、固形分比率0.37%)に均一になるように混合(混練)することによって実験例1の正極合剤を得た。
次いで、得られた正極合剤を正極集電体となるアルミシート(厚さ16μm)に塗布し、50℃で3時間乾燥を行って正極シートを得た。得られた正極シートから15mmφで切り抜いて実験例1の正極とした。
The positive electrode of Example 1 was produced as follows.
Contains 0.8 g (74% of the total) of sodium thiosulfate pentahydrate as a positive electrode active material, 0.2 g of AB (19% of the total) as a conductive material, and 0.076 g of PVDF (7.01% of the total) A positive electrode mixture of Experimental Example 1 was obtained by uniformly mixing (kneading) 0.747 g of NMP solvent (CNT is substantially 0.004 g, solid content ratio is 0.37%).
Next, the obtained positive electrode mixture was applied to an aluminum sheet (thickness 16 μm) serving as a positive electrode current collector, and dried at 50° C. for 3 hours to obtain a positive electrode sheet. A positive electrode of Experimental Example 1 was obtained by cutting out a positive electrode sheet with a diameter of 15 mm from the obtained positive electrode sheet.
負極は、以下の通り作製した。
負極活物質として廃タイヤ由来炭化物「ルネシスA1(品番)」を使用した。
廃タイヤ由来炭化物「ルネシスA1(品番)」は、廃タイヤを不活性雰囲気容器内で、400℃迄2時間で加熱し、廃タイヤ内の成分をガス化及び冷却にて油化(ガス化及び油化合計約55%)し、ガス化及び油化しない残渣物を回収した。回収した廃タイヤ熱分解残渣物をさらに熱処理後、粉砕して平均粒度20μmとした後に、16000ガウスの電磁分離機で磁性体を完全に除去して得られる廃タイヤ熱分解残渣物由来の炭化物である。
負極活物質(廃タイヤ由来炭化物)を1.5g(全体の92.71%)と、バインダーとしてのポリアクリル酸(富士フイルム和光純薬株式会社製、製品名20CLPAH)0.106g(全体の6.55%)とを、溶媒として0.007gのカルボキシメチルセルロース(CMC)及び0.005gのCNTを含む水溶液(楠本化成株式会社「TUBALLTM BATT H2O CMC」)1.2gと共に混合(混練)することによって負極合剤を得た。
次いで、得られた負極合剤を負極集電体となるアルミシート(厚さ16μm)に塗布し、70℃で3時間乾燥を行って負極シートを得た。得られた負極シートから11.3mmφで切り抜いて負極とした。
A negative electrode was produced as follows.
Waste tire-derived carbide “Lunesis A1 (product number)” was used as the negative electrode active material.
Waste tire-derived carbide “Lunesis A1 (product number)” is produced by heating waste tires to 400 ° C in 2 hours in an inert atmosphere container, gasifying and cooling the components in the waste tires to oil (gasification and about 55% of total oil conversion), and the residue that did not gasify or oilify was recovered. Carbide derived from waste tire pyrolysis residue obtained by further heat-treating the recovered waste tire pyrolysis residue, pulverizing it to an average particle size of 20 μm, and completely removing the magnetic material with a 16000 gauss electromagnetic separator. be.
1.5 g (92.71% of the total) of the negative electrode active material (carbide derived from waste tires) and 0.106 g (6 of the total) of polyacrylic acid (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., product name 20CLPAH) as a binder .55%) is mixed (kneaded) with 1.2 g of an aqueous solution containing 0.007 g of carboxymethyl cellulose (CMC) and 0.005 g of CNT as a solvent (“TUBALL ™ BATT H 2 O CMC” manufactured by Kusumoto Kasei Co., Ltd.). By doing so, a negative electrode mixture was obtained.
Next, the obtained negative electrode mixture was applied to an aluminum sheet (thickness: 16 μm) serving as a negative electrode current collector, and dried at 70° C. for 3 hours to obtain a negative electrode sheet. A negative electrode having a diameter of 11.3 mm was cut out from the obtained negative electrode sheet.
