JP4579892B2 - Negative electrode material for lithium ion secondary battery and method for producing the same - Google Patents

Negative electrode material for lithium ion secondary battery and method for producing the same Download PDF

Info

Publication number
JP4579892B2
JP4579892B2 JP2006327312A JP2006327312A JP4579892B2 JP 4579892 B2 JP4579892 B2 JP 4579892B2 JP 2006327312 A JP2006327312 A JP 2006327312A JP 2006327312 A JP2006327312 A JP 2006327312A JP 4579892 B2 JP4579892 B2 JP 4579892B2
Authority
JP
Japan
Prior art keywords
negative electrode
ion secondary
lithium ion
secondary battery
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006327312A
Other languages
Japanese (ja)
Other versions
JP2008140707A (en
Inventor
浩次郎 天能
直樹 的場
純一 安丸
真吾 朝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Coke and Chemicals Co Ltd
Original Assignee
Kansai Coke and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Coke and Chemicals Co Ltd filed Critical Kansai Coke and Chemicals Co Ltd
Priority to JP2006327312A priority Critical patent/JP4579892B2/en
Publication of JP2008140707A publication Critical patent/JP2008140707A/en
Application granted granted Critical
Publication of JP4579892B2 publication Critical patent/JP4579892B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、リチウムイオン二次電池用負極材料およびその製造方法に関する。   The present invention relates to a negative electrode material for a lithium ion secondary battery and a method for producing the same.

体積エネルギー密度と重量エネルギー密度が大きいリチウムイオン二次電池は、電池の小型化、高電圧を供給できるという利点から携帯電話やノートパソコン等のバッテリーとして汎用されている。リチウムイオン二次電池は、起電反応にリチウムが関与する二次電池の総称であり、正極にリチウムコバルト複合酸化物などを使用したリチウムイオン二次電池や、負極にリチウム合金を使用する金属リチウムイオン二次電池などに分類される。現在、銅箔等の集電板表面上に粒状黒鉛とバインダーとの混合物を層形成した負極を備えるリチウムイオン二次電池が実用化されている。   A lithium ion secondary battery having a large volumetric energy density and a large weight energy density is widely used as a battery for mobile phones, laptop computers, and the like because of the advantages of downsizing the battery and supplying a high voltage. Lithium ion secondary battery is a general term for secondary batteries in which lithium is involved in the electromotive reaction. Lithium ion secondary batteries using lithium cobalt composite oxide or the like for the positive electrode or metallic lithium using a lithium alloy for the negative electrode It is classified as an ion secondary battery. Currently, a lithium ion secondary battery including a negative electrode in which a mixture of granular graphite and a binder is formed on the surface of a current collector plate such as a copper foil has been put into practical use.

リチウムイオン二次電池は、充放電の繰り返しによってその容量が低下する。この容量低下の程度がリチウムイオン二次電池の寿命を定める。リチウムイオン二次電池のサイクル特性が電池寿命の評価方法として一般的であり、電池のサイクル特性の改善が進められている。   The capacity of a lithium ion secondary battery is reduced by repeated charge and discharge. The degree of this capacity reduction determines the life of the lithium ion secondary battery. The cycle characteristics of lithium ion secondary batteries are a common battery life evaluation method, and improvements in battery cycle characteristics are being promoted.

サイクル特性を改善する技術として、特許文献1には、固体電解質リチウム二次電池の負極材料である特定の黒鉛系炭素に、導電材としての機能を発揮する特定の非黒鉛系炭素を混合することが開示されている。しかし、非黒鉛系炭素の混合量増加に伴って電池の初期効率が低下する問題がある。   As a technique for improving the cycle characteristics, Patent Document 1 includes mixing specific non-graphite carbon that functions as a conductive material with specific graphite carbon that is a negative electrode material of a solid electrolyte lithium secondary battery. Is disclosed. However, there is a problem that the initial efficiency of the battery is lowered with an increase in the mixing amount of non-graphitic carbon.

また、特許文献2は、(002)面の平均面間隔を示すd002が0.3350nm以上、0.3380nm未満の範囲にあり、c軸方向の結晶子の大きさを示すLcが10nm以上の高結晶性構造を有する黒鉛材料の表面を非黒鉛質炭素で被覆することにより得られる平均粒子径が10〜30μm以下、比表面積が5m2/g以下の被覆炭素材料と、d002が0.3350nm以上、0.3380nm未満の範囲にあり、Lcが10nm以上、平均粒子径が10〜30μm、比表面積が7m2/g以下である黒鉛材料との混合物を負極に使用した非水電解液二次電池(リチウムイオン二次電池)が、サイクル特性に優れることを開示する。但し、特許文献2には、前記被覆炭素材料の平均粒子径が10μm以下であると、電池の充放電効率が低下すると記載されている。 Patent Document 2 discloses that d002 indicating an average spacing of (002) planes is in a range of 0.3350 nm or more and less than 0.3380 nm, and Lc indicating the size of a crystallite in the c-axis direction is 10 nm or more. A coated carbon material having an average particle diameter of 10 to 30 μm or less and a specific surface area of 5 m 2 / g or less obtained by coating the surface of a graphite material having a crystalline structure with non-graphitic carbon; and d002 of 0.3350 nm or more Nonaqueous electrolyte secondary battery using a mixture of a graphite material having a range of less than 0.3380 nm, Lc of 10 nm or more, an average particle size of 10 to 30 μm, and a specific surface area of 7 m 2 / g or less as a negative electrode It is disclosed that (lithium ion secondary battery) is excellent in cycle characteristics. However, Patent Document 2 describes that when the average particle size of the coated carbon material is 10 μm or less, the charge / discharge efficiency of the battery decreases.

特許文献3は、表面が非晶質炭素で被覆された被覆黒鉛粒子と、表面が非晶質炭素で被覆されていない非被覆黒鉛粒子とを負極に使用した非水電解液二次電池(リチウムイオン二次電池)を開示し、前記被覆黒鉛粒子と非被覆黒鉛粒子の平均粒子径が共に20μmのリチウムイオン二次電池を開示している。このリチウムイオン二次電池では、被覆黒鉛粒子が負極の負極材料層の内部への電解液浸透を促進し、リチウムイオン二次電池のサイクル特性が向上すると特許文献3に記載されている。   Patent Document 3 discloses a non-aqueous electrolyte secondary battery (lithium) using coated graphite particles whose surfaces are coated with amorphous carbon and uncoated graphite particles whose surfaces are not coated with amorphous carbon as negative electrodes. An ion secondary battery) is disclosed, and a lithium ion secondary battery in which the average particle sizes of the coated graphite particles and the uncoated graphite particles are both 20 μm is disclosed. In this lithium ion secondary battery, Patent Document 3 describes that the coated graphite particles promote the penetration of the electrolyte solution into the negative electrode material layer of the negative electrode and improve the cycle characteristics of the lithium ion secondary battery.

その他特許文献4には、リチウムイオン二次電池の負極材料として、核となる炭素質物の表面に炭素質物層を有する多層構造の炭素質粒子と、単層構造の炭素質粒子との混合物を使用することが開示されている。   Other Patent Document 4 uses a mixture of a carbonaceous particle having a multilayer structure having a carbonaceous material layer on the surface of a carbonaceous material as a core and a carbonaceous particle having a single-layer structure as a negative electrode material for a lithium ion secondary battery. Is disclosed.

上記の各特許文献はサイクル特性を向上させる技術を開示しているが、サイクル特性については、更なる改善が求められている。   Although each of the above patent documents discloses a technique for improving the cycle characteristics, further improvement is required for the cycle characteristics.

ところで、特許文献1に開示されている技術において問題となる電池の初期効率、並びに、特許文献2において低下防止を目的としている充放電効率および電池容量も、絶えず改善されることが求められる電池特性である。つまり、サイクル特性以外の特性にも優れた電池が求められているのである。
特開2000−123871号公報 特開2001−185147号公報 特開2005−294011号公報 特開平5−307977号公報
By the way, the battery characteristics in which the initial efficiency of the battery which is a problem in the technique disclosed in Patent Document 1, and the charge / discharge efficiency and the battery capacity aimed at preventing the decrease in Patent Document 2 are required to be constantly improved. It is. That is, a battery having excellent characteristics other than cycle characteristics is required.
JP 2000-123871 A JP 2001-185147 A JP 2005-294011 A Japanese Patent Application Laid-Open No. 5-307777

本発明は、上記事情に鑑み、少なくともサイクル特性に優れたリチウムイオン二次電池を実現できるリチウムイオン二次電池用負極材料、および該負極材料の製造方法の提供を目的とする。   An object of this invention is to provide the negative electrode material for lithium ion secondary batteries which can implement | achieve the lithium ion secondary battery excellent in cycling characteristics at least, and the manufacturing method of this negative electrode material in view of the said situation.

本発明者は、所定の複合粒子と該複合粒子よりも平均粒子径が大きな黒鉛粒子との混合物を負極材料として使用すれば、優れたサイクル特性のリチウムイオン二次電池を製造できることを見出し、本発明を完成するに至った。   The present inventor has found that if a mixture of predetermined composite particles and graphite particles having an average particle size larger than the composite particles is used as a negative electrode material, a lithium ion secondary battery having excellent cycle characteristics can be produced. The invention has been completed.

本発明は、炭素質物質および第一黒鉛粒子が複合化した平均粒子径が10μm未満の複合黒鉛粒子と、該複合黒鉛粒子よりも大きな平均粒子径の第二黒鉛粒子とを有し、前記複合黒鉛粒子と第二黒鉛粒子とが接着することなく混合されていることを特徴とするリチウムイオン二次電池用負極材料である。   The present invention comprises a composite graphite particle having an average particle size of less than 10 μm, in which a carbonaceous material and first graphite particles are combined, and a second graphite particle having an average particle size larger than the composite graphite particles, A negative electrode material for a lithium ion secondary battery, wherein graphite particles and second graphite particles are mixed without adhering.

ここで本発明における「平均粒子径」とは、レーザ回折式粒度分布測定装置(例えば、株式会社島津製作所製「SALD−2000」)を用いて求められる粒度分布における積算値50%の粒度である。   Here, the “average particle size” in the present invention is a particle size having an integrated value of 50% in the particle size distribution obtained using a laser diffraction particle size distribution measuring apparatus (for example, “SALD-2000” manufactured by Shimadzu Corporation). .

前記炭素質物質は、非晶質炭素および第三黒鉛のいずれであっても良い。より優れた負極材料の吸水性、並びにより優れたリチウムイオン二次電池の負荷特性および充放電特性を実現するには、前記炭素質物質は、非晶質炭素であることが好ましい。   The carbonaceous material may be either amorphous carbon or tertiary graphite. In order to realize better water absorption of the negative electrode material and better load characteristics and charge / discharge characteristics of the lithium ion secondary battery, the carbonaceous material is preferably amorphous carbon.

本発明は、前記リチウムイオン二次電池用負極材料に使用する原料であって、平均粒子径が10μm未満、かつ、炭素質物質と第一黒鉛粒子が複合化した複合黒鉛粒子である。   The present invention is a composite graphite particle which is a raw material used for the negative electrode material for a lithium ion secondary battery and has an average particle diameter of less than 10 μm and a composite of a carbonaceous material and first graphite particles.

本発明は、前記リチウムイオン二次電池用負極材料を備える負極、および該負極を備えるリチウムイオン二次電池である。   This invention is a negative electrode provided with the said negative electrode material for lithium ion secondary batteries, and a lithium ion secondary battery provided with this negative electrode.

また本発明は、前記リチウムイオン二次電池用負極材料の製造方法であって、第一黒鉛粒子および炭素質物質前駆体の混合物を焼成することにより炭素質物質および前記第一黒鉛粒子が複合化した複合黒鉛を製造する工程と、前記複合黒鉛を粉砕して前記複合黒鉛の粒子径を調整する工程と、前記粒子径を調整した複合黒鉛の粒子および該粒子よりも大きな平均粒子径の第二黒鉛粒子を混合する工程とを有することを特徴とするリチウムイオン二次電池用負極材料の製造方法である。   The present invention is also a method for producing a negative electrode material for a lithium ion secondary battery, wherein the carbonaceous material and the first graphite particles are combined by firing a mixture of the first graphite particles and the carbonaceous material precursor. Manufacturing the composite graphite, pulverizing the composite graphite to adjust the particle diameter of the composite graphite, particles of the composite graphite having the adjusted particle diameter, and second particles having an average particle size larger than the particles And a step of mixing graphite particles. A method for producing a negative electrode material for a lithium ion secondary battery.

平均粒子径が10μm以下である上記所定の複合黒鉛粒子を構成部材に有する本発明に係るリチウムイオン二次電池用負極材料によれば、優れたサイクル特性のリチウムイオン二次電池を実現することができる。   According to the negative electrode material for a lithium ion secondary battery according to the present invention having the predetermined composite graphite particles having an average particle diameter of 10 μm or less as a constituent member, a lithium ion secondary battery having excellent cycle characteristics can be realized. it can.

また、本発明に係るリチウムイオン二次電池用負極材料の製造方法によれば、簡易に本発明に係る負極材料を製造することができる。   Moreover, according to the manufacturing method of the negative electrode material for lithium ion secondary batteries which concerns on this invention, the negative electrode material which concerns on this invention can be manufactured easily.

実施形態に基づき、本発明を以下に説明する。本実施形態のリチウムイオン二次電池用負極材料(以下、「リチウムイオン二次電池用負極材料」を単に「負極材料」と称する)は、複合黒鉛粒子(当該粒子中の「黒鉛」を「第一黒鉛」という)と非複合黒鉛粒子(当該粒子における黒鉛を「第二黒鉛」という)とを必須の構成部材に有し、各粒子は、非接着の状態で混合されている。   Based on an embodiment, the present invention will be described below. The negative electrode material for a lithium ion secondary battery of the present embodiment (hereinafter, the “negative electrode material for a lithium ion secondary battery” is simply referred to as “negative electrode material”). 1 graphite ") and non-composite graphite particles (the graphite in the particles is called" second graphite ") as essential constituent members, and each particle is mixed in a non-adhered state.