得られた正極と負極を、電解液としてトリス(2,2,2-トリフルオロエチル)ホスファート(TFEP)に、ナトリウム塩としてナトリウムビス(フルオロスルホニル)イミド(NaFSI)を2モル/リットルとなるように溶解したもの(以下、「NaFSI/TFEP」と記載)と、セパレータとしてセルガード2400と、これらを組み合わせて、実験例1の電池(コイン型電池(円筒型、外径20mm/高さ3.2mm)、以下「コイン型電池(R2032)」と記載)を得た。
The resulting positive electrode and negative electrode were mixed with tris (2,2,2-trifluoroethyl) phosphate (TFEP) as an electrolyte and sodium bis (fluorosulfonyl) imide (NaFSI) as a sodium salt so that the concentration was 2 mol/liter. (hereinafter referred to as "NaFSI/TFEP"), Celgard 2400 as a separator, and these were combined to form the battery of Experimental Example 1 (coin battery (cylindrical,
上記の実施例1の電池を用いて、25℃保持下、以下に示す条件で充放電試験を実施した。
(セル構成) 2極式
正極:正極活物質を含む電極
負極:負極活物質を含む電極
電解質:2M NaFSI/TFEP
(充放電条件)
電圧範囲:0.5-3.9V
充電は、定電流を3.9Vまで流し続けその後、電圧維持するだけの電流を5時間流し、電流値が低下していくCVCC充電で行った。
Using the battery of Example 1 above, a charge/discharge test was performed under the conditions shown below while maintaining the temperature at 25°C.
(Cell configuration) Bipolar positive electrode: electrode containing positive electrode active material Negative electrode: electrode containing negative electrode active material Electrolyte: 2M NaFSI/TFEP
(Charging and discharging conditions)
Voltage range: 0.5-3.9V
Charging was carried out by CVCC charging in which a constant current was kept flowing up to 3.9 V, and then a current sufficient to maintain the voltage was passed for 5 hours, and the current value decreased.
実験例1の電池の充放電試験の結果は以下の通りである。図1に充放電試験の測定データを示す。
133.5μA/1.766cm2(正極15mmφ)
充放電回数:20回
放電時間:約1時間(133μAh)
The results of the charge/discharge test of the battery of Experimental Example 1 are as follows. FIG. 1 shows measurement data of the charge/discharge test.
133.5 μA/1.766 cm 2 (positive electrode 15 mmφ)
Charge/discharge times: 20 times Discharge time: about 1 hour (133 μAh)
(実験例2)
実験例2の正極活物質は、以下の手順で得た。
炭化物として廃タイヤ由来炭化物「ルネシスA1(品番)」(実験例1の負極と同じもの)を使用した。炭化物(廃タイヤ由来炭化物)5.5g(原料全体の24.2%)と、過炭酸ナトリウム8.44g(原料全体の37.2%)、コールタール2.75g(原料全体の12.1%)、硫黄6g(原料全体の26.4%)をステンレス容器で混錬し加熱炉に投入し、容器内を不活性雰囲気とするために窒素ガスを流し10分後加温を開始した。温度上昇は、50分で300℃に設定し、300℃到達後も加熱を続け、350℃で停止した。その後、温度が200℃に下降して加熱炉から取り出し、自然冷却した。容器内部温度が50℃以下になった後に合成品をとりだした。合成品重量は、15.2gであった。合成品をミキサーで粉砕して平均粒度20μmの粉末からなる実験例2の正極活物質を得た。
(Experimental example 2)
The positive electrode active material of Experimental Example 2 was obtained by the following procedure.
As the carbide, a waste tire-derived carbide “Lunesis A1 (product number)” (same as the negative electrode in Experimental Example 1) was used. 5.5 g (24.2% of the total raw material) of carbide (carbide derived from waste tires), 8.44 g of sodium percarbonate (37.2% of the total raw material), 2.75 g of coal tar (12.1% of the total raw material) ) and 6 g of sulfur (26.4% of the total raw material) were kneaded in a stainless steel container, put into a heating furnace, and nitrogen gas was flowed to make the inside of the container an inert atmosphere. After 10 minutes, heating was started. The temperature rise was set to 300°C in 50 minutes, continued heating after reaching 300°C, and stopped at 350°C. After that, when the temperature dropped to 200° C., it was removed from the heating furnace and cooled naturally. After the internal temperature of the container became 50°C or less, the synthesized product was taken out. The composite weight was 15.2 g. The synthesized product was pulverized with a mixer to obtain a positive electrode active material of Experimental Example 2 consisting of a powder having an average particle size of 20 μm.