複合黒鉛粒子について説明する。
複合黒鉛粒子は、第一黒鉛粒子と炭素質物質とが複合化した粒子であり、この複合化により、第一黒鉛粒子よりも高硬度となっている。なお、複合黒鉛粒子が第一黒鉛粒子よりも高硬度であることは、次の方法により確認することができる。シリンダーに試料(複合黒鉛粒子または第一黒鉛粒子)を定量充填し、測定試料が定常密度となる圧力を加える。このとき、第一黒鉛粒子よりも高硬度の複合黒鉛粒子の方が高い圧力が必要となる。
The composite graphite particles will be described.
The composite graphite particles are particles in which the first graphite particles and the carbonaceous material are combined, and the composite has higher hardness than the first graphite particles. In addition, it can be confirmed by the following method that the composite graphite particles have higher hardness than the first graphite particles. A sample (composite graphite particles or first graphite particles) is quantitatively filled into the cylinder, and a pressure at which the measurement sample has a steady density is applied. At this time, a higher pressure is required for the composite graphite particles having a higher hardness than the first graphite particles.

なお、複合黒鉛粒子のみを負極材料とした場合、初期効率が悪い、リチウムイオン二次電池の容量が低い等の問題があるので、本実施形態では、複合黒鉛粒子と第二黒鉛粒子との混合物を負極材料としている。   When only composite graphite particles are used as the negative electrode material, there are problems such as poor initial efficiency and low capacity of the lithium ion secondary battery. Therefore, in this embodiment, a mixture of composite graphite particles and second graphite particles is used. Is the negative electrode material.

第一黒鉛粒子は、天然黒鉛および人造黒鉛のいずれであっても良い。天然黒鉛としては、例えば、鱗状黒鉛、鱗片状黒鉛、土壌黒鉛が挙げられ、一般に入手することができる85〜99質量%の純度の黒鉛を使用することが好ましく、必要に応じて、公知の方法で黒鉛純度を99質量%以上に高めたものを使用することが好適である。一方、人造黒鉛としては、例えば、コールタールピッチ、石油系ピッチ、アスファルト分解ピッチ、合成ピッチ等のピッチ;ナフタレン、アントラセン、フェナントレン、ピレン、クリセン、ペリレンなどの縮合多環芳香族を加熱加圧して得られるタール;石油系油及び石炭系油等の重質油;塩化ビニール、塩化ビニリデン、ポリアクリロニトリル、フェノール樹脂、芳香族ポリアミド、フルフリルアルコール樹脂、イミド樹脂等の樹脂;等を黒鉛化するまで高温熱処理して製造したものを挙げることができる。   The first graphite particles may be either natural graphite or artificial graphite. Examples of natural graphite include scaly graphite, scaly graphite, and soil graphite, and it is preferable to use graphite having a purity of 85 to 99% by mass that can be generally obtained. It is preferable to use one having a graphite purity increased to 99% by mass or more. On the other hand, as artificial graphite, for example, coal tar pitch, petroleum-based pitch, asphalt cracking pitch, synthetic pitch, etc .; condensed polycyclic aromatics such as naphthalene, anthracene, phenanthrene, pyrene, chrysene, perylene, etc. Tar obtained; heavy oil such as petroleum oil and coal oil; resin such as vinyl chloride, vinylidene chloride, polyacrylonitrile, phenol resin, aromatic polyamide, furfuryl alcohol resin, imide resin; etc. until graphitized The thing manufactured by high temperature heat processing can be mentioned.

本実施形態における炭素質物質は、非晶質炭素および黒鉛(以下、当該「黒鉛」を「第三黒鉛」という)の何れであっても良い。より優れた負極材料の吸液性、並びにより優れたリチウムイオン二次電池の負荷特性および充電特性を実現するには、非晶質炭素が好ましい。   The carbonaceous material in the present embodiment may be any of amorphous carbon and graphite (hereinafter, “graphite” is referred to as “third graphite”). Amorphous carbon is preferable in order to achieve better liquid absorbency of the negative electrode material and better load characteristics and charge characteristics of the lithium ion secondary battery.

本実施形態の非晶質炭素は、非晶質炭素前駆体の焼成物であって、第二黒鉛粒子との接着性がないものである。ここで、非晶質炭素前駆体としては、例えば、ピッチ(コールタールピッチ、石油系ピッチ、合成ピッチなど);石油系油(石油系重質油の接触分解油、熱分解油、常圧残油、減圧残油など)及び石炭系油等の重質油;ナフタレン、アントラセン、フェナントレン、ピレン、クリセン、ペリレンなどの縮合多環芳香族を加熱加圧して得られるタール;塩化ビニール、塩化ビニリデン、ポリアクリロニトリル、フェノール樹脂、芳香族ポリアミド、フルフリルアルコール樹脂、イミド樹脂等の樹脂;等の一種または二種以上の混合物が挙げられ、ピッチが好適である。なお、非晶質炭素前駆体は、通常バインダーとしての性質を有しているので、非晶質炭素前駆体自身が第二黒鉛粒子と接着する性質を有するが、焼成されることでその接着性を失う。   The amorphous carbon of the present embodiment is a fired product of an amorphous carbon precursor and has no adhesiveness with the second graphite particles. Here, as the amorphous carbon precursor, for example, pitch (coal tar pitch, petroleum pitch, synthetic pitch, etc.); petroleum oil (petroleum heavy oil catalytic cracking oil, pyrolysis oil, normal pressure residue) Heavy oils such as oil, vacuum residual oil, etc.) and coal oils; tars obtained by heating and pressurizing condensed polycyclic aromatics such as naphthalene, anthracene, phenanthrene, pyrene, chrysene, perylene; vinyl chloride, vinylidene chloride, One or a mixture of two or more of resins such as polyacrylonitrile, phenol resin, aromatic polyamide, furfuryl alcohol resin, and imide resin; and pitch is preferable. In addition, since the amorphous carbon precursor usually has a property as a binder, the amorphous carbon precursor itself has a property of adhering to the second graphite particles. Lose.

複合黒鉛粒子の平均粒子径は、サイクル特性に優れたリチウムイオン二次電池を実現するためには、8μm以下であると良く、10μm未満まで許容される。なお、平均粒子径が10μm未満であると、リチウムイオン二次電池の充電特性にも優れる。一方、平均粒子径の下限値は、1μmであると良い。   The average particle diameter of the composite graphite particles is preferably 8 μm or less in order to realize a lithium ion secondary battery having excellent cycle characteristics, and is allowed to be less than 10 μm. In addition, it is excellent also in the charge characteristic of a lithium ion secondary battery as an average particle diameter is less than 10 micrometers. On the other hand, the lower limit of the average particle diameter is preferably 1 μm.

次に、第二黒鉛粒子について説明する。
第二黒鉛粒子は、第一黒鉛粒子とは平均粒子径が異なる黒鉛粒子である。第二黒鉛粒子は、第一黒鉛粒子と同様、黒鉛である限り、鱗片状黒鉛など特に限定されない。
Next, the second graphite particles will be described.
The second graphite particles are graphite particles having an average particle diameter different from that of the first graphite particles. As with the first graphite particles, the second graphite particles are not particularly limited as long as they are graphite.

第二黒鉛粒子の平均粒子径は、複合黒鉛粒子よりも大きくなければならない。これにより、第二黒鉛粒子間に複合黒鉛粒子が介在し易くなり、その結果、リチウムイオン二次電池のサイクル特性のみならず、負荷特性、充電特性が良化する。その平均粒子径の上限は、負極における負極材料層の厚みが通常60μm程度であることに対応するため、50μmであると良く、10〜40μmであることが好適であり、15〜30μmであると更に好適である。   The average particle size of the second graphite particles must be larger than the composite graphite particles. Thereby, the composite graphite particles are easily interposed between the second graphite particles. As a result, not only the cycle characteristics but also the load characteristics and the charge characteristics of the lithium ion secondary battery are improved. The upper limit of the average particle diameter corresponds to that the thickness of the negative electrode material layer in the negative electrode is usually about 60 μm, and is preferably 50 μm, preferably 10 to 40 μm, and 15 to 30 μm. Further preferred.

第二黒鉛粒子の形状は、電池での負極において負極材料層への通液性に優れる略球状ないし球状が好適であるが、負極材料層において平行に配列して良好な通液性を確保し難いと一般的に考えられている鱗片状であっても良い。第二黒鉛粒子が鱗片状であっても、各第二黒鉛粒子の間に当該第二黒鉛粒子よりも高硬度の複合黒鉛粒子が介在して、通液路が確保されるからである。   The shape of the second graphite particles is preferably approximately spherical or spherical, which is excellent in liquid permeability to the negative electrode material layer in the negative electrode in the battery, but is arranged in parallel in the negative electrode material layer to ensure good liquid permeability. It may be a scaly shape that is generally considered difficult. This is because even if the second graphite particles are scaly, composite graphite particles having a hardness higher than that of the second graphite particles are interposed between the second graphite particles, and a liquid passage is secured.

複合黒鉛粒子と第二黒鉛粒子の混合比率(合計100質量部)、複合黒鉛粒子が1〜40質量部であると良く、2〜30質量部であることが好ましく、3〜20質量部であることが更に好ましい。
The mixing ratio of the composite graphite particle and the second graphite particle (total 100 parts by weight) may the double if the graphite particles are 1 to 40 parts by weight, preferably from 2 to 30 parts by weight, 3 to 20 parts by weight More preferably.

次に上記本実施形態の負極材料の製造方法について説明する。   Next, the manufacturing method of the negative electrode material of the present embodiment will be described.

本実施形態の負極材料の製造方法は、複合黒鉛製造工程と、該工程で製造した複合黒鉛の粒子径を粉砕調整する粒子径調整工程と、複合黒鉛粒子および第二黒鉛粒子を混合する混合工程とを有する方法である。以下、工程毎に説明する。   The negative electrode material manufacturing method of the present embodiment includes a composite graphite manufacturing process, a particle diameter adjusting process for adjusting the particle diameter of the composite graphite manufactured in the process, and a mixing process for mixing the composite graphite particles and the second graphite particles. It is the method which has these. Hereinafter, it demonstrates for every process.

複合黒鉛製造工程では、窒素、アルゴン、若しくはヘリウム等の不活性ガス雰囲気中または減圧雰囲気中において第一黒鉛粒子と炭素質物質前駆体とを混合して焼成する。この焼成により、炭素質物質前駆体が炭素質物質に変化する。   In the composite graphite production process, the first graphite particles and the carbonaceous material precursor are mixed and fired in an inert gas atmosphere such as nitrogen, argon, or helium, or in a reduced pressure atmosphere. By this firing, the carbonaceous material precursor is changed to a carbonaceous material.

炭素質物質前駆体は、これが焼成されることにより、上記非晶質炭素または第三黒鉛になるものである。非晶質炭素原料としての炭素質物質前駆体としては、上記非晶質炭素前駆体が挙げられる。また、非晶質炭素を得るための焼成温度よりも高温の焼成により、非晶質炭素前駆体が第三黒鉛に変化するので、上記非晶質炭素前駆体を第三黒鉛原料に使用すると良い。   The carbonaceous material precursor is converted into the amorphous carbon or the third graphite by firing it. Examples of the carbonaceous material precursor as the amorphous carbon raw material include the amorphous carbon precursor. Further, since the amorphous carbon precursor is changed to third graphite by firing at a temperature higher than the firing temperature for obtaining amorphous carbon, it is preferable to use the amorphous carbon precursor as the third graphite raw material. .

第一黒鉛粒子と炭素質物質前駆体の混合比率は、第一黒鉛粒子1質量部に対して、炭素質物質前駆体が2〜50質量部であると良く、5〜40質量部であることが好ましく、10〜30質量部であることが更に好ましい。前記炭素質物質前駆体の下限値を2質量部とするのは、焼成により固まった塊状複合黒鉛を製造するためであり、上限値を50質量部とするのは、キャパシタの容量および初期効率の低下を抑えるためである。   The mixing ratio of the first graphite particles and the carbonaceous material precursor is preferably 2 to 50 parts by mass, and 5 to 40 parts by mass with respect to 1 part by mass of the first graphite particles. Is preferable, and it is still more preferable that it is 10-30 mass parts. The reason why the lower limit value of the carbonaceous material precursor is 2 parts by mass is to produce massive composite graphite solidified by firing, and the upper limit value is 50 parts by mass because of the capacity and initial efficiency of the capacitor. This is to suppress the decrease.

炭素質物質前駆体を焼成する温度は、次の通りである。先ず、前駆体を非晶質炭素に変化させるため、500℃以上であると良く、好ましくは600℃以上、更に好ましくは、700℃以上である。その一方で、前駆体を非晶質炭素に変えるための焼成温度上限は、1600℃以下であると良い。次に、前駆体を第三黒鉛に変化させる場合の焼成温度は、前駆体が黒鉛化する温度に適宜設定されるべきであるが、通常、2000℃以上であると良い。   The temperature for firing the carbonaceous material precursor is as follows. First, in order to change the precursor to amorphous carbon, the temperature is preferably 500 ° C. or higher, preferably 600 ° C. or higher, and more preferably 700 ° C. or higher. On the other hand, the upper limit of the firing temperature for changing the precursor to amorphous carbon is preferably 1600 ° C. or less. Next, the firing temperature when the precursor is changed to the third graphite should be appropriately set to a temperature at which the precursor is graphitized, but is usually preferably 2000 ° C. or higher.

粒子径調整工程では、複合黒鉛製造工程において製造した塊状の複合黒鉛をジェットミル等の粉砕機で所望の平均粒子径になるまで粉砕して、複合黒鉛粒子とする。   In the particle size adjustment step, the massive composite graphite produced in the composite graphite production step is pulverized with a pulverizer such as a jet mill until a desired average particle size is obtained, thereby obtaining composite graphite particles.