得られた実験例2の正極活物質について、粉末X線回折測定(XRD)及びエックス線吸収微細構造測定(XAFS)による評価を行った。測定装置及び測定条件は以下の通りである。 The obtained positive electrode active material of Experimental Example 2 was evaluated by powder X-ray diffraction measurement (XRD) and X-ray absorption fine structure measurement (XAFS). The measurement equipment and measurement conditions are as follows.
<粉末X線回折測定>
粉末X線回折測定(XRD)は、Bruker axs社製、型番:D8ADVANCEを用いて行った。
測定は、粉末試料を専用の基板に充填し、CuKα線源を用いて、粉末X線回折パターンを得た。
<エックス線吸収微細構造測定>
九州シンクロトロン光研究センターにおいて、BL11を使用して、エックス線吸収微細構造(XAFS、透過法)を評価した。
<Powder X-ray diffraction measurement>
Powder X-ray diffraction measurement (XRD) was performed using a model number: D8ADVANCE manufactured by Bruker axs.
For the measurement, a powder sample was filled on a dedicated substrate, and a powder X-ray diffraction pattern was obtained using a CuKα ray source.
<X-ray absorption fine structure measurement>
X-ray absorption fine structure (XAFS, transmission method) was evaluated using BL11 at the Kyushu Synchrotron Light Research Center.
実験例2の正極活物質のXRDパターンを図2、XAFSスペクトル(S K-edge)を図3に示す。
図2に実験例2の正極活物質のXRDプロファイルをCOD(Crysyallography Open Database)のデータと対比したところ、過炭酸ナトリウムのシグナルが消滅し、チオ硫酸ナトリウム五水和物と一致したシグナルが確認された。
FIG. 2 shows the XRD pattern of the positive electrode active material of Experimental Example 2, and FIG. 3 shows the XAFS spectrum (SK-edge).
When the XRD profile of the positive electrode active material of Experimental Example 2 in FIG. 2 was compared with COD (Crysyallography Open Database) data, the signal of sodium percarbonate disappeared and a signal consistent with sodium thiosulfate pentahydrate was confirmed. rice field.
また、図3において、実験例2の正極活物質とチオ硫酸ナトリウム五水和物(試薬)のXAFSスペクトルがほとんど一致していることが確認された。
以上の結果から、実験例2の正極活物質がチオ硫酸ナトリウム五水和物の結晶を含有することが確認された。
Moreover, in FIG. 3, it was confirmed that the XAFS spectra of the positive electrode active material of Experimental Example 2 and sodium thiosulfate pentahydrate (reagent) almost matched.
From the above results, it was confirmed that the positive electrode active material of Experimental Example 2 contained crystals of sodium thiosulfate pentahydrate.
図4に実験例2の正極活物質のSEM像、図5に図4に対応するSEM―EDXマッピングの結果を示す。SEM―EDXマッピングにおいて、Na及びSが炭化物全体に分布していることから、実験例2の正極活物質は、チオ硫酸ナトリウムが炭化物に均一に分散した複合体であると判断した。 FIG. 4 shows an SEM image of the positive electrode active material of Experimental Example 2, and FIG. 5 shows the results of SEM-EDX mapping corresponding to FIG. In SEM-EDX mapping, Na and S are distributed throughout the carbide, so it was determined that the positive electrode active material of Experimental Example 2 was a composite in which sodium thiosulfate was uniformly dispersed in the carbide.