混合工程では、複合黒鉛粒子と該粒子よりも平均粒子径が大きな第二黒鉛とを混合する。この混合により、負極材料が得られる。   In the mixing step, composite graphite particles and second graphite having an average particle size larger than that of the particles are mixed. By this mixing, a negative electrode material is obtained.

次に、リチウムイオン二次電池用負極について説明する。本実施形態の負極は、本実施形態の負極材料が使用される。負極は、公知の方法により製造できる。例えば、集電板の表面に、本実施形態の負極材料とバインダーを分散させたスラリーを塗布し、次に乾燥することにより製造できる。集電板としては、一般的に銅箔が使用される。また、バインダーは、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、フッ化ビニリデン/ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン/ヘキサフルオロプロピレン/フッ化ビニリデン共重合体等のフッ素系高分子化合物や、カルボキシメチルセルロース、スチレン−ブタジエンゴム、アクリロニトリル−ブタジエンゴム等が使用される。このバインダーは、通常、溶剤に溶解して使用される。   Next, the negative electrode for lithium ion secondary batteries will be described. The negative electrode material of this embodiment is used for the negative electrode of this embodiment. The negative electrode can be produced by a known method. For example, it can be produced by applying a slurry in which the negative electrode material and the binder of the present embodiment are dispersed on the surface of the current collector plate, and then drying. As the current collector plate, a copper foil is generally used. The binder may be a fluorine-based polymer compound such as polytetrafluoroethylene, polyvinylidene fluoride, vinylidene fluoride / hexafluoropropylene copolymer, tetrafluoroethylene / hexafluoropropylene / vinylidene fluoride copolymer, or carboxymethyl cellulose. Styrene-butadiene rubber, acrylonitrile-butadiene rubber, etc. are used. This binder is usually used after being dissolved in a solvent.

次に、リチウムイオン二次電池について説明する。本実施形態のリチウムイオン二次電池は、負極の他、正極、電解液およびセパレータを主要構成としており、負極に上記本実施形態の負極を使用している。正極材料を例示すれば、LiCoO2やLiNiO2、LiNi1-yCo2、LiMnO2、LiMn24、LiFeO2などが挙げられる。また、正極のバインダーとしては、ポリフッ化ビニリデン(PVdF)やポリ四フッ化エチレン(PTFE)などを採用できる。また、導電材として、カーボンブラックなどを混合しても良い。電解液としては、例えば、エチレンカーボネート(EC)などの有機溶媒や、該有機溶媒とジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、1,2−ジメトキシエタン、1,2−ジエトキシメタン、エトキシメトキシエタンなどの低沸点溶媒との混合溶媒に、LiPF6やLiBF4、LiClO4、LiCF3SO3、LiAsF6などの電解液溶質(電解質塩)を溶解した溶液が用いられる。セパレータとしては、例えば、ポリエチレンやポリプロピレンなどのポリオレフィンを主成分とした不織布、クロス、微孔フィルム等が用いられる。 Next, a lithium ion secondary battery will be described. The lithium ion secondary battery of this embodiment has a positive electrode, an electrolytic solution, and a separator in addition to the negative electrode, and uses the negative electrode of the present embodiment as the negative electrode. To exemplify the positive electrode material, LiCoO 2 and LiNiO 2, LiNi 1-y Co y O 2, LiMnO 2, LiMn 2 O 4, etc. LiFeO 2 and the like. As the positive electrode binder, polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), or the like can be employed. Further, carbon black or the like may be mixed as a conductive material. Examples of the electrolytic solution include an organic solvent such as ethylene carbonate (EC), the organic solvent and dimethyl carbonate (DMC), diethyl carbonate (DEC), 1,2-dimethoxyethane, 1,2-diethoxymethane, and ethoxy. A solution obtained by dissolving an electrolyte solute (electrolyte salt) such as LiPF 6 , LiBF 4 , LiClO 4 , LiCF 3 SO 3 , or LiAsF 6 in a mixed solvent with a low boiling point solvent such as methoxyethane is used. As the separator, for example, a nonwoven fabric, a cloth, a microporous film, or the like mainly composed of a polyolefin such as polyethylene or polypropylene is used.

以下に実施例を挙げて本発明をより具体的に説明するが、本発明は、下記実施例によって限定されるものではなく、前・後記の趣旨に適合しうる範囲で適宜変更して実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。   The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to the following examples, and may be appropriately modified and implemented within a range that can meet the purpose described above and below. All of which are within the scope of the present invention.

実施例および比較例の負極材料を作製し、この負極材料を使用してリチウムイオン二次電池を製造した。製造方法の詳細は、以下の通りである。   Negative electrode materials of Examples and Comparative Examples were prepared, and lithium ion secondary batteries were manufactured using the negative electrode materials. The details of the manufacturing method are as follows.

(実施例1)
1.複合黒鉛粒子の調製
第一黒鉛粒子である平均粒子径が6μmの鱗片状天然黒鉛210質量部、炭素質物質前駆体であるコールタールピッチ90質量部、およびN−メチルピロリドン200質量部を混合し、次に、この混合物を2時間、窒素気流中800℃で焼成し、更に2時間、窒素気流中1100℃で焼成して塊状の複合黒鉛を得た。この塊状複合黒鉛をジェットミルで粉砕して、平均粒子径が6μmの複合黒鉛粒子を得た。
Example 1
1. Preparation of Composite Graphite Particles 210 parts by weight of scaly natural graphite having an average particle diameter of 6 μm as first graphite particles, 90 parts by weight of coal tar pitch as a carbonaceous material precursor, and 200 parts by weight of N-methylpyrrolidone are mixed. Next, this mixture was fired at 800 ° C. in a nitrogen stream for 2 hours, and further fired at 1100 ° C. in a nitrogen stream for 2 hours to obtain a massive composite graphite. The massive composite graphite was pulverized with a jet mill to obtain composite graphite particles having an average particle diameter of 6 μm.

2.第二黒鉛粒子の調製
平均粒子径30μmの鱗片状天然黒鉛200gを、ホソカワミクロン株式会社製「カウンタージェットAFG100」を使用し(ノズル吐出空気圧:0.20MPa、操作時間:20分)、平均粒子径が25μmであって球状の第二黒鉛粒子を得た。
2. Preparation of second graphite particles 200 g of scaly natural graphite having an average particle diameter of 30 μm was used using “Counterjet AFG100” manufactured by Hosokawa Micron Corporation (nozzle discharge air pressure: 0.20 MPa, operation time: 20 minutes), and the average particle diameter was The second graphite particles having a spherical shape of 25 μm were obtained.

3.負極材料
上記調製で得た複合黒鉛粒子10質量部および第二黒鉛粒子90質量部を混合し、実施例1の負極材料を調製した。
3. Negative electrode material 10 parts by mass of the composite graphite particles obtained in the above preparation and 90 parts by mass of the second graphite particles were mixed to prepare the negative electrode material of Example 1.

(実施例2)
実施例1の複合黒鉛粒子調製におけるコールタールピッチおよびN−メチルピロリドンをコールタール234質量部に替えた以外は、実施例1と同様にして、実施例2の負極材料を調製した。
(Example 2)
A negative electrode material of Example 2 was prepared in the same manner as in Example 1 except that coal tar pitch and N-methylpyrrolidone in the preparation of composite graphite particles of Example 1 were changed to 234 parts by mass of coal tar.

(実施例3)
実施例1の複合黒鉛粒子調製において、コールタールピッチおよびN−メチルピロリドンをコールタール234質量部に変更し、1100℃の焼成温度を2800℃の焼成温度に変更した。これら以外は実施例1と同様にして、実施例3の負極材料を調製した。
Example 3
In the preparation of composite graphite particles of Example 1, coal tar pitch and N-methylpyrrolidone were changed to 234 parts by mass of coal tar, and the firing temperature at 1100 ° C. was changed to a firing temperature of 2800 ° C. A negative electrode material of Example 3 was prepared in the same manner as Example 1 except for these.

(比較例1)
実施例1の第二黒鉛粒子調製法と同様の方法で調製した第二黒鉛粒子を比較例1の負極材料とした。
(Comparative Example 1)
The second graphite particles prepared by the same method as the second graphite particle preparation method of Example 1 were used as the negative electrode material of Comparative Example 1.

(比較例2)
実施例1における第一黒鉛粒子(平均粒子径が6μmの鱗片状天然黒鉛)5質量部と、実施例1の第二黒鉛粒子調製法と同様の方法で調製した第二黒鉛粒子95質量部とを混合して、比較例2の負極材料を調製した。
(Comparative Example 2)
5 parts by mass of first graphite particles (scale-like natural graphite having an average particle diameter of 6 μm) in Example 1, and 95 parts by mass of second graphite particles prepared by the same method as the method for preparing second graphite particles in Example 1 Were mixed to prepare a negative electrode material of Comparative Example 2.

(比較例3)
実施例1の複合黒鉛粒子調製において、第一黒鉛粒子の平均粒子径を15μmに変更し、複合黒鉛粒子の平均粒子径を12μmに変更した。これら以外は、実施例1と同様にして、比較例3の負極材料を調製した。
(Comparative Example 3)
In the composite graphite particle preparation of Example 1, the average particle size of the first graphite particles was changed to 15 μm, and the average particle size of the composite graphite particles was changed to 12 μm. A negative electrode material of Comparative Example 3 was prepared in the same manner as Example 1 except for these.

上記実施例および比較例の負極材料を使用して、リチウムイオン二次電池を作製した。この電池の初期効率、負荷特性、充電特性、およびサイクル特性の評価を行った。また、負極材料の吸液性の評価を行った。リチウムイオン二次電池の作製方法および各評価方法は、以下の通りである。   Lithium ion secondary batteries were fabricated using the negative electrode materials of the above examples and comparative examples. The initial efficiency, load characteristics, charging characteristics, and cycle characteristics of this battery were evaluated. In addition, the liquid absorbency of the negative electrode material was evaluated. A method for producing a lithium ion secondary battery and each evaluation method are as follows.

(リチウムイオン二次電池の作製)
1.負極の作製
100質量部の実施例ないしは比較例の負極材料、50質量部のバインダー水溶液(2.0質量%カルボキシメチルセルロース水溶液)、および20質量部の5.0質量%スチレンブタジエンゴム水溶液を混合し、これに30質量部の水を加えてスラリー状にした。得られたスラリーを厚さ18μmの銅箔上に塗布し、乾燥機(100℃)で10分間乾燥した。乾燥後、直径1.6cmの円形に打ち抜いたのち、銅箔を除く塗布量を測定すると18mgであった。この膜をローラープレス機で、銅箔上に塗布した塗布物の密度が1.60g/ccとなるようにプレスし、リチウムイオン二次電池用の負極を作製した。
(Production of lithium ion secondary battery)
1. Preparation of Negative Electrode 100 parts by mass of the negative electrode material of Examples or Comparative Examples, 50 parts by mass of binder aqueous solution (2.0% by mass carboxymethylcellulose aqueous solution), and 20 parts by mass of 5.0% by mass styrene butadiene rubber aqueous solution were mixed. Then, 30 parts by mass of water was added thereto to form a slurry. The obtained slurry was applied onto a copper foil having a thickness of 18 μm and dried with a dryer (100 ° C.) for 10 minutes. After drying, it was punched out into a circle having a diameter of 1.6 cm, and the coating amount excluding the copper foil was 18 mg. This film was pressed with a roller press so that the density of the coating applied on the copper foil was 1.60 g / cc to prepare a negative electrode for a lithium ion secondary battery.

2.リチウムイオン二次電池の作製
リチウムイオン二次電池用の正極としては、低温充電特性および負荷特性を算出するためのリチウムイオン二次電池用にはリチウム箔を用い、サイクル特性を算出するためのリチウムイオン二次電池用にはLiCoO2を活物質とする電極を用いた。LiCoO2を活物質とする電極は、次のようにして作製した。LiCoO290質量部に対して、バインダーとしてポリフッ化ビニリデン(PVdF)5質量部、導電材としてカーボンブラック5質量部を夫々混合し、これにN−メチル−2−ピロリドン(NMP)200質量部を加えてスラリーを作製した。得られたスラリーを厚さ30μmのアルミ箔上に塗布し、乾燥機(100℃)で20分間乾燥した。乾燥後の膜を直径1.6cmの円形に打ち抜いた後、アルミ箔を除く塗布量を測定すると45mgであった。この膜をローラープレス機で、アルミ箔上に塗布した塗布物の密度が2.8g/ccとなるようにプレスしてリチウムイオン二次電池用の正極を作製した。
2. Preparation of lithium ion secondary battery As positive electrode for lithium ion secondary battery, lithium foil is used for lithium ion secondary battery for calculating low temperature charge characteristics and load characteristics, and lithium for calculating cycle characteristics. An electrode using LiCoO 2 as an active material was used for an ion secondary battery. An electrode using LiCoO 2 as an active material was produced as follows. With respect to 90 parts by mass of LiCoO 2, 5 parts by mass of polyvinylidene fluoride (PVdF) as a binder and 5 parts by mass of carbon black as a conductive material were mixed, and 200 parts by mass of N-methyl-2-pyrrolidone (NMP) was added thereto. In addition, a slurry was prepared. The obtained slurry was applied onto an aluminum foil having a thickness of 30 μm, and dried for 20 minutes with a dryer (100 ° C.). After the dried film was punched out into a circle having a diameter of 1.6 cm, the coating amount excluding the aluminum foil was measured and found to be 45 mg. This film was pressed with a roller press so that the density of the coating applied on the aluminum foil was 2.8 g / cc to produce a positive electrode for a lithium ion secondary battery.