以下の通り、実験例2の正極を得た。
実験例2の正極活物質2g(全体の94.49%)及び導電材としてのAB0.056g(全体の2.64%)を、PVDF0.058g(全体の2.71%)を含むNMP溶媒0.673g(CNTは実質0.003g、固形分比率0.08%)に均一になるように混合(混練)することによって実験例2の正極合剤を得た。次いで、得られた正極合剤を正極集電体となるアルミシート(厚さ16μm)に塗布し、50℃で3時間乾燥を行って正極シートを得た。得られた正極シートから15mmφで切り抜いて実験例2の正極とした。
A positive electrode of Experimental Example 2 was obtained as follows.
2 g of the positive electrode active material of Experimental Example 2 (94.49% of the total) and 0.056 g of AB as the conductive material (2.64% of the total) were mixed with 0.058 g of PVDF (2.71% of the total) in NMP solvent 0 A positive electrode mixture of Experimental Example 2 was obtained by uniformly mixing (kneading) 0.673 g (CNT: 0.003 g, solid content ratio: 0.08%). Next, the obtained positive electrode mixture was applied to an aluminum sheet (thickness 16 μm) serving as a positive electrode current collector, and dried at 50° C. for 3 hours to obtain a positive electrode sheet. A positive electrode of Experimental Example 2 was obtained by cutting out a positive electrode sheet having a diameter of 15 mm from the obtained positive electrode sheet.
実験例2の正極を使用した以外は、上記実験例1と同様にして実験例2の電池(コイン型電池(R2032))を得た。
実験例2の電池の充放電試験の結果は以下の通りである。
73.5μA/1.766cm2(正極15mmφ)
充放電回数:20回
放電時間:約4時間(73.5μAh)
A battery of Experimental Example 2 (coin-type battery (R2032)) was obtained in the same manner as in Experimental Example 1 except that the positive electrode of Experimental Example 2 was used.
The results of the charge/discharge test of the battery of Experimental Example 2 are as follows.
73.5 μA/1.766 cm 2 (positive electrode 15 mmφ)
Charge/discharge times: 20 times Discharge time: about 4 hours (73.5 μAh)
(実験例3)
以下の通り、実験例3の正極を得た。
実施例3の正極活物質として、試薬のチオ硫酸カリウム無水物を使用した。チオ硫酸カリウム無水物1.003g(全体の86%)及び導電材としてのAB0.063g(全体の5.41%)を、PVDF0.073g(全体の6.27%)を含むNMP溶媒2.453g(CNTは実質0.025g、固形分比率2.14%)に均一になるように混合(混練)することによって実験例3の正極合剤を得た。
次いで、得られた正極合剤を正極集電体となるアルミシート(厚さ16μm)に塗布し、50℃で3時間乾燥を行って正極シートを得た。得られた正極シートから15mmφで切り抜いて実験例3の正極とした。
(Experimental example 3)
A positive electrode of Experimental Example 3 was obtained as follows.
As the positive electrode active material of Example 3, the reagent potassium thiosulfate anhydride was used. 2.453 g of NMP solvent containing 1.003 g of anhydrous potassium thiosulfate (86% of total) and 0.063 g of AB as conductive material (5.41% of total) and 0.073 g of PVDF (6.27% of total) The positive electrode mixture of Experimental Example 3 was obtained by uniformly mixing (kneading) the CNTs (substantially 0.025 g, solid content ratio 2.14%).
Next, the obtained positive electrode mixture was applied to an aluminum sheet (thickness 16 μm) serving as a positive electrode current collector, and dried at 50° C. for 3 hours to obtain a positive electrode sheet. A positive electrode of Experimental Example 3 was obtained by cutting out a positive electrode sheet with a diameter of 15 mm from the obtained positive electrode sheet.
負極は、実施例1と同様の手順で作製した。 A negative electrode was prepared in the same manner as in Example 1.
得られた正極と負極を、電解液としてトリス(2,2,2-トリフルオロエチル)ホスファート(TFEP)に、カリウム塩としてカリウムビス(フルオロスルホニル)イミド(KFSI)を2モル/リットルとなるように溶解したもの(以下、「KFSI/TFEP」と記載)と、セパレータとしてセルガード2400と、これらを組み合わせて、実験例3の電池(コイン型電池(R2032))を得た。 The resulting positive electrode and negative electrode were mixed with tris (2,2,2-trifluoroethyl) phosphate (TFEP) as an electrolyte and potassium bis (fluorosulfonyl) imide (KFSI) as a potassium salt so that the concentration was 2 mol/liter. (hereinafter referred to as "KFSI/TFEP"), Celgard 2400 as a separator, and these were combined to obtain a battery of Experimental Example 3 (coin-type battery (R2032)).
上記の実施例3の電池を用いて、25℃保持下、以下に示す条件で充放電試験を実施した。
(セル構成) 2極式
正極:正極活物質を含む電極
負極:負極活物質を含む電極
電解質:2M KFSI/TFEP
(充放電条件)
電圧範囲:2.0-4.2V
充電は、定電流を4.2Vまで流し続けその後、電圧維持するだけの電流を5時間流し、電流値が低下していくCVCC充電で行った。
Using the battery of Example 3, a charge/discharge test was performed under the following conditions while maintaining at 25°C.
(Cell configuration) Bipolar positive electrode: electrode containing positive electrode active material Negative electrode: electrode containing negative electrode active material Electrolyte: 2M KFSI/TFEP
(Charging and discharging conditions)
Voltage range: 2.0-4.2V
Charging was performed by CVCC charging in which a constant current continued to flow up to 4.2 V, and then a current sufficient to maintain the voltage was passed for 5 hours, and the current value decreased.
実験例3の電池の充放電試験の結果は以下の通りである。
62.4μA/1.766cm2(正極15mmφ)
充放電回数:5回
放電時間:約4時間(62.4μAh)
The results of the charge/discharge test of the battery of Experimental Example 3 are as follows.
62.4 μA/1.766 cm 2 (positive electrode 15 mmφ)
Charge/discharge times: 5 times Discharge time: about 4 hours (62.4 μAh)
(実験例4)
実験例4の正極活物質は、以下の手順で得た。
炭化物として廃タイヤ由来炭化物「ルネシスA1(品番)」(実験例1の負極と同じもの)を使用した。炭化物(廃タイヤ由来炭化物)10g(原料全体の20%)と、炭酸水素カリウム25g(原料全体の51%)、コールタール3.8g(原料全体の8%)、硫黄10g(原料全体の20%)の原料合計48.8gをステンレス容器で混錬し加熱炉に投入し、容器内を不活性雰囲気とするために窒素ガスを流し10分後加温を開始した。温度上昇は、50分で300℃に設定し、300℃到達後も加熱を続け、350℃で停止した。その後、温度が200℃に下降して加熱炉から取り出し、自然冷却した。容器内部温度が50℃以下になった後に合成品をとりだした。合成品重量は、歩留まり67%の32.5gであった。合成品をミキサーで粉砕して平均粒度20μmの粉末からなる実験例4の正極活物質を得た。実験例4の正極活物質を、XRDによる評価を行ったところ、チオ硫酸カリウムの結晶が含まれることが確認された。
(Experimental example 4)
The positive electrode active material of Experimental Example 4 was obtained by the following procedure.
As the carbide, a waste tire-derived carbide “Lunesis A1 (product number)” (same as the negative electrode in Experimental Example 1) was used. 10 g of carbide (carbide derived from waste tires) (20% of the total raw material), 25 g of potassium hydrogen carbonate (51% of the total raw material), 3.8 g of coal tar (8% of the total raw material), 10 g of sulfur (20% of the total raw material) ) was kneaded in a stainless steel container and put into a heating furnace, nitrogen gas was flowed to make the inside of the container an inert atmosphere, and heating was started after 10 minutes. The temperature rise was set to 300°C in 50 minutes, continued heating after reaching 300°C, and stopped at 350°C. After that, when the temperature dropped to 200° C., it was removed from the heating furnace and cooled naturally. After the internal temperature of the container became 50°C or less, the synthesized product was taken out. The composite weight was 32.5g with a yield of 67%. The synthesized product was pulverized with a mixer to obtain a positive electrode active material of Experimental Example 4 consisting of a powder having an average particle size of 20 μm. When the positive electrode active material of Experimental Example 4 was evaluated by XRD, it was confirmed that crystals of potassium thiosulfate were contained.