3.リチウムイオン二次電池の組み立て
上記正極と負極とを、セパレータを介して対向させて、ステンレス製セルに組み込み、リチウムイオン二次電池(コイン型)を作製した。電池の組み立てはアルゴンガス雰囲気下で行ない、電解液としては、1MのLiPF6/(EC+DMC)0.05mLを、セパレータとしてはCelgard社製の「セルガード#3501(商品名)」を用いた。電解液は、エチレンカーボネート(EC)とジメチルカーボネート(DMC)を容積比1:1で混合した溶媒に、LiPFを1Mの濃度になるように溶解したものである(三菱化学社製、商品名「ソルライト」)。
3. Assembly of Lithium Ion Secondary Battery The positive electrode and the negative electrode were opposed to each other with a separator interposed between them and assembled into a stainless steel cell to produce a lithium ion secondary battery (coin type). The battery was assembled under an argon gas atmosphere, 0.05 mL of 1M LiPF 6 / (EC + DMC) was used as the electrolyte, and “Celguard # 3501 (trade name)” manufactured by Celgard was used as the separator. The electrolytic solution is obtained by dissolving LiPF 6 to a concentration of 1 M in a solvent in which ethylene carbonate (EC) and dimethyl carbonate (DMC) are mixed at a volume ratio of 1: 1 (trade name, manufactured by Mitsubishi Chemical Corporation). "Sollite").

(初期効率の評価)
電池の充電を、電極面積に対する電流密度0.37mA/cm(0.1C)の定電流値で0Vまで行い、続けて、0Vの定電位で電流値が0.06mA/cmになるまで行った。次に、放電を電流値0.37mA/cmで1Vになるまで行った。電池の初期効率を次式(1)により算出した。
(Evaluation of initial efficiency)
The battery is charged to 0 V at a constant current value of 0.37 mA / cm 2 (0.1 C) with respect to the electrode area, and then until the current value becomes 0.06 mA / cm 2 at a constant potential of 0 V. went. Next, discharging was performed until the voltage reached 1 V at a current value of 0.37 mA / cm 2 . The initial efficiency of the battery was calculated by the following formula (1).

Figure 0004579892
Figure 0004579892

(負荷特性の評価)
電池の充電を、電極面積に対する電流密度が0.37mA/cm(0.1C)の定電流値で、正極と負極の電位差が0Vになるまでを行い、続けて、0Vの定電位で電流値が0.06mAcmに下がるまで行った。充電後、0.37mA/cm(0.1C)で1Vまで放電した放電容量と、9.2mA/cm(2.5C)で1Vまで放電した放電容量とから、次式(2)により算出した。
(Evaluation of load characteristics)
The battery was charged until the current density with respect to the electrode area was a constant current value of 0.37 mA / cm 2 (0.1 C) and the potential difference between the positive electrode and the negative electrode became 0 V, and then the current was maintained at a constant potential of 0 V value went down to 0.06mAcm 2. From the discharge capacity discharged to 1 V at 0.37 mA / cm 2 (0.1 C) and the discharge capacity discharged to 1 V at 9.2 mA / cm 2 (2.5 C) after charging, the following equation (2) Calculated.

Figure 0004579892
Figure 0004579892

(充電特性の評価)
電池の充電を、室温にて、3.7mA/cm(1C)の定電流で0Vまで行った。このときの負極における単位質量あたりの充電容量(mAh/g)で評価した。
(Evaluation of charging characteristics)
The battery was charged to 0 V with a constant current of 3.7 mA / cm 2 (1C) at room temperature. The negative electrode at this time was evaluated by the charge capacity per unit mass (mAh / g).

(サイクル特性の評価)
電池の充電を、電流値6.4mAで4.2Vまで行った後、続けて、4.2Vの定電圧で電流値が0.2mAになるまで行なった。次に、放電を、電流値6.4mAで3.0Vになるまで行なった。この充電と放電とを室温にて所定回数繰り返し、次式(3)によりサイクル特性を算出した。
(Evaluation of cycle characteristics)
The battery was charged to 4.2 V at a current value of 6.4 mA, and then continuously until the current value reached 0.2 mA at a constant voltage of 4.2 V. Next, discharging was performed at a current value of 6.4 mA until 3.0 V was reached. This charging and discharging were repeated a predetermined number of times at room temperature, and the cycle characteristics were calculated by the following equation (3).

Figure 0004579892
Figure 0004579892

(吸液性の評価)
リチウムイオン二次電池の作製に使用した負極に3μLのプロピレンカーボネートを滴下し、滴下したプロピレンカーボネート全量が負極に吸収される時間を測定した。なお、プロピレンカーボネートが吸収されたか否かは、目視で確認した。
(Evaluation of liquid absorbency)
3 μL of propylene carbonate was dropped onto the negative electrode used for the production of the lithium ion secondary battery, and the time taken for the total amount of the dropped propylene carbonate to be absorbed by the negative electrode was measured. In addition, it was confirmed visually whether propylene carbonate was absorbed.

表1に各評価結果を示す。   Table 1 shows the evaluation results.

Figure 0004579892
Figure 0004579892

表1の実施例と比較例の結果を対比すると、比較例の負極材料を使用した場合よりも実施例の負極材料を使用した場合の方がサイクル特性に優れていたことを確認することができる。また、実施例1〜3の結果内で対比すると、複合黒鉛粒子における炭素質物質が黒鉛である実施例3の負極材料よりも、炭素質物質が非晶質炭素である実施例1および2の方が負荷特性、充電特性、および吸液性に優れていたことを確認することができる。   Comparing the results of the examples and comparative examples in Table 1, it can be confirmed that the cycle characteristics were superior in the case of using the negative electrode material of the example than in the case of using the negative electrode material of the comparative example. . Further, in comparison with the results of Examples 1 to 3, the carbonaceous material in the composite graphite particles in Examples 1 and 2 in which the carbonaceous material is amorphous carbon than the negative electrode material in Example 3 in which the carbonaceous material is graphite. It can be confirmed that the method was superior in load characteristics, charging characteristics, and liquid absorption.

Claims (9)