実験例4の正極活物質を使用した以外は、上記実験例3と同様にして実験例4の正極合剤及び正極を得た。また、実験例4の正極を使用した以外は、上記実験例3と同様にして実験例4の電池(コイン型電池(R2032))を得た。 A positive electrode mixture and a positive electrode of Experimental Example 4 were obtained in the same manner as in Experimental Example 3 except that the positive electrode active material of Experimental Example 4 was used. A battery of Experimental Example 4 (coin-type battery (R2032)) was obtained in the same manner as in Experimental Example 3 except that the positive electrode of Experimental Example 4 was used.
上記の実施例4の電池を用いて、25℃保持下、実施例3と同条件で充放電試験を実施した。
充放電試験の結果は以下の通りである。
64.7μA/1.766cm2(正極15mmφ)
充放電回数:5回
放電時間:約5時間(64.7μAh)
Using the battery of Example 4 above, a charge/discharge test was performed under the same conditions as in Example 3 at 25°C.
The results of the charge/discharge test are as follows.
64.7 μA/1.766 cm 2 (positive electrode 15 mmφ)
Charge/discharge times: 5 times Discharge time: about 5 hours (64.7 μAh)
本発明の正極活物質は、リチウムを使用することなく、安価な材料を用いて二次電池用の正極を与えることができるため、本発明は産業的に極めて有用である。 The positive electrode active material of the present invention can provide a positive electrode for secondary batteries using an inexpensive material without using lithium, so the present invention is industrially extremely useful.
Claims (4)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022094146A JP7246789B1 (en) | 2021-12-28 | 2022-06-10 | Positive electrode active material, positive electrode mixture and secondary battery |
JP2023034345A JP2023098729A (en) | 2022-06-10 | 2023-03-07 | Positive electrode active material, positive electrode mixture, and secondary battery |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021213841 | 2021-12-28 | ||
JP2022094146A JP7246789B1 (en) | 2021-12-28 | 2022-06-10 | Positive electrode active material, positive electrode mixture and secondary battery |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021213841 Division | 2021-12-28 | 2021-12-28 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2023034345A Division JP2023098729A (en) | 2022-06-10 | 2023-03-07 | Positive electrode active material, positive electrode mixture, and secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP7246789B1 true JP7246789B1 (en) | 2023-03-28 |
JP2023098554A JP2023098554A (en) | 2023-07-10 |
Family
ID=87072359
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022094146A Active JP7246789B1 (en) | 2021-12-28 | 2022-06-10 | Positive electrode active material, positive electrode mixture and secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7246789B1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024085192A1 (en) * | 2022-10-18 | 2024-04-25 | 株式会社ルネシス | Method for producing electrode member, system for producing electrode member, method for producing positive electrode active material, positive electrode active material, positive electrode mixture and secondary battery |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001297768A (en) | 2000-04-14 | 2001-10-26 | Sony Corp | Positive electrode and nonaqueous secondary cell, and manufacturing method of the same |
JP2003157850A (en) | 2001-11-22 | 2003-05-30 | Kyushu Univ | Positive electrode material for secondary battery and secondary battery |
US20090246563A1 (en) | 2008-03-31 | 2009-10-01 | Reynolds Thomas A | Electroactive material for charge transport |
JP2011171216A (en) | 2010-02-22 | 2011-09-01 | Sumitomo Chemical Co Ltd | Sodium secondary battery |
JP2015210956A (en) | 2014-04-25 | 2015-11-24 | 住友大阪セメント株式会社 | Positive electrode material, paste and sodium ion battery |
CN108793083A (en) | 2018-04-25 | 2018-11-13 | 安徽师范大学 | A kind of three-dimensional porous sulfur granules nano material and preparation method thereof, a kind of lithium-sulphur cell positive electrode and lithium-sulfur cell |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5210526A (en) * | 1975-07-16 | 1977-01-26 | Yuasa Battery Co Ltd | Laminated immersionntype battery |
JPS53120140A (en) * | 1977-03-29 | 1978-10-20 | Toshiba Ray O Vac | Organic electrolyte battery |
US4145806A (en) * | 1977-08-17 | 1979-03-27 | Rockwell International Corporation | Method of assembling an electrochemical cell |
-
2022
- 2022-06-10 JP JP2022094146A patent/JP7246789B1/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001297768A (en) | 2000-04-14 | 2001-10-26 | Sony Corp | Positive electrode and nonaqueous secondary cell, and manufacturing method of the same |