炭素質物質および第一黒鉛粒子が複合化した平均粒子径が1μm〜8μmの複合黒鉛粒子と、平均粒子径が10μm〜40μmの第二黒鉛粒子とを有し、前記複合黒鉛粒子と第二黒鉛粒子とが接着することなく混合されていることを特徴とするリチウムイオン二次電池用負極材料。   A composite graphite particle having an average particle diameter of 1 μm to 8 μm, and a second graphite particle having an average particle diameter of 10 μm to 40 μm, wherein the carbonaceous material and the first graphite particle are combined; A negative electrode material for a lithium ion secondary battery, wherein the particles are mixed without adhering. 前記複合黒鉛粒子と第二黒鉛粒子の混合比率(合計100質量部)は、複合黒鉛粒子が1〜40質量部である請求項1に記載のリチウムイオン二次電池用負極材料。   2. The negative electrode material for a lithium ion secondary battery according to claim 1, wherein a composite ratio of the composite graphite particles and the second graphite particles (total 100 parts by mass) is 1 to 40 parts by mass of the composite graphite particles. 前記第二黒鉛粒子が球状である請求項1または2に記載のリチウムイオン二次電池用負極材料。   The negative electrode material for a lithium ion secondary battery according to claim 1, wherein the second graphite particles are spherical. 前記複合黒鉛粒子における炭素質物質が非晶質炭素である請求項1〜3のいずれかに記載のリチウムイオン二次電池用負極材料。   The negative electrode material for a lithium ion secondary battery according to any one of claims 1 to 3, wherein the carbonaceous substance in the composite graphite particles is amorphous carbon. 前記複合黒鉛粒子における炭素質物質が、炭素質物質前駆体を焼成して得られる第三黒鉛である請求項1〜3のいずれかに記載のリチウムイオン二次電池用負極材料。 The negative electrode material for a lithium ion secondary battery according to any one of claims 1 to 3, wherein the carbonaceous material in the composite graphite particles is third graphite obtained by firing a carbonaceous material precursor . 請求項1〜5のいずれかに記載のリチウムイオン二次電池用負極材料に使用する原料であって、平均粒子径が1μm〜8μm、かつ、炭素質物質と第一黒鉛粒子が複合化した複合黒鉛粒子。   A raw material used for the negative electrode material for a lithium ion secondary battery according to any one of claims 1 to 5, wherein the average particle size is 1 µm to 8 µm, and a composite in which the carbonaceous material and the first graphite particles are combined. Graphite particles. 請求項1〜5のいずれかに記載のリチウムイオン二次電池用負極材料を備える負極。   A negative electrode provided with the negative electrode material for lithium ion secondary batteries in any one of Claims 1-5. 請求項7に記載の負極を備えるリチウムイオン二次電池。   A lithium ion secondary battery comprising the negative electrode according to claim 7. 請求項1〜のいずれかに記載のリチウムイオン二次電池用負極材料の製造方法であって、第一黒鉛粒子および炭素質物質前駆体の混合物を焼成することにより炭素質物質および前記第一黒鉛粒子が複合化した複合黒鉛を製造する工程と、前記複合黒鉛を粉砕して前記複合黒鉛の平均粒子径を1μm〜8μmに調整する工程と、前記粒子径を調整した複合黒鉛の粒子および平均粒子径が10μm〜40μmの第二黒鉛粒子を混合する工程とを有することを特徴とするリチウムイオン二次電池用負極材料の製造方法。 A method for producing a negative electrode material for a lithium ion secondary battery according to any one of claims 1 to 3 , wherein the carbonaceous material and the first material are obtained by firing a mixture of first graphite particles and a carbonaceous material precursor. A step of producing composite graphite in which graphite particles are combined; a step of pulverizing the composite graphite to adjust the average particle size of the composite graphite to 1 μm to 8 μm; and a particle and average of the composite graphite having the adjusted particle size And a step of mixing second graphite particles having a particle diameter of 10 μm to 40 μm. A method for producing a negative electrode material for a lithium ion secondary battery.
JP2006327312A 2006-12-04 2006-12-04 Negative electrode material for lithium ion secondary battery and method for producing the same Active JP4579892B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006327312A JP4579892B2 (en) 2006-12-04 2006-12-04 Negative electrode material for lithium ion secondary battery and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006327312A JP4579892B2 (en) 2006-12-04 2006-12-04 Negative electrode material for lithium ion secondary battery and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008140707A JP2008140707A (en) 2008-06-19
JP4579892B2 true JP4579892B2 (en) 2010-11-10

Family

ID=39601952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006327312A Active JP4579892B2 (en) 2006-12-04 2006-12-04 Negative electrode material for lithium ion secondary battery and method for producing the same

Country Status (1)

Country Link
JP (1) JP4579892B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010113783A1 (en) 2009-03-30 2010-10-07 住友金属工業株式会社 Mixed carbon material and negative electrode for nonaqueous secondary battery
JP2011060467A (en) * 2009-09-07 2011-03-24 Kansai Coke & Chem Co Ltd Negative electrode material for lithium ion secondary battery and method for manufacturing the same
JP2013016353A (en) * 2011-07-04 2013-01-24 Gs Yuasa Corp Nonaqueous electrolyte secondary battery
JP6499427B2 (en) * 2013-12-17 2019-04-10 マクセルホールディングス株式会社 Lithium ion secondary battery
EP3273511B1 (en) * 2015-03-19 2019-12-25 Envision AESC Energy Devices Ltd. Negative electrode for non-aqueous electrolyte secondary cell, and non-aqueous electrolyte secondary cell in which said negative electrode is used
KR102398690B1 (en) * 2019-01-24 2022-05-17 주식회사 엘지에너지솔루션 Lithium secondary battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11343108A (en) * 1995-11-14 1999-12-14 Osaka Gas Co Ltd Preparation of cathode material for lithium battery
JP2001185147A (en) * 1999-12-27 2001-07-06 Asahi Kasei Corp Secondary battery using nonaqueous electrolytic solution

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11343108A (en) * 1995-11-14 1999-12-14 Osaka Gas Co Ltd Preparation of cathode material for lithium battery
JP2001185147A (en) * 1999-12-27 2001-07-06 Asahi Kasei Corp Secondary battery using nonaqueous electrolytic solution

Also Published As

Publication number Publication date
JP2008140707A (en) 2008-06-19

Similar Documents

Publication Publication Date Title
US10622631B2 (en) Negative active material, lithium secondary battery including the material, and method of manufacturing the material
CN110651386B (en) Negative electrode active material for electrochemical device, negative electrode comprising the same, and electrochemical device comprising the same
KR101323179B1 (en) Non-aqueous secondary battery
KR101342601B1 (en) Negative active material, manufacturing method thereof, and lithium battery containing the material
EP2894703B1 (en) Nonaqueous electrolyte secondary battery
US20160156031A1 (en) Anode active material for lithium secondary battery and lithium secondary battery including the anode active material
US20120148922A1 (en) Negative electrode for non-aqueous electrolyte secondary battery and method for producing the same
US11217783B2 (en) Negative electrode active material for lithium secondary battery, negative electrode including the same, and lithium secondary battery including the negative electrode
JP7281570B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
CN109478641B (en) Negative electrode active material and negative electrode including same
US20150104711A1 (en) Negative electrode for lithium ion secondary battery, negative electrode slurry for lithium ion secondary battery, and lithium ion secondary battery
CN113795947B (en) Negative electrode active material, and negative electrode, electrochemical device and electronic device including the same
WO2016147976A1 (en) Lithium ion cell, negative electrode for lithium ion cell, battery module, automobile, and power storage device
JP4579892B2 (en) Negative electrode material for lithium ion secondary battery and method for producing the same
CN112219293A (en) Negative electrode for lithium secondary battery and lithium secondary battery comprising same
JP2011060467A (en) Negative electrode material for lithium ion secondary battery and method for manufacturing the same
TW201832401A (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2017526145A (en) Anode materials for lithium-ion batteries
WO2017213083A1 (en) Negative electrode for lithium ion secondary cell, and lithium ion secondary cell
US20160181613A1 (en) Carbonous anode material, method for producing the same, and lithium-ion battery containing the anode material
JP7143006B2 (en) Manufacturing method of negative electrode active material for secondary battery, negative electrode for secondary battery, and lithium secondary battery including the same
JP5885919B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2018073579A (en) Lithium ion battery
CN117882210A (en) Negative electrode active material, method for preparing same, and negative electrode and secondary battery comprising same
CA3227003A1 (en) Method for preparing negative electrode active material, and negative electrode and secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100810

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100826

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4579892

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350