JP2003157850A (en) | 2001-11-22 | 2003-05-30 | Kyushu Univ | Positive electrode material for secondary battery and secondary battery |
US20090246563A1 (en) | 2008-03-31 | 2009-10-01 | Reynolds Thomas A | Electroactive material for charge transport |
JP2011171216A (en) | 2010-02-22 | 2011-09-01 | Sumitomo Chemical Co Ltd | Sodium secondary battery |
JP2015210956A (en) | 2014-04-25 | 2015-11-24 | 住友大阪セメント株式会社 | Positive electrode material, paste and sodium ion battery |
CN108793083A (en) | 2018-04-25 | 2018-11-13 | 安徽师范大学 | A kind of three-dimensional porous sulfur granules nano material and preparation method thereof, a kind of lithium-sulphur cell positive electrode and lithium-sulfur cell |
Also Published As
Publication number | Publication date |
---|---|
JP2023098554A (en) | 2023-07-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ju et al. | SiOx/C composite from rice husks as an anode material for lithium-ion batteries | |
Wei et al. | An intermittent lithium deposition model based on CuMn-bimetallic MOF derivatives for composite lithium anode with ultrahigh areal capacity and current densities | |
US8748036B2 (en) | Non-aqueous secondary battery | |
JP4854289B2 (en) | Non-aqueous electrolyte secondary battery | |
JP5518317B2 (en) | Carbon black composite and its use | |
WO2018123487A1 (en) | Positive electrode active material for potassium-ion cell, positive electrode for potassium-ion cell, and potassium-ion cell | |
CN109665523B (en) | Preparation method of graphene composite petroleum coke-based activated carbon and supercapacitor | |
JPWO2016121711A1 (en) | Method for producing graphite powder for negative electrode material of lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery | |
CN111785972A (en) | Zinc-ion battery positive electrode material and preparation method and application thereof | |
JP2011081960A (en) | Nonaqueous secondary battery | |
JP7246789B1 (en) | Positive electrode active material, positive electrode mixture and secondary battery | |
JP5516929B2 (en) | Carbon nanotube material for negative electrode and lithium ion secondary battery using the same as negative electrode | |
KR101795778B1 (en) | Silicon carbon composite for anode active material, method for preparing the same and lithium secondary battery the same | |
JP4579892B2 (en) | Negative electrode material for lithium ion secondary battery and method for producing the same | |
CN113410459A (en) | Embedded MoSxThree-dimensional ordered macroporous graphene carbon material of nanosheet, preparation and application | |
Wang et al. | A novel three-dimensional hierarchical porous lead-carbon composite prepared from corn stover for high-performance lead-carbon batteries | |
WO2023127894A1 (en) | Positive electrode active material, positive electrode mixture, and secondary battery | |
CN116040602A (en) | Preparation method and application of asphalt-based hard carbon material | |
JP2023098729A (en) | Positive electrode active material, positive electrode mixture, and secondary battery | |
JP2016027557A (en) | Method for manufacturing negative electrode material for lithium ion secondary battery | |
CN112242511B (en) | Three-dimensional composite material based on manganese group cluster derivative and preparation method and application thereof | |
KR20240005923A (en) | Graphite anode material, manufacturing method thereof, and use thereof | |
Kali et al. | Insights into Na-ion storage behavior of solid waste-derived carbon via “charge-averaged” discharge/charge voltages | |
JP2024093446A (en) | Secondary battery and liquid electrolyte | |
Zheng et al. | ICE optimization strategies of hard carbon anode for sodium-ion batteries: from the perspective of material synthesis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220610 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20220610 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220719 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220906 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20221115 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20221209 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230131 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230201 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230228 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230308 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7246789 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |